
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 4, pp. 64–96. DOI:10.46586/tosc.v2024.i4.64-96

Chosen-Prefix Collisions on AES-like Hashing
Shiyao Chen1, Xiaoyang Dong2,3,4(B), Jian Guo5 and Tianyu Zhang5

1 Digital Trust Centre, Nanyang Technological University, Singapore, Singapore
shiyao.chen@ntu.edu.sg

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878,
People’s Republic of China

xiaoyangdong@tsinghua.edu.cn
3 Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University, Beijing,

People’s Republic of China
4 Zhongguancun Laboratory, Beijing, People’s Republic of China

5 Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

guojian@ntu.edu.sg,tianyu005@e.ntu.edu.sg

Abstract. Chosen-prefix collision (CPC) attack was first presented by Stevens, Lenstra
and de Weger on MD5 at Eurocrypt 2007. A CPC attack finds a collision for any two
chosen prefixes, which is a stronger variant of collision attack. CPCs are naturally
harder to construct but have larger practical impact than (identical-prefix) collisions,
as seen from the series of previous works on MD5 by Stevens et al. and SHA-1 by
Leurent and Peyrin. Despite its significance, the resistance of CPC attacks has not
been studied on AES-like hashing.
In this work, we explore CPC attacks on AES-like hashing following the framework
practiced on MD5 and SHA-1. Instead of the message modification technique developed
for MD-SHA family, we opt for related-key rebound attack to construct collisions for
AES-like hashing in view of its effectiveness. We also note that the CPC attack
framework can be exploited to convert a specific class of one-block free-start collisions
into two-block collisions, which sheds light on the importance of free-start collisions.
As a result, we present the first CPC attacks on reduced Whirlpool, Saturnin-hash
and AES-MMO/MP in classic and quantum settings, and extend the collision attack
on Saturnin-hash from 5 to 6 rounds in the classic setting. As an independent
contribution, we improve the memoryless algorithm of solving 3-round inbound phase
by Hosoyamada and Sasaki at Eurocrpyt 2020, which leads to improved quantum
attacks on Whirlpool. Notably, we find the first 6-round memoryless quantum
collision attack on Whirlpool better than generic CNS collision finding algorithm
when exponential-size qRAM is not available but exponential-size classic memory is
available.
Keywords: Chosen-Prefix Collision · Related-Key Rebound Attack · Quantum
Cryptanalysis · Whirlpool · Saturnin-hash · AES-MMO/MP

1 Introduction
A hash function maps an aribtrary-size message to a fixed-size hash value. A secure hash
function must satisfy three fundamental security requirements: preimage resistance, second-
preimage resistance, and collision resistance. Hash functions play a crucial role in cyberse-
curity, especially in digital signatures. One popular approach to build a cryptographic hash
function is to plug a compression function into the Merkle-Damgård construction [Mer89;
Dam], which usually has two categories: MD-SHA family (e.g., MD5 [Riv92], SHA-1 [ST95],
and etc.) and AES-like hashing (e.g., AES-MMO [All17; ISO10], Whirlpool [BR00; ISO04],

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-09-01 Accepted: 2024-11-01 Published: 2024-12-18

https://doi.org/10.46586/tosc.v2024.i4.64-96
mailto:shiyao.chen@ntu.edu.sg
mailto:xiaoyangdong@tsinghua.edu.cn
mailto:guojian@ntu.edu.sg, tianyu005@e.ntu.edu.sg
http://creativecommons.org/licenses/by/4.0/

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 65

and etc.). However, due to the impressive advances in hash function cryptanalysis in 2004-
2005, in particular against the MD-SHA family by Wang et al. [WY05; WLFCY05; WYY05a;
WYY05b], the NIST in 2007 decided to call for a new cryptographic hash function to
provide alternatives to the MD-SHA family, and eventually announced KECCAK [BDPA13] as
the winner to be standardized as the new SHA-3 [ST15] in 2015. In this paper, we focus on
the notion of collision resistance on AES-like hashing, i.e., it should be computationally
infeasible to find two messages with the same hash value.

Chosen-Prefix Collision. In 2006, a stronger variant of collision was brought to concern
by Gauravaram et al. [GMD06] at AusCERT as well as De Cannière and Rechberger
[CR06] at Asiacrypt, namely chosen-prefix collision (CPC). A CPC attack aims at finding
a pair of suffixes (or messages) S0 and S1 for any two chosen prefixes (or initial values) P0
and P1 such that H(P0||S0) = H(P1||S1). At Eurocrypt 2007, Stevens, Lenstra, and de
Weger presented the very first CPC attack. They mounted the attack on MD5 and found
colliding X.509 certificates for different identities [SLW07]. The novel method was then
improved and used to create a rogue certificate authority (CA) at Crypto 2009 [Ste+09].
The series of work on MD5 by Stevens and others are later summarized in [SLW12]. At
Eurocrypt 2019, Leurent and Peryin composed the first CPC attack on SHA-1 [LP19] by
extending and systematically improving Steven et al.’s idea on MD5. The attack on SHA-1
was further revised with implementation on GPU [LP20]. As a result, a chosen-prefix
collision was found on SHA-1 with 900 Nvidia GTX1060 in two months, which directly
leads to the shambles of PGP/GnuPG Web of Trust.

A chosen-prefix collision attack is harder than a (identical-prefix) collision attack. This
can be obtained from a theoretic perspective through reduction (see Section 2.1 for more
details). From the aspect of attack complexity, the best collision on MD5 has the time
complexity of 216 compared to the best CPC on MD5 with 239 [Ste+09]. The practical
impact of a CPC attack is also significantly larger, as seen from its impact on certificates
(rogue CA) [SLW07] and protocols (TLS, SSH, IKE) [BL16]. This is partially due to
the fact that the adversary has more control over the colliding messages under the CPC
setting. Thus, both CPC results on MD5 and SHA-1 directly composed a compelling case
on immediately terminating their usage in cryptographic constructions.

Rebound Attack. Introduced by Mendel et al. at FSE 2009 [MRST09], rebound attack
is among the most powerful cryptanalysis techniques to find collisions on AES-like hashing.
A rebound attack consists of an inbound phase and an outbound phase. In the inbound
phase, the attacker efficiently finds a conforming pair of a short but dense differential
characteristic. The number of conforming pairs can be generated in the inbound phase
is denoted as the inbound degree of freedom (DoF). The outbound phase refers to the
computation that is not covered by the inbound phase. It propagates the starting point from
the inbound phase to fulfill the sufficient constraints for a collision in a probabilistic manner,
which we denote as DoF consumption. Thus, the inbound phase must provide enough DoF
for the outbound phase. Since the introduction of rebound attacks, many techniques have
been proposed to further extend its power, such as mutliple inbound [LMRRS09], Super
S-box [GP10; LMRRS09], fast list merge [Nay11], dissection [DDKS12], non-full-active
Super S-box [SWWW12], triangulating rebound [DGLP22], bit-based rebound [TSITI24].
Matured and refined over the years, rebound attack has now become a cardinal technique
in collision attacks on AES-like hashing. The pioneer work by Mendel et al. [MRST09] is
highly appreciated by the community and was awarded the FSE Test-of-Time award1 in
March 2024.

1https://tosc.iacr.org/index.php/ToSC/ToT_Award

https://tosc.iacr.org/index.php/ToSC/ToT_Award

66 Chosen-Prefix Collisions on AES-like Hashing

Quantum Implications on Rebound Attacks. The past decade has witnessed notable
advances in the quantum cryptanalysis of symmetric-key primitives, such as the attacks on
Feistel [KM10], EM construction [KM12; BHNSS19], MACs and AEAD [KLLN16; HI21;
BLNS21], FX construction [LM17], generic multi-collision finding [HSX17; LZ19], and
Merkle-Damgård construction [AGL22], etc.

Quantum rebound attacks were first explored at Eurocrypt 2020 by Hosoyamada
and Sasaki [HS20], where the rebound attack was rephrased as a nested Grover search
problem [SS24]. In [HS20], the authors presented a quantum algorithm capable of exploiting
the differential of the inbound phase and outbound phase that is not feasible in the classical
setting for rebound attacks. As a result, they have succeeded in extending one more attack
round on AES-MMO/MP and Whirlpool compared to the previous best classical attack results.
The method has alerted the community that quantum adversaries are able to inspect more
weaknesses of a primitive instead of a plain quadratic speedup.

At Asiacrypt 2020, Dong et al. [Don+20] found quantum rebound attacks below the
CNS collision bound [CNS17] with reduced or no quantum random access memory, and
Flórez-Gutiérrez et al. [Fló+20] proposed quantum collision attacks on Gimli. Later at
Crypto 2021, Hosoyamada and Sasaki proposed quantum collision attack on round-reduced
SHA-2 [HS21]. Dong et al. proposed quantum free-start collision attacks at Asiacrypt
2021 [Don+21b]. At Crypto 2022, Dong et al. [DGLP22] introduced the Super-Inbound
technique suited with triangulation algorithm to further extend the attack rounds on
AES-MMO/MP.

Motivation and Contribution. Notwithstanding the significant impact of CPC attacks
on hash functions, the resistance against CPC attacks is yet to be investigated on AES-like
hashing. Besides, the CPC attack framework is able to construct collisions based on a
specific class of one-block free-start collision attacks which finds a balance between the
DoF from the key schedule and attack complexity. This technique could be a meaningful
alternative to mount two-block collision from one-block free-start collision on AES-like
hashing. However, previous work drains the key schedule DoF to compensate the probability
of the outbound phase or to reach more rounds [Don+21b; DGLP22], thus cannot be
used to construct collisions. Thus, having these in mind, we achieve the following results
summarized in Table 1.

• We extend the CPC attack framework into AES-like hashing. Our attacks starts
with a birthday phase to ensure a desired difference between the chaining values,
then a related-key rebound attack is adopted to construct collision in view of its
effectiveness in AES-like hashing, instead of the message modification technique
that is developed for ARX ciphers and well-practised on MD-SHA family.

• As a result, we provide the first CPC attacks on reduced Whirlpool, Saturnin-hash,
and AES-MMO/MP, both in classic and in quantum. We observed the difference between
MMO and MP modes against CPC attacks in the classical setting when instantiating
with AES-128. It is noteworthy that MMO and MP modes are generally reckoned as
equivalent in prior works [HS20; Don+20; DGLP22] if only single-key differentials
are used. We also improve the classical collision attack on Saturnin-hash from the
previous best 5 rounds [Don+21b] to 6 rounds using the attack framework. Hence,
when assessing the collision resistance of a given target, both the conversion from
semi-free-start collision and from free-start collision should be considered, as the
corresponding resistance can be different.

• As an independent contribution, we improve the memoryless algorithm in [HS20]
of solving 3-round inbound phase. Thereby, all previous quantum attacks based
on this algorithm are improved, e.g., the 6-round collision attack in [HS20] and

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 67

9-round free-start collision attack in [Don+21b] on Whirlpool. Notably, our 6-round
quantum collision attack on Whirlpool has time complexity of 2201.4 without classical
or quantum memory. Our attack is better than the generic CNS algorithm [CNS17]
under the assumption that no exponential-size qRAM is available but large classical
memory is available.

Table 1: Summary of our results on AES-like hashing

Target Attack Rounds Time cMem qRAM C⋆ QA∗ QB∗ QC∗ Source

Whirlpool

Hash

Collision 4 2120 216 - ✓ - - - [MRST09]

function

Collision 5 2120 264 - ✓ - - - [GP10; LMRRS09]
Collision 6 2248 2248 - ✓ - - - [Don+21a]
Collision 6 2240 2240 - ✓ - - - [CGLSZ24]
Collision 6 2228 - - - ✓ - - [HS20]
Collision† 6 2201.4 - - - ✓ ✓ - Section 5.2

CPC 6 2205.4 - - - ✓ - - Section 5.1

Compression
Semi-free-start 5 2120 216 - ✓ - - - [MRST09]

function
Semi-free-start 7 2184 28 - ✓ - - - [LMRRS09]
free-start 8 2120 28 - ✓ - - - [SWWW12]
free-start 9 2220.5 - - - ✓ - - [Don+21b]
free-start† 9 2204.53 - - - ✓ ✓ - Section 5.2

Any
any any 2256 - - ✓ ✓ - - [OW99; Ber09; HS20]
any any 2204.8 2102.4 - - - ✓ - [CNS17]
any any 2170.67 - 2170.67 - - - ✓ [BHT98]

Saturnin-hash

Hash
Collision 5 264 264 - ✓ - - - [Don+21b]

function
Collision 7 2113.5 - - - ✓ - - [Don+21b]

CPC 6 2112 264 - ✓ - - - Section 6.1
CPC‡ 7 2118.70 - - - ✓ - - Section 6.2

Any
any any 2128 - - ✓ ✓ - - [OW99; Ber09; HS20]
any any 2102.4 251.2 - - - ✓ - [CNS17]
any any 285.33 - 285.33 - - - ✓ [BHT98]

AES-128-MMO/MP

Hash

Collision 5 256 24 - ✓ - - - [MRST09]

function

Collision 6 256 232 - ✓ - - - [LMRRS09; GP10]
Collision 7 242.5 - 248 - - - ✓ [HS20]
Collision 7 259.5 - - - ✓ - - [HS20]
Collision 7 245.8 - - - ✓ ✓ - [Don+20]
Collision 8 255.53 - - - ✓ - - [DGLP22]

CPC, MMO‡ 5 257 232 - ✓ - - - Appendix D
CPC, MP 5 252 232 - ✓ - - - Section 7
CPC 6 261.5 - - - ✓ - - Appendix E

Any
any any 264 - - ✓ ✓ - - [OW99; Ber09; HS20]
any any 251.2 225.6 - - - ✓ - [CNS17]
any any 242.67 - 242.67 - - - ✓ [BHT98]

⋆ The attack is valid in the classical setting.
∗ The attack is valid in the quantum setting under assumptions below respectively:

QA: neither exponential-size qRAM nor classic memory is available.
QB: exponential-size qRAM is not available while exponential-size classical memory is available.
QC: exponential-sized qRAM is available.

† The result is obtained by improving the algorithm of solving 3-round inbound phase in [HS20].
‡ The CPC attack is comparable to previous best collision result at corresponding round.

Outline. In Section 2, we briefly introduce collision and variants, AES-like hashing,
quantum computing and rebound attacks. Our CPC attack framework on AES-like
hashing is presented in Section 3. We then provide our improved algorithm on solving
3-round inbound in Section 4. In Section 5, 6 and 7, we present our attacks on Whirlpool,
Saturnin-hash and AES-MP. Finally, we concludes our paper in Section 8.

68 Chosen-Prefix Collisions on AES-like Hashing

2 Preliminaries
2.1 Collision and Variants
Given a hash function H, we have the following notions of collisions ranked from the
strongest to the weakest:

• A collision attack finds a pair of messages M0,M1 for a chosen initial value IV such
that H(IV ||M0) = H(IV ||M1);

• A semi-free start collision attack finds a pair of messages M0,M1 and any initial
value IV ′ such that H(IV ′||M0) = H(IV ′||M1);

• A free-start collision attack finds finds a pair of messages M0,M1 and a pair of initial
values IV ′

0 , IV
′

1 , such that H(IV ′
0 ||M0) = H(IV ′

1 ||M1).

A chosen-prefix collision (CPC) attack is defined

• A CPC attack finds a pair of suffixes S0 and S1 for any two arbitrarily chosen prefixes
P0 and P1, such that H(P0||S0) = H(P1||S1).

A CPC problem is a harder variant of collision, which can be intuitively observed from a
reduction by setting P0 = P1 = IV . In the classical setting, the generic attack complexity
to find collisions (and variants) for a hash function with an n-bit output is O(2n/2) due
to the birthday paradox. As such, any dedicated attack that finds a collision (or variant)
with less than O(2n/2) complexity constitutes an attack. In the quantum setting, the
generic bound depends on the assumptions on quantum and classic memory, which will be
introduced in Section 2.3.

2.2 AES-like Hashing

Emi hi

hi−1

Emi hi

hi−1

Ehi−1 hi

mi

Figure 1: A selection of PGV modes

It is a common and practical approach to convert a secure block cipher through PGV
modes [PGV93] into the compression function used in a hash function. A selection of PGV
modes is illustrated in Figure 1 and expressed in formulas:

• MMO mode: CF (hi−1,mi) = Ehi−1(mi)⊕mi.

• MP mode: CF (hi−1,mi) = Ehi−1(mi)⊕mi ⊕ hi−1.

• DM mode: CF (hi−1,mi) = Emi
(hi−1)⊕ hi−1.

AES [DR02] is a selection of specifications from the Rijndael block cipher family with
b-bit block and k-bit key, where b = 128 and k ∈ {128, 192, 256}. We later refers different
AES specifications as AES-k, i.e., AES-128, AES-192, AES-256. The round function of
AES is depicted in Figure 2. Since its standardisation by NIST in 2001, AES has been
widely adopted in many applications owing to its outstanding record of withstanding
attacks. It has also inspired many designs in homage to or build with AES operations.
Consequently, hash functions with a compression function based on or similar to the AES
round function is refered to as AES-like hash functions or AES-like hashing, to list a

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 69

few: Whirlpool [BR00], Grøstl [Gau+09], Saturnin-hash [Can+20], etc. AES-like hash
functions are widely used in applications: AES-128 in MMO mode is used in the standards
of the Zigbee protocol suite [All17] and ISO/IEC [ISO10], Whirlpool is adopted as the
ISO/IEC standard in [ISO04], etc.

SB

Xr Yr Zr Wr

SR MC
AK

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 2: The AES round function

AES-like ciphers usually follow the Substitution-Permutation Network (SPN) design
and organize the internal state as a two-dimensional matrix. An AES-like round function is
usually composed of SubBytes (SB), ShiftRows (SR), MixColumn (MC), and AddRoundKey
(AK), or some related variants of those:

• SubByte employs the S-box for each cell.

• ShiftRow rotates each row cyclically by some constant.

• MixColumn left multiplies each column by a constant matrix.

• AddRoundKey mixes the round key with bit-wise exclusive-OR (XOR).

2.3 Quantum Computing
The state space of an n-qubit quantum system is the set of all unit vectors in C2n

under the orthonormal basis {|0 · · · 00⟩ , |0 · · · 01⟩ , · · · , |1 · · · 11⟩}, alternatively written as
{|i⟩ : 0 ≤ i < 2n}. Quantum computing is achieved by manipulating the state of an n-qubit
system by a sequence of unitary transformations and measurements.

Superposition Oracles of Boolean Functions. The superposition oracle of a Boolean
function f : Fn

2 → F2 is a unitary transformation Uf on an (n+ 1)-qubit system with the
following functionality:

Uf

 ∑
x∈Fn

2

ai |x⟩ |y⟩

 =
∑

x∈Fn
2

ai |x⟩ |y ⊕ f(x)⟩ .

Grover’s Algorithm. Given a quantum black-box access to a Boolean function f :
Fn

2 → F2 with 0 < f−1(1) ≪ 2n, Grover’s algorithm finds an element x ∈ Fn
2 such that

f(x) = 1 with a high probability and O(
√

2n/|f−1(1)|) superposition oracle calls: the
algorithm iteratively applies the unitary transformation (2 |ψ⟩ ⟨ψ|− I)Uf upon the uniform
superposition |ψ⟩ = 1√

2n

∑
x∈Fn

2
|x⟩. This process amplifies the amplitudes of those values

x with f(x) = 1. Finally, a measurement gives a value x of interest with an overwhelming
probability [Gro96].

Quantum Generic Bounds. As discussed in [HS20], the quantum generic bounds
depend on different assumptions regarding the existence of quantum random-access memory
(qRAM):

70 Chosen-Prefix Collisions on AES-like Hashing

• Assumption QA: neither exponential-size qRAM nor classic memory is available.

The quantum version of parallel rho’s algorithm achieves a time-space trade off
of time 2n/2/S with S as the maximum size of quantum computers and classical
memory [OW99; Ber09; HS20].

• Assumption QB: exponential-size qRAM is not available while exponential-size
classical memory is available.

Chailloux, Naya-Plasencia, and Schrottenloher introduced the CNS algorithm to
find a collision in time O(22n/5) with a quantum computer of size O(1) and O(2n/5)
classical memory [CNS17].

• Assumption QC: exponential-size qRAM is available.

Brassard, Høyer, and Tapp introduced the generic quantum collision attack (BHT
algorithm) with 2n/3 quantum time complexity and 2n/3 qRAM [BHT98].

2.4 Rebound Attack

fbw fin ffw

Inbound

OutboundOutbound

Figure 3: The Rebound Attack

Rebound attack was first proposed by Mendel et al. at FSE 2009 [MRST09]. Abstractly,
the technique is used to generate a pair of inputs fulfilling a desired differential δ → ∆ for
a cipher. A high-level overview of the rebound attack is depicted in Figure 3. A rebound
attack constitutes two phases:

• Inbound Phase: A sufficient amount of pairs of input and output, or starting points,
is generated to conform the inbound differential.

• Outbound Phase: The starting points are propagated forward and backward to fulfill
the collision condition probabilistically.

The inbound phase must provide enough DoF for the outbound phase. We denote the
probability of a starting point fulfill the collision conditions in the outbound phase as p.
Thus, at least 1/p starting points should be generated in the inbound phase. Alternatively,
the DoF of the inbound phase should be at least 1/p.

Super S-box Technique. In 2009, the super S-box technique was proposed by Gilbert
et al. [GP10] and Lamberger et al. [LMRRS09]. The technique extends Mendel et al.’s
construction of the inbound phase by identifying four independent permutations across
two consecutive AES rounds as four super S-boxes, which is as shown in Figure 4 (a).
In [SLWSO10], Sasaki et al. further reduced the memory complexity by considering
non-full-active super S-boxes as shown in Figure 4 (b).

In the following, we consider a general scenario where the internal state of the cipher is
a d× d matrix of c-bit cells and discuss the two techniques in detail:

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 71

Z0

MC

W0

X1

SB

Y1

SR

Z1

MC

W1

X2

SB

Y2

SR

Z2

MC

W2

Z0

MC

W0

X1

SB

Y1

SR

Z1

MC

W1

X2

SB

Y2

SR

Z2

MC

W2

(a): Super Sbox (b): Non-full-active Super Sbox

Figure 4: A truncated differential with full or non-full-active super S-box

Full-active Super S-box. As shown in Figure 4 (a), with the input difference ∆X(i)
1

of the i-th super S-box SSBi (marked by red lines), we can compute to ∆Y (i)
2 = SSBi(x⊕

∆X(i)
1)⊕ SSBi(x) for x ∈ Fdc

2 and store the pair (x, x⊕∆X(i)
1) in a table L(i)[∆Y (i)

2].
In the inbound phase, the full-active super S-box technique works as follows. Given

the input difference ∆in = ∆Z0, we compute ∆X(i)
1 for 0 ≤ i ≤ d− 1, then build d tables

L(0), . . . , L(d−1) as mentioned above. For each ∆out = ∆W2 ∈ Fdc
2 , compute ∆Y (i)

2 (with
0 ≤ i ≤ d− 1) to access the table L(i)[∆Y (i)

2] to obtain a pair conforming to the truncated
differential of the inbound part. Hence, for given ∆in, we need d× 2dc memory to store d
tables, and will obtain |∆out| = 2dc pairs on average satisfying the inbound part.

At Eurocrypt 2020, Hosoyamada and Sasaki [HS20] converted the classical super S-box
technique into a quantum one. They introduced two quantum ways. The first one is to
use the qRAM to replace the classical memory to store the super S-box, which needs an
exponential size of qRAM. The second one is to apply Grover’s algorithm to search a
conforming pair for a given input-output difference (∆X(i)

1 ,∆Y (i)
2) of SSBi. This method

needs about 2dc/2 super S-box computations to find the right pair.

Non-full-active Super S-box. As shown in Figure 4 (b), the non-full-active super
S-box technique mainly exploits the following property of MDS:

Property 1. MC · (Z[1], Z[2], · · · , Z[d])T = (W [1],W [2], · · ·W [d])T can be used to fully
determine the remaining unknowns if any d cells of Z, W are known.

Suppose there are s (s < d) non-active cells (with zero difference) and 2d− s active
cells among ∆Z1 and ∆W1, by guessing the differences of (d− s) active cells, differences
of the rest d active cells can be obtained according to Property 1. Take the first column
of Z1 and W1 in Figure 4 (b) as an example, with three non-active cells of ∆Z1[1, 3] and
∆W1[0], one cell ∆Z1[0] can be guessed to obtain differences of ∆Z1[2] and ∆W1[1, 2, 3].

Then, given a fixed input-output difference of SSBi, for each guessing of the differences
of (d− s) active cells, all the input-output differences for the (2d− s) active cells of two
S-box layers can be obtained (marked by red cells in X1, Y1, X2, Y2). Thus, the input and
output values of these (2d− s) active S-boxes can be deduced by checking the differential
distribution table (DDT). Based on these values, for the equation W1 = MC(Z1), still
according to Property 1, we have (2d− s) known cells among W1 and Z1, which forms a
(d− s)-cell filter with probability 2−(2d−s−d)c = 2(s−d)c. Hence, for a fixed (∆X(i)

1 ,∆Y (i)
2),

one can find 2(d−s)c · 2(s−d)c = 1 conforming pair on average for the inbound phase at a
time complexity of 2(d−s)c and a memory cost of 22c to store the DDT. To give an example,
we provide the pseudo-code of solving process of Figure 4 (b) in Appendix A.

72 Chosen-Prefix Collisions on AES-like Hashing

In the quantum setting, Dong et al. [Don+20] converted the non-full-active super S-box
technique into quantum by searching the 2(d−s)c differences with Grover’s algorithm, which
gains a quadratic speedup. For both quantum and classical settings, the time complexity
is determined by the parameter s.

3 CPC Attack Framework on AES-like Hashing
A CPC attack is the hardest among collision and its variants, as its setting forces the
adversary to start with a random difference stemming from the chaining values (in MMO/MP
modes, a random difference in the key). As illustrated in Figure 5, two random prefixes
(P, P)′ result in random chaining variables (H1, H ′

1). Hence a random difference ∆H1 is
fed into the key schedule of the next block.

P/P ′ ∆P ∆H1

E H1/H
′
1

δi ∈ SIV

u i/
u
′
i
∆u i

δ i

E

u
j /u ′

j
∆u

j

δj
E

M/M ′ ∆M

H
2/H ′

2

∆T = 0
T = T ′

IB

OB

OBRebound Attack

Figure 5: Related-key rebound-based collision framework on AES-like hashing

At Eurocrypt 2007, Stevens, Lenstra, and de Weger [SLW07] introduced the CPC
attack framework on MD5. The attack starts with a birthday attack phase: it finds a
pair of message blocks such that the resulting chaining value difference δ possess certain
desirable properties. In said paper, the attack first find a δ = (δa, δb, δc, δd) with δa = 0,
and δb = δc = δd). Then, the attacker constructs collision exploiting the property of δ
with a second block or a succession of near-collision blocks using the message modification
technique. The framework is later extended to allow more complex properties of δ and
applied to find CPC attacks on MD5 [Ste+09; SLW12] and on SHA-1 [Ste13; LP19; LP20].

However, the attack framework is yet to be explored for AES-like hashing. This is
mainly due to the strong diffusion of the wide-trail strategy in AES-like structures, which
makes the message modification technique practiced on the MD-SHA family less effective.
In this section, we propose the CPC attack framework with related-key rebound technique
on AES-like hashing, as shown in Figure 5. We denote the compression function as CF ,
and our attack framework consists of three steps:

• Step 1: Find a class of related-key rebound attacks and a set S, such that for any
given input chaining value difference δ ∈ S, we are able to construct a free-start
collision.

• Step 2: Starting from chaining values (H1, H
′
1), which is already fixed by the chosen

prefixes (P, P ′), find message blocks (ui, u
′
i), such that the output chaining value

difference δi = CF (H1, ui)⊕ CF (H ′
1, u

′
i) ∈ S.

• Step 3: For this specific input chaining difference δi, perform the corresponding
related-key rebound attack and finds a collision.

In Step 2, the time complexity of the birthday attack to find proper (ui, u
′
i) is

√
2n/|S| in

both classical and quantum settings. In Step 3, we consider related-key rebound attacks
in classical and quantum settings by assuming the probability of the outbound phase as p,
and the DoF of the inbound phase should be larger than 1/p:

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 73

• In the classical setting, we apply the birthday attack in step 2 to obtain a desired
chaining value difference with time complexity

√
2n/|S|. For the inbound phase,

assuming the time complexity to find one starting point is T c
IB, the time complexity

of the rebound attack is about T c
IB/p. The overall classical attack will be

√
2n/|S|+

T c
IB/p.

• In the quantum setting, we use the birthday attack in step 2, which is valid under
all QA, QB, QC assumptions and costs time

√
2n/|S|. we apply the 2-round super

S-box or 3-round for the inbound phase. Assuming the quantum time to produce
one starting point is T q

IB, the final quantum attack will be
√

2n/|S|+ T q
IB/
√
p.

Implications on collision attacks on AES-like hashing. CPC attacks are backward
compatible to collision attacks by simply setting IV0 = IV1 = IV . In the context of
AES-like hashing, we discuss the implications of our CPC attack framework on collision
attacks. On the one hand, previous collision and semi-free-start collision attacks on
AES-like hashing can hardly leverage DoF of the difference of the chaining variables (or
key of the block cipher E in MMO and MP modes). Taking Whirlpool as an example, the
best differential based collision attacks are Lamberger et al.’s 5-round classical attack
[LMRRS09] and 6-round quantum attack by Hosoyamada and Sasaki [HS20]. In both
attacks, all DoF originates from the message blocks but not the key. At Asiacrypt
2020 [Don+20] and Crypto 2022 [DGLP22], Dong et al. converted the 7-round and 8-round
semi-free-start collision attacks on AES-MMO/MP into quantum collisions. Though they
succeeded in leveraging DoF from the values of the key, there is no difference in the key
and the truncated differential used in the rebound attack is still single-key, i.e., the DoF of
the key differences is not utilized in both collision attacks. On the other hand, though the
CPC framework provides a conversion from free-start collision to collision, the attack in
previous work can hardly be utilized, as the DoF in key are often drained to compensate the
probability of the outbound phase or to reach more rounds as seen in [Don+20; DGLP22].
The specific class of free-start collisions that balances the key DoF as well as the attack
capability thus can be converted by the framework is yet to be explored.

Remark. We have developed an automatic search model for our CPC attack framework
on AES-like hashing based on the related-key rebound models proposed by Dong et
al. [Don+21b] at ASIACRYPT 2021. On top of that, we add more constraints to accurately
evaluate the complexity of the birthday phase based on the DoF cost in key states,
guaranteeing the obtained trail with enough DoF for the outbound, which improves Dong
et al.’s model and removes many invalid trails. These will lead to a more complicated
objective function aiming at balancing Step 2 and Step 3 mentioned above. Due to
the limit space, we provide the model part in Appendix C and our codes at https:
//anonymous.4open.science/r/CPC_Rebound-515B.

4 Improved Quantum Algorithm to Solve 3-round Inbound

4.1 Inbound Phase with Three Full-active Rounds
Follow the notation that the state of the target cipher is of d×d c-bit cells. Take Whirlpool
as an example, as shown in Figure 6, given fixed differences ∆Z0 and ∆W3, Jean et al.
[JNP12] introduced an algorithm to find conforming pairs for this 3-round differential.
At Eurocrypt 2020, Hosoyamada and Sasaki introduced a memoryless variant [HS20,
Section A] (ePrint version) with the time complexity of 2d2c/2+dc to output one conforming
pair under the classical setting, they also introduced the quantum variant [HS20, Section 7]

https://anonymous.4open.science/r/CPC_Rebound-515B
https://anonymous.4open.science/r/CPC_Rebound-515B

74 Chosen-Prefix Collisions on AES-like Hashing

X3 Y3 Z3 W3

SB SC MR AC

X2 Y2 Z2 W2

SB SC MR AC

X1 Y1 Z1 W1

SB SC MR AC

Z0 W0

SC MR AC

0
8
16
24
32
40
48
56

1
9
17
25
33
41
49
57

2
10
18
26
34
42
50
58

3
11
19
27
35
43
51
59

4
12
20
28
36
44
52
60

5
13
21
29
37
45
53
61

6
14
22
30
38
46
54
62

7
15
23
31
39
47
55
63

Figure 6: Inbound phase covering 3 full-active rounds

by applying Grover’s algorithm to achieve a quadratic speedup, with the time complexity
of 2d2c/4+dc/2.

Jean et al.’s method to compute 3-round inbound [JNP12]. As depicted in
Figure 6, ∆X1 can be linearly computed from ∆Z0. Similar to super S-box technique, one
computes d super S-boxes SSBf

j (0 ≤ j < d) covering from X1 to Y2. Each SSBf
j contains

2dc pairs with fixed input differences marked by yellow box in Figure 6. Similarly, the
attacker computes d inverse super S-boxes SSBb

j (0 ≤ j < d) from Y3 to Y2.
One first focuses on a half of the super S-boxes SSBf

0 , SSBf
1 , ..., SSBf

d/2−1 (red cells in
X1), which compute to d2/2 red cells at Y2. For 2d2c/2 pairs of red cell values at Y2, one
checks if those values can be produced from SSBb

j . As in each SSBb
j , d-cell values have been

fixed due to the pair of red cell values at Y2, which acts as a dc-bit filter. Since the degrees
of freedom in each SSBb

j is 2dc, one match2 on average for each SSBb
j is expected. Now, the

pair at Y2 is fully fixed.
Then, one computes the pair backward to X1 to verify if the pair conforms to the fixed

difference ∆X1, and the differences of blue cells at X1 acts as a filter of 2−d2c/2. Hence,
by exhaustively searching of the 2d2c/2 values of SSBf

0 , SSBf
1 , ..., SSBf

d/2−1 mentioned above,
one expects to find a solution for this 3-round inbound phase, which conforms to the fixed
input and output differences. The overall time complexity3 is bounded by the match in
the middle, which is about 2d2c/2. The memory is 2d · 2dc to store the super S-boxes. For
a better understanding, we provide the pseudo-code in Algorithm 8 in Appendix B.

Hosoyamada and Sasaki’s memoryless variant and quantum variant [HS20].
Given input and output differences ∆X1 and ∆Y3, Hosoyamada and Sasaki’s memoryless
variant is composed of two steps:

• Step I: Without storing the super S-boxes, Hosoyamada and Sasaki exhaustively
search for 2d2c/2 values of X1[], then compute Z2[] and Z ′

2[] by X1[] and X ′
1[] =

∆X1[]⊕X1[], respectively.
2The match between a pair of values in red cells at Y2 and SSBb

j .
3The factor d is ignored when evaluating by round or reduced operation.

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 75

• Step II: For each row in Z2, exhaustively search 2dc values of Z2[] and Z ′
2[], together

with Z2[] and Z ′
2[] derived in Step I, compute forward to the corresponding row of

Y3 and check if the difference equals to the given ∆Y3.

The total time complexity is around 2d2c/2+dc with negligible memory. Then, Hosoyamada
and Sasaki converted this memoryless variant into a quantum variant by applying Grover’s
algorithm with around 2d2c/4+dc/2 time complexity, achieving a quadratic speedup.

4.2 Our Improved Algorithm

Now we introduce an improved memoryless algorithm for solving the 3-round inbound
phase. The difference between our algorithm and Hosoyamada-Sasaki’s is the Step II.
Instead of exhaustively searching for 2dc values of Z2[] and Z ′

2[], we only exhaustively
search for 2dc/2 values of Z2[] for each row. The detailed steps are given in Algorithm 1.

Algorithm 1: Improved memoryless classic algorithm to solve 3-round inbound
Input: ∆Z0 and ∆W3
Output: (Z0, Z

′
0) and (W3,W

′
3), with ∆Z0 = Z0 ⊕ Z ′

0 and ∆W3 = W3 ⊕W ′
3

1 Compute ∆X1 from ∆Z0 and ∆Y3 from ∆W3;
2 for 2d2c/2 values X1[] in Figure 6 do
3 Compute X ′

1[] = ∆X1[]⊕X1[];
4 Compute forward to get Z2[] and Z ′

2[] ;
5 for row j ∈ 0, 1, 2, ..., d− 1 in Z2 do
6 for at row j: 2dc/2 values of Z2[] do
7 Together with Z2[], compute forward to get row j of Y3;
8 Compute row j of Y ′

3 = ∆Y3 ⊕ Y3;
9 Compute backward to get row j of Z ′

2 by Y ′
3 ;

10 if row j of Z ′
2[] in Line 9 is not equal to that in Line 4 then

11 go to Line 6;

12 In this step, all cells of Z2, Z
′
2 are fixed, compute backward to get ∆X1;

13 if ∆X1[] computed from Z2, Z
′
2 is equal to that computed from ∆Z0 computed

in Line 1 then
14 return the pair as output;

In Line 6, only 2dc/2 values of Z2[] are exhausted for each row. Therefore, the total
time complexity of Algorithm 1 is around 2d2c/2+dc/2 with negligible memory under the
classical setting, which is expected to find one conforming pair for this 3-round inbound
phase. Then by applying Grover’s algorithm, the time complexity of its quantum variant
is about 2d2c/4+dc/4. The detailed quantum variant will also be demonstrated in the CPC
attack on 6-round Whirlpool in Section 5.1.

Remark. For Whirlpool, since both the 6-round quantum collision attack [HS20] and
the 9-round quantum free-start collision attack [Don+21b] are based on Hosoyamada and
Sasaki’s memoryless algorithm [HS20] to solve the 3-round inbound part, these two collision
attacks can be immediately improved by Algorithm 1, for which the detailed complexities
are provided in Section 5.2.

76 Chosen-Prefix Collisions on AES-like Hashing

5 Application to Round-Reduced Whirlpool
Whirlpool is a block-cipher-based hash function with a 512-bit hash value, which was
designed by Rijmen and Barreto [BR00] as a submission to the NESSIE competition and
later adopted as an ISO/IEC standard [ISO04]. Whirlpool adopts a 10 round AES-like
block cipher with 8× 8 byte encryption and key states in MP mode. Its encryption and
key schedule essentially use the same round function with SB, SC, MR and AK operations,
except for the key schedule replaced with the round constant addition AC, as illustrated in
Figure 8. For more details, we refer the readers to the design paper [BR00].

M0 E H1

IV

M1 E T

Figure 7: Two blocks of Whirlpool

Before we dive into the details, we clarify the following notions. We specify the input
and output of quantum algorithms in the format of |c0, c1, . . . , cm;x⟩ |y⟩, where x and y
denote the input and output, and c0, c1, . . . , cm denotes the set of constants involved. We
use C and C ′ to denote the lists of round keys generated by the key pairs. Cr and C ′

r

denote the round key of round r. Furthermore, we denote the j-th row of state Cr as C(j)
r .

This notion is used similarly for other intermediate states (e.g., X,Y, Z,A,B). And the
notion of [] denotes the subset of bytes marked red, similarly [] marks blue, and []
marks gray.

5.1 Quantum CPC Attack on 6-round Whirlpool
With a two-block Whirlpool depicted in Figure 7, our quantum CPC attack on Whirlpool
consists of the following two steps:

1. The first step is to find two message blocks (M0,M
′
0), such that the output pair of

chaining values (H1, H
′
1) satisfies that ∆C3[] ̸= 0 and the other bytes of ∆C3 in key

states are zero differences as shown in Figure 8.

2. The second step is to find a message pair of (M1,M
′
1) by the rebound attack, so that

the differences cancel at the target T , thus leading to a collision.

In the first step, such pair (M0,M
′
0) can be found with the birthday attack with time

complexity 28·(64−16)/2 = 2192 and with negligible memory [Flo67]. We thus focus on
illustrating the second step (or the rebound phase), which is as shown in Figure 8.

Probability and degree of freedom. The inbound phase covers from X1 to Z3. For
the outbound phase, The probability of canceling the active differences in ∆Y5 to obtain
∆Z5 is 2−128, which utilizes the equivalent key addition and the feed-forward state ∆X0
with zero difference. Since the number of choices for ∆Z3 is 2128, we have enough DoF to
find one collision.

Improved memoryless quantum variant to solve 3-round inbound. Following
Algorithm 1, we detail the improved quantum variant UG to solve 3-round inbound in
Algorithm 3, which marks the compatible cells of (X1, X

′
1) in Figure 8 for a given

input difference ∆X1 and output difference ∆Z3. We first define boolean functions
g(j)(C2, C

′
2,∆Z3, Y2[], Y ′

2 []; ·) : F4×8
2 7→ F2 for each row index j ∈ [0, 7]. When j = 0,

g(0)(C2, C
′
2,∆Z3, Y2[], Y ′

2 [];Y (0)
2 []) = 1 if and only if SB(MR(C(0)

2 ⊕Y
(0)

2))⊕SB(MR(C(0)
2 ⊕

Y
′(0)

2)) = SC−1(∆Y (0)
3). The quantum algorithm of the Grover search on g(0) is implemented

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 77

X0

SB/SC

Y0

MR

Z0

AK

X1

SB/SC

Y1

MR

Z1

AK

X2

SB/SC

Y2

MR

Z2

AK

X3

SB/SC

Y3

MR

Z3

AK

X4

SB/SC

Y4

MR

Z4

AK

X5

SB/SC

Y5

AK/MR

2−128

Z5 T

collision

H

M

AK

A0

SB/SC

B0

MR

C0

AC

A1

SB/SC

B1

MR

C1

AC

A2

SB/SC

B2

MR

C2

AC

A3

SB/SC

B3

MR

C3

AC

A4

SB/SC

B4

MR

C4

AC

A5

SB/SC

B5

AC/MR

C5

Figure 8: Quantum rebound attack on 6-round Whirlpool

as Ug(0) and given in Algorithm 2. Similarly, for j ∈ (0, 7], we can define g(j) and implement
Ug(j) . Then in UG, we call all Ug(j) for j ∈ [0, 7] to solve the 3-round inbound and generate
starting point for the outbound phase when the input and output differences are given.

Algorithm 2: Implementation of Ug(0) without using qRAMs

Input: |C2, C
′
2,∆Z3, Y2[], Y ′

2 [];Y (0)
2 []⟩ |y⟩

Output: |C2, C
′
2,∆Z3, Y2[], Y ′

2 [];Y (0)
2 []⟩ |y ⊕ g(0)(C2, C

′
2,∆Z3, Y2[], Y ′

2 [];Y (0)
2 [])⟩

1 Compute ∆Y3 from ∆Z3;
2 Compute SC−1(Y (0)

3) = SB(C(0)
2)⊕ MR(Y (0)

2);
3 Compute SC−1(Y ′(0)

3) = SC−1(Y (0)
3)⊕ SC−1(∆Y (0)

3);
4 Compute Y ′′(0)

2 = MR−1(SB−1(SC−1(Y ′(0)
3))⊕ C(0)

2);
5 if Y ′′(0)

2 []⊕ Y ′(0)
2 [] = 0 then

6 return |C2, C
′
2,∆Z3, Y2[], Y ′

2 [];Y (0)
2 []⟩ |y ⊕ 1⟩;

7 else
8 return |C2, C

′
2,∆Z3, Y2[], Y ′

2 [];Y (0)
2 []⟩ |y⟩;

9 Uncompute from Line 1 to 4;

Complexity of UG. In Algorithm 2, Line 1-4 takes 16 S-box evaluations, as a pair of
4-byte values are computed with 2 S-box operations. Given (∆Z3, Y

(j)
2 [], Y ′(j)

2 []), Y (j)
2 []

satisfies g(j) with probability 2−32. Hence, taking uncomputation into account, Algorithm
2 runs in time approximately as:

Tg ≈
π

4 · 2
32/2 · (2 · 16) ≈ 220.65 S-box evaluations.

In Algorithm 3, the computation of all Y ′(j)
2 (Line 7) for j ∈ [0, 7] takes 16·8 = 128 S-box

78 Chosen-Prefix Collisions on AES-like Hashing

Algorithm 3: Implementation of UG without using qRAMs
Input: |C,C ′,∆Z3;X1[]⟩ |y⟩
Output: |C,C ′,∆Z3;X1[]⟩ |y ⊕G(C,C ′,∆Z3;X1[])⟩

1 Get the constant input difference to the inbound part ∆X1 = ∆C0;
2 Compute X ′

1[] = ∆X1[]⊕X1[];
3 Compute Y2[], Y ′

2 [] from X1[], X ′
1[];

4 for j ∈ [0, 7] do
5 Run the Grover search on g(j)(C2, C

′
2,∆Z3, Y2[], Y ′

2 []; ·) : F4×8
2 7→ F2, get

output Y (j)
2 [];

6 // Now we have the whole Y
(j)

2

7 Compute Y ′(j)
2 [] (i.e., Line 2 to 4 of Algorithm 2);

8 // Now we have the whole Y2 and Y ′
2.

9 Compute X1[], X ′
1[] from Y2, Y

′
2 ;

10 if X1[]⊕X ′
1[] = ∆X1[] then

11 return |C,C ′,∆Z3;X1[]⟩ |y ⊕ 1⟩;
12 else
13 return |C,C ′,∆Z3;X1[]⟩ |y⟩;
14 Uncompute from Line 1 to 9;

evaluations. In the computation of X1[] and X ′
1[] (Line 9), as a pair of 32-byte values

are computed with 2 S-box operations, this step takes 32 · 2 · 2 = 128 S-box evaluations.
Given (∆X1, Z3), X1[] satisfies G with probability 2−256. Hence, taking uncomputation
into account (note that the uncomputation of Ug(j) is included in Tg), Algorithm 3 runs in
time approximately equivalent to:

TG ≈
π

4 · 2
256/2 · (8 · Tg + 2 · (128 + 128)) ≈ 2151.3 S-box evaluations.

Algorithm 4: Implementation of Uf without using qRAMs
Input: |C,C ′; ∆Z3⟩ |y⟩
Output: |C,C ′; ∆Z3⟩ |y ⊕ f(C,C ′; ∆Z3)⟩

1 Run the Grover search on G(C,C ′,∆Z3; ·) : F32×8
2 7→ F2, get output X1[];

2 Compute X1, X
′
1 (i.e., run Line 1-9 of Algorithm 3);

3 Compute T, T ′ from X1, X
′
1;

4 if T ⊕ T ′ = 0 then
5 return |C,C ′; ∆Z3⟩ |y ⊕ 1⟩;
6 else
7 return |C,C ′; ∆Z3⟩ |y⟩;
8 Uncompute from Line 1 to 3;

Implementation of the quantum CPC attack. We provide a detailed quantum
algorithm Uf to perform the quantum CPC attack on 6-round Whirlpool and its imple-
mentation in Algorithm 4. The complexity of Uf is evaluated as follows. The recovery of
the full X1, X

′
1 (Line 2) takes about 1 iteration of UG, which runs in time approximately

equivalent to 8 ·Tg S-box evaluations (uncomputation included). And the computation of T
and T ′ (Line 3) needs 2 computations with 6-round Whirlpool. Note that one computation

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 79

with 6-round Whirlpool needs 6× 64× 2 = 768 S-box evaluations. Given the outbound
probability is 2−128, taking uncomputation into account (note that the uncomputation of
UG is included in TG), the total complexity of the rebound phase is thus:

Tf ≈
π

4 · 2
128/2 · ((TG + 8 · Tg)/768 + 2 · 2) ≈ 2205.36.

The complexity of the birthday attack finding a pair of desired (C,C ′) is 2(512−128)/2 =
2192. Therefore, the final time complexity of the quantum CPC attack on 6-round
Whirlpool is about Tf + 2192 ≈ 2205.4.

5.2 Improved Quantum Attacks on Whirlpool

For Whirlpool, with our improved method of solving 3-round inbound part (Algorithm 1
and Algorithm 3), we further improve Hosoyamada and Sasaki’s 6-round collision attack
[HS20] and Dong et al.’s 9-round quantum free-start collision attack [Don+21b].

Improved 6-round collision attack on Whirlpool. We reuse the 6-round truncated
differential proposed by Hosoyamada and Sasaki [HS20], which includes a 3-round inbound
part (Figure 6) and the rest outbound part. The probability of the outbound part is 2−120.
Similar to Section 8, the time complexity of the 6-round collision attack is thus

π

4 · 2
120/2 · TG ≈ 2210.95 S-box evaluations. (1)

which is about 2210.95/768 = 2201.4 computations with 6-round Whirlpool. We note that
this improved attack is better than the CNS collision finding algorithm [CNS17].

Improved 9-round free-start collision attack on Whirlpool. We reuse the same
9-round truncated differential given by Dong et al. [Don+21b] and follow their quantum
attack framework. We only replace our method to solve the 3-round inbound part.
Therefore, the complexity equation from [Don+21b, Equation 27] (ePrint version) becomes:

π

4 · 2
(64−8)/2 · TG + π

4 · 2
64/2 · TG ≈ 2183.04 S-box evaluations. (2)

The complexity equation from [Don+21b, Equation 28] (ePrint version) becomes:

π

4 · 2
64/2 · 2183.04 ≈ 2214.7 S-box evaluations, (3)

which is about 2214.7/1152 = 2204.53 9-round compression functions of Whirlpool.

6 Application to Round-Reduced Saturnin-hash

Saturnin is a suite of lightweight symmetric algorithms proposed by Canteaut et al. [Can+20].
It is among the 2nd round candidates of the NIST LWC. Based on a 256-bit AES-like
block cipher with the 256-bit key, two authenticated ciphers and a hash function are then
designed. In this section, we focus on its hash function Saturnin-hash adopting MMO
mode. The round function of Saturnin-hash consists of AK, SB layer and alternatively
used linear layers MR (even round) and MC (odd round). Its key schedule is simple, the
master key K is used in even rounds, and K̃ (rotating K by 5 cells) is used in odd rounds.

80 Chosen-Prefix Collisions on AES-like Hashing

6.1 Classical CPC/Collision Attack on 6-round Saturnin-hash

We first provide CPC and collision attacks on 6-round Saturnin-hash under the classical
setting, as shown in Figure 9 (a), any key pair with active cells in K[1, 12] can be fed
into our 6-round attacks. Therefore, the time complexity to find such a key pair is
2(256−32)/2 = 2112 by the birthday search from the first block.

When a proper key pair (K,K ′) is found, a rebound attack is then performed in the
second block. In Figure 9 (a), the differences of cells in key states are fixed given the
found key pair (K,K ′). The inbound phase covers from state Y1 to X4. The number of
input and output differences (∆Y1,∆Z3) of the inbound phase is 216·2+16·4 = 296. For
the outbound phase, the probability is 2−32−64 = 2−96. Hence, the degree of freedom of
the inbound phase is enough to find one collision. The 6-round classical rebound attack
is given in Algorithm 5 with the time complexity of around 232+64 = 296 and memory
complexity of 264. Finally, the overall time complexity of this 6-round CPC attack on
Saturnin-hash is 2112 + 296 ≈ 2112 and with 264 memory complexity.

X0 Y0 Z0

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4

X5 Y5 Z5

K

K

K

K

K̃

K̃

K̃

M

C

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

State

AK SB MR

AK SB MC

AK SB MR

AK SB MC

AK SB MR

AK SB MC

⊕
AK

⊕

⊕

⊕

⊕

⊕

⊕

⊕

T

2−64

2−32

(a) Classical rebound attack on 6-round
Saturnin-hash.

X0 Y0 Z0

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4

X5 Y5 Z5

X6 Y6 Z6

K

K

K

K

K̃

K̃

K̃

K̃

M

C

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k0

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

k15

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

k5

k6

k7

k4

k9

k10

k11

k8

k13

k14

k15

k12

k2

k3

k0

k1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

State

AK SB MR

AK SB MC

AK SB MR

AK SB MC

AK SB MR

AK SB MC

AK SB MR

AK

⊕

AK

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

T

2−112

2−48

2−16

(b) Quantum rebound attack on 7-round
Saturnin-hash.

Figure 9: Rebound attacks on Saturnin-hash.

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 81

Algorithm 5: Classical Rebound Attack on 6-round Saturnin-hash
Input: A key pair (K,K ′)
Output: A collision pair (M,M ′)

1 /* Note that the differences marked by in X2 and Z3 are fixed due
to the fixed key pair (K,K ′) */

2 for 232 differences of ∆Y1 do
3 Compute ∆X2 from ∆Y1;
4 /* Prepare 4 super S-boxes */
5 for i = 0, 1, 2, 3 do
6 L(i) ←− [];
7 for x ∈ F64

2 do
8 Compute ∆Y (i)

3 = SSBi(x⊕∆X(i)
2)⊕ SSBi(x);

9 L(i)[∆Y (i)
3]← (x, x⊕∆X(i)

2);

10 for 264 differences of ∆Z3 do
11 Compute ∆Y3 from ∆Z3;
12 Lookup tables L(0)[∆Y (0)

3], L(1)[∆Y (1)
3], L(2)[∆Y (2)

3], and L(3)[∆Y (3)
3] to

build the full state of X2 and X ′
2;

13 if (X2, X
′
2) leads to a collision then

14 Return (M,M ′);

6.2 Quantum CPC Attack on 7-round Saturnin-hash

We now briefly provide a quantum CPC attack on 7-round Saturnin-hash, as shown in
Figure 9 (b), we have the following conditions on the key pairs (i.e., K,K ′):{

∆K̃[1, 5, 9] = ∆Z4[1, 5, 9],
MR−1(∆Z4[1, 5, 9], 0) = (0, ∗, ∗, ∗) = ∆Y4[1, 5, 9, 13], (4)

which consumes 1-cell DoF of the difference in key states and leads to 2-cell DoF of the
differences for the target key pair. Therefore, with the birthday attack, the first block can
produce a key pair (K,K ′) satisfying the condition of Equation 4 with the time complexity
2(256−2·16)/2 = 2112.

With the found key pair (K,K ′) above, ∆Y4, ∆Z3[6, 10, 14] and ∆Z2[1] are then
determined. The probability of the outbound phase is 2−112−48−16 = 2−176. For the
inbound phase, the degree of the freedom of the input and output differences (∆Y1,∆Z3)
is 2128+48 = 2176. Therefore, there is enough degree of freedom to produce one collision. A
detailed analysis of this quantum CPC attack on 7-round Saturnin-hash is provided in
Appendix F.

7 Application to Round-Reduced AES-MMO/MP

In this section, due to the limited space, we only provide the CPC attack on 5-round AES-MP
under the classical setting, which slightly improves the time complexity of the 5-round
collision attack on AES-MP from 256 to 252. The details of the CPC attack on 5-round
AES-MMO (classical) and 6-round AES-MMO/MP (quantum) are provided in Appendix D and
Appendix E, respectively.

For the CPC attack on 5-round AES-MP, as illustrated in Figure 10, any key pair with
active cells in K4[3, 8, 12] can be applied to this 5-round attack. Therefore, the time
complexity to find such a key pair is 2(128−24)/2 = 252 by the birthday search from the first

82 Chosen-Prefix Collisions on AES-like Hashing

X0 Y0 Z0

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4

K0

K2

K4

K1

K3

K5

M

C

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

State

AK SB/SR MC

AK SB/SR MC

AK SB/SR MC

AK SB/SR MC

AK SB/SR

AK

⊕
AK

⊕

⊕

⊕

⊕

⊕

⊕

⊕

T

2−48

Figure 10: Classical rebound attack on 5-round AES-MP

Algorithm 6: Classical Rebound Attack on 5-round AES-MP
Input: A key pair (K,K ′)
Output: A collision pair (M,M ′)

1 /* Note that ∆Z2 is fixed to cells, we start to build the super
S-box from backward */

2 Compute ∆Y2 = MC−1(∆Z2);
3 for i = 0, 1, 2, 3 do
4 L(i) ←− [];
5 for x ∈ F32

2 do
6 Compute ∆X(i)

1 = SSB−1
i (x⊕∆Y (i)

2)⊕ SSB−1
i (x);

7 L(i)[∆X(i)
1]← (x, x⊕∆Y (i)

2);

8 for 248 differences of ∆Y0 do
9 Obtain the full states of Y2 and Y ′

2 by accessing tables L(i);
10 if (Y2, Y

′
2) leads to a collision then

11 Return (M,M ′);

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 83

block. When a proper key pair (K,K ′) is found, the rebound attack is performed in the
second block. In Figure 10, the inbound phase also covers from state Y0 to Z2. The number
of input and output differences (∆Y0,∆Z2) of the inbound phase is 28·6 = 248. In the
outbound phase, the probability of the differential is 2−48. Hence, one collision is expected
from this rebound attack. Details of this classical rebound attack on 5-round AES-MP is
given in Algorithm 6 with the time complexity of around 248 and memory complexity of 232.
Thus, the overall time complexity of our 5-round CPC attack on AES-MP is 252 + 248 ≈ 252

with 232 memory complexity.

8 Conclusion
In this work, we explore CPC attacks on AES-like hashing. Our attack follows the CPC
attack framework on MD-SHA family while replaces the message modification technique on
the second block with a related-key rebound attack. We present the first CPC attacks
on reduced Whirlpool, Saturnin-hash and AES-MMO/MP in classic and quantum settings.
From the results, we have spotted the difference on MMO and MP modes in related-key
rebound attacks, which are generally believed to be equivalent.

The framework can be used to convert a specific class of free-start collision attacks into
a collision attack. However, there must be sufficient DoF in the difference of the chaining
values, of which current free-start collision attacks lacks. As proof of concept, we improve
the classical collision attack on Saturnin-hash from 5 to 6 rounds.

As an independent contribution, we improve the quantum algorithm for solving the
3-round inbound phase, which has resulted in the first 6-round memoryless quantum attack
on Whirlpool better than generic CNS collision finding algorithm when exponential-size
qRAM is not available but exponential-size classic memory is available.

Acknowledgments
We would like to thank all the anonymous reviewers of ToSC for their valuable comments
and suggestions, and specially thank our shepherd for helping us improve the quality of
this paper. This research is supported by the National Research Foundation, Singapore
and Infocomm Media Development Authority under its Trust Tech Funding Initiative, the
Natural Science Foundation of China (62272257) and the Ministry of Education in Singapore
under Grant RG93/23. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore and Infocomm Media Development Authority.

References
[AGL22] Akshima, Siyao Guo, and Qipeng Liu. “Time-Space Lower Bounds for

Finding Collisions in Merkle-Damgård Hash Functions”. In: CRYPTO. 2022,
pp. 192–221.

[All17] ZigBee Alliance. zigbee Specification Revision 22 1.0. Tech. rep. ZigBee
Alliance, Apr. 2017.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Keccak”. In: EUROCRYPT. 2013, pp. 313–314.

[Ber09] Daniel J Bernstein. “Cost analysis of hash collisions: Will quantum computers
make SHARCS obsolete”. In: SHARCS 9 (2009), p. 105.

84 Chosen-Prefix Collisions on AES-like Hashing

[BHNSS19] Xavier Bonnetain, Akinori Hosoyamada, Marıa Naya-Plasencia, Yu Sasaki,
and André Schrottenloher. “Quantum Attacks Without Superposition Queries:
The Offline Simon’s Algorithm”. In: ASIACRYPT. 2019, pp. 552–583.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. “Quantum Cryptanalysis of
Hash and Claw-Free Functions”. In: LATIN. 1998, pp. 163–169.

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. “Transcript Collision Attacks:
Breaking Authentication in TLS, IKE and SSH”. In: 23rd Annual Network
and Distributed System Security Symposium, NDSS. 2016.

[BLNS21] Xavier Bonnetain, Gaëtan Leurent, Marıa Naya-Plasencia, and André Schrot-
tenloher. “Quantum Linearization Attacks”. In: ASIACRYPT. Ed. by Mehdi
Tibouchi and Huaxiong Wang. 2021, pp. 422–452.

[BR00] Paulo S.L.M. Barreto and Vincent Rijmen. “The WHIRLPOOL Hashing
Function”. In: Submitted to NESSIE (2000). url: http://www.karljapetre.
com/whirlpool/whirlpool.pdf.

[Can+20] Anne Canteaut, Sébastien Duval, Gaëtan Leurent, Marıa Naya-Plasencia,
Léo Perrin, Thomas Pornin, and André Schrottenloher. “Saturnin: a suite
of lightweight symmetric algorithms for post-quantum security”. In: IACR
Trans. Symmetric Cryptol. 2020.S1 (2020), pp. 160–207.

[CGLSZ24] Shiyao Chen, Jian Guo, Eik List, Danping Shi, and Tianyu Zhang. “Diving
Deep into the Preimage Security of AES-Like Hashing”. In: EUROCRYPT.
2024, pp. 398–426.

[CHPSS17] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. “A
Security Analysis of Deoxys and its Internal Tweakable Block Ciphers”. In:
IACR Trans. Symmetric Cryptol. 2017.3 (2017), pp. 73–107.

[CNS17] André Chailloux, Marıa Naya-Plasencia, and André Schrottenloher. “An Ef-
ficient Quantum Collision Search Algorithm and Implications on Symmetric
Cryptography”. In: ASIACRYPT. 2017, pp. 211–240.

[CR06] Christophe De Cannière and Christian Rechberger. “Finding SHA-1 Charac-
teristics: General Results and Applications”. In: ASIACRYPT. 2006, pp. 1–
20.

[Dam] Ivan Damgård. “A Design Principle for Hash Functions”. In: CRYPTO ’89.
Ed. by Gilles Brassard. Vol. 435, pp. 416–427.

[DDKS12] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. “Efficient
Dissection of Composite Problems, with Applications to Cryptanalysis,
Knapsacks, and Combinatorial Search Problems”. In: CRYPTO. Vol. 7417.
2012, pp. 719–740.

[DGLP22] Xiaoyang Dong, Jian Guo, Shun Li, and Phuong Pham. “Triangulating
Rebound Attack on AES-like Hashing”. In: CRYPTO. 2022, pp. 94–124.

[Don+20] Xiaoyang Dong, Siwei Sun, Danping Shi, Fei Gao, Xiaoyun Wang, and Lei
Hu. “Quantum Collision Attacks on AES-Like Hashing with Low Quantum
Random Access Memories”. In: ASIACRYPT. 2020, pp. 727–757.

[Don+21a] Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, and
Lei Hu. “Meet-in-the-Middle Attacks Revisited: Key-Recovery, Collision,
and Preimage Attacks”. In: CRYPTO. 2021, pp. 278–308.

[Don+21b] Xiaoyang Dong, Zhiyu Zhang, Siwei Sun, Congming Wei, Xiaoyun Wang,
and Lei Hu. “Automatic Classical and Quantum Rebound Attacks on AES-
Like Hashing by Exploiting Related-Key Differentials”. In: ASIACRYPT.
2021, pp. 241–271.

http://www.karljapetre.com/whirlpool/whirlpool.pdf
http://www.karljapetre.com/whirlpool/whirlpool.pdf

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 85

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The
Advanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[Fló+20] Antonio Flórez-Gutiérrez, Gaëtan Leurent, Marıa Naya-Plasencia, Léo Per-
rin, André Schrottenloher, and Ferdinand Sibleyras. “New Results on Gimli:
Full-Permutation Distinguishers and Improved Collisions”. In: ASIACRYPT
2020. 2020, pp. 33–63.

[Flo67] Robert W. Floyd. “Nondeterministic Algorithms”. In: J. ACM 14.4 (1967),
pp. 636–644.

[Gau+09] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
“Grøstl - a SHA-3 candidate”. In: Symmetric Cryptography. 2009.

[GMD06] Praveen Gauravaram, Adrian McCullagh, and Edward Dawson. “Collision
Attacks on MD5 and SHA-1: Is this the’Sword of Damocles’ for Electronic
Commerce?” In: Proceedings of the AusCERT Asia Pacific Information
Technology Security Conference. 2006, pp. 73–88.

[GP10] Henri Gilbert and Thomas Peyrin. “Super-Sbox Cryptanalysis: Improved
Attacks for AES-Like Permutations”. In: 2010, pp. 365–383.

[Gro96] Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database
Search”. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on
the Theory of Computing. 1996, pp. 212–219.

[HI21] Akinori Hosoyamada and Tetsu Iwata. “On Tight Quantum Security of
HMAC and NMAC in the Quantum Random Oracle Model”. In: CRYPTO.
2021, pp. 585–615.

[HS20] Akinori Hosoyamada and Yu Sasaki. “Finding Hash Collisions with Quan-
tum Computers by Using Differential Trails with Smaller Probability than
Birthday Bound”. In: EUROCRYPT. 2020, pp. 249–279.

[HS21] Akinori Hosoyamada and Yu Sasaki. “Quantum Collision Attacks on Re-
duced SHA-256 and SHA-512”. In: CRYPTO. 2021, pp. 616–646.

[HSX17] Akinori Hosoyamada, Yu Sasaki, and Keita Xagawa. “Quantum Multicollision-
Finding Algorithm”. In: ASIACRYPT. 2017, pp. 179–210.

[ISO04] ISO/IEC. ISO/IEC 10118-3: 2004. IT Security techniques - Hash-functions
- Part 3: Dedicated hash-functions. 2004.

[ISO10] ISO/IEC. ISO/IEC 10118-2: 2010. IT Security techniques - Hash-functions
- Part 2: Hash-functions using an n-bit block cipher. 2010.

[JNP12] Jérémy Jean, Marıa Naya-Plasencia, and Thomas Peyrin. “Improved Re-
bound Attack on the Finalist Grøstl”. In: FSE 2012. 2012, pp. 110–126.

[KLLN16] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Marıa Naya-Plasencia.
“Breaking Symmetric Cryptosystems Using Quantum Period Finding”. In:
CRYPTO. 2016, pp. 207–237.

[KM10] Hidenori Kuwakado and Masakatu Morii. “Quantum distinguisher between
the 3-round Feistel cipher and the random permutation”. In: ISIT. 2010,
pp. 2682–2685.

[KM12] Hidenori Kuwakado and Masakatu Morii. “Security on the quantum-type
Even-Mansour cipher”. In: ISITA. 2012, pp. 312–316.

[LM17] Gregor Leander and Alexander May. “Grover Meets Simon - Quantumly
Attacking the FX-construction”. In: ASIACRYPT. 2017, pp. 161–178.

86 Chosen-Prefix Collisions on AES-like Hashing

[LMRRS09] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rij-
men, and Martin Schläffer. “Rebound Distinguishers: Results on the Full
Whirlpool Compression Function”. In: ASIACRYPT. 2009, pp. 126–143.

[LP19] Gaëtan Leurent and Thomas Peyrin. “From Collisions to Chosen-Prefix
Collisions Application to Full SHA-1”. In: EUROCRYPT. 2019, pp. 527–555.

[LP20] Gaëtan Leurent and Thomas Peyrin. “SHA-1 is a Shambles: First Chosen-
Prefix Collision on SHA-1 and Application to the PGP Web of Trust”. In:
USENIX Security Symposium. 2020, pp. 1839–1856.

[LZ19] Qipeng Liu and Mark Zhandry. “On Finding Quantum Multi-collisions”. In:
EUROCRYPT. 2019, pp. 189–218.

[Mer89] Ralph C. Merkle. “A Certified Digital Signature”. In: CRYPTO. 1989,
pp. 218–238.

[MRST09] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thom-
sen. “The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl”.
In: FSE. Vol. 5665. 2009, pp. 260–276.

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. “Differential
and Linear Cryptanalysis Using Mixed-Integer Linear Programming”. In:
Inscrypt 2011. 2011, pp. 57–76.

[Nay11] Marıa Naya-Plasencia. “How to Improve Rebound Attacks”. In: CRYPTO
2011. 2011, pp. 188–205.

[OW99] Paul C. van Oorschot and Michael J. Wiener. “Parallel Collision Search
with Cryptanalytic Applications”. In: J. Cryptol. 12.1 (1999), pp. 1–28.

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. “Hash Functions Based
on Block Ciphers: A Synthetic Approach”. In: CRYPTO. 1993, pp. 368–378.

[Riv92] Ronald L. Rivest. “The MD5 Message-Digest Algorithm”. In: RFC 1321
(1992), pp. 1–21.

[SLW07] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. “Chosen-Prefix
Collisions for MD5 and Colliding X.509 Certificates for Different Identities”.
In: EUROCRYPT. Vol. 4515. 2007, pp. 1–22.

[SLW12] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. “Chosen-prefix
collisions for MD5 and applications”. In: Int. J. Appl. Cryptogr. 2.4 (2012),
pp. 322–359.

[SLWSO10] Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, and Kazuo Ohta. “Non-
full-active Super-Sbox Analysis: Applications to ECHO and Grøstl”. In:
ASIACRYPT 2010. 2010, pp. 38–55.

[SS24] André Schrottenloher and Marc Stevens. “Quantum Procedures for Nested
Search Problems”. In: IACR Communications in Cryptology 1.3 (Oct. 7,
2024). issn: 3006-5496.

[ST15] National Institute of Standards and Technology. FIPS 202: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. 2015.

[ST95] National Institute of Standards and Technology. FIPS 180-1: Secure Hash
Standard. 1995.

[Ste+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra,
David Molnar, Dag Arne Osvik, and Benne de Weger. “Short Chosen-
Prefix Collisions for MD5 and the Creation of a Rogue CA Certificate”. In:
CRYPTO. Vol. 5677. 2009, pp. 55–69.

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 87

[Ste13] Marc Stevens. “New Collision Attacks on SHA-1 Based on Optimal Joint
Local-Collision Analysis”. In: EUROCRYPT. 2013, pp. 245–261.

[SWWW12] Yu Sasaki, Lei Wang, Shuang Wu, and Wenling Wu. “Investigating Fun-
damental Security Requirements on Whirlpool: Improved Preimage and
Collision Attacks”. In: ASIACRYPT. 2012, pp. 562–579.

[TSITI24] Kodai Taiyama, Kosei Sakamoto, Ryoma Ito, Kazuma Taka, and Takanori
Isobe. “Key Collisions on AES and Its Applications”. In: IACR Cryptol.
ePrint Arch. (2024), p. 1508. url: https://eprint.iacr.org/2024/1508.

[WLFCY05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu.
“Cryptanalysis of the Hash Functions MD4 and RIPEMD”. In: EURO-
CRYPT. 2005, pp. 1–18.

[WY05] Xiaoyun Wang and Hongbo Yu. “How to Break MD5 and Other Hash
Functions”. In: EUROCRYPT. 2005, pp. 19–35.

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. “Finding Collisions in the
Full SHA-1”. In: CRYPTO. 2005, pp. 17–36.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. “Efficient Collision Search
Attacks on SHA-0”. In: CRYPTO. 2005, pp. 1–16.

A Example of Non-Full-Active Solving Algorithm
We provide the pseudo-code of solving non-full-active super S-box in Figure 4 (b) in
Algorithm 7.

B Pseudocode of Solving for 3-round Inbound
We provide the pseudo-code of solving 3-round inbound phase in Figure 6 in Algorithm 8.

C Automatic Search Model of Related-key Rebound Colli-
sion

Here, we introduce the automatic model for our CPC attack framework on AES-like
hashing, which is a unified automatic model covering Step 2 (birthday phase) and Step 3
(rebound phase). We first briefly revisit the model of truncated differential related-key
differential by Mouha et al.’s model [MWGP11], and models of inbound and outbound
phase proposed by Dong et al. [Don+21b]. Then the models of the birthday phase and the
objective in terms of the attack time complexity are provided.

Related-key Truncated Differential Model. For an Nr-round AES-like structure as
depicted in Figure 2, we introduce binary variables xi,j

r , yi,j
r , zi,j

r , and wi,j
r to respectively

denote the activeness of the c-bit cell at the i-th row and j-th column (0 ≤ i, j < d) of
input state to SB, SR, MC (resp. MR), and AK in the r-th round (0 ≤ r < Nr).

The constraints for SB and SR are straightforward as identity and circular shift. Fol-
lowing Mouha et al.’s model [MWGP11], the MC operation can be easily modelled by the
branch number4. The constraint of key addition AK is similar to that of bit XOR operation,
except that the addition of two active cells can be active or inactive. Now the model to
describe the propagation of the truncated differential is built, one just needs to introduce

4The sum of input and output activeness indicators should be greater than the branch number or just
equal to zero.

https://eprint.iacr.org/2024/1508

88 Chosen-Prefix Collisions on AES-like Hashing

Algorithm 7: Non-full-active super S-box solving algorithm
Input: ∆Z0 and ∆W2
Output: (Z0, Z

′
0) and (W2,W

′
2), with ∆Z0 = Z0 ⊕ Z ′

0 and ∆W2 = W2 ⊕W ′
2

1 Compute ∆X1 from ∆Z0 and ∆Y2 from ∆W2;
2 // Here, the parameters are (d, s, c) = (4, 3, 8)
3 // column i = 0, SSB0 of state Z1, 1 conforming pair on average
4 for ∆Z1[0] ∈ F28 do
5 Compute ∆Z1[2] and ∆W1[1, 2, 3] according to Property 1;
6 Derive ∆Y1[0, 10] = ∆Z1[0, 2], and ∆X2[1, 2, 3] = ∆W1[1, 2, 3];
7 Deduce input and output pairs (X1[0, 10], X ′

1[0, 10]) and (Y1[0, 10], Y ′
1 [0, 10])

from (∆X1[0, 10],∆Y1[0, 10]) according to DDT;
8 Deduce input and output pairs (X2[1, 2, 3], X ′

2[1, 2, 3]) and
(Y2[1, 2, 3], Y ′

2 [1, 2, 3]) from (∆X2[1, 2, 3],∆Y2[1, 2, 3]) according to DDT;
9 Obtain (Z1[0, 2], Z ′

1[0, 2]) and (W1[1, 2, 3],W ′
1[1, 2, 3]);

10 Check Z1[0, 2] and W1[1, 2, 3] through MC (with probability 2−8), then compute
(Z1[1, 3], Z ′

1[1, 3]) and (W1[0],W ′
1[0]);

11
...

12 // column i = 3, SSB3 of state Z1, 1 conforming pair on average
13 for ∆Z1[15] ∈ F28 do
14 Compute ∆Z1[13] and ∆W1[12, 13, 14] according to Property 1;
15 Derive ∆Y1[1, 11] = ∆Z1[13, 15], and ∆X2[12, 13, 14] = ∆W1[12, 13, 14];
16 Deduce input and output pairs (X1[1, 11], X ′

1[1, 11]) and (Y1[1, 11], Y ′
1 [1, 11])

from (∆X1[1, 11],∆Y1[1, 11]) according to DDT;
17 Deduce input and output pairs (X2[12, 13, 14], X ′

2[12, 13, 14]) and
(Y2[12, 13, 14], Y ′

2 [12, 13, 14]) from (∆X2[12, 13, 14],∆Y2[12, 13, 14]) according
to DDT;

18 Obtain (Z1[13, 15], Z ′
1[13, 15]) and (W1[12, 13, 14],W ′

1[12, 13, 14]);
19 Check Z1[13, 15] and W1[12, 13, 14] through MC (with probability 2−8), then

compute (Z1[12, 14], Z ′
1[12, 14]) and (W1[15],W ′

1[15]);
20 Derive (Z0, Z

′
0) and (W2,W

′
2) from known (X1, X

′
1) and (Y2, Y

′
2);

21 return (Z0, Z
′
0) and (W2,W

′
2);

22 // Time complexity: 2(d−s)c = 28 computations of the inbound
23 // Memory complexity: 22c = 216 for DDT

some extra variables to trace the consumption of DoF when passing MC and AK operations,
and finally optimizes the objective related to such DoF costs.

This model works well under the single-key setting, however, as observed by Cid
et al. [CHPSS17] and Dong et al. [Don+21b], this simple model may lead to a lower
probability evaluation than the reality under the related-key setting, which is caused by
compensating the cost of the DoF in the encryption for the extra cost in the key schedule
through the key addition. To evaluate such extra DoF compensation in the key schedule
is very important to the overall time complexity due to the birthday phase in Step 2 of
our rebound-based collision attack framework, and we defer the more accurate model for
the probability evaluation provided in [Don+21b] for related-key rebound attacks in the
following outbound phase.

The Outbound Phase. We now introduce the Dong et al.’s model [Don+21b] of the
outbound phase, a variable Prj

r is introduced in [Don+21b] to record the real differential
probability for the outbound phase. To be more specific, Prj

r is used to count the number

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 89

Algorithm 8: Jean et al.’s algorithm for solving 3-round inbound phase
Input: ∆Z0 and ∆W3
Output: (Z0, Z

′
0) and (W3,W

′
3), with ∆Z0 = Z0 ⊕ Z ′

0 and ∆W3 = W3 ⊕W ′
3

1 Compute ∆X1 from ∆Z0 and ∆Y3 from ∆W3;
2 for j = 0, 1, ..., d− 1 do
3 // Pre-compute SSBf

j and SSBb
j

4 Lf
j ← [],Lb

j ← [];
5 for j-th SSBf

j : x ∈ Fdc
2 values of X1,j do

6 Compute to j-th row ∆Y f
2,j = SSBf

j (x)⊕ SSBf
j (x⊕∆X1,j);

7 Lf
j [∆Y f

2,j]← (x, x⊕∆X1,j);
8 for j-th SSBb

j: x ∈ Fdc
2 values of Y3,j do

9 Compute to j-th antidiagonal ∆Y b
2,j = SSBb

j(x)⊕ SSBb
j(x⊕∆Y3,j);

10 Lb
j [∆Y b

2,j]← (x, x⊕∆Y3,j);

11 for difference of red cells ∆x ∈ Fd2c/2
2 in Y2 do

12 Lookup ∆x in Lf
0,...,d/2−1 to get a pair (x, x′) for first d/2 rows of Y2;

13 // Each Lb
j with DoF 2dc and filtered with probability 2−dc

14 Check corresponding cells of ∆x and (x, x′) in each Lb
j ;

15 // One candidate of Y2 is expected here
16 Obtain full states Y2, Y

′
2 and compute backward to X1, X

′
1;

17 if conforming with the fixed difference in ∆X1[] then
18 Compute to recover all states of inbound phase;
19 return (Z0, Z

′
0) and (W3,W

′
3);

20 // Time complexity: 2d2c/2 computations of the inbound
21 // Memory complexity: 2d · 2dc for SSB

of consumed cells of the j-th column in the r-th round in the outbound part (encryption
states only).

The set of forward rounds is denoted as fwd and backward as bwd. In forward rounds,
the following variables are adopted to record the DoF cost of MC and AK operations

• cj
r: the number of cells cancelled after the r-th round MC in column j;

• c̃j
r: the number of cells cancelled after the r-th round next AK in column j.

Then, the probability of the j-th column Prj
r for forward rounds has two cases:

•
∑

ix
i,j
r ≥ cj

r + c̃j
r indicates no extra cost in key schedule, the probability can be

estimated by cj
r + c̃j

r;

•
∑

ix
i,j
r < cj

r + c̃j
r indicates extra costs exist in key schedule5, the probability can be

estimated by
∑

ix
i,j
r , with extra DoF consumption in key states as cj

r + c̃j
r −

∑
ix

i,j
r .

Thus for the forward outbound part, the real probability can be formulated by

Prj
r = min(cj

r + c̃j
r,

∑
i
xi,j

r). (5)

5For this case under the related-key setting (please refer to [Don+21b, Figure 5 and Figure 6]), one can
consume the DoF in key states to enhance the probability of the outbound phase, and such possible DoF
costs in key states will be recorded to evaluate the birthday phase later.

90 Chosen-Prefix Collisions on AES-like Hashing

In backward rounds, similar to the forward part, the following variables are adopted to
record the DoF cost of MC−1 and AK operations

• cj
r: the number of cells cancelled after the r-th round MC−1 in column j;

• c̃j
r: the number of cells cancelled before the r-th round next AK in column j.

Then, the probability of the j-th column Prj
r for backward rounds has two cases:

•
∑

ix
i,j
r ≥ cj

r indicates no extra cost in key schedule, the probability of MC−1 in this
column can be estimated by cj

r + c̃j
r;

•
∑

ix
i,j
r < cj

r indicates leading extra cost in key schedule, the probability of MC−1 in
this column can be estimated by

∑
ix

i,j
r , with extra DoF consumption in key states

as cj
r −

∑
ix

i,j
r .

Thus for the backward outbound part, the real probability is as below

Prj
r = min(cj

r,
∑

i
xi,j

r). (6)

Combined with the collided cells in the feed-forward cancellation of rebound attacks,
denoted by

∑
xi,j

0 , the number of starting points needed for a collision in the outbound
phase is denoted by τOB with expression:

log2(τOB) = c ·
∑

r,j
Prj

r + c ·
∑

i,j
xi,j

0 , (7)

which corresponds to the probability of the outbound phase being p = 1/τOB. And the DoF
consumption in key schedule by the states is computed by:

costST = c ·
∑

r∈fwd,j
(cj

r + c̃j
r − Prj

r) + c ·
∑

r∈bwd,j
(cj

r − Prj
r), (8)

which will be considered later to evaluate the complexity of the birthday phase.

The Inbound Phase. Let rIB be the number of rounds for the inbound phase, and it
starts from round l with the input difference set ∆in ⊆ Fd2c

2 and ends at round l′ = l+ rIB

with the output difference set ∆out ⊆ Fd2c
2 . It usually has two choices for rIB, i.e., rIB = 2

or 3, which have different evaluations of the time complexity TIB to find a conforming pair
of the inbound phase. In the following, we will introduce how to model the inbound phase
for two cases of rIB under both classical and quantum settings.

For rIB = 2, as introduced in Section 2.4, the super S-box technique is used to solve a
2-round inbound. In the classical setting, solving the inbound phase can be done in constant
time with additional memory to store the super S-boxes. Thus, it has T c

IB = 1 under
the classical setting; However, for non-full-active super S-boxes, Sasaki et al. [SLWSO10]
found a method to reduce the memory complexity further, but the time complexity is
T c

IB = 2c(d−minj sj) to find a conforming pair, where sj means the number of inactive or
fixed difference cells in the j-th super S-box; In the quantum setting without qRAM,
for 2-round full-active super S-box inbound, it takes the time complexity T q

IB = 2dc/2 to
find a right pair. While for 2-round non-full-active super S-box inbound, as observed by
Dong et al. [Don+20] at Asiacrypt 2020, the time complexity could be reduced further to
T q

IB = 2c(d−minj sj)/2 by applying Grover’s algorithm to gain a quadratic speedup.
For the case of rIB = 3, we only consider the inbound part with three full-active rounds

under the quantum setting [HS20], and we present an improved algorithm to solve 3-round
full-active inbound phase in Section 4.2. According to our improved algorithm, by applying
Grover’s algorithm, the time complexity is T q

IB = 2d2c/4+dc/4 without memory usage.

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 91

Besides the time complexity to solve the inbound phase, the DoF of the inbound part,
denoted by τIB, should be more accurately evaluated to guarantee that one can generate
enough conforming pairs for the outbound phase with τOB complexity given in Equation 7.
For both 2-/3-round full-active inbound part, considering that there is no inside DoF
cost, with the size of input difference |∆in| = c ·

∑
zi,j

l and the size of output difference
|∆out| = c ·

∑
wi,j

l′ , it has
log2(τIB) = |∆in|+ |∆out|. (9)

While, for 2-round non-full-active inbound part, it may have some DoF costs inside the
inbound phase, i.e., MC operation at the l-th round, the next AK operation at the (l+ 1)-th
round, and MC−1 operation at the (l + 2)-th round, then it has to consider such DoF costs

log2(τIB) = |∆in|+ |∆out| − c ·
∑

j
cj

l − c ·
∑

j
c̃j

l − c ·
∑

j
cj

l+2. (10)

Thus, to ensure the inbound phase with enough DoF, it has

τIB ≥ τOB. (11)

The Birthday Phase. With the configured inbound phase and outbound phase for
the rebound attack in Step 3 of our attack framework, the predetermined difference set S
is known, and the space of S is directly related to the DoF cost in key states, which is
provided in Equation 8. Thus, the size of S can be evaluated from the DoF of the initial
key state kinit targeted in the birthday phase by

log2(|S|) = c ·
∑

i,j
ki,j

init − costST. (12)

One then applies the birthday search to obtain a satisfied injecting difference δi ∈ S with
the time complexity

τBB =
√

2d2c/S. (13)

Overall Time Complexity and Objective. Finally, we unify the time complexity of
Step 2 (birthday phase) and Step 3 (rebound attack phase) together into an overall attack
time complexity as the objective, denoted by τOBJ.

In the classical setting, since we only consider rIB = 2 with full-active super S-boxes
due to the efficient generation of conforming pairs, the time complexity of rebound attack
is τOB as T c

IB = 1, then the objective below should be minimized

τ c
OBJ = max(τOB, τBB). (14)

In the quantum setting without qRAM, the time complexity6 of rebound attack is
T q

IB ·
√
τOB, then the objective below should be minimized

τ q
OBJ = max(T q

IB ·
√
τOB, τBB). (15)

In both classical and quantum settings, the time complexity τBB of birthday phase is
the same, as given in Equation 13. And it should be noted that, the time complexity of
the outbound phase τOB in Equation 7 can gain a quadratic speedup under the quantum
setting.

D Classical CPC Attack on 5-round AES-MMO

In this section, we provide the CPC attack on 5-round AES-MMO under the classical setting,
as shown in Figure 11, any key pair with active cells in K4[0, 4] can be applied to this

92 Chosen-Prefix Collisions on AES-like Hashing

X0 Y0 Z0

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4

K0

K2

K4

K1

K3

K5

M

C

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

State

AK SB/SR MC

AK SB/SR MC

AK SB/SR MC

AK SB/SR MC

AK SB/SR

AK

⊕
AK

⊕

⊕

⊕

⊕

⊕

⊕

T

2−32

2−24

Figure 11: Classical rebound attack on 5-round AES-MMO

5-round attack. Therefore, the time complexity to find such a key pair is 2(128−16)/2 = 256

by the birthday search from the first block.
When a proper key pair (K,K ′) is found, the rebound attack is performed in the second

block. In Figure 11, the inbound phase covers from state Y0 to Z2. The number of input
and output differences (∆Y0,∆Z2) of the inbound phase is 28·7 = 256. In the outbound
phase, the probability is 2−56. Hence, one collision is expected from this rebound attack.
Details of this classical rebound attack on 5-round AES-MMO is given in Algorithm 9 with
the time complexity of around 256 and memory complexity of 232. Thus, the overall time
complexity of our 5-round CPC attack on AES-MMO is 256 + 256 = 257 with 232 memory
complexity.

E Quantum CPC Attack on 6-round AES-MMO

Probability and degree of freedom. As shown in Figure 12, the inbound phase
covers 2 rounds from Y0 to Z2. The DoF of the inbound phase is provided by the bytes
marked blue in Y0 to Z2, that is 2(7+4)·8 = 288. The probability of the outbound phase is
2−(2+1+1+7)·8 = 2−88. Therefore, one collision is expected.

Quantum implementation of the rebound phase. We provide a detailed implemen-
tation of Uf to solve the rebound phase in quantum as Algorithm 10. Hereinafter, we

6Without memory consumption, it takes more time to obtain conforming pairs from the inbound phase.

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 93

Algorithm 9: Classical Rebound Attack on 5-round AES-MMO
Input: A key pair (K,K ′)
Output: A collision pair (M,M ′)

1 /* Note that ∆Z2 is fixed to cells, we start to build the
backward super S-box */

2 Compute ∆Y2 = MC−1(∆Z2);
3 for i = 0, 1, 2, 3 do
4 L(i) ←− [];
5 for x ∈ F32

2 do
6 Compute ∆X(i)

1 = SSB−1
i (x⊕∆Y (i)

2)⊕ SSB−1
i (x);

7 L(i)[∆X(i)
1]← (x, x⊕∆Y (i)

2);

8 for 256 differences of ∆Y0 do
9 Obtain the full states of Y2 and Y ′

2 by accessing tables L(i);
10 if (Y2, Y

′
2) leads to a collision then

11 Return (M,M ′);

X0 Y0 Z0

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4

X5 Y5

K0

K2

K4

K6

K1

K3

K5

M

C

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

State

AK SB/SR MC

AK SB/SR MC

AK SB/SR MC

AK SB/SR MC

AK SB/SR MC

AK SB/SR

⊕
AK

⊕

⊕

⊕

⊕

⊕

⊕

⊕

T

2−48

2−8

2−24

2−8

Figure 12: Quantum rebound attack on 6-round AES-MMO

94 Chosen-Prefix Collisions on AES-like Hashing

use K and K ′ to denote the lists of round keys generated by the key pairs found in the
birthday phase, which are fixed constants in the rebound phase. The super S-box operation
with constant round keys is defined as SSBj(K; ·) : F32

2 7→ F32
2 for j ∈ [0, 1, 2, 3] (e.g., SSB0

computes the bytes marked by the red rectangle in Figure 12). The input and output
to SSBj are expressed as δxj = x0,j ||x1,j ||x2,j ||x3,j and δyj = y0,j ||y1,j ||y2,j ||y3,j , where
xi,j = ∆X1[(i + j) mod 4 + 4j] and yi,j = ∆Y2[(i − j) mod 4 + 4j], for i, j ∈ [0, 1, 2, 3].
We further assume there are exactly 8 starting points (i.e., Y0, Y

′
0) for given ∆Y0,∆Z2 and

use α = α1||α2||α3 ∈ F3
2 as index.

We then define gj : F32
2 7→ F2 for j ∈ [0, 1, 2, 3] and apply Grover search on gj to generate

starting points for the 2-round inbound. When j = 0, gj(K,K ′, δxj , δyj ;xj) = 1 if and
only if SSBj(K;xj)⊕SSBj(K ′;xj ⊕ δxj) = δyj . When j > 0, gj(K,K ′, δxj , δyj , αj ;xj) = 1
if and only if SSBj(K;xj) ⊕ SSBj(K ′;xj ⊕ δxj) = δyj and αj = 0, xj < xj ⊕ δxj or
αj = 1, xj > xj ⊕ δxj .

Algorithm 10: Implementation of Uf without using qRAMs for 6-round AES-MMO

Input: |K,K ′; ∆Y0,∆Z2, α⟩ |y⟩
Output: |K,K ′; ∆Y0,∆Z2, α⟩ |y ⊕ f(K,K ′; ∆Y0,∆Z2, α)⟩

1 Get δxi, δyi for i ∈ [0, 1, 2, 3] from the corresponding values of ∆X1 and ∆Y2;
2 Run Grover search on g0(K,K ′, δx0, δy0; ·): F4×8

2 7→ F2, get output x0;
3 Run Grover search on g1(K,K ′, δx1, δy1, α1; ·): F4×8

2 7→ F2, get output x1;
4 Run Grover search on g2(K,K ′, δx2, δy2, α2; ·): F4×8

2 7→ F2, get output x2;
5 Run Grover search on g3(K,K ′, δx3, δy3, α3; ·): F4×8

2 7→ F2, get output x3;
6 /* Now we have the whole Y0 */
7 Compute x′

j = xj ⊕ δxj for j ∈ [0, 1, 2, 3], get X1, X
′
1, then Y0, Y

′
0 ;

8 Compute to T and T ′ from Y0, Y ′
0 ;

9 if (Y0, Y
′

0) is a starting point for (∆Y0,∆Z2, α) and T ⊕ T ′ = 0 then
10 return |K,K ′; ∆Y0,∆Z2, α⟩ |y ⊕ 1⟩
11 else
12 return |K,K ′; ∆Y0,∆Z2, α⟩ |y⟩
13 Uncompute from Line 1 to 7;

Complexity analysis. We detail the complexity analysis of Algorithm 10. As the
domain of each gj is 232, the Grover search on each gj (Line 2-5) takes about π

4 · 216

iterations. Each iteration of gj needs 2 · 2 · 4 = 16 AES S-box applications (a pair of 4-byte
values are computed with 2 AES rounds). Hence, taking uncomputation into account, Line
2-5 runs in time approximately as Tg ≈ 4 · π

4 · 216 · (2 · 16)/120 ≈ 215.75 encryptions with
6-round AES (one computation of AES round function requires 20 S-boxes).

As the domain of f is 288+3=91, about π
4 ·245.5 iterations of Uf find a collision. Checking

if a starting point is valid and if a collision is found (Line 2-3) each takes about 2 encryptions
with 6-round AES. Thus, taking uncomputation into account, the total time complxity of
the rebound phase is about π

4 · 245.5 · (Tg + 2 · (2 + 2)) ≈ 260.9 (note that uncomputation
for gj is included in Tg). The time complexity of the birthday phase (i.e., to find a desired
pair of K,K ′) is 2(128−8)/2 = 260. Therefore, the overall time complexity of this quantum
CPC attack on 6-round AES-MMO is about 260 + 260.9 ≈ 261.5.

F Quantum CPC Attack on 7-round Saturnin-hash
Probability and degree of freedom. As shown in Figure 9 (b), the inbound phase
covers 2 rounds from Y1 to Z3. The DoF of the inbound phase is provided by the bytes

Shiyao Chen, Xiaoyang Dong, Jian Guo and Tianyu Zhang 95

marked blue in Y1 to Z3, that is 2(8+3)·16 = 2176. The probability of the outbound phase
is 2−(1+3+7)·16 = 2−176.

Quantum implementation of the rebound phase. Similarly, we use K and K ′ to
denote the lists of round keys generated by the key pairs found in the birthday phase,
which are fixed constants in the rebound phase. Here, the j-th super S-box is denoted by
SSBj and its input difference is ∆X(j)

r , e.g., SSB3 marked by red circle in Figure 9 (b) from
the third row of state X2 with input difference ∆X(3)

2 , and we use X(3)
2 [0, 1, 2, 3] to denote

its four cells X2[3, 7, 11, 15] in state X2.
We assume there are exactly 8 starting points for the inbound part, and use α =

(α0, α1, α2) as index. We then define G(j) : F48
2 7→ F2 for j ∈ [0, 1, 2, 3] and apply

Grover search on G(j) to generate starting points for the 2-round inbound. When j ∈
[0, 1, 2], G(j)(K,K ′,∆X(j)

2 ,∆Y (j)
3 , αj ;X(j)

2 [0, 1, 2]) = 1 if and only if SSBj(K;X(j)
2) ⊕

SSBj(K ′;X(j)
2 ⊕ ∆X(j)

2) = ∆Y (j)
3 and αj = 0, X(j)

2 < X
(j)
2 ⊕ ∆X(j)

2 or αj = 1, X(j)
2 >

X
(j)
2 ⊕ ∆X(j)

2 . When j = 3, G(j)(K,K ′,∆X(j)
2 ,∆Y (j)

3 ;X(j)
2 [0, 1, 2]) = 1 if and only if

SSBj(K;X(j)
2) ⊕ SSBj(K ′;X(j)

2 ⊕ ∆X(j)
2) = ∆Y (j)

3 . Then implementation of G(j) when
j ∈ [0, 1, 2] is given in Algorithm 11. G(3) can be implemented similarly without indicators
αj and flag (and related constraints).

Based on UG(j) , we now provide a detailed implementation of Uf to solve the quantum
rebound phase for 7-round Saturnin-hash in Algorithm 12.

Algorithm 11: Implementation of UG(j) without using qRAMs
Input: |K,K ′,∆X(j)

2 ,∆Y (j)
3 , αj ;X(j)

2 [0, 1, 2]⟩ |y⟩
Output: |K,K ′,∆X(j)

2 ,∆Y (j)
3 , αj ;X(j)

2 [0, 1, 2]⟩
|y ⊕G(j)(K,K ′,∆X(j)

2 ,∆Y (j)
3 , αj ;X(j)

2 [0, 1, 2])⟩
1 // For j-th SSB in 2-round inbound phase in Figure 9 (b)

2 Y
(j)

2 [i]← S(X(j)
2 [i]) for i ∈ [0, 1, 2];

3 ∆Y (j)
2 [i]← Y

(j)
2 [i]⊕ S(X(j)

2 [i]⊕∆X(j)
2 [i]) for i ∈ [0, 1, 2];

4 Solving the system of equations MR(∆Y (j)
2) = ∆Z(j)

2 with the knowledge of deduced
∆Y (j)

2 [0, 1, 2] and ∆Z(j)
2 [0] = 0 to obtain ∆Y (j)

2 [3] and ∆Z(j)
2 [1, 2, 3];

5 // Check input and output differences of the S-box in g(j)

6 // Define g(j) : F16
2 7→ F2 be a Boolean function such that

g(j)(K,K ′, δin, δout;x) = 1 if and only if S(x)⊕ S(x⊕ δin) = δout

7 Run Grover search on g(j)(K,K ′,∆X(j)
2 [3],∆Y (j)

2 [3]; ·): F16
2 7→ F2, and let the

output be X(j)
2 [3];

8 Compute Y (j)
2 [3] = S(X(j)

2 [3]) and Z
(j)
2 = MR(Y (j)

2) to derive X(j)
3 ;

9 Set flag = 1 if and only if X(j)
2 < X

(j)
2 ⊕∆X(j)

2 and αj = 0 or
X

(j)
2 > X

(j)
2 ⊕∆X(j)

2 and αj = 1;
10 // Check if a starting point of (∆X(j)

2 ,∆Y (j)
3)

11 if S(X(j)
3 [i])⊕ S(X(j)

3 [i]⊕∆Z(j)
2 [i]) = ∆Y (j)

3 [i] for i ∈ [1, 2, 3] and flag = 1 then
12 return |K,K ′,∆X(j)

2 ,∆Y (j)
3 , αj ;X(j)

2 [0, 1, 2]⟩ |y ⊕ 1⟩
13 else
14 return |K,K ′,∆X(j)

2 ,∆Y (j)
3 , αj ;X(j)

2 [0, 1, 2]⟩ |y⟩
15 Uncompute from Line 2 to 9;

96 Chosen-Prefix Collisions on AES-like Hashing

Complexity analysis. The complexity of Algorithm 11 (one iteration of G(j)) is domi-
nated by the Grover search on g(j) in Line 7, which takes about Tg ≈ π

4 · 216/2 · 2 · 2 ≈ 29.65

S-box operations (uncomputation included).
In Algorithm 12, the Grover search on G(j) (Line 4 and Line 8) takes about π

4 ·2(48)/2 ≈
223.65 iterations. Hence, the Grover search on G(j) runs in time approximately as 223.65 ·
(Tg +2 ·(3 ·4+1)) ≈ 233.35 S-box operations, which takes about TG ≈ 233.35/(7 ·16) ≈ 226.54

encryptions with 7-round Saturnin-hash (uncomputation included).
In Algorithm 12, Line 5 just replays Algorithm 11 from Line 2 to Line 9 to recover

the input state of X(j)
2 for non-full-active SSBj , the time complexity of which is about

29.65+2·(3·2+1) ≈ 29.67 S-box operations, thus can be reduced to TR ≈ 29.67/(7·16) ≈ 22.87

7-round Saturnin-hash encryptions (uncomputation included).
In Algorithm 12, as the domain of f is 211·16+3 = 2179, about π

4 · 2179/2 iterations of
Uf finds a collision. The inbound phase (Line 2-9) takes about 2 · 4 · (TG + TR) ≈ 229.54

7-round Saturnin-hash encryptions (uncomputation included). The checking of if a
collision is found takes several encryptions of 7-round Saturnin-hash, which is negligible
compared to the inbound phase. Thus, the time complexity of the rebound phase is about
π
4 · 2179/2 · 229.54 ≈ 2118.69 7-round Saturnin-hash encryptions. The time complexity of
the birthday phase, i.e., using quantum birthday attack to find a desired pair of (K,K ′),
is 2(256−32)/2 = 2112. Therefore, the overall time complexity of this quantum CPC attack
on 7-round Saturnin-hash is about 2112 + 2118.69 ≈ 2118.70.

Algorithm 12: Implementation of Uf without using qRAMs for 7-round
Saturnin-hash

Input: |K,K ′; ∆Y1,∆Z3, α⟩ |y⟩ with α = (α0, α1, α2) ∈ F3
2

Output: |K,K ′; ∆Y1,∆Z3, α⟩ |y ⊕ f(K,K ′; ∆Y1,∆Z3, α)⟩
1 // Solve the inbound phase
2 for j ∈ [0, 1, 2] do
3 Compute the corresponding differences (∆X(j)

2 ,∆Y (j)
3) for non-full-active SSB

from (∆Y1,∆Z3);
4 Run Grover search on the function G(j)(K,K ′,∆X(j)

2 ,∆Y (j)
3 , αj ; ·) : F48

2 7→ F2.

Let X(j)
2 [0, 1, 2] ∈ F48

2 be the output;
5 Run Line 1-8 in Algorithm 11 to compute X(j)

2 [3];
6 // Now we have the whole X

(j)
2 according to four cells X

(j)
2 [0, 1, 2, 3]

7 Compute the corresponding differences (∆X(3)
2 ,∆Y (3)

3) for non-full-active SSB from
(∆Y1,∆Z3);

8 Run Grover search on the function G(3)(K,K ′,∆X(3)
2 ,∆Y (3)

3 ; ·) : F48
2 7→ F2. Let

X
(3)
2 [0, 1, 2] ∈ F48

2 be the output;
9 Run Line 1-8 in Algorithm 11 to compute X(3)

2 [3];
10 // Derive the starting point

11 X → (X(0)
2 , X

(1)
2 , X

(2)
2 , X

(3)
2);

12 X ′ → (X(0)
2 ⊕∆X(0)

2 , X
(1)
2 ⊕∆X(1)

2 , X
(2)
2 ⊕∆X(2)

2 , X
(3)
2 ⊕∆X(3)

2);
13 // Check the outbound phase
14 if (X,X ′) fulfills the outbound differential then
15 return |K,K ′; ∆Y1,∆Z3, α⟩ |y ⊕ 1⟩
16 else
17 return |K,K ′; ∆Y1,∆Z3, α⟩ |y⟩
18 Uncompute from Line 2 to 12;

	Introduction
	Preliminaries
	Collision and Variants
	AES-like Hashing
	Quantum Computing
	Rebound Attack

	CPC Attack Framework on AES-like Hashing
	Improved Quantum Algorithm to Solve 3-round Inbound
	Inbound Phase with Three Full-active Rounds
	Our Improved Algorithm

	Application to Round-Reduced Whirlpool
	Quantum CPC Attack on 6-round Whirlpool
	Improved Quantum Attacks on Whirlpool

	Application to Round-Reduced Saturnin-hash
	Classical CPC/Collision Attack on 6-round Saturnin-hash
	Quantum CPC Attack on 7-round Saturnin-hash

	Application to Round-Reduced AES-MMO/MP
	Conclusion
	Example of Non-Full-Active Solving Algorithm
	Pseudocode of Solving for 3-round Inbound
	Automatic Search Model of Related-key Rebound Collision
	Classical CPC Attack on 5-round AES-MMO
	Quantum CPC Attack on 6-round AES-MMO
	Quantum CPC Attack on 7-round Saturnin-hash

