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Abstract. In ToSC 2023(3), Rasoolzadeh presented an algorithm for classifying (n−m)-
resilient Boolean functions with n variables, up to extended variable-permutation
equivalence, for a small given positive integer m and any positive integer n with
n ≥ m. By applying this algorithm along with several speed-up techniques, he
classified n-variable (n − 4)-resilient Boolean functions up to equivalence for any
n ≥ 4. However, for m = 5, due to the large number of representative functions, he
was unable to classify n-variable (n − 5)-resilient Boolean functions for n > 6.
In this work, we apply this algorithm together with a technique to restrict the ANF
degree to classify quadratic and cubic (n − 5)-resilient Boolean functions with n
variables, up to the same equivalence. We show that there are only 131 quadratic
representative functions for any n ≥ 8. Additionally, we show that there are 359 078
cubic representative functions for any n ≥ 14.
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1 Restricting the ANF Degree of Resilient Functions
According to Theorem 1 in [Sie84], for any m > 1, the ANF degree of any (n − m)-resilient
Boolean function with n variables is at most m − 1. This implies that any function in
R∗

n,n−5, the set of all (n − 5)-resilient representatives with n variables, can have an ANF
degree of at most 4. While it is easy to find affine functions, identifying those with higher
degrees is not trivial. In this work, we introduce techniques that help us find all quadratic
and cubic functions in R∗

n,n−5. We will use Rn,t,d to denote the functions in Rn,t with an
ANF degree of d, and Rn,t,≤d to denote those with an ANF degree of at most d.

Lemma 1. Let f ∈ Bn+1, and let f0 ∈ Bn and f1 ∈ Bn be the two functions derived from
f using the following equation:

f(x, xn) = (xn ⊕ 1) · f0(x) ⊕ xn · f1(x) ∀ x ∈ Fn
2 and xn ∈ F2.

The ANF degree of f is at most d if and only if:

• the ANF degree of both f0 and f1 is at most d, and

• f0 and f1 share the same monomials of degree d.

Proof. Based on the assumption of the lemma, we have

f(x, xn) = (xn ⊕ 1) · f0(x) ⊕ xn · f1(x) = xn ·
(
f0(x) ⊕ f1(x)

)
⊕ f0(x) .
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This implies that the ANF degree of both f0 and f1 is at most d, and that the monomials
of degree d appear equally in the ANF representation of both f0 and f1.

Conversely, if both f0 and f1 have an ANF degree of at most d and share the same
monomials of degree d, then f has an algebraic degree at most d.

By applying the first condition of Lemma 1 in Siegenthaler’s construction, it is sufficient
to use only the representative pairs (up to extended bit-permutation equivalence) in R∗

n,t,≤d

to find the functions in R∗
n+1,t+1,≤d. We use the same techniques 1 and 2 from [Ras23]

to form the sets R†
n,t,≤d and R‡

n,t,≤d. For simplicity, we will refer to degree check points
as those points u with hw(u) = d for which we need to verify the presence of the same
monomials in the f0 and f1 functions in the second condition of Lemma 1.

Lemma 2. Let f ∈ Bn and g ∈ Bn such that for constants a ∈ Fn
2 and b ∈ F2, it holds

g(x) = f(x ⊕ a) ⊕ b for all x ∈ Fn
2 . Besides, let the ANF representation of f and g be

f(x) =
⊕

u∈Fn
2

λuxu , and g(x) =
⊕

u∈Fn
2

λ′
uxu .

If the ANF degree of f is d, with d > 0, then for all u ∈ Fn
2 with hw(u) = d, we have

λu = λ′
u.

Proof. By replacing the relation between f and g into the ANF representation, we obtain⊕
u∈Fn

2

λ′
uxu = b ⊕

⊕
u∈Fn

2

λu(x ⊕ a)u .

On the right-hand side of this equation, monomials of degree d can only appear for u ∈ Fn
2

with hw(u) = d. In the expansion of (x ⊕ a)u where hw(u) = d, the only monomial of
degree d is xu. This implies that for any u with hw(u) = d, we must have λu = λ′

u.

Lemma 3. Let f ∈ Bn+1, and let f0 ∈ Bn and f1 ∈ Bn be the two functions derived from
f using the following equation:

f(x, xn) = (xn ⊕ 1) · f0(x) ⊕ xn · f1(x) ∀ x ∈ Fn
2 and xn ∈ F2 .

If the ANF degree of f is at most d, with d > 0, then the number of monomials of degree
d in the ANF representation of the functions f∗

0 and f∗
1 (the representative functions

equivalent to f0 and f1, respectively) is the same.

Proof. According to Lemma 1, if the ANF degree of f is at most d, then the ANF degrees
of both f0 and f1 are also at most d, and the monomials of degree d appear equally in
their ANF representations. Based on Lemma 2, the addition of input constants ai and
output constants bi does not affect the appearance of monomials of degree d. Moreover,
since permuting the input variables does not change the degree of the monomials, the
number of monomials of degree d in the ANF representations of both f∗

0 and f∗
1 must be

the same.

Based on Lemma 3, for each representative pair remaining after applying technique 2
of the algorithm in [Ras23], we perform two checks to ensure they are the same in both
functions: 1. the distribution of magnitudes for the Walsh transform at the linearity check
points, and 2. the number of monomials at the degree check points. If both conditions are
satisfied, we proceed with iterating over the current representative pair.

Let f1 be an equivalent function to f∗
1 , defined as f1(x) = f∗

1 ◦ P (x ⊕ a) ⊕ b, where P is
a mapping corresponding to a permutation of n variables, a ∈ Fn

2 , and b ∈ F2. According
to Lemma 2, f∗

0 and f1 can be combined to form an (n + 1)-variable function with an ANF
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degree of at most d if and only if all monomials of degree d in the ANF representations of
both f∗

0 and f∗
1 ◦ P are identical.

Note that this condition depends only on the mapping P and is independent of the
constants a and b. Thus, for each representative pair (f∗

0 , f∗
1 ) that meets the previous

conditions, we first explore all possible choices for the mapping P and check whether, for
all degree check points u, the monomial xu appears the same way in both f∗

0 and f∗
1 ◦ P .

At this stage, we also verify the condition of matching Walsh coefficients in magnitude at
the linearity check points.

Once an appropriate mapping P is found for the representative pair (f∗
0 , f∗

1 ), we proceed
as outlined in [Ras23]. Specifically, we determine if there exist values a ∈ Fn

2 and b ∈ F2
that satisfy the conditions for the signs of the Walsh transform at the linearity check
points. If such values are found, we have successfully constructed an (n + 1)-variable
(t + 1)-resilient function with an ANF degree of at most d. We then check if this composed
function is representative. If it is, we add it to R∗

n+1,t+1,≤d.

2 Results for the Case of R∗
n,n−5,2 and R∗

n,n−5,3

We apply the modified algorithm to classify all quadratic and cubic n-variable (n − 5)-
resilient functions up to the extended variable-permutation equivalence.

Quadratic Functions: We start by using the affine or quadratic functions in B∗
4 to find

all the functions in R∗
5,0,≤2. Then, we repeat for another 4 steps until we reach the step of

finding the functions in R∗
9,4,≤2. The algorithm stops by reaching R†

9,4,≤2 = ∅.
The number of quadratic representative functions in each R∗

n,n−5,2 with 5 ≤ n ≤ 8
is summarized in Table 1. We recall that R∗

n,t,2 and R†
n,t,2 denote the set of all and

not-type-1 extension quadratic n-variable t-resilient representatives, respectively.
An interesting observation is that within the functions in R†

n,n−5,2, for n = 5 increasing
to n = 8, there are 2, 4, 2, and 1 functions, respectively, which can be written as the direct
sum of two functions: one from R†

n′,n′−3,2 and the one from R†
n′′,n′′−3,2 with n′ + n′′ = n.

Moreover, within the functions in R†
n,n−5,2, for n = 5 increasing to n = 7, there are 7, 5,

and 2 functions, respectively, which are type-0 extension of a function from R†
n−1,n−5,2.

Cubic Functions: We start by using the functions in B∗
4 with algebraic degree at most

3, find all the functions in R∗
5,0,≤3.

We repeat the algorithm for another 10 steps until the step of finding the functions in
R∗

15,10,≤3 with an outcome of R†
15,10,≤3 = ∅.

The number of cubic representative functions in each R∗
n,n−5,3 with 5 ≤ n ≤ 15 is

summarized in Table 2.
All the results of this work are publicly available at the following link:

https://gitlab.science.ru.nl/shahramr/ResilientFunctions.git
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Table 1: Number of quadratic (n − 5)-resilient n-variable representatives. The half bottom
part of the table shows the number of functions for each possible Walsh transform spectrum.

n 5 6 7 8
|R∗

n,n−5,2| 60 102 124 131
|R†

n,n−5,2| 37 42 22 7
4 times 2n−1 18 17 9 3

16 times 2n−2 19 25 13 4

Table 2: Number of cubic (n−5)-resilient n-variable representatives. The half bottom part
of the table shows the number of functions for each possible Walsh transform spectrum;
by (x, y, z) we mean x times appearance of 2n−2, y times 2n−1 and z times 3 · 2n−2 in
absolute values of the Walsh transform.

n 5 6 7 8 9 10 11 12 13 14
|R∗

n,n−5,3| 3 570 61 402 210 194 315 799 349 717 356 981 358 233 359 333 359 693 359 723
|R†

n,n−5,3| 3 466 57 832 148 792 105 605 33 918 7 264 1 252 188 21 2

(16, 0, 0) 133 561 98 464 32 407 7 101 1 246 188 21 2
(12, 1, 0) 1 793 10 055 14 028 6 592 1 375 142 5 – – –
( 8, 2, 0) 529 1 247 1 182 546 136 21 1 – – –
( 7, 0, 1) 57 56 21 3 – – – – – –
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