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Abstract. Reconstructing an S-box from a cryptographic table such as difference
distribution table (DDT), linear approximation table (LAT), differential-linear connec-
tivity table (DLCT) or boomerang connectivity table (BCT) is one of the fundamental
problems in symmetric-key cryptography. Till now, there are only very few known
methods which can reconstruct an S-box from a given table: guess-and-determine
algorithms of Boura et al. (DCC 2019) and Tian et al. (DCC 2020), sign deter-
mination algorithm of Dunkelman et al. (ToSC 2019) and STP based approach of
Lu et al. (DCC 2022). In this paper we consider the reconstruction problem in an
even more challenging setup where one needs to reconstruct S-boxes from a partial
cryptographic table. We are able to reconstruct S-boxes when only a few number of
rows of a cryptographic table is given. This problem has never been studied in the
literature. We apply mixed integer linear programming (MILP) as the key tool for
solving this problem. Needless to say that we can solve the reconstruction problem
when the full table is given and this is the first ever application of MILP tool in solving
such fundamental problems. As a further application of our method, we provide
the generic MILP models which can search for S-boxes with a given cryptographic
property such as differential uniformity, linearity, differential-linear uniformity or
boomerang uniformity. Additionally, our method can recover a Boolean function from
a given Walsh spectrum or a Boolean function with a given nonlinearity. We also
introduce a new heuristic called Optimistic MILP objective that guides the model
towards obtaining multiple S-boxes or Boolean functions with the same cryptographic
property. We give detailed experimental results for up to 6-bit S-boxes showing the
effectiveness of our technique.
Keywords: Substitution box · Difference Distribution Table (DDT) · Linear Approx-
imation Table (LAT) · Differential-Linear Connectivity Table (DLCT) · Boomerang
Connectivity Table (BCT) · Mixed Integer Linear Programming (MILP)

1 Introduction
The substitution box, commonly known as S-box, is one of the key components of a
symmetric cipher. Typically, an S-box is a nonlinear function that takes n-bits as input
and outputs m-bits. For majority of symmetric ciphers, we have n equals m and an S-box
is a permutation.

S-box plays a crucial role in providing security to a symmetric cipher and from a
designer’s perspective, an S-box should have some strong cryptographic properties. Some
of these properties, namely differential uniformity (1), linearity (3), differential-linear
uniformity (5) and boomerang uniformity (9) are well investigated in literature. These
properties help in measuring the resilience of a cipher against the so-called differential
[BS91], linear cryptanalysis [Mat94], differential-linear attacks [LH94], and boomerang
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attacks [Wag99], respectively. Lower the values of these metrics, higher the cipher’s
resistance against these attacks.

The aforementioned cryptographic properties can simply be derived from the description
of an S-box. There exist numerous tools for the same [Rus, mag, FJ, BGLS19]. However,
finding S-boxes with a given property is a challenging task as search space of S-boxes grows
exponentially with the dimensions. For instance, the so-called Big APN problem, which is
to find an APN permutation on even dimensions, has been open for many years having
the only success in dimension 6 [BDMW10]. The available tools for generating S-boxes
with given cryptographic properties only work for some limited dimensions. For instance,
the libapn by Flori et al. [FJ], a C++ library, can only search for APN permutations up to
dimension 5. Another tool PEIGEN by Bao et al. [BGLS19], also implemented in C++,
can generate S-boxes up to dimension 4. For n ≥ 5, this tool often becomes impractical.

Another method to derive the cryptographic properties of an S-box is by forming a
table. For example, the differential uniformity of an S-box is obtained by first computing
the difference distribution table (Def. 1) and then taking the maximum entry (except the
first entry) in that table as the differential uniformity. In the same way, we derive the
linearity, differential-linear uniformity and boomerang uniformity of an S-box from their
respective cryptographic tables, namely linear approximation table (Def. 2), differential-
linear connectivity table (Def. 3) and boomerang connectivity table (Def. 5). While it
is easy to map an S-box to any of its cryptographic tables, however, it is not obvious to
solve the converse problem:

“Given a cryptographic table T, where T is either of DDT, LAT, DLCT and BCT, how
to reconstruct an S-box that maps to T ?”

This is a fundamental problem in symmetric key cryptography which has received very
little attention. Solution to this problem has a far-reaching impact, though. For instance, a
designer could fill these tables in a way so that the interaction between S-boxes and mixing
layer becomes strong, and then from the tables, she can derive the description of the S-box.
This will also help in getting new theoretical insights on the properties of these tables
[BCJS19]. Moreover, cryptanalytic attacks on ciphers based on secret S-boxes can benefit
by learning these tables and then finding the corresponding secret S-box. A concrete
example of the latter is Bar-On et al.’s slide attack on GOST [BBDK18] where the attacker
can learn the DDT and aims to recover the underlying secret S-box. While this problem of
reconstructing S-boxes from cryptographic tables such as DDT, LAT, DLCT and BCT is
known, there is another relevant question which has never been investigated in the literature.

Problem P1. “Given an l× 2n-dimensional table T, where T contains l rows of either of
full 2n × 2n-dimensional DDT, LAT, DLCT and BCT, how to reconstruct an S-box that
maps to this partial table T ?”

Here partial table refers to fraction of a full table of an S-box. For example, suppose S
is an S-box and DS is its DDT. We take some l-rows of DS , which we call a partial DDT.
Then the above question states if it is possible to reconstruct an S-box from this partial
DDT that is similar to S. It is equally interesting if any S-box could be reconstructed from
an arbitrary partial table.

In [BCJS19], Boura et al. proposed a guess-and-determine algorithm which takes as
input a DDT and returns all n-bit to n-bit functions whose difference distribution table
has the same support as the given DDT. Later, Dunkelman and Huang [DH19] solved
the problem of reconstructing an S-box from DDT by introducing the sign determination
problem based on the well known relations between DDT and squared LAT [CV94, DGV94,
BN13] and then recovering S-box from the latter one. Lu et al. [LMC+22] modeled the
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relationship between an S-box and its DDT and LAT in terms of a satisfiability modulo
theories (SMT) problem and applied an SMT solver STP (Simple Theorem Prover) to
solve the model and get the related S-boxes. Tian et al. [TBP20] gave a solution that
could reconstruct S-boxes from a given BCT.

The above solutions are elegant on their own; however, they have certain limitations:

- The works of [BCJS19, TBP20] are not capable of solving Problem P1 due to their
tree-based search approach. More precisely, given the depth d (number of rows of
a table), their algorithm can only find d values of the S-box. So, given d rows, the
remaining 2n−d values of S-box have to be searched exhaustively while ensuring that
entries of given rows are not affected. Moreover, their approach is not applicable for
finding an S-box or Boolean function with a given cryptographic property.1 Similarly,
[DH19] can not also solve Problem P1 and find S-box/Boolean function with a given
property.

- The approach in [LMC+22] for DDT and LAT works for up to 5-bit S-boxes and
considers only differential uniformity, linearity, fixed points and BIBO properties.
They never considered beyond 5-bit S-boxes. Additionally, they did not account for
the reconstruction of the S-boxes from full DLCT and BCT, nor did they address
Problem P1.

There has been a similar research direction on partial tables taken up by Biryukov
et al. [BV14], though. It is well known that for practical ARX ciphers it is infeasible to
compute the full DDT, so they considered a partial DDT – computing differentials that
have probability above a fixed threshold. This is possible as the probabilities of XOR
(respectively modular addition) differentials through the modular addition (respectively
XOR) operation are monotonously decreasing with the bit size of the word. Their effort is
focused to recover the key utilising these partial differentials, and it is not clear how such
a tool could be employed to solve the reconstruction problem of S-boxes from a partial
DDT, LAT, DLCT or BCT.

1.1 Our Contributions
When we look back at the existing tools that have been used to solve the S-box reconstruc-
tion problem, we find that applicability of Mixed Integer Linear Programming (MILP)
technique has been overlooked despite the fact that MILP has shown a significant impact
on cryptanalysis. In this work, we give a new perspective and an unified approach to
the S-box reconstruction problem based on MILP. We present the novel applications of
Mixed Integer Linear Programming and Mixed Integer Quadratic Constraint Programming
(MIQCP) to solve Problem P1 and to find S-boxes with a given cryptographic property such
as differential uniformity, linearity, differential-linear uniformity or boomerang uniformity.
We now describe our contributions in detail.

1. Modeling an S-box with permutation matrix. For the reconstruction of S-
boxes from a cryptographic table using MILP technique, one first needs to model the
S-boxes. In this regard, we represent an n-bit S-box as an array of 2n integer variables.
To model this array as a permutation of [0, . . . , 2n − 1] in an MILP setting, a naive
approach then would be to choose constraints defining the pairwise inequalities of
these integer variables. However, this way one needs to introduce

(2n

2
)

constraints.
In fact, this has been done in [LMC+22] in their STP modeling. We work out a
much better and efficient approach – we utilize the well-known permutation matrices
of order 2n × 2n. We call it (target) S-box modeling.

1Confirmed with one of the authors of [BCJS19, TBP20]
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2. Solving Problem P1: Having modeled the n-bit S-box, we solve the reconstruction
problem from partial tables. We assume that l ≤ 2n rows are given.

(i) Partial DDT to S-box. In our MILP modeling, we first enumerate solution pairs
for a given input difference and model XOR of their S-box output values. We then
map solutions with entries of the partial DDT. When we are given a full DDT, we
need to consider each entries from the table. In case, a partial table is given, available
entries from the partial DDT is considered. Finally, we check the feasibility of the
entire model. An infeasible model means the given (partial) DDT is not valid, i.e., it
does not correspond to any S-box. On the other hand, a feasible model will output
an S-box. When a full DDT is given, MILP outputs the corresponding S-box. For
partial DDT, the output S-box’s full DDT includes partial DDT, however, depending
on the number of rows in the partial DDT, the function varies and may differ in their
differential uniformities.

(ii) Partial LAT to S-box. In LAT, each pair of input and output masks defines a
linear equation. Hence we first model these linear equations which involves modeling
the scalar products and XOR operations. We then model the count of the occurrences
when the linear relation holds followed by mapping the respective counts to entries
in the LAT. As done in case of DDT, we can reconstruct S-boxes from partial or full
LAT.

(iii) Partial DLCT to S-box. We combine partial DDT and partial LAT approach to
solve this problem. In particular, we enumerate solutions for a given input difference,
model XOR of their S-box output values followed by modeling the scalar product of
output mask with output differences and then map it to partial DLCT or full DLCT.
Furthermore, as differential-linear connectivity and autocorrelation tables are con-
nected, our model can also recover an S-box from the autocorrelation table.

(iv) Partial BCT to S-box. BCT involves nonlinear constraints and this makes
the modeling even more challenging, so, it is completely different from modeling
of DDT or LAT. Due to the complex nature of boomerang condition (8), we use
MIQCP within MILP to solve this problem. First, we show the modeling of (8) in
terms of quadratic constraints. Next, we map the number of solutions for the pairs
of input-output difference to entries of partial BCT. Similar to DDT, MILP outputs
the S-box corresponding to the partial BCT, and when full BCT is given, it outputs
the corresponding S-box.

3. Finding S-boxes and Boolean functions with a given cryptographic prop-
erty. We show how to tweak our MILP models of DDT, LAT, DLCT and BCT to solve
this problem. Notably, we present the first novel and generic MILP-based algorithm
to search for S-boxes with fixed differential uniformity, linearity, differential-linear
uniformity and boomerang uniformity. We present how the same approach could be
extended to reconstruct S-boxes from a given Walsh spectrum and consequently find
Boolean function with a given nonlinearity.

4. Optimistic MILP objective and CCZ-inequivalent S-boxes. We introduce
Optimistic MILP objective as a new heuristic to search for multiple S-boxes while
solving Problem P1. Our heuristic starts with a given S-box, adds a random
objective function in the model and then search for other S-boxes. We demonstrate
its application to the 6-bit inverse S-box. Consequently, within a matter of seconds,
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we find four S-boxes which are CCZ-inequivalent to the inverse S-box, and each of
the S-boxes has differential uniformity 4.

We validate all our proposed models with the cryptographic tables (both full and partial)
of several S-boxes. In particular, we consider the inverse S-box (x 7→ x−1) in dimensions
3, 4 and 5, PRESENT, GIFT, SKINNY, ASCON and Keccak S-boxes. Moreover, we run
our models with several given values of differential uniformity, linearity, differential-linear
uniformity and boomerang uniformity. We are able to successfully recover the respective
S-boxes. We evaluate the performance of our models with Gurobi and OR-Tools in Tables
4 to 11, and also compare with [LMC+22] in Table 14.

Our codes are available at https://github.com/sumantasarkar/supplementary_
material_tosc_2024_v3.

1.2 Outline of the Paper
The rest of the paper is organized as follows. In Section 2, we first recall several crypto-
graphic tables associated with S-boxes and then discuss equivalence properties of S-boxes
and briefly explain the idea of MILP. In Section 3, we discuss the modeling of an S-box using
MILP. Sections 4, 5, 6 and 7 present the detailed and step-by-step MILP-based approach of
reconstructing an S-box from DDT, LAT, DLCT and BCT along with experimental results,
respectively. In Section 8, we first give MILP models to search for S-boxes with a given
cryptographic property. We then introduce the Optimistic MILP objective heuristic and
give experimental results. We also discuss the reconstruction of a Boolean function from
a Walsh spectrum and find Boolean function with a given nonlinearity. In Section 9, we
discuss the advantages and limitations of our method, and provide comparison with the
existing works. Finally, we conclude in Section 10 with future research directions.

2 Preliminaries
In this section, we recall different cryptographic tables of an S-box and their role in the
security analysis of the cipher. We also discuss various equivalence relations for S-boxes
and briefly explain the mixed integer linear programming (MILP) method. We first begin
with the mathematical notations that will be used throughout the paper.

2.1 Notation
Let F2n denote the finite field of characteristic 2 of order 2n and Fn

2 be the vector space
with 2n binary n-tuples. An n-bit S-box is a mapping from Fn

2 to Fn
2 . When S-boxes are

used in symmetric ciphers it is considered that they are permutations. For u, v ∈ Fn
2 , we

denote its scalar product by u · v. We sometimes use ‘·’ to denote the integer product or
matrix multiplication if the meaning is clear from the context.

Let P = [pi,j ] be a 2n×2n binary matrix, where pi,j ∈ {0, 1}. We say P is a permutation
matrix if every row and every column of it contains only single 1 and 0’s at all other places.

2.2 Cryptographic Tables
We now describe the cryptographic tables such as Difference Distribution Table (DDT),
Linear Approximation Table (LAT), Differential-linear Connectivity Table (DLCT), Autocor-
relation Table (ACT) and Boomerang Connectivity Table (BCT) of the S-box S : Fn

2 → Fn
2 .

Definition 1 (Difference Distribution Table (DDT)). For input difference α ∈ Fn
2 and

the output difference β ∈ Fn
2 , we define the differential of S as S(x)⊕ S(x⊕ α) = β. The

https://github.com/sumantasarkar/supplementary_material_tosc_2024_v3
https://github.com/sumantasarkar/supplementary_material_tosc_2024_v3
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difference distribution table is a 2n × 2n array where the (α, β)-th element is

DDTS(α, β) = #{x ∈ Fn
2 : S(x)⊕ S(x⊕ α) = β}.

The differential uniformity of the S-box S is defined as

DUS = max
α̸=0

DDTS(α, β). (1)

A δ-differential uniform S-box is the one that has differential uniformity equals to δ.
Lower the differential uniformity better the resistance against differential attack (Biham
et al. [BS91]). The best differential uniformity that an S-box can have is 2, and such an
S-box is called almost perfect nonlinear (APN).

Definition 2 (Linear Approximation Table (LAT)). For input mask λ ∈ Fn
2 and output

mask γ ∈ Fn
2 , the linear approximation of S is given by the relation λ · x = γ · S(x). The

linear approximation table of S is a 2n × 2n array where the (λ, γ)-th element is

LATS(λ, γ) = #{x ∈ Fn
2 : λ · x = γ · S(x)} − 2n−1.

Dividing LATS(λ, γ) by 2n, we get the probability bias of the linear approximation for the
masks (λ, γ).

LAT is utilized to launch the linear approximation attack (Matsui [Mat94]), essentially
the attacker looks for the pair (λ, γ) with higher biases.

The correlation of S-box with input mask λ and output mask γ is defined as

CS(λ, γ) = 1
2n

∑
x∈Fn

2

(−1)γ·S(x)⊕λ·x. (2)

We also have linearity of S which is defined as

LS = 2n max
λ∈Fn

2 ,γ∈Fn
2 ,γ ̸=0

|CS(λ, γ)|. (3)

It is easy to derive that{
LATS(λ, γ) + 2n−1 ≤ (1 + LS

2n ) · 2n−1, if CS(λ, γ) ≥ 0
LATS(λ, γ) + 2n−1 ≥ (1− LS

2n ) · 2n−1, o.w.
(4)

From the designer’s perspective, S-box should have low linearity, that is low absolute
correlation values.

Differential-Linear (DL) attack was introduced by Langford et al. [LH94], based on
this attack Bar-On et al. [BDKW19] presented Differential-Linear Connectivity Table
(DLCT) for an S-box.

Definition 3 (Differential-Linear Connectivity Table (DLCT)). For input difference
α ∈ Fn

2 and mask λ ∈ Fn
2 , the differential-linear approximation of S is given by the relation

λ · S(x) = λ · S(x⊕ α). The differential-linear connectivity table of S is a 2n × 2n array
where the (α, λ)-th element is

DLCTS(α, λ) = #{x ∈ Fn
2 : λ · S(x) = λ · S(x⊕ α)} − 2n−1.

The differential-linear uniformity of S is defined as

DLUS = max
α∈Fn

2 ,λ∈Fn
2 ,α ̸=0,λ̸=0

|DLCTS(α, λ)|. (5)

A d-differential-linear uniform S-box is the one that has differential-linear uniformity
equals to d.
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Definition 4 (Autocorrelation Table (ACT)). For a ∈ Fn
2 and b ∈ Fn

2 , the autocorrelation
of S is defined as

ACTS(a, b) =
∑

x∈Fn
2

(−1)b·(S(x)⊕S(x⊕a)).

The autocorrelation table is a 2n × 2n array where the (a, b)-th element is ACTS(a, b).

In [CKL+19], Canteaut et al. provided the link between DLCT and ACT which is given
by

DLCT(a, b) = 1
2ACT(a, b). (6)

Definition 5 (Boomerang Connectivity Table (BCT)). For u ∈ Fn
2 and v ∈ Fn

2 , the
boomerang of S is given by the relation

S−1(S(x)⊕ v)⊕ S−1(S(x⊕ u)⊕ v) = u. (7)

The boomerang connectivity table of S is a 2n × 2n array where the (u, v)-th element is

BCTS(u, v) = #{x ∈ Fn
2 : S−1(S(x)⊕ v)⊕ S−1(S(x⊕ u)⊕ v) = u}.

The boomerang can be equivalently defined for the pair (u, v) by the two relations

S(x)⊕ S(y) = v and S(x⊕ u)⊕ S(y ⊕ u) = v, (8)

and accordingly BCT is given by

BCTS(u, v) = #{(x, y) ∈ Fn
2 × Fn

2 such that (8) holds}.

BCT was introduced by Cid et al. [CHP+18] that gave better insights to Boomerang
attack (Wagner [Wag99]). Boomerang uniformity of S is defined as

BUS = max
u∈Fn

2 ,v∈Fn
2 ,u ̸=0,v ̸=0

BCTS(u, v). (9)

2.3 Equivalence of S-boxes
One important classification of S-boxes is partitioning them into equivalence classes as
some of the cryptographic properties in these classes remain invariant. Therefore, one
member S-box of an equivalence class describes such cryptographic properties of the others.

Let S, S′ be two n-bit S-boxes, the equivalence relations between S and S′ are defined
as follows.

Definition 6 (XOR Equivalence). S is XOR-equivalent to S′ if there exist c, d ∈ Fn
2 with

(c, d) ̸= (0, 0) such that

S′(x) = S(x⊕ c)⊕ d, for all x ∈ Fn
2 . (10)

Definition 7 (Affine Equivalence). S is affine equivalent to S′ if there exist binary
nonsingular matrices A and B, and c, d ∈ Fn

2 such that

S′(x) = B · S(A · x⊕ c)⊕ d, for all x ∈ Fn
2 . (11)

Definition 8 (Extended Affine Equivalence). S is extended affine equivalent to S′ if there
exist binary nonsingular matrices A and B, c, d ∈ Fn

2 and a binary matrix L such that

S′(x) = B · S(A · x⊕ c)⊕ d + L · x, for all x ∈ Fn
2 . (12)
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Definition 9 (CCZ-Equivalence [CCZ98]). S is CCZ-equivalent to S′ if there exists an
affine permutation of A of Fn

2 × Fn
2 such that

{(x, S′(x)), x ∈ Fn
2} = A({(x, S(x)), x ∈ Fn

2}).

That means the graph of S′(x) can be obtained by applying an affine permutation on the
graph of S(x).

Some cryptographic properties that are preserved under these three equivalence relations
are differential uniformity and linearity property. The algebraic degree of a function is
invariant under the extended affine equivalence (if the function is not affine), however, it is
not invariant under CCZ-equivalence.

2.4 Mixed Integer Linear Programming
Integer linear programming is a class of mathematical problems which seek to maximize
(or minimize or check feasibility of) a linear function f(x1, x2, . . . , xn) given some linear
constraints and bounds in terms of decision variables {xi}n

i=1. When only some and not all
decision variables are integers, the problem is called Mixed Integer Linear Programming or
MILP in short.

The high level idea is to convert a cryptographic problem as a MILP model, pass that
model to the optimizer solver which then returns either the desired solution or an infeasible
model meaning no solution exists. Examples of such solvers include Gurobi optimizer [gur],
SCIP [GFG+16], CPLEX Optimization Studio [IBM] and OR-Tools [ort].

Applications of MILP and MIQCP. The use of MILP in symmetric key cryptography
has been amplified over the last decade since the seminal work of Mouha et al. [MWGP11]
and Wu and Wang [WW11]. Later, there has been a series of works targeting search of
differential/linear trails and related attacks via MILP [SHW+14, FWG+16, CJF+16, ST17,
AST+17, CHP+17, BC20, SSS+20, MR22, NPE23]. Concurrently, the usage of MILP
was extended to boomerang and rectangle attacks [CHP+17, DDV20, HNE22, LMR22],
meet-in-the-middle attacks [BDG+21, DHS+21, HDS+22, SSS+23], and integral attacks,
cube and division-property based attacks [XZBL16, SWLW16, SG18, LDB+19, RHSS21,
HST+21, DL22]. Very recently, the works in [BGG+23, LJC23] employed MIQCP for the
cryptanalysis of ARX ciphers.

3 Modeling S-box Output with a Permutation Matrix
In a usual setup an n-bit S-box is represented as an integer array [S(0), . . . , S(2n − 1)]
which is a permutation of [0, 1, . . . , 2n − 1], where S : i 7→ S(i). Therefore, in the MILP
setting, if we model an n-bit S-box output array by an array of variables [y0, . . . , y2n−1],
we must ensure that 1) each yi can assume only an integer value from {0, . . . , 2n − 1}
and 2) the array [y0, . . . , y2n−1] is a permutation of [0, 1, . . . , 2n − 1]. In what follows, we
describe how to model S-box in terms of a permutation matrix.

Consider the 2n × 2n permutation matrix P = [pi,j ]. Then

P · [0, 1, . . . , 2n − 1]T

is a permutation of [0, 1, . . . , 2n − 1]. Thus, P uniquely identifies an S-box by its binary
entries pi,j as S : i 7→ j if and only if pi,j = 1 (see Ex. 1). So we have

yi = j if and only if pi,j = 1.
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Further, as per the property of a permutation matrix, for each row and each column of
P, the row-sum and column-sum should be 1. Then we have the following constraints to
model the S-box.

S-box values: yi =
2n−1∑
j=0

j · pi,j , for i = 0, . . . , 2n − 1

Row-sum:
2n−1∑
j=0

pi,j = 1, for i = 0, . . . , 2n − 1 (13)

Column-sum:
2n−1∑
i=0

pi,j = 1, for j = 0, . . . , 2n − 1

We denote the above procedure by model_sbox_with_permutation_matrix and present
it in Algo. 1. For an n-bit S-box, this takes n and MILP model M as inputs and updates
M by adding variables and constraints of (13).

Algorithm 1: model_sbox_with_permutation_matrix
Input: n and M
Output: M

1 pi,j ∈ {0, 1}, for i = 0, . . . , 2n − 1 and j = 0, . . . , 2n − 1 ▷ Variables
2 yi ∈ {0, 1, . . . , 2n − 1}, for i = 0, . . . , 2n − 1 ▷ Variables
3 yi =

∑2n−1
j=0 j · pi,j , for i = 0, . . . , 2n − 1 ▷ S-box values constraints

4
∑2n−1

j=0 pi,j = 1, for i = 0, . . . , 2n − 1 ▷ Row-sum constraints
5
∑2n−1

i=0 pi,j = 1, for j = 0, . . . , 2n − 1 ▷ Column-sum constraints
6 return M

Example 1 (Permutation matrix for an S-box). The S-box [7, 6, 5, 3, 4, 1, 0, 2] can be
obtained from the 8× 8 permutation matrix

P =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0


.

Note that if we simply run Algo. 1 with Gurobi [gur], it will return an arbitrary S-box.

4 Recovering S-boxes from (Partial) Difference Distribution
Table

In this section, we first describe our method for recovering an S-box from a given DDT
using MILP. Then, we demonstrate that MILP is also effective when only a fraction of the
DDT rows are provided.

When we determine the DDT of an S-box, we do the following steps: 1) take the integer
array of S-box output, 2) find all output differences for an input difference α, 3) count the
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number of output differences that match to a β, 4) make this count an entry corresponding
to row α and column β and 5) complete the row for α by varying β.

Similarly, in a MILP setup, we formulate the problem of finding an n-bit S-box from
a given DDT by considering the S-box output as an array of integer variables {yi}2n−1

i=0
ensuring that this array represents a permutation of [0, . . . , 2n − 1], then model the
output differences and finally obtain the array of variables [y0, . . . , y2n−1] that maps to
the given DDT. The last step occurs when MILP solver picks a solution that satisfies all
the constraints. Two questions remains now. First, how to ensure [yi]2

n−1
i=0 to represent

a permutation of [0, . . . , 2n − 1]. We solve this by mapping [yi]2
n−1

i=0 to a permutation
matrix of order 2n× 2n. Second, how to model the output differences of variables {yi} and
connect them to DDT. We solve this by enumerating solutions corresponding to a fixed
input difference.

Therefore, in summary, our method is divided into three steps, namely 1) model
(target) S-box using the permutation matrix, 2) enumerate solution pairs for a given
input difference and model XOR of their S-box output values and 3) map Step-2 with
entries of the DDT. We discuss these three steps along with examples. In the end, we give
experimental evidences to show the correctness of our approach.

4.1 Modeling the XOR of S-box Output Values
Let i ̸= j. Our goal is to model S-box output difference yi ⊕ yj given that yi and yj are
integer variables. We tackle this problem by working with solution pairs for a given input
difference.

Consider an input difference α from {1, . . . , 2n − 1}. Define

Xn(α) := {(i, j) | i < j and i⊕ j = α}.

Note that if the pair of integers (i, j) is such that i⊕ j = α, then so is (j, i). Thus, we add
the condition i < j in the definition of Xn(α) to break this symmetry.

We now define Bn(α) := {yi ⊕ yj | (i, j) ∈ Xn(α)} as the set consisting of all possible
output differences corresponding to α. The set Bn(α) actually captures the notion of the
set of differentials {S(i)⊕ S(j = i⊕α)} as we would do in case we have a defined S-box S.
Note that there might be multiple pairs having the same output difference S(i)⊕ S(j), for
j = i⊕ α, so we have to consider that in Bn(α), there are some duplicate entries. In other
words, Bn(α) is a multiset and its cardinality is 2n−1. So it is now left to model XOR of
yi ⊕ yj for each nonzero integer α.

Suppose, a and b are two binary variables, if we bring a new binary variable c, where
c = a⊕ b, then the XOR operation can be modeled by the following relation [FWG+16]:

a + b + c = 2 · d, where d ∈ {0, 1}. (14)

Suppose yi ⊕ yj = ci,j , then using (14) it is now possible to model this XOR operation.
Let yi = (yi,0, . . . , yi,n−1), yj = (yj,0, . . . , yj,n−1) and ci,j = (ci,j,0, . . . , ci,j,n−1) be the
binary decomposition of the variables yi, yj and ci,j , respectively. Then yi ⊕ yj = ci,j can
be modeled by the following set of constraints:

yi,0 + yj,0 + ci,j,0 = 2 · di,j,0

yi,1 + yj,1 + ci,j,1 = 2 · di,j,1

... (15)
yi,n−1 + yj,n−1 + ci,j,n−1 = 2 · di,j,n−1

where di,j,0, . . . , di,j,n−1 are binary variables.
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We now have all the steps that can be combined to model the output difference of the
S-box [y0, y1, . . . , y2n−1]. We denote this modeling procedure by model_xor_solution (see
Algo. 2) and do it in two steps as follows.

1. Compute the solution sets Xn(α) for α = 1, . . . , 2n − 1 (Lines 1 to 3).

2. For each α and for each solution pair (i, j) ∈ Xn(α), we model the XOR operation
yi ⊕ yj = ci,j . This is shown in Lines 8 to 15.

Algorithm 2: model_xor_solution
Input: n and M
Output: M

1 for α = 1 to 2n − 1 do
2 Compute Xn(α)
3 end
4 for i = 0 to 2n − 1 do
5 yi,k ∈ {0, 1}, for k = 0, . . . , n− 1 ▷ Variables
6 yi =

∑n−1
k=0 2k · yi,k ▷ Binary decomposition

7 end
8 for α = 1 to 2n − 1 do
9 for (i, j) ∈ Xn(α) do

10 for k = 0 to n− 1 do
11 ci,j,k, di,j,k ∈ {0, 1} ▷ Variables
12 yi,k + yj,k + ci,j,k = 2 · di,j,k ▷ Binary XOR constraint
13 end
14 end
15 end
16 return M

To make this part easier to follow, we provide an example below.

Example 2. Let n = 3 and α = 1. Then we have X3(1) = {(0, 1), (2, 3), (4, 5), (6, 7)}
and B3(1) = {y0 ⊕ y1, y2 ⊕ y3, y4 ⊕ y5, y6 ⊕ y7}. To model B3(1), we have the following
constraints as given in Table 1.

Table 1: Constraints to model B3(1) in Ex. 2
Binary decomposition

y0 = y0,0 + 2 · y0,1 + 4 · y0,2 y1 = y1,0 + 2 · y1,1 + 4 · y1,2
y2 = y2,0 + 2 · y2,1 + 4 · y2,2 y3 = y3,0 + 2 · y3,1 + 4 · y3,2
y4 = y4,0 + 2 · y4,1 + 4 · y4,2 y5 = y5,0 + 2 · y5,1 + 4 · y5,2
y6 = y6,0 + 2 · y6,1 + 4 · y6,2 y7 = y7,0 + 2 · y7,1 + 4 · y7,2

y0 ⊕ y1 y2 ⊕ y3

y0,0 + y1,0 + c0,1,0 = 2 · d0,1,0 y2,0 + y3,0 + c2,3,0 = 2 · d2,3,0
y0,1 + y1,1 + c0,1,1 = 2 · d0,1,1 y2,1 + y3,1 + c2,3,1 = 2 · d2,3,1
y0,2 + y1,2 + c0,1,2 = 2 · d0,1,2 y2,2 + y3,2 + c2,3,2 = 2 · d2,3,2

y4 ⊕ y5 y6 ⊕ y7

y4,0 + y5,0 + c4,5,0 = 2 · d4,5,0 y6,0 + y7,0 + c6,7,0 = 2 · d6,7,0
y4,1 + y5,1 + c4,5,1 = 2 · d4,5,1 y6,1 + y7,1 + c6,7,1 = 2 · d6,7,1
y4,2 + y5,2 + c4,5,2 = 2 · d4,5,2 y6,2 + y7,2 + c6,7,2 = 2 · d6,7,2
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Note that the newly introduced variables ci,j,k in (15) correspond to output differences
yi ⊕ yj and so they are related to input difference α = i ⊕ j. Next, we show how to
link these variables to the entries of DDT that will establish the connection between the
variables {yi} and DDT.

4.2 Mapping Output Differences to Entries of DDT
Note that in the DDT for all S-boxes, row 0 (input difference α = 0) and column 0 (output
difference β = 0) are fixed: ((0, 0)-th entry is 2n and rest of the entries are 0). This
happens as the S-box is a permutation. As our modeled S-box [y0, y1, . . . , y2n−1] is ensured
to be a permutation, therefore, we do not consider the row 0 and column 0 in the modeling
of the given DDT.

To connect binary variables ci,j,k with DDT entries we proceed row by row. Before
giving a general description of this step, we first illustrate the idea in Ex. 3.

Example 3. Consider the first row (input difference α = 1) from the DDT in Table 2.
From Ex. 2, we have B3(1) = {y0 ⊕ y1, y2 ⊕ y3, y4 ⊕ y5, y6 ⊕ y7}. Each element in B3(1)

Table 2: DDT of a 3-bit S-box
α \ β 0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0
1 0 2 2 0 0 2 2 0
2 0 0 2 2 2 2 0 0
3 0 2 0 2 2 0 2 0
4 0 2 0 2 0 2 0 2
5 0 0 2 2 0 0 2 2
6 0 2 2 0 2 0 0 2
7 0 0 0 0 2 2 2 2

can take values from 1 to 7. Thus, we introduce a binary matrix W1 = [wi,j,k], where
i⊕ j = α = 1, and k = 1, . . . , 7 and

wi,j,k = 1 if and only if yi ⊕ yj = k. (16)

For instance, if y0 ⊕ y1 = 2, then w0,1,2 = 1. In Table 3, we show the relation between
yi ⊕ yj and the wi,j,k entries of W1.

We have the following important observations related to matrix W1.

1. The row-sum must be 1. This is due to the property as given in (16). Therefore
for the row corresponding to yi ⊕ yj ,

7∑
k=1

wi,j,k = 1. (17)

Table 3: Relating yi ⊕ yj with the matrix W1

α = 1 \ β 1 2 3 4 5 6 7
y0 ⊕ y1 w0,1,1 w0,1,2 w0,1,3 w0,1,4 w0,1,5 w0,1,6 w0,1,7
y2 ⊕ y3 w2,3,1 w2,3,2 w2,3,3 w2,3,4 w2,3,5 w2,3,6 w2,3,7
y4 ⊕ y5 w4,5,1 w4,5,2 w4,5,3 w4,5,4 w4,5,5 w4,5,6 w4,5,7
y6 ⊕ y7 w6,7,1 w6,7,2 w6,7,3 w6,7,4 w6,7,5 w6,7,6 w6,7,7
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Note that the binary decomposition of yi ⊕ yj is (ci,j,0, ci,j,1, ci,j,2) (see (15)).
Thus, we have the following constraint that describes yi ⊕ yj in terms of wi,j,k

via (ci,j,0, ci,j,1, ci,j,2).

yi ⊕ yj =
7∑

k=1
k · wi,j,k = ci,j,0 + 2 · ci,j,1 + 4 · ci,j,2 (18)

2. For each column, the column-sum equals DDT[1][column]
2 . This is because,

in Table 3, yi⊕ yj and yi′ ⊕ yj′ can assume the same value k. Also, we have to divide
the values of DDT by 2 as we already have excluded the symmetric solutions from
X3(1) by forcing (i < j). Thus, we have the following constraint for each k = 1, . . . , 7
that relates the variables wi,j,k and the given DDT values.∑

(i,j)∈X3(1)

wi,j,k = DDT[1][k]
2 (19)

Example 3 can now be easily extended for a DDT of a general n-bit S-box. We derive
all the constraints for the n-bit S-box [y0, . . . , y2n−1] as per (17), (18) and (19) by varying
α ∈ {1, . . . , 2n− 1}. These steps are accumulated in model_map_output_difference_to_ddt
and presented in Algo. 3.

Algorithm 3: model_map_output_difference_to_ddt
Input: n, M and DDT
Output: M

1 for α = 1 to 2n − 1 do
2 wi,j,k ∈ {0, 1} for (i, j) ∈ Xn(α) and k = 1, . . . , 2n − 1 ▷ Variables
3 for (i, j) ∈ Xn(α) do
4

∑2n−1
k=1 wi,j,k = 1 ▷ Row-sum constraint

5
∑2n−1

k=1 k · wi,j,k =
∑n−1

ℓ=0 2ℓ · ci,j,ℓ ▷ Mapping variables
6 end
7 for k = 1 to 2n − 1 do
8

∑
(i,j)∈Xn(α) wi,j,k = DDT[α][k]

2 ▷ DDT constraint
9 end

10 end
11 return M

4.3 Modeling (partial) DDT to S-box
Recovering S-box from a full DDT. At this point we have all the steps that complete
the modeling of an S-box from a DDT. So our final step is to combine the three functions:

model_sbox_with_permutation_matrix,

model_xor_solution,

model_map_output_difference_to_ddt,

and create the final model. We present the complete algorithm to recover an S-box from
a given DDT in Algo. 4. Consequently, an infeasible model means the given DDT is not
valid, i.e., it does not correspond to any S-box. On the other hand, a feasible model will
output an S-box.
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Algorithm 4: model_ddt_to_sbox
Input: n, DDT and empty M
Output: S-box = [y0, y1, . . . , y2n−1] or given DDT is invalid

1 M← model_sbox_with_permutation_matrix(n,M)
2 M← model_xor_solution(n,M)
3 M← model_map_output_difference_to_ddt(n,M, DDT)
4 if M is feasible then
5 return [y0, y1, . . . , y2n−1]
6 end
7 else
8 return DDT is invalid
9 end

Recovering S-box from a partial DDT. Let {α1, α2, . . . , αl} ⊂ {1, 2, . . . , 2n−1} be l
distinct input differences with 1 ≤ l < 2n. Suppose a partial DDT with rows corresponding
to these input differences are given. Then, in Line 2 and Line 3 of Algo. 4, we model these
l rows only. Solving the modified model will either return a S-box having this partial DDT
or an infeasible model.

4.4 Experimental Validation and Discussion
We run our experiments on AMD EPYC 7763 64-Core Processor using 8 threads. We
use Gurobi 10 [gur] and OR-Tools [ort] as the underlying MILP solvers to discuss the
efficiency. Note that for a fair comparison among two solvers, we did not use any internal
optimization tricks of these solvers. Furthermore, we emphasize that we will be using the
same experimental setup throughout the paper.

Though the model size (number of variables and constraints) can be easily obtained
from Algo. 4, we report the exact model details and timings of reconstructing S-boxes
from DDT in Table 4. Notice that we obtain XOR-equivalent S-boxes as the output. From
Table 4, we observe that running the exact model with two different solvers give different
outcomes. For instance, we set a time limit of one hour, but within that time, Gurobi does
not produce an S-box corresponding to the DDT of 5 and 6-bit inverse S-boxes and APN6.
On the other hand, OR-Tools give those S-boxes in seconds.

Table 4: Model size and timings for DDT to S-box. The symbol ‘-’ denotes that no solution
is obtained with a time limit of one hour.

DDT Model details Time (sec.)
of Variables Linear Gurobi 10 OR-Tools

Integer Binary Constraints

Example 3 8 452 221 0.01 0.03
4-bit Inverse 16 3080 1009 0.4 0.21
PRESENT 16 3080 1009 0.17 0.23

GIFT 16 3080 1009 0.3 0.23
SKINNY 16 3080 1009 0.03 0.3
ASCON 32 21520 4561 0.19 2.87
Keccak 32 21520 4561 0.22 2.73

5-bit Inverse 32 21520 4561 - 1.23
6-bit Inverse 64 155680 20353 - 14.75

APN6 64 155680 20353 - 10.31

In Table 5, we demonstrate the power of our method for partial DDT’s by taking
APN6 and 5-bit inverse S-boxes as examples. Notice that for at least 17 (resp. 9) rows we
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could recover a 2-differential uniform S-box while we obtain a 4-differential uniform S-box
with 16 (resp. 8) rows of DDT of APN6 (resp. 5-bit inverse). This finding gives a strong
evidence that 17 properly filled rows (this includes the first row as well) are sufficient to
construct an APN in dimension 6.

Table 5: Reconstructing S-box from first l rows of DDT with OR-Tools. The minimum
number of rows up to which the properties of obtained S-boxes remain identical is high-
lighted in blue. First row of each function corresponds to the full DDT.

DDT of # rows Time Diff. Linearity Differential-linear Boomerang
(l) (s) unif. unif. unif.

APN6

64 10.31 2 16 32 2
49 13.82 2 16 32 2
33 17.24 2 16 32 2
25 20.76 2 16 32 2
17 22.23 2 16 32 2
16 22.95 4 24 32 14

5-bit Inverse

32 0.73 2 12 4 2
28 0.92 2 12 4 2
24 0.91 2 12 4 2
20 1.07 2 12 4 2
16 0.77 2 12 4 2
12 0.64 2 12 4 2
9 1.13 2 12 4 2
8 1.02 4 16 8 10

Table 6: 6-bit S-boxes with differential uniformity 2 and 4 from Table 5.
Rows Diff. unif. S-box

17 2

0, 63, 35, 46, 47, 43, 37, 25, 24, 18, 21, 57, 6, 13, 22, 17,
15, 59, 16, 3, 34, 58, 53, 33, 40, 9, 50, 32, 30, 41, 56, 55,
1, 39, 10, 19, 42, 61, 31, 23, 8, 62, 51, 14, 44, 49, 29, 11,

45, 2, 48, 20, 36, 12, 38, 4, 26, 5, 28, 60, 54, 52, 27, 7

16 4

0, 63, 35, 46, 47, 43, 37, 25, 24, 18, 21, 57, 6, 13, 22, 17,
1, 39, 10, 19, 42, 61, 31, 23, 8, 62, 51, 14, 44, 49, 29, 11,
2, 45, 20, 48, 12, 36, 4, 38, 5, 26, 60, 28, 52, 54, 7, 27,

3, 16, 59, 15, 33, 53, 58, 34, 32, 50, 9, 40, 55, 56, 41, 30

We list the S-boxes corresponding to first 17 and 16 rows of APN6’s DDT in Table 6.
Notice that the two S-boxes in this table are closely related and one can be obtained from
another by flipping specific outputs. Also, the obtained 2-differential uniform S-box is
affine equivalent to APN6 with the parameters, i.e, APN6 = A ◦ S ◦ B(x ⊕ a) ⊕ b where
a = 44, b = 7 and the matrices are

A =


1 1 0 1 0 1
0 0 1 1 1 1
0 1 1 1 1 1
1 1 0 0 0 0
1 1 0 0 1 0
0 0 0 0 1 1

 , B =


1 0 1 0 0 1
0 0 1 0 1 0
1 1 1 1 1 0
0 0 1 1 1 0
1 0 0 0 0 0
1 1 0 0 1 0

 .
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5 Recovering S-boxes from (Partial) Linear Approximation
Table

In this section, first we explain our method to recover an S-box from a given LAT using
MILP and next we show that it is also effective for a partial LAT where a fraction of
rows are given. Our method consists of two steps, namely (1) model (target) S-box via a
permutation matrix and (2) model the associated linear equation corresponding to each
pair of input mask and output mask which involves modeling the scalar product as well
XOR operations, and 3) model the count of the occurrences when the linear relation holds.

As done in Sec. 3, we model the S-box as an array of integer variables [y0, . . . , y2n−1]
using a permutation matrix, so we skip this part. We move on to the second step in which
we model the linear relation corresponding to a pair of input and output masks. Note that
here we use the sign “ · ” interchangeably for both integer products or scalar products.

5.1 Modeling the Linear Equation Corresponding to a pair of Input
Output Masks

Let λ and γ be the (integer) input and (integer) output masks, respectively. Recall from
Def. 2 that

LAT(λ, γ) = #{⃗i ∈ Fn
2 : λ⃗ · i⃗ = γ⃗ · y⃗i} − 2n−1, (20)

where i⃗, λ⃗, γ⃗ and y⃗i are the binary vector representation of i, λ, γ and yi respectively. Note
that (20) uses the vector notation explicitly in contrast to Def. 2. This is for the better
understanding of our modeling and this will be used throughout the rest of the paper.

We now rewrite this relation as follows.

LAT(λ, γ) + 2n−1 = #{⃗i ∈ Fn
2 : λ⃗ · i⃗⊕ γ⃗ · y⃗i = 0} (21)

From (21), it is evident that if we can model the number of i⃗’s such that

λ⃗ · i⃗⊕ γ⃗ · y⃗i = 0, (22)

then we can map {yi}, λ, γ with LAT(λ, γ). Suppose, y⃗i = (yi,0, . . . , yi,n−1). Then each
integer variable yi of the S-box is connected as

yi =
n−1∑
k=0

2k · yi,k .

Before we model the solution of (22) (in terms of i⃗), we need to model the two scalar
product terms therein. These steps are as follows.

1. Modeling λ⃗ · i⃗
Let λ⃗ = (λ0, . . . , λn−1) and i⃗ = (i0, . . . , in−1). Suppose u = λ⃗ · i⃗, then we have

u =
n−1⊕
k=0

λk · ik, u ∈ {0, 1}. (23)

We know the value of u as the input vectors i⃗ ∈ Fn
2 and input mask λ⃗ ∈ Fn

2 are
known.
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2. Modeling (22)
Suppose γ⃗ = (γ0, . . . , γn−1). Then (22) is an XOR of n + 1 terms:

u⊕

(
n−1⊕
k=0

γk · yi,k

)
= 0.

So this equation can be modeled as

n−1∑
k=0

γk · yi,k + u + zλ,γ,i = 2 · vλ,γ,i, zλ,γ,i ∈ {0, 1}, vλ,γ,i ∈ {0, . . . ,

⌈
n + 1

2

⌉
}. (24)

3. Modeling the number of solutions of (22)
We introduce binary variables wλ,γ,i for all i = 0, . . . , 2n − 1 with the following
property:

wλ,γ,i = 1 if and only if λ⃗ · i⃗⊕ γ⃗ · y⃗i = 0 .

Then from (21), it is now clear that

LAT(λ, γ) + 2n−1 =
2n−1∑
i=0

wλ,γ,i, wλ,γ,i ∈ {0, 1} . (25)

After this step, it only remains to connect wλ,γ,i variables with yi.

4. Linking (24) with (25)
From (24), we note that zλ,γ,i = 0 if and only if λ⃗ · i⃗ ⊕ γ⃗ · y⃗i = 0. Therefore for
i = 0, . . . , 2n − 1,

zλ,γ,i = 1− wλ,γ,i, zλ,γ,i ∈ {0, 1}. (26)

Recovering S-box from a full LAT. We repeat the above procedure for modeling all the
linear equations for all λ and γ. As the first row and first column of LAT is constant for all
S-boxes, so we only consider λ = 1, . . . , 2n − 1 and γ = 1, . . . , 2n − 1. The entire algorithm
to recover an S-box from a given LAT is depicted in Algo. 5 where Lines 6 to 18 describe
the aforementioned modeling.

Recovering S-box from a partial LAT. In case of partial LAT, where l rows corresponding
to input masks {λ1, λ2, . . . , λl} ⊂ {1, 2, . . . , 2n−1} are given, we replace Line 6 of the
algorithm with:

for λ ∈ {λ1, λ2, . . . , λl}. (27)

5.2 Experimental Validation and Discussion
We checked Algo. 5 with the LAT of inverse mapping in dimensions 4, 5 and 6, LAT of
S-boxes of 3-bit χ, PRESENT, GIFT, SKINNY, ASCON, Keccak and APN6. We successfully
recovered these S-boxes which shows the correctness of our algorithm. In Table 7, we
report the timings to recover these S-boxes along with the model sizes. We observe from
Table 7 that within 2 minutes we recovered 6-bit S-boxes from their LAT using Gurobi.
This suggests that in case of a partial LAT the timings will increase with reduced number
of rows. In fact, we find that given the first 48 rows of the LAT of APN6, we could recover
the exact S-box in 40 minutes using Gurobi.
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Algorithm 5: model_lat_to_sbox
Input: n, LAT and empty M
Output: S-box = [y0, y1, . . . , y2n−1] or given LAT is invalid

1 M← model_sbox_with_permutation_matrix(n,M)
2 for i = 0 to 2n − 1 do
3 yi,k ∈ {0, 1} for k = 0, . . . , n− 1 ▷ Variables
4 yi =

∑n−1
k=0 2k · yi,k ▷ Binary decomposition

5 end
6 for λ = 1 to 2n − 1 do
7 for γ = 1 to 2n − 1 do
8 for i = 0 to 2n − 1 do
9 u =

⊕n−1
k=0 λk · ik

10 vλ,γ,i ∈ {0, . . . ,

⌈
n + 1

2

⌉
} ▷ Variable

11 zλ,γ,i ∈ {0, 1} ▷ Variable
12

∑n−1
k=0(γk · yi,k) + u + zλ,γ,i = 2 · vλ,γ,i ▷ λ⃗ · i⃗⊕ γ⃗ · y⃗i constraint

13 wλ,γ,i ∈ {0, 1} ▷ Variable
14 zλ,γ,i = 1− wλ,γ,i ▷ Constraint
15 end
16

∑2n−1
i=0 wλ,γ,i = LAT(λ, γ) + 2n−1 ▷ LAT constraint

17 end
18 end
19 if M is feasible then
20 return [y0, y1, . . . , y2n−1]
21 end
22 else
23 return LAT is invalid
24 end

Table 7: Model size and timings for LAT to S-box.
LAT Model details Time (sec.)

of Variables Linear Gurobi OR-Tools
Integer Binary Constraints

3-bit χ 456 984 984 0.01 0.06
4-bit Inverse 3856 8000 7984 0.07 0.8
PRESENT 3856 8000 7984 0.07 0.72

GIFT 3856 8000 7984 0.06 0.73
SKINNY 3856 8000 7984 0.06 0.78
ASCON 31776 64672 64608 3.56 20.91
Keccak 31776 64672 64608 3.40 15.10

5-bit Inverse 31776 64672 64608 4.56 15.09
6-bit Inverse 258112 520576 520384 78.22 672.76

APN6 258112 520576 520384 55.08 539.92

Considering these time constraints, we focus on the LAT of 5-bit inverse S-box to
understand what percentage of rows gives the exact S-box. We give our results in Table 8.
We find that given at least 17 rows, the inverse S-box could be recovered.

On comparing Table 5 and 8, it is evident that we require less number of rows (almost
half) in case of reconstruction of 5-bit inverse S-box from its partial DDT.

We note that each S-box in Table 7 can also be recovered directly given the relationship
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Table 8: Reconstructing S-box from the first l rows of 5-bit inverse’s LAT with Gurobi.
The minimum number of rows up to which we obtain the inverse S-box is highlighted in
blue. First row corresponds to the full LAT.

# rows Time Diff. Linearity Differential-linear Boomerang
(l) (s) unif. unif. unif.
32 4 2 12 4 2
24 10 2 12 4 2
20 15 2 12 4 2
17 22 2 12 4 2
16 10 4 16 8 10

between the full LAT and Walsh-Hadamard transform. However, given the partial LAT,
obtaining the same S-box using this relation is an open question.

6 Recovering S-boxes from (Partial) Differential-Linear
Connectivity Table

We now describe how we can combine the two approaches as mentioned for DDT and LAT
to solve the problem for DLCT. Precisely, we do the following steps, namely (1) model
S-box with a permutation matrix similar to Sec. 3 and (2) enumerate solutions for a given
input difference, model XOR of their S-box output values (similar to Sec. 4.1), model
scalar product of output mask with output differences and then finally map it to DLCT.

6.1 Modeling the Differential-linear Equation for an Input Difference
and a Output Mask

Let α and λ be the input difference and output mask, respectively. From Def. 3, we have

DLCT(α, λ) + 2n−1 = #{⃗i ∈ Fn
2 : λ⃗ · y⃗i ⊕ λ⃗ · y⃗i⊕α = 0}, (28)

where the notations are from Sec. 5. Following (28), our aim is to model the equation

λ⃗ · y⃗i ⊕ λ⃗ · y⃗i⊕α = 0 (29)

and then count the number of solutions which will relate to the DLCT(α, λ) value. We
derive the set

Xn(α) := {(i, j) | i < j and i⊕ j = α}

as we did in Sec. 4.1. Note that |Xn(α)|= 2n−1 as it excludes symmetric pairs. We rewrite
(29) as

λ⃗ · y⃗i ⊕ λ⃗ · y⃗j = 0, where (i, j) ∈ Xn(α) . (30)

It now remains to model (30) and its number of solutions.

1. Model (30)
As done in Sec. 5.1, we model the scalar products by the XOR operations of the
binary vectors of the variables and rewrite (30) as follows:

n−1⊕
k=0

(λk · yi,k) ⊕
n−1⊕
k=0

(λk · yj,k) = 0 , where (i, j) ∈ Xn(α).
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As this equation now simply contains 2n-XOR operations, therefore we can model it
as follows:

n−1∑
k=0

(λk · yi,k)+
n−1∑
k=0

(λk · yj,k) + zi,j,λ = 2 · vi,j,λ,

zi,j,λ ∈ {0, 1}, vi,j,λ ∈ {0, . . . , n}. (31)

2. Modeling the number of solutions of (30)
If a pair (i < j) ∈ Xn(α) is a solution of (30), so is (j, i), however, solution pairs’
membership to Xn(α) ensures that total number of solutions of (30) is actually
DLCT(α,λ)+2n−1

2 .
We introduce 2n−1 binary variables wi,j,λ ((i, j) ∈ Xn(α)) with the following property:

wi,j,λ = 1 if and only if λ · yi ⊕ λ · yj = 0.

Then we have ∑
(i,j)∈Xn(α)

wi,j,λ = DLCT(α, λ) + 2n−1

2 . (32)

3. Linking (31) with (32)
We now link the wi,j,λ variables with rest of the model as follows:

zi,j,λ = 1− wi,j,λ . (33)

Recovering S-box from a full DLCT. We model the whole DLCT by running the above
steps for all (α, λ) and in Algo. 6 we illustrate the complete procedure to recover an S-box
from DLCT.

Recovering S-box from a partial DLCT. Given a partial DLCT with rows corresponding
to input differences {α1, α2, . . . , αl} ⊂ {1, 2, . . . , 2n−1}, we model it by replacing Line 5 of
Algo. 6 with

for α ∈ {α1, α2, . . . , αl}.

Remark 1. Algorithm 6 can be easily tweaked to recover an S-box from a given ACT. Since
DLCT(α, λ) = ACT(α,λ)

2 , we simply replace Line 14 of Algo. 6 to
∑

(i,j)∈Xn(α) wi,j,λ =
ACT(α,λ)/2+2n−1

2 .

6.2 Experimental Validation
Similar to the DDT and LAT experiments, we validated the correctness of Algo. 6 using
DLCT/ACT of inverse mapping in dimensions 4 and 5, DLCT/ACT of S-boxes of 3-bit χ,
PRESENT, GIFT, SERPENT, SKINNY, ASCON and Keccak. We successfully recovered
S-boxes having the same DLCT as of the mentioned S-boxes. Table 9 presents the efficiency
of this reconstruction for different DLCT. We notice that especially for the DLCT of 5-bit
inverse S-box, Gurobi could not recover the S-box in one hour while OR-Tools gave the
corresponding S-box in 36 minutes. While none of the solvers could recover an S-box from
the DLCT of the 6-bit inverse S-box. In Table 10, we show the correctness of our approach
using the partial DLCT of 4-bit inverse S-box.
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Algorithm 6: model_dlct_to_sbox
Input: n, DLCT and empty M
Output: S-box = [y0, y1, . . . , y2n−1] or given DLCT is invalid

1 for α = 1 to 2n − 1 do
2 Compute Xn(α)
3 end
4 M← model_sbox_with_permutation_matrix(n,M)
5 for α = 1 to 2n − 1 do
6 for λ = 1 to 2n − 1 do
7 wi,j,λ ∈ {0, 1}, for (i, j) ∈ Xn(α) ▷ Variables
8 for (i, j) ∈ Xm(α) do
9 vi,j,λ ∈ {0, . . . , n} ▷ Variable

10 zi,j,λ ∈ {0, 1} ▷ Variable
11

∑n−1
k=0(λk · yi,k) +

∑n−1
k=0(λk · yj,k) + zi,j,λ = 2 · vi,j,λ

12 zi,j,λ = 1− wi,j,λ

13 end
14

∑
(i,j)∈Xn(α) wi,j,λ = DLCT(α,λ)+2n−1

2 ▷ DLCT constraint
15 end
16 end
17 if M is feasible then
18 return [y0, y1, . . . , y2n−1]
19 end
20 else
21 return DLCT is invalid
22 end

Table 9: Model size and timings for DLCT to S-box. The symbol ‘-’ denotes that no
solution is obtained with a time limit of one hour.

DLCT Model details Time (sec.)
of Variables Linear Gurobi OR-Tools

Integer Binary Constraints

3-bit χ 204 480 473 0.01 0.05
4-bit Inverse 1816 3920 3889 19.68 0.74
SERPENT 1816 3920 3889 7.69 0.87
PRESENT 1816 3920 3889 0.99 0.87

GIFT 1816 3920 3889 4.96 1.04
SKINNY 1816 3920 3889 0.71 0.98
ASCON 15408 31936 31841 0.45 22.78
Keccak 15408 31936 31841 0.44 21.76

5-bit Inverse 15408 31936 31841 - 2154.22
6-bit Inverse 127072 31841 258241 - -

7 Recovering S-boxes from (Partial) Boomerang Connec-
tivity Table

In this section, we show how to recover an S-box from (partial) BCT, thereby presenting the
first novel application of mixed integer quadratic programming in the context of S-boxes
reconstruction.

There are two equivalent notions of BCT relation which are given in (7) and (8). To us
(8) appears much simpler than (7) as the latter involves both the S-box and its inverse.
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Table 10: Reconstructing S-box from the first l rows of DLCT of 4-bit inverse S-box with
OR-Tools. The minimum number of rows up to which the properties of obtained S-boxes
remain identical is highlighted in blue. First row corresponds to the full DLCT.

# rows Time Diff. Linearity Differential-linear Boomerang
(l) (s) unif. unif. unif.
16 0.41 4 8 4 6
12 0.33 4 8 4 6
8 0.24 4 8 4 6
5 0.22 4 8 4 6
4 0.13 6 12 8 10

So, we prefer to model BCT based on (8).
At a high level, our method has the following steps, namely 1) model the S-box with

a permutation matrix similar to Sec. 3, 2) model the BCT condition and the number of
solutions for the pairs of input-output difference.

As before, we model the S-box by an integer variable array [y0, . . . , y2n−1] and

yi =
n−1∑
k=0

2k · yi,k, for i = 0, . . . , 2n − 1 (from Sec. 3).

As per (8), BCT(α, β) equals the number of pairs (i, j) satisfying

yi ⊕ yj = β and yi⊕α ⊕ yj⊕α = β. (34)

7.1 Modeling the BCT Condition (34)
To do this we first show how to model the two equalities. If (i, j) is a solution of (34),
then so is (j, i), therefore, it is enough to consider (i < j). Let

Y = {(i, j) : i < j}.

Note that for some (i, j) ∈ Y , it may happen that (i⊕ α, j ⊕ α) ∈ Y , and for some it may
not. If (i⊕ α, j ⊕ α) /∈ Y then we have (i⊕ α) > (j ⊕ α) which means (j ⊕ α, i⊕ α) ∈ Y.

Now, for each (i, j) ∈ Y we create the integer variables ci,j . Next, we assign yi⊕yj = ci,j

and model the XOR operation yi ⊕ yj = ci,j . We then map each (i, j) to the correct
(i⊕ α, j ⊕ α) or (j ⊕ α, i⊕ α). Following the above discussion, we rewrite (34) as follows.

ci,j = β, and
{

ci⊕α,j⊕α = β, if (i⊕ α, j ⊕ α) ∈ Y
cj⊕α,i⊕α = β, o.w.

(35)

For the sake of simplicity, in our modeling description, we consider (i⊕ α, j ⊕ α) ∈ Y
if (i, j) ∈ Y.

1. Modeling the XOR in (34)
We model the XOR operation yi ⊕ yj = ci,j bit-by-bit as follows.

ci,j,k, di,j,k ∈ {0, 1}, for k = 0, . . . , n− 1
yi,k + yj,k + ci,j,k = 2 · di,j,k, for k = 0, . . . , n− 1

ci,j =
n−1∑
k=0

2k · ci,j,k (36)

It is to be noted that the above modeling needs to be done only once as it does not
depend on α and β.
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2. Modeling the solution of (34)
Among all the pairs (i, j) ∈ Y , some satisfy (35) and others do not. If (i, j) does not
satisfy, then we have the following eight cases:

(a) ci,j = β and ci⊕α,j⊕α ≥ β + 1,
(b) ci,j = β and ci⊕α,j⊕α ≤ β − 1,
(c) ci⊕α,j⊕α = β and ci,j ≥ β + 1,
(d) ci⊕α,j⊕α = β and ci,j ≤ β − 1,
(e) ci,j ≥ β + 1 and ci⊕α,j⊕α ≥ β + 1,
(f) ci,j ≥ β + 1 and ci⊕α,j⊕α ≤ β − 1,
(g) ci,j ≤ β − 1 and ci⊕α,j⊕α ≥ β + 1,
(h) ci,j ≤ β − 1 and ci⊕α,j⊕α ≤ β − 1.

It is clear that for a given (i, j) ∈ Y only 1 out of the 9 ((35) and (a) – (h)) conditions
is true. To model this, we use quadratic constraints. First, let wα,β,i,j ∈ {0, 1} for
all (i, j) ∈ Y such that

wα,β,i,j = 1 if and only if (35) holds.

It means when wα,β,i,j = 0, then (35) is false and only one of remaining 8 conditions
is true. Thus, we add 8 different kinds of binary variables tα,β,i,j,ℓ, for ℓ = 0, . . . , 7
and the following constraints for the modeling of (35).

7∑
ℓ=0

tα,β,i,j,ℓ = 1− wα,β,i,j , tα,β,i,j,ℓ ∈ {0, 1}, ℓ = 0, . . . , 7 (37)

wα,β,i,j · (ci,j − β) ≥ 0, wα,β,i,j · (β − ci,j) ≥ 0 (38)
wα,β,i,j · (ci⊕α,j⊕α − β) ≥ 0, wα,β,i,j · (β − ci,j,α) ≥ 0 (39)
tα,β,i,j,0 · (ci,j − β) = 0, tα,β,i,j,0 · (ci⊕α,j⊕α − β − 1) ≥ 0 (40)
tα,β,i,j,1 · (ci,j − β) = 0, tα,β,i,j,1 · (ci⊕α,j⊕α − β + 1) ≤ 0 (41)
tα,β,i,j,2 · (ci⊕α,j⊕α − β) = 0, tα,β,i,j,2 · (ci,j − β − 1) ≥ 0 (42)
tα,β,i,j,3 · (ci⊕α,j⊕α − β) = 0, tα,β,i,j,3 · (ci,j − β + 1) ≤ 0 (43)
tα,β,i,j,4 · (ci,j − β − 1) ≥ 0, tα,β,i,j,4 · (ci⊕α,j⊕α − β − 1) ≥ 0 (44)
tα,β,i,j,5 · (ci,j − β − 1) ≥ 0, tα,β,i,j,5 · (ci⊕α,j⊕α − β + 1) ≤ 0 (45)
tα,β,i,j,6 · (ci,j − β + 1) ≤ 0, tα,β,i,j,6 · (ci⊕α,j⊕α − β − 1) ≥ 0 (46)
tα,β,i,j,7 · (ci,j − β + 1) ≤ 0, tα,β,i,j,7 · (ci⊕α,j⊕α − β + 1) ≤ 0 (47)

Observe that wα,β,i,j = 1 implies tα,β,i,j,ℓ = 0 for all ℓ. Then (38) and (39) enforce
ci,j = β and ci⊕α,j⊕α = β. At the same time (40) to (47) also hold. On the other
hand, wα,β,i,j = 0 means only one of tα,β,i,j,ℓ equals 1 for some ℓ. For instance, if
tα,β,i,j,2 = 1, then we only have ci⊕α,j⊕α = β and ci,j ≥ β + 1.

7.2 Mapping Solutions to Entries of BCT
For a given (α, β), there are BCT(α, β) pairs (i, j) satisfying (34). When we consider
solution pairs from Y, then we omit the symmetric solutions. Therefore, the number of
pairs (i, j) ∈ Y such that (35) holds should sum up to BCT(α,β)

2 . As we have wα,β,i,j = 1
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if and only if (35) holds, then we have an important constraint that directly links the
number of solutions to BCT values as follows:∑

(i,j)∈Y

wα,β,i,j = BCT(α, β)
2 . (48)

We repeat the procedure as discussed above for all (α, β) and present it in Algo. 7.

Algorithm 7: model_map_solutions_to_bct
Input: n, M and BCT
Output: M

1 Y = {(i, j) : i < j}
2 {ci,j}(i,j)∈Y such that ci,j ∈ {1, . . . , 2n − 1} ▷ Variables
3 for each (i, j) ∈ Y do
4 ci,j,k, di,j,k ∈ {0, 1}, for k = 0, . . . , n− 1
5 yi,k + yj,k + ci,j,k = 2 · di,j,k, for k = 0, . . . , n− 1
6 ci,j =

∑n−1
k=0 2k · ci,j,k

7 end
8 for α = 1 to 2n − 1 do
9 for β = 1 to 2n − 1 do

10 wα,β,i,j ∈ {0, 1}, for (i, j) ∈ Y ▷ Variables
11 for i = 0 to 2n − 1 do
12 for j = i + 1 to 2n − 1 do
13 tα,β,i,j,ℓ, for ℓ = 0, . . . , 7 ▷ Variables
14 Add constraints of (37) to (47)
15 end
16 end
17

∑
(i,j)∈Y wα,β,i,j = BCT(α,β)

2 ▷ BCT constraint
18 end
19 end
20 return M

7.3 Modeling (partial) BCT to S-box
Recovering S-box from a full BCT. We now have all the steps for modeling the BCT,
the next task is to check the feasibility of the model. An infeasible model means the given
BCT is not valid, i.e., it does not correspond to any S-box. On the other hand, a feasible
model will return an S-box. We present the complete algorithm to recover an S-box from
a full BCT in Algo. 8.

Recovering S-box from a partial BCT. Given a partial BCT with rows corresponding
to input differences {α1, α2, . . . , αl} ⊂ {1, 2, . . . , 2n−1}, we model it by replacing Line 8 of
Algo. 7 with

for α ∈ {α1, α2, . . . , αl}.

The rest of the steps are exactly same as Algo. 8.

7.4 Experimental Validation
Similar to the previous experiments on DDT, LAT and DLCT, we checked the correctness
of Algo. 8 using full BCT of different S-boxes and partial BCT of the 4-bit inverse S-box.
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Algorithm 8: model_bct_to_sbox
Input: n, BCT and empty M
Output: S-box = [y0, y1, . . . , y2n−1] or given BCT is invalid

1 M← model_sbox_with_permutation_matrix(n,M)
2 M← model_map_solutions_to_bct(n,M, BCT)
3 if M is feasible then
4 return [y0, y1, . . . , y2n−1]
5 end
6 else
7 return BCT is invalid
8 end

We report the timings and model sizes in Table 11 and Table 12 using only Gurobi. We
did not include OR-Tools as our model has quadratic constraints and we are not aware of
how this solver handles such constraints.2

Table 11: Model size and timings for BCT to S-box. The symbol ‘-’ denotes that no
solution is obtained with a time limit of one hour.

BCT Model details Time (sec.)
of Variables Constraints

Integer Binary Linear Quadratic Gurobi

3-bit χ 36 12604 1565 27440 1.12
4-bit Inverse 136 244280 27889 540000 48.18
PRESENT 136 244280 27889 540000 35.68

GIFT 136 244280 27889 540000 47.1
SKINNY 136 244280 27889 540000 55.97
ASCON 528 4296048 480721 9533120 -
Keccak 528 4296048 480721 9533120 -

5-bit Inverse 528 4296048 480721 9533120 -

Table 12: Reconstructing S-box from the first l rows of BCT of 4-bit inverse S-box with
Gurobi. The minimum number of rows up to which the properties of obtained S-boxes
remain identical is highlighted in blue. First row corresponds to the full BCT.

# rows Time Boomerang Differential-linear Diff. Linearity
(l) (s) unif. unif. unif.
16 48.18 6 4 4 8
12 112 6 4 4 8
8 17 6 4 4 8
6 13 6 4 4 8
5 2740 6 4 4 8
4 436 10 8 6 12

From Table 11, it is evident that the model size is too large even for BCT’s of 4 and
5-bit S-boxes. Because of the same reason, the solver could not produce a solution for
BCT’s of 5-bit S-boxes with a time limit of one hour.

2In fact one could do this by using in-built APIs, but then we will be running two different models on
two different solvers which defeats the purpose of comparison.
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8 Applications
In this section, we present several applications of our proposed techniques in the context
of searching for cryptographically significant S-boxes and Boolean functions.

First, we show how to tweak our MILP models to search for S-boxes with a given cryp-
tographic property such as differential uniformity, linearity, differential-linear uniformity or
boomerang uniformity. Most notably, we present the first novel and generic MILP-based
algorithm to search for δ-differential uniform S-boxes. We also discuss how to extend these
techniques to recover a Boolean function from a given Walsh spectrum.

Second, knowing that [Y0, . . . , Y2n−1] is a solution of the MILP problem based on a
cryptographic property, say P , that is [Y0, . . . , Y2n−1] is an S-box that satisfies P , we start
with it as the initial solution to MILP, introduce a random objective function in MILP
and then optimize the model for the maximum or minimum value. We obtain a new S-box
for each objective value which is different from the initial solution’s objective. We call this
heuristic as the Optimistic MILP objective. In particular, we highlight the impact of this
technique by obtaining 6-bit S-boxes which are CCZ-inequivalent to the inverse S-box and
have the same differential uniformity, which is 4.

8.1 Find an S-box with a Given Cryptographic Property
We discuss how to obtain an S-box with a given value of differential uniformity, linearity,
differential-linear uniformity or boomerang uniformity. This method is different from the
previous one as in this case we do not have a specific DDT, LAT, DLCT and BCT, instead
we use the given value as the input. This value acts as an upper bound. For instance, if
we are looking for 4 differential uniform S-boxes, it can produce both 2 and 4 differential
uniform S-boxes.

1. Differential uniformity
We wish to find an S-box with differential uniformity δ. To achieve this goal, we first
have a close look at Algo. 4. There is only one step∑

(i,j)∈Xn(α)

wi,j,k = DDT[α][k]
2 , (49)

in procedure model_map_output_difference_to_ddt (Line 8 of Algo. 3) which con-
nects the entire MILP modeling to the entries of DDT. Replacing (49) by∑

(i,j)∈Xn(α)

wi,j,k ≤
δ

2 , (50)

is sufficient to get a new MILP model whose feasible solution is an S-box with at
most δ-differential uniformity. Notably, for δ = 2, the model will search for APN
permutations. In summary, we modify Algo. 4 as follows.

(a) Replace the input DDT by differential uniformity value δ.
(b) Replace Line 8 of Algo. 3 with ∑

(i,j)∈Xn(α)

wi,j,k ≤
δ

2 .

2. Linearity
Let λ and γ be the input and output masks, respectively. Let L be the desired
linearity. Then for all nonzero λ and γ, (4) should hold. Now, the only link between
LAT entries and MILP modeling in Algo. 5 (Line 16) is via (25) which is given by
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2n−1∑
i=0

wλ,γ,i = LAT(λ, γ) + 2n−1, wλ,γ,i ∈ {0, 1} . (51)

Thus, by ensuring sum of wλ,γ,i to be at most (2n−1 + L
2 ) and at least (2n−1 − L

2 ),
we construct a MILP model M whose feasible solution is an S-box with linearity at
most L. In summary, the new model is exactly the same as [Algo. 5], but with the
two modifications given below.

(a) Replace the input LAT by linearity L.
(b) Replace Line 16 with

(
2n−1 − L2

)
≤

2n−1∑
i=0

wλ,γ,i ≤
(

2n−1 + L2

)
.

3. Differential-linear uniformity

We wish to find an S-box with d-differential-linear uniformity. Suppose α is the
input difference and λ is the output mask. Then as per (5), for all nonzero α and
λ = 0, . . . , 2n − 1, the target S-box should satisfy

|#{x | λ · x = λ · S(x⊕ α)} − 2n−1| ≤ d . (52)

Therefore, {
#{x | λ · x = λ · S(x⊕ α)} ≤ 2n−1 + d

#{x | λ · x = λ · S(x⊕ α)} ≥ 2n−1 − d.
(53)

Now, consider Line 14 of Algo. 6 which maps solutions of equations of the form
λ · x = λ · S(x⊕ α) to the entries of DLCT via∑

(i,j)∈Xn(α)

wi,j,λ = DLCT(α, λ) + 2n−1

2 .

By ensuring that the sum of wi,j,λ is at most 2n−2 + d
2 and at least 2n−2− d

2 (division
by 2 to exclude symmetric solution pairs), we obtain a new MILP model whose
feasible solution is an S-box with differential-linear uniformity at most d. The model
is similar to Algo. 6 with the following two changes.

(a) Replace the input DLCT by differential-linear uniformity d.
(b) Replace Line 14 with

2n−2 − d

2 ≤
∑

(i,j)∈Xn(α)

wi,j,λ ≤ 2n−2 + d

2 .

4. Boomerang uniformity
Suppose our goal is to find an S-box with boomerang uniformity µ. For nonzero α
and β, the MILP constraints in Algo. 7 (Line 17) are linked to BCT(α, β) via∑

(i,j)∈Y

wα,β,i,j = BCT(α, β)
2 .
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Thus, simply changing the above by∑
(i,j)∈Y

wα,β,i,j ≤
µ

2

gives a new MILP model whose feasible solution is an S-box with boomerang
uniformity at most µ. To summarize, the new model is similar to Algo. 8 with the
following changes.

(a) Replace the input BCT by boomerang uniformity µ.
(b) Replace Line 17 of Algo. 7 with∑

(i,j)∈Y

wα,β,i,j ≤
µ

2 .

Experimental validation. To verify the correctness, we run all MILP models with small
parameters (3 and 4-bit S-boxes) with several values of differential uniformity, linearity,
differential-linear uniformity and boomerang uniformity. Our models successfully find
S-boxes with the desired property.

8.2 Recovering Boolean functions from their Walsh Spectrum
Walsh transform of a Boolean function f : Fn

2 → F2 at λ ∈ Fn
2 is given by

Wf (λ) =
∑

x∈Fn
2

(−1)f(x)⊕λ·x. (54)

Walsh spectrum of f is the multi-set {Wf (λ)}λ∈Fn
2
. Walsh spectrum is used to analyse

various cryptographic properties of a Boolean function such as nonlinearity and correlation
immunity. Since nonlinearity of a Boolean function is directly related to the linearity of
an S-box, so it is worth mentioning the reconstruction of a Boolean function from a given
Walsh spectrum.

We can rewrite (54) as

Wf (λ) = #{x : f(x) = λ · x} −#{x : f(x) ̸= λ · x}
= 2 · (#{x : f(x) = λ · x} − 2n−1). (55)

It is clear from Def. 2 that LATS(λ, γ) is actually twice the Walsh transform value of
the component Boolean function γ · S of the S-box S. Then Walsh spectrum of the
Boolean function γ ·S is the multi-set {LATS(λ, γ) : λ ∈ Fn

2}, which is basically the column
corresponding to γ in the LAT of S.

Suppose [f0, . . . , f2n−1] is the truth table of f . Following (20), we can rewrite (55) as

Wf (λ)
2 + 2n−1 = #{⃗i ∈ Fn

2 : λ⃗ · i⃗ = fi}. (56)

Thus, as done in the modeling of LAT, we can take similar approach here to find the
[f0, . . . , f2n−1] from the given Walsh spectrum {Wf (λ)}λ∈Fn

2
.

Recovering a Boolean function with a given nonlinearity. For an n-variable Boolean
function f , nonlinearity is defined as

nlf = 2n−1 − 1
2 ·max

λ
|Wf (λ)|.
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Therefore, we can easily target a nonlinearity and can find a corresponding Boolean
function (if such nonlinearity value is valid). More specifically, if we we want to search
for a Boolean function f with nonlinearity nl, then we need to consider Walsh spectrum
values {Wf (λ) : λ ∈ Fn

2 such that |Wf (λ)|≤ 2n − 2 · nl} and use this bound in 56 and
model it for all λ ∈ Fn

2 .

8.3 Optimistic MILP Objectives
We propose Optimistic MILP objective heuristic with the goal to find multiple S-boxes
having the same cryptographic property P. Our idea is to introduce a random objective
function in the model and then optimize it for the maximum or minimum value. For each
objective value which is different from the initial solution’s objective value, we obtain a
new S-box. We then check the equivalence of these S-boxes with the original one using
the SboxU tool [Leo]. We emphasize that we check the equivalence only on the S-boxes
obtained from Gurobi as output. This is because there are no equivalence conditions
imposed in the model itself (see Sec. 9.3 for more discussion).

8.3.1 Modeling with Random MILP Objective

Suppose M is the MILP model and the target S-box is given by the integer variable array
[y0, . . . , y2n−1]. It is known that the S-box [Y0, . . . , Y2n−1] has the cryptographic property
P. We update M in two steps.

1. Starting solution
We force the solver to start with initial solution as [Y0, . . . , Y2n−1]. In Gurobi C++
interface, this can be done as follows.

yi.set(GRB_DoubleAttr_Start, Yi), for i = 0, . . . , 2n − 1 . (57)

2. Random objective
Suppose [b0, . . . , b2n−1] is an array of 2n random bits. We introduce a random linear
objective in terms of [y0, . . . , y2n−1] to M. It is defined as

max
( 2n−1∑

i=0
ri · yi

)
(58)

where

ri =
{

1 if bi = 0 ,

−1 if bi = 1 .

Different objective values give different solutions for [y0, . . . , y2n−1] as we will see
next.

8.3.2 CCZ-inequivalent S-boxes with a given Differential Uniformity

We demonstrate the impact of this technique to find a 4-differential uniform 6-bit S-box.
As we know the 6-bit inverse S-box (x 7→ x−1) is 4-differential uniform, so our goal is to
find another 4-differential uniform 6-bit S-box. Let the 64-bit random bit-string b0 · · · b63
is given by

0101101010101110101000101111010100000111000101010011111111000111 .

We now proceed as follows.

1. Create an MILP model as given in Sec. 4.
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2. Update the model by adding 6-bit inverse S-box as the initial solution.

3. Update the model by adding the objective function in (58) using the above bit-string
b0 · · · b63.

Table 13: 6-bit S-boxes with differential uniformity 4
S.no Obj. value S-box

S0 -94

0, 1, 45, 54, 59, 18, 27, 30, 48, 10, 9, 49, 32, 62, 15, 14,
24, 51, 5, 58, 41, 56, 53, 35, 16, 50, 31, 6, 42, 38, 7, 26,

12, 63, 52, 23, 47, 61, 29, 43, 57, 20, 28, 39, 55, 2, 60, 36,
(Inverse S-box) 8, 11, 25, 17, 34, 22, 3, 44, 21, 40, 19, 4, 46, 37, 13, 33

S1 -88

1, 0, 44, 55, 58, 19, 26, 31, 49, 11, 8, 48, 33, 63, 14, 15,
25, 50, 4, 59, 40, 57, 52, 34, 17, 51, 30, 7, 43, 39, 6, 27,

13, 62, 53, 22, 46, 60, 28, 42, 56, 21, 29, 38, 54, 3, 61, 37,
9, 10, 24, 16, 35, 23, 2, 45, 20, 41, 18, 5, 47, 36, 12, 32

S2 -80

1, 0, 44, 55, 58, 19, 26, 31, 49, 11, 8, 48, 33, 63, 10, 15,
25, 50, 4, 59, 40, 57, 52, 34, 17, 51, 30, 7, 43, 39, 6, 27,

13, 62, 53, 22, 46, 60, 28, 42, 56, 21, 29, 38, 54, 3, 61, 37,
9, 14, 24, 16, 35, 23, 2, 45, 20, 41, 18, 5, 47, 36, 12, 32

S3 -26

1, 0, 44, 55, 58, 19, 26, 31, 49, 42, 8, 48, 33, 63, 14, 15,
25, 50, 4, 59, 40, 57, 52, 34, 17, 51, 30, 7, 43, 39, 6, 27,

13, 62, 53, 22, 46, 60, 28, 11, 56, 21, 29, 38, 54, 3, 61, 37,
9, 10, 24, 16, 35, 23, 2, 45, 20, 41, 18, 5, 47, 36, 12, 32

S4 -20

5, 4, 40, 51, 62, 23, 30, 27, 53, 15, 12, 52, 37, 59, 10, 11,
29, 54, 0, 63, 44, 61, 48, 38, 21, 17, 26, 3, 47, 35, 2, 31,
9, 58, 49, 18, 42, 56, 24, 46, 60, 55, 25, 34, 50, 7, 57, 33,
13, 14, 28, 20, 39, 19, 6, 41, 16, 45, 22, 1, 43, 32, 8, 36

S5 -16

7, 4, 40, 51, 62, 23, 30, 27, 53, 15, 12, 52, 37, 59, 10, 11,
29, 54, 0, 63, 44, 61, 48, 38, 21, 17, 26, 3, 47, 35, 2, 31,
9, 58, 49, 18, 42, 56, 24, 46, 60, 55, 25, 34, 50, 5, 57, 33,
13, 14, 28, 20, 39, 19, 6, 41, 16, 45, 22, 1, 43, 32, 8, 36

S6 -12

1, 0, 44, 55, 58, 19, 26, 31, 49, 12, 8, 48, 33, 63, 14, 15,
25, 50, 4, 59, 40, 57, 52, 34, 17, 51, 30, 7, 43, 39, 6, 27,

13, 62, 53, 22, 46, 60, 28, 11, 56, 21, 29, 38, 54, 3, 61, 37,
9, 10, 24, 16, 35, 23, 2, 45, 20, 41, 18, 42, 47, 36, 5, 32

S7 48

7, 4, 40, 51, 62, 23, 30, 27, 53, 15, 12, 52, 37, 59, 10, 11,
29, 54, 0, 63, 44, 61, 48, 38, 21, 17, 26, 5, 47, 35, 2, 31,
9, 58, 49, 18, 42, 56, 24, 14, 60, 55, 25, 34, 50, 3, 57, 33,
13, 46, 28, 20, 39, 19, 6, 41, 16, 45, 22, 1, 43, 32, 8, 36

On solving the model, we find several solutions with different values of the objective
function as shown in Table 13.3 Note that in Table 13, the inverse S-box denoted as S0
has objective value −94. We have following observations on other S-boxes mentioned in
the same table.

1. S-boxes S0 and S1 are CCZ-equivalent to each other. However, they are CCZ-
inequivalent to S2, S3, S4, S5, S6 and S7.

2. S-boxes S2, S3 and S4 are CCZ-equivalent to each other, but in-equivalent to S-boxes
S5, S6 and S7.

3This is not the exhaustive list of S-boxes that are obtained.
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3. S-boxes S5, S6 and S7 are CCZ-inequivalent.

In the end, we find five CCZ-inequivalent S-boxes (including the inverse) of 6-bit
S-boxes, i.e., {S0, S2, S5, S6, S7} which have differential uniformity 4. Moreover, all these
S-boxes are also CCZ-inequivalent to the 4-differential uniform 6-bit S-box of [Ras22].

Experiments on 6-bit APN. We did similar experiments with APN6 to find if there exists
another CCZ-inequivalent S-box with differential uniformity 2. However, all the S-boxes
that we found turned out to be XOR-equivalent.
Remark 2. We could change (58) to find the minimum value or choose completely different
objective function. Also, rather than differential property, one may consider other properties
such as linearity, differential-linearity or boomerang uniformity to find more S-boxes.

9 Discussion and Comparison with Related Works
In this section, we discuss the advantages and limitations of our approach, and compare
with the related works.

9.1 Application of Permutation Matrix
The permutation matrices are well-known object in mathematics. They are used in
literature in several contexts, for e.g., solving traveling salesman problem [DFJ54], finding
efficient implementation of linear layers [BKD21] or alternative key-schedules of AES
[BDF24]. In this work, we propose the application of permutation matrices in the context
of S-boxes search and reconstruction problem related to cryptographic tables for the first
time.

9.2 Efficiency Comparison
Though our current approach is limited to 6-bit S-boxes for DDT and LAT, 5-bit S-boxes
for DLCT and 4-bit S-boxes for BCT, the biggest advantage is that it is highly effective
with partial cryptographic tables. For instance, given the first 17 rows of the DDT of
APN6, we could recover the APN S-boxes CCZ-equivalent to APN6 in seconds (see Table
5). For the same setting, previous works [BCJS19, DH19, TBP20] can find the first 17
values of S-box in seconds, but then require an exhaustive search over the remaining 47
elements. All in all, the existing works [BCJS19, DH19, TBP20] though efficient for up to
8-bit S-boxes do not work with partial tables.

In case of [LMC+22], all the reported results consider up to 5-bit S-boxes only. Since
their tool is not publicly available, it is difficult to say whether their approach works for
6-bit S-boxes or not. In our case, we have shown that reconstructing an S-box from the
DDT and LAT of 6-bit S-boxes can be done in seconds (see Tables 4 and 7). When it comes
to comparing the exact performance of our approach with that of [LMC+22], we have
carefully studied their reported performance results and based on that we understand that
our approach is much more efficient than theirs. We justify in Table 14 why our method
outperforms theirs in terms of performance.

Table 14: Time to obtain all S-boxes from the DDT of PRESENT and Keccak.
DDT of # S-boxes Time

Ours [LMC+22]

PRESENT 256 20 s 10 min.
Keccak 1024 36 s 7.5 hr
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Clearly, Table 14 establishes our method as the winner over [LMC+22] as far as
PRESENT and Keccak are concerned. For further clarity, we would also like to note the
following.

1. We run our experiments on AMD EPYC 7763 64-Core CPU (2.45 GHz clock) using
8 threads. The authors in [LMC+22] used AMD EPYC 7302 16-Core CPU (3.0 GHz
clock) with 8 threads. As far as we understand, for the same number of threads, the
two platforms are almost similar in terms of efficiency.

2. We only include PRESENT and Keccak in the table as [LMC+22] reported the timing
for the DDT of these two ciphers only.

3. We chose Gurobi 10 as the MILP solver in this regard.

Our MILP models are generic and can be plugged into any MILP solver. We used
Gurobi and OR-Tools in our experiments where we leverage unique advantages that each
solver offers. For instance, some efficiency advantages in our approach have been attributed
by Gurobi quite uniquely: for BCT, we directly can apply the Mixed Integer Quadratic
Constraint Programming; for optimistic MILP objective heuristics, we use the inbuilt APIs
for finding other solutions.

9.3 Classification of S-boxes
One important contribution of our work to the state-of-the-art is the introduction of
optimistic MILP objective heuristics, which addresses CCZ-inequivalence to some extent
in the context of the reconstruction problem. However, our technique at the moment can
not classify S-boxes – we only check equivalence/inequivalence outside the MILP model.
For instance, 4-differential uniform S-boxes in Table 13 (obtained via Gurobi) are checked
for CCZ-equivalence using the SboxU tool. We found some of the S-boxes generated by our
heuristic (Optimistic MILP objective) are CCZ-inequivalent to the initial S-box and have
the similar cryptographic properties. We have not studied how this heuristic is helping
the generation of CCZ-inequivalent S-boxes in this work as we think this question needs a
separate attention as a whole. On the other hand, we also believe that finding an answer
to the problem of applying MILP in classifying S-boxes needs separate attention for a
thorough investigation, where our results could serve as a stepping stone. In the following,
we shed some initial insights on this problem.

While generating S-boxes for a given cryptographic property, we obtain S-boxes which
are affine equivalent. However, if we fix some output value, then at least some affine
equivalent S-boxes will not be generated. For instance, if S(0) ̸= 0, then the S-box S′

given by S′(x) = S(x)⊕ S(0) is affine equivalent to S. However, if we add the constraint
S(0) = 0, then such equivalent S-boxes will not be repeated.

The second strategy could be searching for affine inequivalent S-boxes by incorporating
frequencies of DDT in the model. For example, given that S is 4-differential with #2’s
and #4’s being N2 and N4 in the DDT. Then, we can search for S′ by adding constraints
that #2’s and #4’s are not N2 and N4, respectively.

10 Conclusions
In this paper, we presented the novel applications of mixed integer linear programming
and mixed integer quadratic constraint programming to solve open problems related to
S-boxes. Our major breakthrough is that we have been able to reconstruct S-boxes from
partial cryptographic tables for the first time in the literature. This also for the first time
shows the applicability of MILP techniques for the S-box reconstruction problem. Our
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second advancement is the generic MILP models which can search for S-boxes with a
desired cryptographic property such as differential uniformity, linearity, differential-linear
uniformity and boomerang uniformity. We also showed how the same approach could
be extended to reconstruct S-boxes from a given Walsh spectrum and consequently find
Boolean function with a given nonlinearity. Finally, we introduced Optimistic MILP
objective heuristic which could successfully find 4-differential uniform S-boxes which are
CCZ-inequivalent to the 6-bit inverse S-box.

We believe that similar to the progress achieved over the decade in differential and
linear cryptanalysis with MILP, the presented techniques will also advance with time.
Hence we expect to see more applications of our ideas in the future. We list down some of
the interesting problems for future research.

1. This work considered partial tables with first few rows, but it is interesting to answer
whether the technique can be extended to tables consisting of both partial rows and
partial columns. Is it possible to theoretically guarantee an optimal choice of partial
rows and partial columns for such reconstruction problems ?

2. Analyzing optimistic MILP objective heuristic to search for new classes of S-boxes.
One intriguing problem is to investigate this heuristic to find whether there exists
a 6-bit APN permutation which is CCZ-inequivalent to the Dillon et al.’s APN
permutation [BDMW10].

3. Incorporating inequivalence conditions into MILP modeling of S-box search.

4. An independent research interest branches out from our detailed comparative experi-
mental study of Gurobi and OR-Tools – Gurobi performs better in certain problems
(LAT problem), while OR-Tools excels in others (DDT and DLCT problems). It will
be interesting to extend the study of comparing different MILP solvers in the context
of S-box reconstruction problems.
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