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Abstract. Modular addition is often the most complex component of typical Addition-
Rotation-XOR (ARX) ciphers, and the division property is the most effective tool for
detecting integral distinguishers. Thus, having a precise division property model for
modular addition is crucial in the search for integral distinguishers in ARX ciphers.
Current division property models for modular addition either (a) express the operation
as a Boolean circuit and apply standard propagation rules for basic operations (COPY,
XOR, AND), or (b) treat it as a sequence of smaller functions with carry bits, modeling
each function individually. Both approaches were originally proposed for the two-
subset bit-based division property (2BDP), which is theoretically imprecise and may
overlook some balanced bits.
Recently, more precise versions of the division property, such as parity sets, three-
subset bit-based division property without unknown subsets (3BDPwoU) or monomial
prediction (MP), and algebraic transition matrices have been proposed. However,
little attention has been given to modular addition within these precise models.
The propagation rule for the precise division property of a vectorial Boolean function
f requires that u can propagate to v if and only if the monomial πu(x) appears in
πv(f). Braeken and Semaev (FSE 2005) studied the algebraic structure of modular
addition and showed that for x⊞ y = z, the monomial πu(x)πv(y) appears in πw(z)
if and only if u + v = w. Their theorem directly leads to a precise division property
model for modular addition. Surprisingly, this model has not been applied in division
property searches, to the best of our knowledge.
In this paper, we apply Braeken and Semaev’s theorem to search for integral dis-
tinguishers in ARX ciphers, leading to several new results. First, we improve the
state-of-the-art integral distinguishers for all variants of the Speck family, significantly
enhancing search efficiency for Speck-32/48/64/96 and detecting new integral distin-
guishers for Speck-48/64/96/128. Second, we determine the exact degrees of output
bits for 7-round Speck-32 and all/16/2 output bits for 2/3/4-round Alzette for the first
time. Third, we revisit the choice of rotation parameters in Speck instances, providing
a criterion that enhances resistance against integral distinguishers. Additionally, we
offer a simpler proof for Braeken and Semaev’s theorem using monomial prediction,
demonstrating the potential of division property methods in the study of Boolean
functions.
We hope that the proposed methods will be valuable in the future design of ARX
ciphers.
Keywords: Modular addition · Division property · Monomial prediction · Speck ·
Alzette
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1 Introduction
Automatic search tools play a crucial role in the cryptanalysis of many symmetric-key
ciphers in this day and age. Developing precise and compact models is a fundamen-
tal task in this area. The division property [Tod15, TM16] and its automatic search
method [XZBL16, HWW20, Udo21] have been the dominant technique in the search for
integral distinguishers [DKR97, KW02] for block ciphers, including the Addition-Rotation-
XOR (ARX) ciphers. Although dozens of papers have studied the security of ARX ciphers
against the division properties [SWW17, HW19, WHG+19, DL22], most of them only
focused on the two-subset bit-based division property (2BDP)[TM16], an efficient but lossy
variant of division properties. In this context, a lossy model is imprecise and potentially
missing some integral distinguishers.

Several papers have studied the precise version of the division property. At CRYPTO
2016, Boura and Canteaut proposed the notion of parity sets as another view of the division
property [BC16], where precise propagation rules are studied (the precise propagation
rules were reflected by [BC16, Table 2], but they did not count the number of trails).
Similar results, called the three-subset bit-based division property without unknown subsets
(3BDPwoU), were implied by Wang et al. in [WHG+19] and Hao et al. in [HLM+20].
However, they focused more on the automatic search aspect and did not provide rig-
orous proof. Later, at ASIACRYPT 2020, Hebborn used the parity sets to prove that
3BDPwoU can precisely indicate the existence of a specific plaintext monomial in the
output polynomial [HLLT20]. At ASIACRYPT 2020, Hu et al. proposed the monomial
prediction (MP) and developed their propagation rules [HSWW20]. They also proved
that the monomial prediction is the same as the 3BDPwoU in the search for integral
distinguishers. Recently, at FSE 2024, Beyne and Verbauwhede introduced the algebraic
transition matrices and unified the monomial trails and parity sets by formalizing the
exact nature of their duality. [BV23]. In the following, we mainly use the language of the
monomial prediction to describe the propagation rules as it is easier to integrate with
Braeken and Semaev’s theorem [BS05] for the modular addition operation, as discussed in
detail later.

It has been shown that the 2BDP is a no-false-alarm approximation of the MP; that
is, if an integral property is detectable by the 2BDP, it must also be detectable by the MP.
However, the converse is not necessarily true [HSWW20]. Therefore, whenever possible,
an MP model should be applied to a block cipher first. The difficulty in applying an MP
model lies in the need to count the number of allowed MP trails. However, the modular
addition operation found in ARX ciphers is inherently complex, making it believed to be
impossible (or at least very difficult) to count the exact number of MP trails for ARX
ciphers. As a result, most papers on the division properties of ARX ciphers, such as
[SWW17, BBdS+20, DL22], focus primarily on the 2BDP, where the most technically
challenging aspect is modeling the 2BDP propagation for modular addition.

There are two major 2BDP models for the modular addition operation. The first model,
proposed by Sun, Wang, and Wang [SWW17, SWLW18], decomposes the modular addition
into three kinds of basic operations, i.e., COPY, AND and XOR, and model these basic
operations by their standard 2BDP propagation rules. The model is heavy and complex
since they decompose the addition modulo 2n into 2n − 1 XORs, 3n − 1 COPYs, and
2n− 1 ANDs, leading to a search model containing 10n− 4 linear constraints and 12n− 19
intermediate variables. The second method was proposed by Beierle et al. in [BBdS+20].
This is a much simpler model of the modular addition requiring only 2 inequalities per bit.
Consider an addition of two n-bit words a, b ∈ Fn

2 and let y = a⊞ b mod 2n. It can be
computed from recursively apply the function f(ai, bi, ci) = (ai ⊕ bi ⊕ ci, Maj(ai, bi, ci))
where Maj is the majority function and ci the i-th carry. Specifically, each iteration yields
(yi, ci−1) = f(ai, bi, ci). The 2BDP table of the function f can be modeled with only two
inequalities. However, because the 2BDP is a lossy model, this method still has the risk of
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overlooking some balanced bits although it is a lightweight model.
To describe the MP propagation for modular addition, a trivial transformation can

be performed by replacing the 2BDP propagations for COPY, AND, XOR with their
counterparts of MP for the first method and by replacing the 2BDP table with the MP table
for the second method. The trivial substitution of the first method was performed in [HW19].
The “propagation of L” in that paper is the MP version of the first model. However, this
trivial transformation leads to an MP model for modular addition with redundant trails
caused by the COPY operations. More importantly, although the propagation of MP
trails was modeled, the exact number of MP trails was not computed due to the large
number of redundant trails. Consequently, the model in [HW19] is still a lossy one as
a no-false-alarm approximation of the MP. Hence, there is still a need for a perfect MP
model for the modular addition.

According to the propagation rule of the MP [HSWW20], for a vectorial Boolean
function f : Fn

2 → Fn
2 , the propagation (u) → (v) is valid if and only if πu(x) appears

in the polynomial of πv(f(x)). At FSE 2005, Braeken and Semaev studied the algebraic
structure of the modular addition [BS05]. Their work proved that for z = x⊞ y, an input
monomial πu(x)πv(y) appears in the output monomial πw(z) if and only if u + v = w,
note that here “+” is the addition in the integer ring. Such a theorem directly leads to a
perfect MP model for the modular addition. Surprisingly, this fact has gone unnoticed
by researchers in the division property community, despite the division property being a
widely used tool for nearly a decade.

Our contributions. In this paper, we apply Braeken and Semaev’s theorem to the search
for integral distinguishers for ARX ciphers, which is the main contribution of this paper.
To make it clearer, for z = x ⊞ y, the propagation of their exponents is described as
(u, v)→ (v) if and only if u + v = w. Additionally, we find their proof [BS05] is somewhat
involved, so we offer a new and simpler proof in this paper according to the monomial
trails.

Braeken and Semaev’s theorem can be implemented directly with an SMT model where
the “+” operation is built-in. In this model, no auxiliary variables are required at all.
Considering that in many cases where a MILP model is desirable, we as well introduce a
MILP model with auxiliary variables but prove that these auxiliary variables do not cause
any redundant MP trails.

With the precise propagation models, new results are obtained for some ARX ciphers.
In [WHG+20], Wang et al. used a variant of the 3BDP where a new propagation rule for
“XOR with secret round key” was introduced to bypass the effect of the round key and found
new integral distinguishers that are not detectable by previous tools [SWW17, WHG+19,
HW19] for Speck-32, -48, -64, and -96. By counting the number of monomial trails, our
proposed method can easily re-identify these previously found integral distinguishers.
Furthermore, the time for detecting these integral distinguishers is reduced from hours or
days to seconds or minutes. Moreover, our technique also finds new integral distinguishers
for Speck-48, -64, -96 and -128 that are not feasible with Wang et al.’s method. New
integral distinguishers for all members of the ARX permutation Sparkle (the underlying
permutation of the NIST LWC competition finalist Schwaemm and Esch [BBdS+19]) are
also found.

The precise version of division property is not only a tool for detecting the integral
properties accurately, but also useful to calculate the exact algebraic degree1 or its lower
bound of a symmetric-key cipher. In [HSWW20], the MP was used to compute the exact
algebraic degrees of Trivium up to 834 rounds. In [HLLT20], the 3BDPwoU was used
to give lower bounds for block ciphers such as Skinny-64 [BJK+16], Present [BKL+07],

1In this paper, the algebraic degree means the greatest algebraic degree over all possible key parameters.
See Section 2.2 for a detailed explanation.



180 Perfect Monomial Prediction for Modular Addition

Simon [BSS+15] and so forth. However, it is still difficult to calculate the exact algebraic
degrees for ARX ciphers so far. For example, in [BBdS+20], the authors had to do
experiments to show that there are some 32-degree monomials in the output bits of Alzette.

The application of Braeken and Semaev’s theorem is also helpful in terms of the
computation of the algebraic degrees. We show that the smallest exact degree of the
3-round output bits of Alzette that our method can find is 42 while the smallest exact
degree for the 4-round Alzette output that we can identify is 63. In [BBdS+20], only
experiments were done to show the lower bounds are 32. For 7-round Speck-32, we prove
that the exact algebraic degrees of all output bits are 31. As far as we know, this is the
first time that we can give a theoretical calculation for ARX ciphers’ algebraic degrees.

Finally, we revisit the choices of rotation constants used in the Speck family. We
develop a criterion that indicates the complexity of the corresponding superpoly and
use it to search for better rotation constants that make Speck stronger against integral
distinguishers. The variants of Speck-32, -48, and -64 equipped with our new rotation
constants can resist the integral attacks with 6 rounds, while the original ones need to be
7 rounds, up to checking all 2n− 1 active patterns of plaintexts. Our proposed methods
can be useful in the future design of ARX ciphers.

Outline of the remaining paper. The following paper is organized as follows. Section 2
introduces the notations, definitions, and background knowledge used in this paper. In
Section 3, we use a result published almost 20 years ago to develop the perfect MP
propagation rule for the modular addition and build the automatic search model. We
apply our perfect model to Speck in Section 4 and to Alzette and Sparkle in Section5,
respectively. In Section 6, we revisit the choice of rotation constants of Speck family.
Section 7 concludes the paper and discusses possible future works.

2 Preliminaries
2.1 Notations and Definitions.
In this paper, F2 is the binary field, Fn

2 is the space for bit vectors with the length of n,
and Z is the integer ring. The XOR, modular addition, and addition in Z are respectively
denoted by ⊕, ⊞ and +, where the length of the operands of these operations should
be clear from the context. We use bold italic lowercase letters to represent bit vectors,
for example, x ∈ Fn

2 . x is also written as x = (x0, x1, . . . , xn−1) with xi being its i-th
coordinate and xn−1 is the least significant bit (LSB). The Hamming weight of x is defined
as wt(x) =

∑
i xi. A partial order is defined for two vectors x and y where x ⪯ y if and

only if xi ≤ yi for 0 ≤ i < n.
Given x, u ∈ Fn

2 , πu(x) =
∏

ui=1 xi is called a monomial of x with respect to u.
Suppose f : Fn

2 → F2 be a Boolean function, the algebraic normal form (ANF) of a Boolean
function is defined as

f(x) =
⊕

u∈Fn
2

auπu(x) =
⊕

u∈Fn
2

au

n−1∏
i=0

xui
i

where au ∈ F2. If πu(x) appears in the ANF of a Boolean function f , we denote it by
πu(x)→ f , otherwise, πu(x) ↛ f .

We define f : Fn
2 → Fm

2 to be the vectorial Boolean function as f(x) = (f0(x), f1(x), . . . ,
fm−1(x)). For v ∈ Fm

2 , the products of some coordinates in f(x) be

πv(f(x)) =
m−1∏
i=0

fvi
i (x).
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2.2 Integral Attack, Division Property and Algebraic Degree
The integral attack was first introduced in cryptanalysis of Square [DKR97], which was
called SQUARE attack. Later, it was formalized as an integral attack by Knudsen and
Wagner in [KW02]. The possible status of a word or bit of the intermediate states can be
either saturation (A), zero-sum (S), constant (C) or unknown (U), and their changes can
be traced. At EUROCRYPT 2015, Todo introduced the division properties into integral
properties by studying the intermediate status between the saturation status and zero-sum
status [Tod15]. For a multiset X ⊂ Fn

2 , if we say its (word-based) division property is Dn
k ,

then
∑

x∈X πu(x) = 0 for u with wt(u) < k while it cannot be determined for u with
wt(u) ≥ k (note that X is a multiset produced by applying a keyed cipher to a plaintext
multiset). In this generalization, the zero-sum and saturation properties are represented by
Dn

2 and Dn
n (for a set) respectively. Nowadays, Todo’s division property is regarded as an

effective method to detect the zero-sum properties (some versions of division properties also
applicable to detect the one-sum case). It is worth mentioning that very recently, another
generalization of integral attacks, called the ultrametric integral attacks, were presented in
[BV24], where the zero-sum property is interpreted as the case that the frequency of the
appearing of “1” is a multiple of 2, while the saturation means the frequency is a multiple
of 2n−1 (suppose the input is of length n). The ultrametric integral attack studies all cases
where the frequency is a multiple of 2t, 1 ≤ t ≤ n− 1.

As we mentioned in the introduction, the precise versions of the division properties
have been extensively studied, such as parity sets [BC16], 3BDPwoU [HLM+20] and most
recently algebraic transition matrices [BV23]. One purely algebraic interpretation of the
division property is offered by the monomial prediction proposed in [HSWW20]. In this
paper, we mainly use the language of the monomial prediction to describe our work, for it
is easier to integrate with Braeken and Semaev’s theorem [BS05].

MP trails and propagation rules. Suppose f is a composition of r vectorial Boolean
functions f (i) : Fn

2 → Fn
2 for 0 ≤ i ≤ r − 1 (we assume each round function has the same

length) defined as
f = f (r−1) ◦ f (r−2) ◦ . . . f (0).

We denote x(i) ∈ Fn
2 and x(i+1) ∈ Fn

2 to be the input and output of the vectorial Boolean
function f (i). We also define u(i) ∈ Fn

2 to be the exponent of x(i). We say that the
sequence of the exponents (u(0), u(1), . . . , u(r)) is an r-round monomial trail connecting
u(0) and u(r) with respect to the composite function f if

πu(0)(x(0))→ πu(1)(x(1))→ · · · → πu(r)(x(r)).

If there exists at least one such monomial trail from u(0) to u(r), we denote this as
u(0) ⇝ u(r). Otherwise, we have u(0) ⇝ u(r).

We let the set of monomial trails from u(0) to u(r) be called the monomial hull which
is denoted as u(0) ▷◁ u(r). The goal of the monomial prediction is to determine whether
πu(0)(x(0)) → πu(r)(x(r)). The following theorem presents the relationship between the
number of monomial trails within the monomial hull and the existence of a monomial.

Theorem 1 ( [HSWW20] ). Let the notation be defined as above. πu(0)(x(0))→ πu(r)(x(r))
if and only if

|u(0) ▷◁ u(r)| ≡ 1 mod 2.

Let x(0) = (k, p) and x(r) = c. Obviously, if for any w ∈ Fm
2 , |(w, u) ▷◁ v| ≡ 0 mod 2,

πv(c) will have an integral property as
⊕

x⪯u f(k, p) = 0 for any k. Thus, by calculating
the size of the monomial hull, the integral properties can be detected exactly.
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(Greatest) Algebraic degree. The algebraic degree of a keyed Boolean function fk(x)
where k is the fixed parameter is defined as

deg(fk) = max
u:πu(x)→fk

wt(u) = max
u:πu(x)→fk

∑
i

ui

If k is not assumed fixed, fk(x) becomes a Boolean function with both k and x as input,
i.e., f(k, x). The greatest algebraic degree of f over all possible keys is defined as

deg(f) = max
k

deg(fk) = max
u:πw(k)πu(x)→f

wt(u) = max
u:πw(k)πu(x)→f

∑
i

ui

Thus, if we prove that there is a monomial πw(k)πu(x) with wt(u) = d existing in f ,
the lower bound of deg(f) is d. If we further prove there is no πw(k)πu(x) with wt(u) > d
contained by f , deg(f) = d.

Throughout this paper, only the greatest algebraic degree is considered. For the sake
of convenience, we will use algebraic degree in the meaning of the greatest algebraic degree.
Also, when we say deg(f), it is actually deg(f).

2.3 Automatic Search Model for Monomial Prediction
According to the definition of monomial trails for f(x), (u)→ (v) is a valid propagation
if and only if πu(x)→ πv(f(x)). Thus, when the size of f : Fn

2 → Fm
2 is not too large, we

can construct a 2-dimensional MP table defined as

MPT[u][v] =
{

1, πu(x)→ πv(f(x))
0, πu(x) ↛ πv(f(x))

for all u ∈ Fn
2 and v ∈ Fm

2 . Since COPY, AND, and XOR are all vectorial Boolean
functions with small sizes, their MP table can be constructed easily.

COPY. Let the input and output MP variable, i.e., the exponents of monomials, are u
and (v0, v1) for the COPY operation. The MPT of the COPY operation is then

(u)\(v0, v1) (0, 0) (0, 1) (1, 0) (1, 1)
(0) 1 0 0 0
(1) 0 1 1 1

AND. Let the input and output MP variable, i.e., the exponents of monomials, are
(u0, u1) and (v) for the AND operation. The MPT of the AND operation is then

(u0, u1)\(v) (0) (1)
(0, 0) 1 0
(0, 1) 0 0
(1, 0) 0 0
(1, 1) 0 1

XOR. Let the input and output MP variable, i.e., the exponents of monomials, are
(u0, u1) and (v) for the XOR operation. The MPT of the XOR operation is then

(u0, u1)\(v) (0) (1)
(0, 0) 1 0
(0, 1) 0 1
(1, 0) 0 1
(1, 1) 0 0
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A description of the above properties using inequalities or CNFs can be found in
[SHW+14, SWW17, HW19]. In Section 3, a perfect search model for the modular addition
will be introduced by a direct application of [BS05]. With the perfect search model,
the monomial prediction is applied to Speck, Alzette and Sparkle, to search for integral
distinguishers or calculating the algebraic degrees.

3 Monomial Prediction for Modular Addition
The modular addition is the core operation of ARX ciphers. In Section 3.1, we introduce a
perfect model for the MP propagation of the modular addition, which is a direct application
of the theorem proposed almost 20 years ago in [BS05] but has never been used in the
MP/division property cryptanalysis of ARX ciphers. Considering that the original proof is
quite involved, we provide a new and simpler proof based on monomial trails. This shows
the potential of MP (as well as division properties, parity sets and algebraic transition
matrices) in proving complex mathematical theorems. We construct its SMT model which
does not require any auxiliary variables. We also propose a bit-based MILP model with
auxiliary variables but we have proven that these auxiliary variables do not introduce any
redundant MP trails.

3.1 MP for Modular Addition
To develop the MP model of the modular addition, we need to know its algebraic structure.
As early as 2005, Braeken and Semaev proved the following theorem [BS05, Theorem 1],

Theorem 2 (adapted from [BS05]). For z = x⊞ y where z, x, y ∈ Fn
2 ,

πu(x)πv(y)→ πw(z) if and only if u + v = w.

According to Theorem 2, a monomial πu(x)πv(y) appears in πw(z) if and only if
u + v = w where “+” lies in the integer. This can be directly used in the MP of the
modular addition. However, we find that the original proof in [BS05] is somehow involved,
as they first proved two recursive complicated formulas through induction (see Lemmas 1
& 2 of [BS05]). Theorem 2 is then proven through these two formulas. Hence, we give a
new and simpler proof for Theorem 2, which is based on the MP trails directly. Our proof
also gives a compact bit-based MP model for the modular addition.

Proof. z = x⊞ y can be written as iteratively bitwise operations:{
zi = xi ⊕ yi ⊕ ci+1

ci = Maj(xi, yi, ci+1) = xiyi ⊕ xici+1 ⊕ yici+1
(1)

where 0 ≤ i < n, c = (c0, c1, . . . , cn) are the carry variables with cn = 0. It can be
represented by successive applications of the function S

(zi, ci) = S(xi, yi, ci+1) = (xi ⊕ yi ⊕ ci+1, Maj(xi, yi, ci+1))

as illustrated in Figure 1.
Denote the exponent for c by ℓ = (ℓ0, ℓ1, . . . , ℓn). According to Theorem 1, the fact

that πu(x)πv(y) → πw(z) is equivalent to that there are odd-number monomial trails
connecting (u, v) and (w). In other words, the odd number of possible ℓ that satisfy
(ui, vi, ℓi+1) → (wi, ℓi), 0 ≤ i ≤ n. Table 1 is the MPT of S, we can find that when
(ui, vi, ℓi+1) is determined, (wi, ℓi) will be uniquely determined accordingly. Since ℓ0 and
ℓn are not the real input and output of a modular addition, they are set as 0. Thus, as
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S

x0 y0

c0

z0

S

x1 y1

z1

S

x2 y2

z2

· · · Sn−1

xn−1 yn−1

zn−1

cn
c1 c2 c3 cn−1

Figure 1: Iteratively bitwise representation of the modular addition operation.

Table 1: Monomial prediction table of S : (xi, yi, ci+1)→ (zi, ci).
(ui, vi, ℓi+1)\(wi, ℓi) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0, 0) 1 0 0 0
(0, 0, 1) 0 0 1 0
(0, 1, 0) 0 0 1 0
(0, 1, 1) 0 1 0 0
(1, 0, 0) 0 0 1 0
(1, 0, 1) 0 1 0 0
(1, 1, 0) 0 1 0 0
(1, 1, 1) 0 0 0 1

long as u, v, w are given, all ℓi, 1 ≤ i < n will be uniquely determined, i.e., there is only
one possible choice of ℓ.

Furthermore, since wi and ℓi are uniquely determined by (ui, vi, ℓi+1), we can write
their ANFs according to Table 1 as follows:{

wi = ui ⊕ vi ⊕ ℓi+1

ℓi = Maj(ui, vi, ℓi+1) = uivi ⊕ uiℓi+1 ⊕ viℓi+1.
(2)

Consider ℓ0 = 0 and ℓn = 0, Equation 2 is just the iteratively bitwise representation of
u + v = w.

SMT model for the modular addition. The SMT tool supports the built-in “+” operation,
thus the SMT model for MP of the modular addition is straightforward. Given the input
and output exponents u, v and w, we can directly develop the SMT model by modeling
u + v = w. This paper uses STP as the SMT solver whose input language can be the
CVC language, so the constraint for MP of the addition modulo 2n is

ASSERT(w = BVPLUS(n, u, v)); ASSERT(BVLE(u, w)); ASSERT(BVLE(v, w)).

In this constraint, u, v and w are n-bit vectors, and the last two statements are used to
protect against the possible overflow. For the remaining operations in an ARX cipher such
as the XOR and COPY, the propagation rules are usually bitwise. Since CVC language
allows access to the i-th bit of a vector by the index, such as u[i], we do not need to
transform u, v, w to bit variables.

MILP model for the modular addition. MILP is another popular tool for searching MP.
The well-known MILP solver, Gurobi, supports the integer-type variables. However, as
discussed above, propagation rules for the remaining operations of an ARX cipher are still
bitwise, and Gurobi does not allow flexible access to the i-th bit of an integer. Thus, the
integer-type variables are not convenient.
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x(i) (A) y(i) (B)

S−α

Sβ

x(i+1) (H) y(i+1) (I)

k(i) (J)

C

D

E

FG

Figure 2: Structure of Speck family of ciphers.

Therefore, we provide a bit-based model for MP of the modular addition based on
auxiliary variables. The auxiliary variables are just ℓ in the above proof which serves as
the exponents of the carry bits. Note that ℓ is unique according to our proof, so it will not
bring redundant MP trails and it is still perfect.

By transforming the “+” into bit operations, we obtain a set of constraints that
represents a perfect MP model of modular addition. The constraints are as follows:

ui + vi + ℓi+1 − wi − 2ℓi = 0, ℓ0 = ℓn = 0

4 Application to Speck Families
In this section, we apply the perfect MP model to Speck family, speeding up the search
and finding new integral distinguishers that cannot be found by any previous tools. For
Speck-32, we also prove that all possible 31-degree terms appear in every 7-round output
bit. The experiments were conducted on a Linux platform with Intel(R) Xeon(R) Gold
6338N CPU @ 2.20GHz with 128 processors and 2 TB RAM.

4.1 Specification of Speck and Previous Results
Speck [BSS+15] is a family of lightweight block ciphers published by the National Security
Agency (NSA). It adopts the ARX structure which uses modular addition as its nonlinear
operation. According to the block size, Speck family of ciphers can be represented as
Speck-2n, where n ∈ {16, 24, 32, 48, 64}. The round structure of Speck is shown in Figure 2,
where (x(i), y(i)) ∈ Fn×n

2 and (x(i+1), y(i+1)) are the input and output of the i-th round
function, k(i) ∈ Fn

2 is the i-th round key, S−α denotes right circular shift by α bits and Sβ

denotes left circular shift by β bits. The parameters α and β are 8 and 3, respectively,
except in the case of Speck-32, where they are 7 and 2 respectively.

In [SWLW18], Sun et al. applied their 2-subset division property model to all Speck
family of block ciphers and obtained one 6-round integral distinguisher for each cipher (see
lines labeled by in Table 2). The data complexities are 231 for Speck-32, 245 for Speck-48,
261 for Speck-64, 293 for Speck-96 and 2125 for Speck-128. In [HW19], Hu and Wang used a
variant of the three-subset division property to detect a new 6-round integral distinguisher
for Speck-32 with 231 data complexity (see the line labeled by in Table 2). In [WHG+20],
Wang et al. introduced a new model for division properties based on a special treatment
of the key-XOR operation and identified additional integral distinguishers for Speck-32,
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-48, -64, and -96 than [HW19, SWW17] (see lines labeled by in Table 2). In this work,
we show that our model can re-identify these distinguishers in less time and detect more
integral distinguishers than all the previous tools (see the lines labeled by ).

4.2 Search for New Integral Distinguishers for Speck Family
Since our model is a precise MP model for modular addition, we explicitly represent the
whole MP model for Speck-2n and try to count all the MP trails. At first glance, it seems
rather difficult to enumerate all the MP trails for an ARX cipher due to the complicated
modular addition operation. However, thanks to the compactness of our model, with some
optimization search strategy, we succeed in enumerating all the trails under specific input
and output conditions.

Modeling MP propagation. To model the propagation of the monomial trails, we
introduce some n-bit auxiliary variables for the intermediate states of Speck-2n, as
A, B, C, D, E, F, G, H, I shown in Figure 2, and use the propagation rules introduced
in Section 2.2 and Section 3 to connect all these variables in a standard way. This basic
model for R-round Speck-2n, denoted by MR, is provided in Section A in the appendix.

For r-round Speck-2n, the r n-bit round keys are assumed as independent variables, i.e.,
we do not consider the influence of the key schedule. This is a popular simplification to
make the search easy to mount, for example, in [WHG+20, HLLT20], the same assumptions
were also used.

In [WHG+20], the authors applied their model to 6-round Speck-32, -48, -64 and
-96 and found one more integral distinguisher than previous tools. The newly-found
integral distinguisher for each Speck instance is related to one bit of key. The authors of
[WHG+20] managed to find these distinguisher by introducing a new propagation rule
for the key addition. From the perspective of MP, it is very likely that the superpoly
related to this key bit is very simple. We first use the same input and output exponents
as [WHG+20] and add an objective function for M6, where u(0), u(6) are the input and
output exponents that lead to integral distinguishers detected by [WHG+20] (these u(0)

and u(6) are listed in lines labeled by in Table 2). We set the objective function to
maximize K =

∑R−1
r=0

∑2n−1
i=0 w

(r)
i , where w

(r)
i denotes the exponent corresponding to the

key bit k
(r)
i . The value of the max K can indicate how many key bits are involved into

the superpoly. For the sake of completeness, we state the following optimization problem
below.

Model 1: Together with the constraints of model MR, the optimization problem
solves

Max:
R−1∑
r=0

2n−1∑
i=0

w
(r)
i

subjected to the fix values of
u(0) and u(R). (3)

Optimization for Model∗ 1. The PoolSearchMode of Gurobi enables the MILP model to
enumerate all possible solutions, thus, allowing us to count the number of monomial trials.
Now, let Model∗ 1 be the model when enabling the PoolSearchMode of Gurobi option for
Model 1. However, using Model∗ 1 could take a significant amount of time to count the
number of monomial trails. To accelerate the search, we apply two optimization strategies
based on the divide-and-conquer ideas to the search. The first strategy considers the MP
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Table 2: Integral distinguishers for the families of Speck ciphers. The results labeled by and
are detectable with [SWW17] and [HW19], respectively. Lines labeled by are found

by [WHG+20] and lines labeled by are only detectable by our methods in this paper. Time1
is the time reported in [WHG+20] while Time2 is the time of our methods to find those
distinguishers. We denote p to be the superpoly obtained.

Cipher Integral Distinguishers #Trails Kmax p Time1 Time2

Speck-32 {26} 6R−−→ {15} Infeasible − 0 0 sec 0 sec
Speck-32 {25} 6R−−→ {15} Infeasible − 0 0 sec 0 sec
Speck-32 {25, 26} 6R−−→ {15} 2570 1 0 1 hrs 0 sec
Speck-32 {24, 26} 6R−−→ {15} 237 660 3 p0 − 13 sec

Speck-48 {40, 41, 42} 6R−−→ {23} Infeasible − 0 0 sec 0 sec
Speck-48 {39, 41, 42} 6R−−→ {23} 11 464 1 0 13 hrs 0 sec
Speck-48 {39, 40, 42} 6R−−→ {23} 92 356 3 0 − 2 sec
Speck-48 {39, 40, 41} 6R−−→ {23} 288 742 3 0 − 5 sec

Speck-64 {56, 57, 58} 6R−−→ {31} Infeasible − 0 0 sec 0 sec
Speck-64 {55, 57, 58} 6R−−→ {31} 2214 1 0 17.6 hrs 0 sec
Speck-64 {55, 56, 58} 6R−−→ {31} 3642 1 0 − 0 sec
Speck-64 {55, 56, 57} 6R−−→ {31} 27 590 1 0 − 1 sec
Speck-64 {54, 55, 56} 6R−−→ {31} 25 891 421 3 p1 − 1.3 hrs
Speck-64 {54, 55, 57} 6R−−→ {31} 29 195 923 3 p2 − 2 hrs
Speck-64 {54, 55, 58} 6R−−→ {31} 11 173 350 3 p3 − 762 sec
Speck-64 {54, 56, 57} 6R−−→ {31} 11 002 854 3 0 − 207 sec
Speck-64 {54, 56, 58} 6R−−→ {31} 3 716 639 3 p4 − 47 sec

Speck-96 {88, 89, 90} 6R−−→ {47} Infeasible − 0 0 sec 0 sec
Speck-96 {87, 89, 90} 6R−−→ {47} 199 540 1 0 7.4 days 5 sec
Speck-96 {87, 88, 90} 6R−−→ {47} 638 800 1 0 − 15 sec
Speck-96 {87, 88, 89} 6R−−→ {47} 4 271 106 1 0 − 18.6 min

Speck-128 {120, 121, 122} 6R−−→ {63} Infeasible − − 0 sec 0 sec
Speck-128 {119, 121, 122} 6R−−→ {63} 34 739 144 1 0 − 16 hrs
Speck-128 {119, 120, 122} 6R−−→ {63} 98 135 968 1 0 − 7.33 days
Speck-128 {119, 120, 121} 6R−−→ {63} 878 711 604 1 0 − 8.75 days

where the superpolies p0, p1, p2 and p3 are listed as follows:
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nature of the modular addition. Let u, v, w be the exponents of the two inputs and one
output of a modular addition. According to Theorem 2, if w = (0, 0, . . . , 0, 1), {u, v} must
be {(0, 0, . . . , 0, 0), (0, 0, . . . , 0, 1)} or {(0, 0, . . . , 0, 1), (0, 0, . . . , 0, 0)}; if w = (0, 0, . . . , 0, 0),
(u, v) has to be {(0, 0, . . . , 0, 0), (0, 0, . . . , 0, 0)}. Consequently, we can divide the search
for r-round Speck-2n to four cases consisting of one (r− 1)-round search and three (r− 2)-
round search, as shown in Figure 2. Note that all cases depicted in Figure 2 correspond
to scenarios where the exponents of the last two rounds of key bits are all-zero. This is
because according to the XOR propagation rules, the non-zero exponents of the last two
rounds of key bits will only lead to infeasible propagations. Thus, all feasible cases arise
when the exponents of these key bits are all-zero. The number of monomial trails for
r-round Speck-2n will be the summation of trails from all these four cases. The second
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Figure 3: A r-round search is divided into 4 cases.
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optimization strategy is to divide the search according to the intermediate states, which
is similar to the method used in [HLM+20]. We first extract all possible solutions for
intermediate states after the second round, denoted by

S2 = {u(2) : u(0) ⇝ u(2) ⇝ u(R)},

Then, for each value in S2, we count the solutions in u(0) ⋊⋉ u(2) and u(2) ⋊⋉ u(R). The
number of all solutions in u(0) ⋊⋉ u(R) is calculated by

|u(0) ⋊⋉ u(R)| =
∑

u(2)∈S2

|u(0) ⋊⋉ u(2)| × |u(2) ⋊⋉ u(R)|.

With these two optimization strategies, the search is accelerated significantly. We recom-
mend that readers read our code to better understand these optimizations.

https://github.com/hukaisdu/MP_of_ModularAddition.git

Re-detect the integral distinguishers in [WHG+20]. The results of Model 1 with
R = 6 for Speck-32, -48, -64, -96 show that the maximum of K =

∑5
r=0

∑2n−1
i=0 w(r)i is only

1 with the input and output settings found by [WHG+20] (denoted as in Table 2). That
means the superpoly contains only one key variable. We then turn on the PoolSearchMode
of Gurobi option for Model 1 (denoted by Model∗ 1 in the following context) to count
the number of monomial trails. The number of trails is given in Table 2. For each key
monomial that appears in the trails, the number of corresponding trails is even. Therefore,
by counting the number of trails, we easily re-detect the same integral distinguishers as
[WHG+20] according to Theorem 1. Furthermore, our method obtains the results faster
compared to the approach presented in [WHG+20].

Finding new integral distinguishers for all Speck instances. Inspired by the above
observation, the max value of

∑R−1
r=0

∑2n−1
i=0 w

(r)
i under a certain pair of input and output

exponents u(0) and u(R), (i.e., maxK for R-round Speck-2n under the fixed values of u(0)

and u(R)) indeed indicates how complex the corresponding superpoly is. When the value
of maxK is relatively small, the superpoly is expected to be simple, and then there is a
possibility of recovering the superpoly by counting all monomial trails. If the number of
monomial trails is even for all the key monomials, we obtain integral distinguishers. When
the value of maxK is large, we expect that the number of monomial trails will be too huge
for the solver to count within a reasonable amount of time.

Since all integral distinguishers found in [WHG+20] have 2n− 2 (Speck-32) or 2n− 3
(for other Speck instances) active bits in the plaintext and one balanced ciphertext bit
in the rightmost of the left branch, we use Model 1 to traverse all possible u(0) with
a hamming weight 2n− 2 (for Speck-32) or 2n− 3 (for others Speck variants) and en−1
to test maxK. For Speck-32, -48, -64, we try all such cases with maxK ≤ 3; for Speck-
96 and -128, we try all such cases with maxK = 12. We expect that the corresponding
superpolies of these cases are simple so we can count the monomial trails. The experimental
results meet our expectations. When we apply Model∗ 1 to all the above cases, many of
them lead to integral distinguishers. As a result of our proposed model, we detect new
integral distinguishers, as listed in Table 2. Some are not integral distinguishers, but their
superpolies are indeed simple; we then list their superpolies below the table.

2Since the superpolies of Speck-96 and 128 are too heavy, cases where max K > 1 becomes impractical
with our method.

https://github.com/hukaisdu/MP_of_ModularAddition.git
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4.3 Calculate Lower Bounds on Speck-32’s Algebraic Degree
In [HLLT20], Hebborn et al. introduced how to determine lower bounds on the algebraic
degrees for output bits of a block cipher and applied this method to Sbox-based block
ciphers Gift-64, Skinny-64, AES and Present. Their method has not been explored for ARX
ciphers until now. With our perfect model for the modular addition, we managed to apply
the method to Speck-32 and determined the exact lower bounds for all the output bits.
Further, we prove that all 31-degree terms of the plaintext do appear in all output bits.

The idea in [HLLT20] is to assume that all round keys are independent and find a proper
monomial of them denoted by π(t(0),t(1),...,t(R−1))(k(0), k(1), . . . , k(R−1)) that satisfies∣∣∣(u, t(0), t(1), . . . , t(R−1)) ⋊⋉ v)

∣∣∣ = 1 mod 2 (4)

where u and v are the exponents of the plaintext and ciphertext, respectively. The approach
of finding the monomial of a key in [HLLT20] is a heuristic one. Let u(0), u(1), . . . , u(R) be
the exponents of the intermediate states. Firstly, they search for a pair of proper u(R−1)

and t(R−1) whose Hamming weights are as high as possible and satisfy∣∣∣(u(R−1), t(R−1)) ⋊⋉ u(R)
∣∣∣ = 1 mod 2.

Then, they iteratively find a pair of u(R−2) and t(R−2) whose Hamming weights are as
high as possible and satisfy∣∣∣(u(R−2), t(R−2)) ⋊⋉ u(R−1)

∣∣∣ = 1 mod 2∣∣∣(u(R−2), t(R−2), t(R−1)) ⋊⋉ u(R)
∣∣∣ = 1 mod 2.

Then they repeat this process to Rmid and obtain (t(mid+1), . . . , t(R−1)) and (u(mid+1), . . . , u(R−1)).
Finally, (t(0), . . . , t(mid−1)) are searched to satisfy Equation 4.

We apply the same idea to 7-round Speck-32 as there are already integral distinguishers
for 6 rounds. For each output bit and each 31-degree monomial of the plaintext, we find a
monomial of the round key under which the number of monomial trails connecting the
plaintext and ciphertext monomials is an odd number. Thus, for each ciphertext bit, all
31-degree terms indeed appear in its polynomial.

Remark. In [HLLT20], the authors went further to prove that for all linear combinations
of the ciphertext bits, all (2n − 1)-degree (the block size of Speck-2n is 2n) plaintext
monomials appear. To achieve this, we need to calculate the number of trails connecting
all (2n− 1)-degree plaintext monomials and single ciphertext bit monomials for some key
monomials and make a matrix of full rank correspondingly. Once it is done, if there is a
pre-whitening key, the same authors provided a strong and tight security guarantee against
all integral distinguishers for a block cipher in [HLLT21]. In our experiments, after finding
the key monomials for each 31-degree plaintext monomial and ciphertext bit, we failed
to prove the full rank property for the corresponding matrix. This is because, for some
plaintext/ciphertext monomial pairs, the number of solutions is too large to finish the
search. We also applied the method to Speck-48. We want to prove that all 47-degree
monomials of plaintext appear in the ciphertext bit. Unfortunately, for some plaintext
and ciphertext monomials, we cannot find a key monomial that yields odd-number trails
(all key monomials used during our search process yield even-number trails). As a result,
we could not complete the first part of the methodology stated above. In Section 6, we
show that if Speck uses a different rotation parameter, the proof can be easily achieved
even for 6 rounds.
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5 Application to Alzette and Sparkle
In this section, we apply our compact MP models of the modular addition to an ARX Sbox
Alzette and Sparkle permutation. For Alzette, we give the exact algebraic degrees of their
weakest bits, i.e., the rightmost bit of the left branch, which provides a strong argument for
the security of Alzette. We also present integral distinguishers for Alzette after using our
compact MP model in Appendix B. For Sparkle, we obtain improved integral distinguishers
upon the previous best integral distinguishers found.

5.1 Brief Introduction to Sparkle and Alzette
Sparkle is a family of ARX-based permutations [BBdS+19] consisting of three members, i.e.,
Sparkle256, Sparkle384 and Sparkle512 according to their sizes. Sparkle is the underlying
permutation of the NIST LWC finalist Sparkle suite. Figure 4a illustrates the structure of
the 1.5-step Sparkle512 permutation as an example, where Aci : F32

2 × F32
2 → F32

2 × F32
2

is an ARX box parameterized with a constant ci named as Alzette (see Figure 4b). For
convenience, the input and output of the j-th step of the Sparkle permutation are denoted
by X(j) = (X(j)

0 , . . . , X
(j)
z−1) and Y (j) = (Y (j)

0 , . . . , Y
(j)

z−1), where z = 4, 6, 8 for Sparkle256,
Sparkle384 and Sparkle512, respectively.
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(a) The structure of 1.5-step of Sparkle512 permutation.
In this instance, there are eight 64-bit branches.
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(b) Alzette parameterized by c.

Figure 4: Illustration of Sparkle and Alzette.

5.2 Exact Algebraic Degree of Alzette
In this section, we show that it is possible to calculate the exact algebraic degree for
specific output bits of round-reduced Alzette.

Recall that the algebraic degree of a Boolean function f is defined as

deg(f) = max
π

u(0) (x(0))→f
wt(u(0)). (5)

In [HSWW20], the authors used the MP to determine the exact algebraic for Trivium up
to 834 rounds. In this paper, we apply this method to Alzette output bits.

1. For each output bit denoted by f , we find the exponent u with the largest Hamming
weight such that πu(x(0))⇝ f .

2. Compute the size of the monomial hull |πu(x(0)) ⋊⋉ f |. If the value of |πu(x(0)) ⋊⋉ f |
is odd, then the exact degree is wt(u). Otherwise, πu(x(0)) ̸→ f then we have to
exclude this vector from the search model and repeat the first step until we find the
desired exponent u.



192 Perfect Monomial Prediction for Modular Addition

In [BBdS+20], the designers used experimental methods to show that for each bit of
Alzette, there is a monomial of degree 32. With our method, we can find monomials with
higher degrees that appear in the ANF of output bits.

Table 3: Exact algebraic degrees of 2-round Alzette output bits.
Bit Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Degree 62 61 60 59 58 57 56 55 54 52 50 48 46 44 42 40
Bit Index 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Degree 38 36 34 32 30 28 26 24 22 20 18 16 14 12 11 10
Bit Index 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Degree 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 11
Bit Index 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Degree 10 62 61 60 59 58 57 56 55 54 52 50 48 46 44 42

Since the results are the same for all the constants c0 to c7 in Alzette, we shall present
the result for c0. For 2-round Alzette, we find the exact algebraic degrees of all output
bits. These are listed in Table 3. For round 3 onwards, the number of trails becomes too
large to calculate for many output bits. However, from Table 3, we can see that several
rightmost bits of the left branch as well as the corresponding bits of the right branch up
to the last rotation constant have smaller algebraic degrees (for 2 rounds, the last rotation
constant is 17, as shown in Figure 4b, so the 48-th output bit is also of low degree). This
indicates that the rightmost bits of the left branch of (round-reduced) Alzette have lower
algebraic degrees. By calculating the upper bounds of algebraic degrees for the output
of 3-round Alzette, we indeed find that those bits (listed in Table 4) have smaller upper
bounds. We manage to confirm their exact degrees and find their algebraic degrees are
at least 42. The other bits are expected to have higher degrees than these bits (as their
degree’s upper bound are 63). For 4-round Alzette, we calculate the exact degrees of the
rightmost bit of the left branch and the corresponding 47-th bit of the output. Both of
their exact degrees are 63.

Table 4: Exact algebraic degrees of 3-round Alzette output bits.
Bit Index 24 25 26 27 28 29 30 31 55 56 57 58 59 60 61 62

Degree 60 58 55 52 49 46 44 42 60 58 55 52 50 48 46 44

5.3 Improved Integral Distinguishers for Sparkle
In [BBdS+19], the designers analyzed the Sparkle families using the 2BDP for the integral
distinguishers. Using our compact MP model for modular addition, we managed to find
new integral distinguishers. Compared to those found in [BBdS+19] using 2BDP, the newly
found integral distinguishers have one less active bit, i.e., the data complexities are reduced
to half of the previous ones. We show the integral distinguisher in Table 5. Note that
since Sparkle is a family of permutations, the integral distinguishers here are a bit different
from those for block ciphers. It is more like a high-order differential distinguisher [Xue94],
i.e., when the input bits are those active bits of our integral distinguisher, the algebraic
degree is strictly smaller than the number of active bits. In our search, we let the inactive
bits be free variables; thus, our integral distinguishers work even if any key is XORed with
the input data.

Check other ciphers. Other than Speck, Alzette and Sparkle, we have tried our compact
MP model on other ciphers like LEA [HLK+13], HIGHT [HSH+06] and SHACAL-2 [HD01].
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Table 5: Integral distinguishers of Sparkle families
Method Cipher Integral Distinguishers No. of Solution Time

[BBdS+19]
Sparkle256 {0− 62} 4.5R−−−→ {128-255} − −
Sparkle384 {0− 126} 4.5R−−−→ {192-383} − −
Sparkle512 {0− 190} 4.5R−−−→ {256-511} − −

Ours
Sparkle256 {0− 63} 4.5R−−−→ {128-255} Infeasible 220.883 sec
Sparkle384 {0− 127} 4.5R−−−→ {192-383} Infeasible 333.903 sec
Sparkle512 {0− 191} 4.5R−−−→ {256-511} Infeasible 532.853 sec

We have managed to re-detect integral distinguishers identified by [SWW17] and verified
that even using our method, there are no more integral distinguishers for these ciphers. A
detailed discussion is provided in Appendix C.

6 Revisiting the Rotation Parameters of Speck Family
The Speck family (as well as Simon family) of ciphers were designed by NSA, and they have
been criticized for not giving a design rationale [BSS+15]. To respond these criticism and
support their ISO/IEC standardization attempt, the designers provided design rational for
Speck (and Simon) [BSS+17]. However, the confusion over the choice of various parameters
in Speck has left an impression on the community and attracted lots of controversy [AL21].

Although a general opinion is that the differential and linear attacks are the two main
threats to Speck and the integral attack is not, an understanding of how the parameters,
especially the rotation constants, affect the security against the integral distinguishers
is still important. Indeed, integral attacks help to check if a cipher has some algebraic
vulnerabilities.

In this section, we show a heuristic method to scrutinize the strength of a Speck
instance with a rotation constant pair (α, β) against the integral distinguishing attacks.
We manage to find many (α, β) pairs that make the Speck instance resistance against
integral distinguishers for 6 rounds and above (up to checking all 2n− 1 active bits for
plaintext).

For convenience, we denote a Speck instance with 2n block size and (α, β) rotation
constant pair by Speckα,β-2n. According to Section 4, maxK = max

∑R−1
r=0

∑2n−1
i=0 w

(r)
i

can be a criterion to predict how complex the corresponding superpoly is. When maxK is
larger, the superpoly is more likely not to be zero. This suggests that finding an integral
distinguisher is unlikely, or at the very least, counting all trails is extremely challenging,
rendering it infeasible to identify integral distinguishers within the limited resources. These
two cases suggest that the corresponding output bit tested consists of a complicated
superpoly, indicating strong algebraic properties.

Therefore, our method of checking different (α, β) pairs is easy. Firstly, we traverse the
(α, β) combinations in a space, then try all possible cases in which the number of active
plaintext bits is 2n− 1. Finally, we calculate the maxK for the (n− 1)-th ciphertext bit as
this bit is the weakest. Considering that the families of Speck are designed as lightweight
ciphers, α ≤ 8 and β ≤ 8 will make it efficient in a low-end 8-bit processor, so we set a
limit on α and β such that 1 ≤ α ≤ 8 and 1 ≤ β ≤ 8 and α ≠ β. In table 6, we list the 10
(α, β) pairs with their minimum of maxK for Speck-32, -48, -64, -96 and -128 among all u
with 2n− 1 active bits (i.e., for each u with 2n− 1 active bits, we calculate maxK for this
u, the values in Table 6 are the minimum of maxK for all u).

To show that the (α, β) parameters truly strengthen Speck’s resistance against the
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Table 6: Ten first 10 (α, β) pairs with smallest maxK.
Speck-32

(α, β) (15, 14) (15, 13) (14, 13) (15, 12) (14, 12) (13,12) (15, 11) (14, 11) (13, 11) (12, 11)
min. of maxK 15 14 14 13 13 13 12 12 12 12

Speck-48
(α, β) (23, 22) (23, 21) (22, 21) (23, 20) (22, 20) (21,20) (23, 19) (22, 19) (21, 19) (20, 19)

min. of maxK 23 22 22 21 21 21 20 20 20 20
Speck-64

(α, β) (31, 30) (31, 29) (30, 29) (31, 28) (30, 28) (29,28) (31, 27) (30, 27) (29, 27) (28, 27)
min. of maxK 31 30 30 29 29 29 28 28 28 28

Speck-96
(α, β) (47, 46) (47, 45) (46, 45) (47, 44) (46, 44) (45,44) (47, 43) (46, 43) (45, 43) (44, 43)

min. of maxK 47 46 46 45 45 45 44 44 44 44
Speck-128

(α, β) (63, 62) (63, 61) (62, 61) (63, 60) (62, 60) (61, 60) (63, 59) (62, 59) (61, 59) (60, 59)
min. of maxK 63 62 62 61 61 61 61 60 60 60

integral distinguishers, we find that all 31-degree monomials have appeared in all output
bits of 6-round Speck15,14-32. Note that for the original Speck-32, i.e., Speck7,2-32, 7
rounds are necessary for this property. We also find that all 47-degree and 63-degree
monomials have appeared in every output bit of 6-round Speck23,22-48 and Speck31,30-64.
That is to say, with these constraints, it becomes much easier to prove a stronger resistance
for Speck against integral distinguishers with even fewer rounds.

7 Conclusion and Open Questions
In this paper, we introduced a perfect MP model for modular addition based on a theorem
that was proposed about 20 years ago. The model for modular addition is more precise and
simple than all previous models. The perfect model does not introduce any redundant MP
trails for the modular addition, which makes counting the number of trails easier. With the
model, we re-find the integral distinguishers found in [WHG+20], and the search time is
significantly reduced from hours/days to seconds/minutes. With a criterion that indicates
how complex the superpoly is, we detect more integral distinguishers for Speck-48, -64, -96
and -128. For the first time, we can compute the exact degrees for Speck-32 and Alzette
(for specific output bits). We also revisited the choices of rotation parameters used in
Speck and provided a method to choose better parameters, making the resistance against
integral distinguishers stronger. With our parameters, 6 rounds of Speck-32, -48 and -64
are sufficient to resist integral distinguishers, which is one less round than the real ciphers.

In [HLLT20, HLLT21], the authors provided a strong and tight guarantee for resisting
integral attacks. With our model, there is potential to give the same guarantee for ARX
ciphers, and we leave this for future work. Furthermore, in order to find more integral
distinguishers, one could look into ways to speed up counting the number of trails.
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A Basic MP model for R-Round Speck-2n

MR: Basic MP model for R-round Speck-2n.

For 0 ≤ i < R :

(G, F ) COPY←−−−−− B

C
MODULAR ADDITION←−−−−−−−−−−−−−−−−−−− (S−α(A), G)

D
XOR←−−−− (J, C)

(H, E) COPY←−−−−− D

I
XOR←−−−− (E, Sβ(F ))

A, B, C, D, E, F, G, H, I, J are all n-bit variables representing exponents

B Integral Distinguishers of Alzette
Table 7 illustrate all the integral distinguisher found for 6 rounds of Alzette. We did not

find any integral distinguisher for 7 rounds.

C Application to Other Ciphers
We have also applied our methods on other ciphers, namely LEA [HLK+13], HIGHT [HSH+06]
and SHACAL-2 [HD01]. We tried to increase the number of rounds by 1 and to increase the
inactive bits by 1 from the integral distinguisher found in Table 8, but without counting
the monomial trails, our model leads to the same results as [SWW17], as shown in Table 8.
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Table 7: Integral distinguishers for Alzette with constant c0

Division Property No. of Solution Time

{40} 6R−−→ {28, 29, 30, 31, 45, 46, 47, 48} Infeasible 3.525 sec
{41} 6R−−→ {25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 48} Infeasible 1.570 sec
{42} 6R−−→ {25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 48} Infeasible 1.615 sec
{43} 6R−−→ {25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 48} Infeasible 1.631 sec
{44} 6R−−→ {24, 25, 26, 27, 28, 29, 30, 31, 41, 42, 43, 44, 45, 46, 47, 48} Infeasible 1.645 sec
{45} 6R−−→ {24, 25, 26, 27, 28, 29, 30, 31, 41, 42, 43, 44, 45, 46, 47, 48} Infeasible 1.697 sec
{46} 6R−−→ {24, 25, 26, 27, 28, 29, 30, 31, 41, 42, 43, 44, 45, 46, 47, 48} Infeasible 2.366 sec
{47} 6R−−→ {24, 25, 26, 27, 28, 29, 30, 31, 41, 42, 43, 44, 45, 46, 47, 48} Infeasible 6.743 sec
{48} 6R−−→ {24, 25, 26, 27, 28, 29, 30, 31, 41, 42, 43, 44, 45, 46, 47, 48} Infeasible 5.875 sec
{49} 6R−−→ {31, 48} Infeasible 6.997 sec
{50} 6R−−→ {25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 48} Infeasible 6.214 sec
{51} 6R−−→ {25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 48} Infeasible 6.396 sec
{52} 6R−−→ {25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 48} Infeasible 6.410 sec
{53} 6R−−→ {25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 48} Infeasible 6.066 sec
{54} 6R−−→ {25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 48} Infeasible 3.620 sec
{55} 6R−−→ {25, 26, 27, 28, 29, 30, 31, 42, 43, 44, 45, 46, 47, 48} Infeasible 1.560 sec

We also tried to count the number of trails. However, the maxK value is very large for
all possible n− 1 active plaintext patterns (assume the block size is n bits). We observe
that maxK are more than 120 for both LEA and HIGHT. For SHACAL-2, the computation
of maxK is difficult for most bits, suggesting that maxK are large. Therefore, counting
the number of trails is not practical for these ciphers.

Table 8: Integral distinguishers for LEA, HIGHT, SHACAL-2.
Cipher Integral Distinguishers No. of Solution

LEA {27− 31} 8R−−→ {36} Infeasible

HIGHT {14} 18R−−→ {6, 7} Infeasible
HIGHT {14} 18R−−→ {6, 7} Infeasible
HIGHT {31} 18R−−→ {7} Infeasible
HIGHT {46} 18R−−→ {38, 39} Infeasible
HIGHT {47} 18R−−→ {38, 39} Infeasible
HIGHT {63} 18R−−→ {39} Infeasible

SHACAL-2 {23− 31, 154− 159} 17R−−→ {249− 255} Infeasible

Chaskey {64− 127} 3R−−→ {74− 79} Infeasible
Chaskey {127} 4R−−→ {78− 79} Infeasible
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