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Abstract. Hash functions are a crucial component in incrementally verifiable com-
putation (IVC) protocols and applications. Among those, recursive SNARKs and
folding schemes require hash functions to be both fast in native CPU computations
and compact in algebraic descriptions (constraints). However, neither SHA-2/3 nor
newer algebraic constructions, such as Poseidon, achieve both requirements.
In this work we overcome this problem in several steps. First, for certain prime
field domains we propose a new design strategy called Kintsugi, which explains
how to construct nonlinear layers of high algebraic degree which allow fast native
implementations and at the same time also an efficient circuit description for zero-
knowledge applications. Then we suggest another layer, based on the Feistel Type-3
scheme, and prove wide trail bounds for its combination with an MDS matrix.
We propose a new permutation design named Monolith to be used as a sponge or
compression function. It is the first arithmetization-oriented function with a native
performance comparable to SHA3-256. At the same time, it outperforms Poseidon
in a circuit using the Merkle tree prover in the Plonky2 framework. Contrary to
previously proposed designs, Monolith also allows for efficient constant-time native
implementations which mitigates the risk of side-channel attacks.
Keywords: zero knowledge · hash function · Monolith

1 Introduction
1.1 Hash Functions in Zero-Knowledge Frameworks
Zero-knowledge use cases and particularly the area of computational integrity combined
with zero knowledge have seen a rise in popularity in the last couple of years. Many new
protocols [GWC19, ZGK+22, KST22, BC23] and low-level primitives [AGR+16, AAE+20,
GKR+21] have been designed and published recently, in an attempt to increase the
performance in this setting. The emergence of folding techniques and recursive SNARKs
(incrementally verifiable computation, or IVC [Val08]) make it possible to efficiently prove
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the integrity of complex computations. Proofs covering up to 227 operations are known1

whereas SNARK-based verifiable delay functions (VDFs) might require proving up to 240

operations [KMT22]. A single IVC operation is typically a compact arithmetic computation
(polynomial) in a certain prime field or an assertion to some low-degree polynomial predicate.
With verifiable computation (VC) programs (also called circuits) being that large and
containing cryptographic protocols, more and more programs contain hash functions as
subroutines. Hash functions and their underlying permutations are used not only for data
integrity checks, but also to instantiate commitment schemes, authenticated encryption
[PSS19, CFG+22], non-interactive proofs based on the Fiat–Shamir transform, and many
other techniques.

Hash Functions in IVC Applications. For typical applications of hash functions (e.g.,
integrity checks) standard choices like SHA-2 or SHA-3 are usually not the bottleneck
when considering the algorithmic description of the protocol. However, this is different in
IVC applications mentioned above. For hashing and membership proofs in ZK, e.g. in
folding schemes [KST22, KS23, BC23] or private mixers [PSS19], the size of hash functions
as an arithmetic circuit over a prime field is more important than the “native” software
performance (e.g., on an x86 architecture). Several new hash functions have tried to bridge
this gap [AGR+16, AAE+20, GHR+23, GKR+21, SAD20, BBC+23].

Hash functions may also be used as a commitment tool in IVC frameworks where the
underlying commitment scheme is not homomorphic (STARKs being a notable example
[BBHR19]). With a prover and a verifier engaging in commit-open protocols over prime
fields, this setting requires to efficiently construct a Merkle tree in a prime field domain
over large amounts of data. So far, the computations were performed natively on x86
hardware and not (yet) inside a circuit. Here, classical hash functions have been used until
recently.

Both cases appear in recursive schemes, in particular in recursive STARKs [COS20],
which are an attractive IVC concept due to relatively little overhead and the possibility of
parallelism for large or long computations. These schemes are used in an increasing number
of applications, including zero-knowledge virtual machines [Fou22, Pol22b, Zha22] and
decentralized signature aggregation [But22] protocols as notable examples. In recursive
STARKs the computation and its proof are broken into chunks C1, C2, . . . , Ck and subproofs
π1, . . . , πk such that the proof πi certifies that chunks from C1 to Ci are computed correctly
by utilizing the previous proof πi−1 and a proof for Ci. In order to create πi, the prover
computes a Merkle tree over the witness data and then proves some tree openings in a
circuit. Thus, the same hash function is used in the circuit and in the native computation.
In this scenario, up to 90% of a prover’s computation may be spent on the hash function
call and proofs [COS20], and a construction of a function that excels in both areas is a
crucial open problem.

Lookups and Small Domains. Two recent developments in IVC are relevant to our design.
The first one is the lookup technique. Starting with Plookup, the IVC operations include
not only arithmetic expressions but also lookup statements of the form a ∈ T , where T is
a table available to the verifier [GW20, PH23, STW24]. For some polynomial commitment
schemes (but not for FRI), the table may be preprocessed [ZBK+22, ZGK+22, EFG22]
so that its size does not contribute to the online prover cost. The lookup technique not
only reduces the cost of traditional hash functions in circuits but also allows for cheap
transformations of high algebraic degree [GKL+22, SLS+23].2

Another improvement is purely technical but nevertheless vital for the performance.
It is the use of small prime fields of ≤ 64 bits of special form like 2k − 1 or 2m − 2k + 1

1https://research.protocol.ai/sites/snarks/
2https://zcash.github.io/halo2/design/gadgets/sha256/table16.html

https://research.protocol.ai/sites/snarks/
https://zcash.github.io/halo2/design/gadgets/sha256/table16.html
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[Pol22a, Pol23, RIS23], which allow for more efficient arithmetic operations. STARK proofs
[BBHR19] can use them since they do not require a group where the discrete logarithm
problem is assumed to be hard. The performance growth is significant: switching to an
efficient 64-bit field improves the performance by a factor of up to 10 for the Poseidon
hash function [GKS23]. Moreover, the modular reduction for these fields can often be
implemented with mere additions and bit shifts, which are vectorizable on modern CPU
architectures and faster than in larger and more generic prime fields. Small fields for IVC
applications are also prominent in other recent works [HLN23, Hab23].

1.2 Our Contributions
We approach the problem of creating a hash function that is simultaneously fast and
circuit-friendly in several steps. First we summarize the technical ideas of the new design,
and then we introduce the new hash function Monolith.

1.2.1 Efficient Nonlinearity and Compact Circuits over Prime Fields

Our first main contribution is a generic design of components over certain prime fields,
which can be implemented with just a few (and possibly vector) constant-time instructions
on the x86 architecture, and can be written as a small circuit. This strategy, called
Kintsugi, significantly improves upon the ideas behind Reinforced Concrete [GKL+22]
and Tip5 [SLS+23], yielding faster and constant-time-friendly S-boxes. These new S-boxes
are defined by first splitting a field element into smaller bit arrays. Then, constant-time-
friendly S-boxes using Daemen’s χ function and similar ones [Dae95] are applied to these
arrays, which can be parallelized with fast vector instructions and implemented as lookup
tables in circuits. Finally, the outputs are assembled back to a field element with no
overflow or collision, which is asserted in circuits with minimal overhead.

1.2.2 Low-Degree Components with Provable Differential Bounds

Our second contribution is a concept of using a Feistel Type-3 [ZMI89] function together
with an MDS layer. It can be seen as a replacement for the power function xd from
Poseidon [GKR+21] and similar constructions. The advantage is that we can use faster
squaring operations (i.e., x2) instead of more expensive (as d must be coprime with p− 1)
power functions over Fp, and simultaneously obtain low-degree predicates in circuits.

Notably, x 7→ x2 is not invertible over Fp, and hence we cannot use this component
to build an invertible SPN. However, we can exploit a Feistel scheme to make the entire
construction invertible. A discussion regarding the risks of using non-bijective components
for designing symmetric primitives in which the internal state is not obfuscated by a secret
can be found in [Gra23].

Although the Feistel layer alone is known to have weak diffusion, we show that together
with an MDS matrix it comes close to a regular SPN. To the best of our knowledge, we
are the first to prove the results on the differential properties of the component using a
strategy analogous to the wide trail design [DR02]. In particular, we prove lower bounds on
the number of active nonlinear functions in trails. Similar to extended generalized Feistel
networks introduced in [BMT13], we believe that this result and its possible extension to
Feistel structures of other types may be useful in the design of any symmetric primitive,
including those for more classical settings (as already happened for the Lilliput cipher
[BFMT16]).

1.2.3 Monolith: Fast, Constant-Time, Circuit-Friendly

All of these techniques lead us to the design of Monolith, a family of permutations which
are efficient in native software, in hardware, and inside of circuits. This permutation can
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Figure 1: Comparison of hash functions in various settings (logarithmic scale). The native
benchmarks ("Time", "Const Time") are from Table 5, the numbers for Monolith-64,
Poseidon, and Poseidon2 are taken for the 64-bit prime field and a state size of t = 12.
Proof (IVC) timings are benchmarks for a proof of preimage knowledge (Table 7). Numbers
for SHA3-256 and SHA-256 are extrapolated from a circom implementation using R1CS
[Bal23].

then be turned into a hash function and other permutation-based schemes.3

Construction of Monolith. Our scheme has a few rounds using three different components.
We adopt the naming convention of Reinforced Concrete.

The first component is Bricks (Section 4.4), which is instantiated with a Feistel Type-3
construction with square mappings. The second component is Concrete (Section 4.5),
which is the multiplication with a circulant MDS matrix. Together with Bricks it provides
the diffusion necessary to protect against statistical attacks. The third and last component
is Bars (Section 4.3), which is based on the Kintsugi outlined above. We prove that each
such Bar operation has a high degree and provides high security against algebraic attacks.
The Bar function is applied only to a few field elements in each round.

The combination of these three components provides security against statistical and
algebraic attacks while allowing for an efficient implementation. Our initial analysis has
found a 3-round attack on a weakened version, and also suggests that all potential attacks
should stop at 4 rounds. Since improvements are expected, we set the number of rounds
uniformly to 6.

Performance. We give an extensive comparison between our new proposal and its com-
petitors in Section 7. Our benchmarks confirm that the native performance of Monolith
is comparable to SHA-3, which makes it the first circuit-friendly compression function
achieving this goal. At the same time, Monolith is efficient within IVC systems. In con-
trast to Reinforced Concrete, Monolith also allows for a constant-time implementation
without significant performance loss.

A performance overview is given in Fig. 1. We test the IVC performance on Plonky2
[Pol22a], a popular choice for FRI-based proofs. Compared to Tip5, Monolith is around
twice as fast and gives the user more freedom regarding the choice of the prime number
(including the recent 31-bit prime used in [RIS23] due to advantageous implementation
characteristics). Moreover, compared to the widely used Poseidon permutation, Monolith

3A monolithic building is a seamless structure where components are intimately fused in order to
provide the most secure and robust construction.
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Figure 2: The Kintsugi strategy.

shows a native performance improvement by a factor of around 15. Finally, Monolith
allows for an efficient circuit implementation, since it can be represented by a low number
of degree-2 constraints, leading to a faster performance compared to Poseidon when
implemented in Plonky2 (see Table 7).

2 Fast and Circuit-Friendly Functions over Fp

When working over Fp, informally, we cannot just split a field element into smaller chunks,
process them independently, and then reassemble. This is due to the fact that the field
size is a prime and thus cannot be represented as a product of smaller domains.

To solve this problem, we present a generic strategy for specific prime numbers.
Elements of it can be found in earlier works on Reinforced Concrete [GKL+22] and
Tip5 [SLS+23]. The main principles are as follows.

1. Split the integer form of a field element into chunks according to carefully chosen
boundaries aligned with the sum of the powers of two such that the resulting chunks
fit a lookup table in a ZK circuit.

2. Identify the combination of chunk values that never appear due to the fact that p is
not a power of two.

3. Design intra-chunk transformations Si such that

• impossible chunk combinations never appear (e.g. by making some chunk values
fixed points), and

• they can be implemented in constant time, for example with an AndRX (AND-
rotation-XOR) transformation [AJN14].

4. Combine the chunks back into a large element, after a possible shuffle (only operations
guaranteeing that the output element is in the field are possible).

We call this strategy Kintsugi.4 An illustration is shown in Fig. 2.

2.1 Chunks and Buckets
In order to formally define the Kintsugi strategy, we need to introduce some notations.
For a prime p ≥ 5, we define p′ as

p′ =
{

p− 1 if p ≡ 1 mod 4,

p otherwise.

4Kintsugi is the Japanese art of repairing broken pottery by mending the areas of breakage with lacquer
dusted or mixed with e.g. powdered gold. Here, we break the state and we recombine it after applying a
particular function to each small chunk.
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Figure 3: Chunk and an aligned bucket decomposition of the number 52860. Here ξ = 3
and s = 7.

Consider the binary representation of p′ of length ρ := ⌈log2(p′)⌉. It has the form (most
significant bit coming first)

p′ = 1 . . . 1 || 0 . . . 0 || 1 . . . 1 || . . . ||

{
0 . . . 0 or
1 . . . 1,

where · || · denotes concatenation, that is, it consists of alternating sequences of ones and
zeroes. The first sequence is always a 1-sequence, while the last one can be either a 0- or a
1-sequence.

Definition 1. Given p′ as before, we denote its 1-/0-sequences as chunks (respectively,
1-chunks and 0-chunks).

Given the lengths of 1-chunks ν1, ν2, . . . , νξ and the lengths of 0-chunks µ1, µ2, . . . , µξ

(both from left to right), and ωi =
∑

j≥i(νi+1 + µi), we obtain

p′ =
ξ∑

i=1
2ωi · (2νi − 1). (1)

For efficiency, we may split each chunk into sub-chunks, called buckets. Each S-box
will then work independently on each bucket. To obtain simple conditions for invertibility,
we require the buckets to be aligned with chunk boundaries, i.e., we require that buckets
do not cross boundaries between chunks. We formalize this in the following.

Definition 2. Let p be a prime with 1- and 0-chunks defined by Eq. (1) and

T = {τ1, . . . , τs}

be a bucket decomposition, i.e., some positive integers τ1, . . . , τs such that
∑s

i=1 τi =
ρ = ⌈log2 p′⌉. We say that the bucket decomposition T is aligned with p′ if for every
i ∈ {1, 2, . . . , ξ} there exist ki, li such that

νi =
j<li∑
j=ki

τj and µi =
j<ki+1∑

j=li

τj .

This means that for every i the i-th 1-chunk covers buckets from ki to li (exclusive).
Such buckets are called 1-buckets. Further, the i-th 0-chunk covers buckets from li to
ki+1 (exclusive). These are called 0-buckets. This decomposition is illustrated (with small
buckets) in Figure 3.

Finally, we impose that the buckets are not too small, in order to avoid potential
security issues. Indeed, the number of fixed points and/or invariant subspaces for Kintsugi
becomes too large when the buckets are too small.
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Definition 3. The bucket decomposition is efficient if τi ≥ 3 for each i ≥ 1.
This condition puts a constraint on p. However, we believe it is satisfied by the majority

of the primes used in cryptography, including the ones used in our work. We highlight
that we worked with p′ directly instead of p, since this just given efficiency condition is
never satisfied by p ≥ 5 if p = 1 mod 4.

2.2 The Kintsugi Bar

The nonlinear component Bar, based on Kintsugi, is defined as follows. Let τ1, τ2, . . . , τs

be an efficient and aligned bucket decomposition for p as in Eq. (1). Then, for C, S, and
D described in the following, the component operates as

x 7→ C ◦ S ◦ D(x). (2)

Decomposition D. The decomposition D, i.e.,

x ∈ Fp 7→ (x′1, x′2, . . . , x′s) ∈ Z2τ1 × Z2τ2 × · · · × Z2τs ,

decomposes the original field element x ∈ Fp into s > 1 buckets x′1, . . . , x′s s.t.

x =
s∑

i=1
2ρi · x′i

over integers, where ρS = 0 and ρi =
∑

j>i τj . As the bucket decomposition is aligned, we
get that each bucket is either a 1- or 0-bucket.

S-Boxes S. The operation S applies s invertible S-boxes in parallel, i.e.,

S(x′1, x′2, . . . , x′s) = S1(x′1) || S2(x′2) || · · · || Ss(x′s), (3)

where Si : Z2τi → Z2τi and we require that

1τi is a fixed point if Si operates on a 1-bucket of p′, and
0τi is a fixed point if Si operates on a 0-bucket of p′ .

(4)

Hence, a z-chunk of p′ must be mapped via Si into a z-chunk, where z ∈ {0, 1}.

Composition C. The final operation C is the inverse of the decomposition. Given
(x′1, x′2, . . . , x′s) ∈ Z2τ1 × Z2τ2 × . . .× Z2τs as before, it simply computes

y =
s∑

i=1
2ρi · x′i mod p ∈ Fp,

where ρ1 = 0 and ρi =
∑

j>i τj .

2.3 Well-Definition and Bijectivity
Here we prove that our C ◦ S ◦ D(·) defined in Eq. (2) and in particular its S components
are invertible and well-defined.
Proposition 1. Let p be a prime and {τi} the bucket decomposition aligned with p′. Then
Kintsugi (Eq. (2)) with the S-boxes satisfying Eq. (4) is bijective over Fp.

Proof. We consider the natural extension of the transformation C ◦ S ◦ D(·) to the domain
Z2ρ and denote it by T . Then we proceed in two steps. First we prove that T is bijective
over Z2ρ . Then we prove that for any x < p we have T (x) < p. These two facts imply the
result.
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Transformation T . We define T : Z2ρ → Z2ρ as T := C′ ◦ S ◦ D′(·), where D′ is a
generalization of D that takes inputs from Z2ρ instead of Zp, i.e.,

x ∈ Z2ρ 7→ (x′1, x′2, . . . , x′s) ∈ Z2τ1 × Z2τ2 × . . .× Z2τs ,

where x =
∑s

i=1 2ρi · x′i as before. Further, S is defined as before and C′ is the inverse of
D′ (basically, it corresponds to C without the modular reduction).

Bijectivity of T . This follows from the fact that D′, S, and C′ are bijective.

Field Invariant of T . Finally, we have to prove that ∀x ∈ {0, . . . , p − 1} : T (x) ∈
{0, . . . , p−1}. Let us start by analyzing the case x = p−1. If p−1 = p′ (i.e., p ≡ 1 mod 4),
then all S-boxes act as identity functions (due to Eq. (4)), and thus T (x) = x < p. Instead,
if x = p − 1 ̸= p′, then D(x) differs from D(p′) in the last bucket: the former ends
with 10 and the latter with 11. As 2τs − 1 is a fixed point of the S-box Ss, we get that
Ss(x′s) < 2τs − 1 = zs and so T (x) < p′ ≤ p.

Next, let us consider the case x < p− 1. Consider the binary form of x, and let b be
the most significant bit in which it differs from p′. Clearly, b is in a 1-bucket of p′ with
some index i. Note that for each j < i all S-boxes Sj act as identity functions, that is,
Si(xi) = S(zi) = zi. For x′i < 2τi − 1 = zi, we have Si(x′i) < 2τi − 1 = zi as 2τi − 1 is a
fixed point of the S-box Si. This implies that if x < p− 1, then T (x) < p− 1.

The two previous facts together with T being bijective imply that T (x) > p − 1 for
each x > p− 1. It follows that C ◦ S ◦ D(x) ∈ Fp for each x ∈ Fp.

2.4 Considerations about the Kintsugi Strategy
Due to the link between Fτi

2 and F2τi , almost any invertible AndRX transformation works
well for S and can be implemented in constant time as its components are basic x86
operations. Here we give some examples for p = 2n − 1.

• Bit Shuffle. Clearly, both 1τ and 0τ are fixed points under the bit shuffling operation
for any τ . Moreover, it is essentially for free in hardware.

• Efficient Linear Operations. Linear operations over Fτ
2 of the form

x 7→ x⊕ (x ≪ i)⊕ (x ≪ j)

with nonzero i ̸= j, where ≪ denotes the circular shift operation and ⊕ denotes the
logical XOR operator, are (i) invertible for odd τ and (ii) result in 1τ and 0τ being
fixed points.

• Efficient Nonlinear Operations. Nonlinear operations over Fτ
2 such as

x 7→ x⊕ (x̄ ≪ 1)⊙ (x ≪ 2)

for odd τ , where x̄ := x ⊕ 1τ and ⊙ denotes the logical AND operator, are also
possible. This corresponds to the χ-function [Dae95, Table A.1] already used in
Keccak/SHA-3, which is known to be invertible for gcd(τ, 2) = 1. Moreover, 1τ and
0τ are fixed points.

An additional bit rotation may be needed to reduce the number of fixed points.
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2.4.1 Bars in Kintsugi and Reinforced Concrete

There are various differences between the Kintsugi strategy just described and the Bars
functions proposed in Reinforced Concrete (and later used in Tip5). In Reinforced
Concrete an element of Fp is represented as a vector from Zp1 × · · · × Zpl

.

• We rely on the structure of the prime p. Thanks to its composition of a few powers of
two, the decomposition now is simply a bit extraction rather than a chain of modular
reductions, which is expensive both natively and inside the proof system. The
bijectivity of Kintsugi is guaranteed under the minor and easily satisfied condition
that some specific inputs are fixed points.

• The S-boxes of Reinforced Concrete or Tip5 do not have a simple representation
and must be implemented as tables both for native and circuit computations. The
Kintsugi strategy instantiates the S-boxes with AndRX transformations, which are
fast and constant-time in native x86 implementations but can easily be transformed
to table lookups for circuits.

2.4.2 Side-Channel Leakage and Countermeasures

Lookup tables in symmetric primitives are a well-known source of side channel leakage
due to cache timing. When confidential information is processed (e.g., committing to coin
secrets with ZK hash functions in privacy-preserving payment systems), an adversary may
recover a large portion of it from timing differences of lookups into memory or caches.
These techniques are well-known since at least two decades in the context of encryption
[Pag02, Ber05, OST06], and the high-level ideas have found first applications in zero-
knowledge proof systems [TBP20]. The lookup-oriented designs Reinforced Concrete
and Tip5 use specific tables for which a constant-time implementation with reasonable
overhead is nontrivial. It is thus of utmost importance to have a design where lookups can
be replaced with constant-time operations.

2.5 Statistical and Algebraic Properties
Here we prove a generic statement that links algebraic and statistical properties of mappings
over Fp, which we will use in the security analysis of Monolith.

Lemma 1. Let p ≥ 3 be a prime number, and let Fsq denote the squaring function
x→ x2 over Fp. Let Fsq be any interpolant of Fsq over F⌈log2 p⌉

2 , i.e., for any a < p and
its bit representation a we have that Fsq(a) is the bit representation of Fsq(a). Then Fsq

has (multivariate) degree at least d, where d is the maximum positive integer such that
d < log2

√
p and

⌈
2d−0.5⌉ is odd.5

Proof. We prove this result by contradiction. Suppose that the degree of Fsq is smaller
than d. Then the XOR sum of its outputs over any hypercube of dimension d is equal to
zero [Lai94], including the hypercube

H := {a0 = (0, 0, . . . , 0), . . . , a2d−1 = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
d ones

)}.

Note that F(ai) = i2 < p by the definition of d. Now consider B = {ai ∈ H | i > 2d−0.5},
so that (i) 22d > F(b ∈ B) > 22d−1 and (ii) the 2d-th least significant bit is set. By simple
computation, the size of B is 2d − ⌈2d−0.5⌉. Whenever this number is odd, F does not XOR
to 0 at the 2d-th least significant bit, which contradicts the previous fact. As a result, the
squaring has at least degree d if

⌈
2d−0.5⌉ is odd and d < log2

√
p.

5For example,
⌈

2d−0.5
⌉

is odd for d ∈ {2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 21, . . . }.
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Lemma 2 (Differential). Let F be a function that maps Fp to itself with a differential
∆I → ∆O holding with probability 0 < α < 1, i.e., |{x ∈ Fp | F(x + ∆I) = F(x) + ∆O}| =
p · α. Then we have deg(F) > α · p, where deg(F) is the degree of F as a polynomial over
Fp.

Proof. By definition, F(x + δin) = F(x) + δout has at least α · p solutions x1, x2, . . . , xαp.
Therefore, the polynomial G(x) := F(x + δin)−F(x)− δout is divisible by the polynomial
(x− x1) · (x− x2) · · · · · (x− xα·p) of degree α · p, and so it has a degree of at least α · p.
As the degree of the polynomial G is smaller than the degree of F by 1, we obtain that
deg(F) > α · p.

Lemma 3 (Linear Approximation). Let F be a function that maps Fp to itself such
that there exists a linear approximation (a, b) with probability 0 < β < 1, that is,
|{x∈Fp|F(x)=a·x+b}|

p = β. Then we have deg(F) ≥ β · p.

Proof. By definition, the equation F(x) = A·x+B has at least β·p solutions x1, x2, . . . , xβ·p.
Therefore, the polynomial G(x) := F(x) − (a · x + b) is divisible by the polynomial
(x− x1) · (x− x2) · · · · · (x− xβp) of degree β · p. Similar to before, we conclude that F has
degree at least equal to β · p.

Based on the previous result, we can immediately conclude the following.

Corollary 1. Let F be a function that maps Fp to itself with b < p fixed points, that is,
|{x ∈ Fp : F (x) = x}| = b. It follows that deg(F) ≥ b.

3 Feistel Type-3 Layer and the Wide Trail Strategy
The Kintsugi Bar is nonlinear but we will see in Section 6.1 that its high algebraic degree
comes at the cost of weak differential properties. Thus if being used in an SPN construction,
it would make it vulnerable to statistical (e.g., differential) cryptanalysis. For this reason,
we introduce another nonlinear component defined as a Feistel Type-3 network [ZMI89]
that complements Kintsugi Bars. By instantiating it via low-degree functions, it will allow
us to provide strong argument for guaranteeing resistance against differential and statistical
attacks in general. We follow the naming convention of Reinforced Concrete (the first
lookup-based ZK-friendly hash function) where the nonlinear layer providing protection
against statistical attacks is called Bricks, and use the same name for uniformity.

Feistel Type-3. The Feistel Type-3 network is a member of a larger Feistel family [HR10],
which has been largely neglected in favour of SPN schemes in block cipher and hash
function design, primarily for its complexity and worse diffusion properties. As already
recalled in the introduction, a potential drawback of SPN schemes regards the fact that
their invertibility depends on the fact that all their internal components are invertible as
well. As it is well known, this is not the case of Feistel networks, which remain invertible
independently of the details of their internal functions. For many prime order groups used
in SNARKs, the smallest invertible power mapping is x5. As a result, we have found the
Feistel Type-3 network instantiated with square maps x 7→ x2 to be particularly attractive
as it is cheaper in circuits and, most importantly, its blend with an MDS layer yields
statistical properties similar to those in regular SPNs.

With nonlinear Fi, BricksF for t elements x1, . . . , xt is defined as

BricksF (x1, . . . , xt) := (x1, x2 + F1(x1), x3 + F2(x2), . . . , xt + Ft−1(xt−1)), (5)

where, in contrast to the original description, the swap of the wires is omitted. Further
diffusion is instead handled by a matrix multiplication.
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Diffusion Layer. While BricksF alone does not provide fast diffusion, a combination
with a matrix layer increases the diffusion properties [BMT13, BFMT16]. This approach
is well-known in the SPN design as the wide trail strategy [DR01], where a lower bound
for the number of “active” nonlinear components in any differential trail is proven, leading
to strong arguments against differential attacks.

Here we follow this line of research, and for the first time we derive bounds for the
SPN structure where the nonlinear layer is a Feistel Type-3 function. For this, we work
with matrices of Maximum Distance Separable (MDS) Codes for maximizing the number
of active Fp-words over two consecutive rounds.

Our New Bound. Now we obtain our main result on the differential properties of the
Feistel-Type-3-MDS combination. Our new bound improves the ones recently proposed
in [Gra23] for an analogous (but different) scheme.

Proposition 2. Consider an R-round construction, where each round consists of the
application of BricksF over Ft

q as in Eq. (5) followed by the multiplication with a t × t
MDS matrix. The minimum number ĉ of active functions Fi in any differential trail
satisfies

ĉ ≥ (t− 1) ·
(

3R− 2− (−2)1−R

9

)
≥ (t− 1) · (R− 1)

3 . (6)

Proof. Denote the number of active words in the input and the output of the i-th BricksF

layer by ai and bi, respectively. Then we exploit two properties.

• Each active input word xi to BricksF activates Fi if i < t, hence a words activate
at least a− 1 functions Fi.

• Each active output word yi of BricksF implies that Fi−1 or Fi−2 is active if i > 1.
Hence b words activate at least b−1

2 functions.
With the MDS property, which states that bk + ak+1 ≥ t + 1 for each k ≥ 1, we obtain the
following for the number ck of active functions Fi in round k:

c1 ≥ max
{

a1 − 1, b1−1
2

}
, b1 + a2 ≥ t + 1,

c2 ≥ max
{

a2 − 1, b2−1
2

}
, b2 + a3 ≥ t + 1,

...

cr−1 ≥ max
{

ar−1 − 1,
br−1−1

2

}
, br−1 + ar ≥ t + 1,

cr ≥ max
{

ar − 1, br−1
2

}
,

for r rounds. Summing each two consecutive inequalities for ci, we obtain

2ci + ci+1 ≥ 2 bi−1
2 + (ai+1 − 1) = bi + ai+1 − 2 ≥ t− 1 (7)

with the last inequality being the MDS property.
W.l.o.g., let us find a bound for ĉ := c1 + · · ·+ cR where all ci are non-negative real

values satisfying Eq. (7). First, the optimal {ci} make all inequalities equal. Indeed,
suppose that 2cj + cj+1 > t−1 but for all k > j we have 2ck + ck+1 = t−1. Then by using
c′j = cj − ϵ, c′j−1 = cj−1 + ϵ/2, c′j−2 = cj−2 − ϵ/4 for a small ϵ Eq. (7) is still satisfied but
cmin decreases by ϵ · (1− 1/2 + 1/4− 1/8 + · · · ) > 0. Thus all inequalities are equations,
i.e.,

2ci + ci+1 = t− 1 .

Then we observe that in the optimal {ci} it should hold that cR = 0. Indeed otherwise
we apply the same trick by setting c′R = cR − ϵ, c′R−1 = cR−1 + ϵ/2 etc., again decreasing
cmin.
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Thus, the minimum is achieved by cR = 0 and

cR−1 = t−1
2 , cR−2 = t−1

4 , cR−3 = 3(t−1)
8 , . . . , cR−i = t−1

3 ·
(

1 + (−1)i+1

2i

)
.

Substituting these values into the formula for ĉ, we obtain

ĉ =
R−1∑
i=0

t − 1
3

(
1 + (−1)i+1

2i

)
= t − 1

3

R−1∑
i=0

(
1 + (−1)i+1

2i

)
= t − 1

3

(
R −

R−1∑
i=0

(−2)−i

)

= t − 1
3

(
R − 2(1 − (−2)−R)

3

)
= (t − 1)

(
3R − 2 − (−2)1−R

9

)
.

The weaker bound follows from (−2)1−R ≤ 1
2 for R > 1.

Remark 1 (On the Design Rationale). Our choice of Feistel versus SPN is purely performance-
driven: fewer non-constant field multiplications in the former when using x 7→ x2. However,
neither Feistel Type-3 nor Type-26 alone would provide good statistical properties [HR10].
Notably, the combination of Type-2 with an MDS layer would not allow us to derive
optimal bounds regarding the number of active nonlinear functions in such a simple and
elegant way either.

4 Specification of Monolith

Monolith is a family of permutations which can be used within hash functions and other
constructions. They use prime fields Fp with two options for p, namely

pGoldilocks = 264 − 232 + 1 and pMersenne = 231 − 1. (8)

The permutation Monolith-64 is defined over pGoldilocks with the state consisting of t = 8
or t = 12 elements. The permutation Monolith-31 is defined over pMersenne with the state
consisting of t = 16 or t = 24 elements.

4.1 Modes of Operation
Monolith supports sponge modes and a 2-to-1 compression function.

Sponge-Based Schemes. First, Monolith can instantiate a sponge [BDPV07, BDPV08]
and thus various symmetric constructions such as variable-length hash functions, commit-
ment schemes, authenticated encryption, and stream ciphers. The recently proposed SAFE
framework [AKMQ22, KBM23] instructs how to handle domain separation and padding
in these constructions. In a sponge, the permutation state is split into an outer part with
a rate of r elements and an inner part with a capacity of c elements. As we uniformly
suggest a security level close to 128 bits, we set c =

⌊
256
ρ

⌋
and r = 2c.

2-to-1 Compression Function. We also suggest a fixed-length 2-to-1 compression function.
Concretely, it takes t Fp elements as input and produces t/2 Fp elements as output. It is
defined as x ∈ Ft

p 7→ Trunct/2(Monolith(x) + x) ∈ Ft
p, where Trunct/2 yields the first t/2

elements of the inputs. This compression function can be used in Merkle trees and has
recently also been applied in similar constructions, including Anemoi [BBC+23], Griffin
[GHR+23], and Poseidon2 [GKS23]. For a security level of close to 128 bits, we set
t =

⌊
512
ρ

⌋
, i.e., t = 8 for the 64-bit field and t = 16 for the 31-bit field (factually yielding

slightly less than 128 bits).
6Type-2 Feistel turns state {xi} into {yi} where odd elements remain untouched and y2i = x2i+1 +

Fi(x2i).
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x1

y1

x2

y2

· · ·

· · ·

xt

yt

S S · · · S S S · · · S · · ·Bars

x2 x2 x2· · ·Bricks

M × (x1, x2, . . . , xt)T + (c1, c2, . . . , ct)TConcrete,
constants

Figure 4: One round of the Monolith construction, where xi, yi ∈ Fp.

4.2 Permutation Structure
The Monolith permutation is defined as

Monolith(·) = RR ◦ · · · ◦ R2 ◦ R1 ◦ Concrete(·),

where R is the number of rounds and Ri over Ft
p are defined as

Ri(·) = c(i) + Concrete ◦ Bricks ◦ Bars(·), ∀i ∈ {1, 2, . . . , R} ,

where Concrete is a linear operation, Bars and Bricks are nonlinear operations over Ft
p,

c(1), . . . , c(r−1) ∈ Ft
p are pseudo-random round constants, and c(r) = 0⃗. Note that a single

Concrete operation is applied before the first round. A graphical overview of one round
of the construction is shown in Fig. 4.

4.3 Bars

The Bars layer is defined as

Bars(x1, x2, . . . , xt) := Bar(x1) || · · · || Bar(xu) || xu+1 || · · · || xt (9)

for a t-element state, where u ∈ {1, . . . , t} denotes the number of Bar applications in a
single round. We select u such that u · log2 p ≈ 256, i.e., the nonlinear part occupies around
256 bits of the state. Each Bar application is defined as

Bar(x) = C ◦ S ◦ D(x),

where C,S and D are the operations defined in Section 2. In the following, we describe
them individually for Monolith-64 and Monolith-31.

4.3.1 Bars for Monolith-64

In Eq. (9) we set t ∈ {8, 12} (compression or sponge, resp.) and we set u = 4 (i.e., 4 Bar
operations are applied in each round).

Operations D and C. We use a decomposition into 8-bit values such that

x = 256x′8 + 248x′7 + 240x′6 + 232x′5 + 224x′4 + 216x′3 + 28x′2 + x′1.

The composition C is the inverse operation of the decomposition D.
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S-Boxes S. In Eq. (3) we set s = 8. Then all Si over F8
2 are defined as

Si(y) =
(
y ⊕

(
(y ≪ 1)⊙ (y ≪ 2)⊙ (y ≪ 3)

))
≪ 1, (10)

where ≪ is a circular shift (here we interpret an integer as a big-endian 8-bit string) and
y is the bitwise negation (cf. landscape *100 in [Dae95, Table A.1])7

4.3.2 Bars for Monolith-31

In Eq. (9) we set t ∈ {16, 24} (compression or sponge, resp.) and we set u = 8 (i.e., 8 Bar
operations are applied in each round).

Operations D and C. The decomposition D is given by

x = 224x′4 + 216x′3 + 28x′2 + x′1,

where x′4 ∈ Z7
2 and x′3, x′2, x′1 ∈ Z8

2. The composition C is the inverse of D.

S-Boxes S. In Eq. (3) we set s = 4 using {8, 7}-bit lookup tables. Then, for y ∈ F8
2 and

y′ ∈ F7
2, the S-boxes are defined as (cf. the *01 landscape in [Dae95, Table A.1])

∀i ∈ {1, 2, . . . , s− 1} : Si(y) =
(
y ⊕

(
(y ≪ 1)⊙ (y ≪ 2)⊙ (y ≪ 3)

))
≪ 1,

Ss(y′) =
(
y′ ⊕

(
(y′ ≪ 1)⊙ (y′ ≪ 2)

))
≪ 1.

(11)

4.4 Bricks

The component Bricks over Ft
p is defined as a Feistel Type-3 BricksF (Eq. (5)) with

x 7→ x2, i.e., Bricks(x1, . . . , xt) := (x1, x2 + x2
1, x3 + x2

2, . . . , xt + x2
t−1).

4.5 Concrete

The Concrete layer is defined as Concrete(x1, . . . , xt) := M × (x1, . . . , xt)T , where M ∈
Ft×t

p is an MDS matrix.
If p = 264 − 232 + 1, then M = circ(23, 8, 13, 10, 7, 6, 21, 8) for t = 8 and M =

circ(7, 23, 8, 26, 13, 10, 9, 7, 6, 22, 21, 8) for t = 12. These two circulant matrices defined
for the Goldilocks prime pGoldilocks correspond to the ones found and implemented by
the Winterfell STARK library.8 These matrices have the unique advantage of having
small elements in the time and frequency domain (i.e., before and after DFT application),
allowing for especially fast native performance.

If p = 231 − 1 and t = 16, M is the 16× 16 matrix from Tip5 [SLS+23]9, i.e.,

M = circ(61402, 1108, 28750, 33823, 7454, 43244, 53865, 12034,

56951, 27521, 41351, 40901, 12021, 59689, 26798, 17845).

If p = 231 − 1 and t = 24, M is a 24× 24 submatrix of the 32× 32 circulant MDS matrix
constructed from [HS24]. This particular design choice is explained in Section 7.1. The

7We point out that *100 is actually not present in [Dae95, Table A.1]. However, the invertibility of
*100 follows from the invertibility of *011 (present in such table), due to the fact that applying *100 on x
is equivalent to apply *011 on x̄ plus 1.

8https://github.com/facebook/winterfell/tree/main/crypto/src/hash/mds
9It is also MDS for pMersenne as proved in https://github.com/Neptune-Crypto/twenty-first/blob/

master/twenty-first/src/shared_math/tip5.rs

https://github.com/facebook/winterfell/tree/main/crypto/src/hash/mds
https://github.com/Neptune-Crypto/twenty-first/blob/master/twenty-first/src/shared_math/tip5.rs
https://github.com/Neptune-Crypto/twenty-first/blob/master/twenty-first/src/shared_math/tip5.rs
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Table 1: Parameters for Monolith.

Name p Security Rounds R
Width t # Bar u2-to-1 Sponge

Monolith-64 264 − 232 + 1 128 6 8 12 4
Monolith-31 231 − 1 124 6 16 24 8

32× 32 circulant MDS matrix is defined as

M = circ(0x536C316, 0x1DD20A84, 0x43E26541, 0x52B22B8D, 0x37DABDF0, 0x540EC006,

0x3015718D, 0x5A99E14C, 0x23637285, 0x4C8A2F76, 0x5DEC4E6E, 0x374EE8D6,

0x27EDA4D8, 0x665D30D3, 0x32E44597, 0x43C7E2B3, 0x67C4C603, 0x78A8631F,

0x452F77E3, 0x39F03DF, 0x743DBFE0, 0x4DA05A48, 0x5F027940, 0x8293632,

0x50F2C76A, 0x7B773729, 0x577DE8B0, 0x73B1EAC6, 0x58DA7D29, 0x67AA4375,

0xDBA9E33, 0x2655E5A1).

4.6 Round Constants
The round constants c

(i)
1 , c

(i)
2 , . . . , c

(i)
t for the i-th round are generated using the well-known

approach of seeding a pseudo-random number generator and reading its output stream. In
particular, we use SHAKE-128 with rejection sampling, i.e., we discard elements which
are not in Fp. SHAKE-128, thereby, is seeded with the initial seed “Monolith” followed
by the state size t and number of rounds R, each represented as one byte, the prime p
represented by ⌈log2(p)/8⌉ bytes in little endian representation, and the decomposition
sizes in the bar layer, where each si is represented as one byte. As concrete examples, the
seed is

b’Monolith\x08\x06\x01\x00\x00\x00\xff\xff\xff\xff

\x08\x08\x08\x08\x08\x08\x08\x08’

for Monolith-64 with t = 8 and R = 6, and

b’Monolith\x10\x06\xff\xff\xff\x7f\x08\x08\x08\x07’

for Monolith-31 with t = 16 and R = 6, where b’X indicates that X is to be interpreted as
a bytes literal, i.e., as a sequence of bytes each prefixed by \x.

4.7 Number of Rounds and Security Claims
We design the Monolith permutation to be used in a sponge mode or in a compression
mode. Attacks against either of them should require the attacker to use work in the order
of ≈ 2128, where a slight deviation from this number is due to the chosen prime. To reach
this goal with Monolith, and based on our analysis of statistical and algebraic attacks, we
suggest using R = 6 rounds for both Monolith-64 and Monolith-31 (see Table 1) and claim
2 log2(pGoldilocks) ≈ 128 and 4 log2(pMersenne) ≈ 124 bits of security for Monolith-64 and
Monolith-31, respectively. We further claim that a sponge hash function or compression
function based on Monolith (both H for brevity) with these values makes it hard to find

(collision resistance) x, x′ such that H(x) = H(x′), or

(preimage resistance) x given y such that H(x) = y, or

(second-preimage resistance) x′ given x ̸= x′ such that H(x′) = H(x)

with less than ≈ 2128 operations, where the approximation is due to the chosen prime field.
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Remark 2. We do not claim that the Monolith permutation does not have any non-
generic property (or “indifferentiable from random”). In particular, we do not consider
certain permutation distinguishers – such as the integral one [DKR97] or the zero-sum
partitions [KR07, BCC11] – that have not ever resulted in collision or preimage attacks
for similar designs.

4.8 Security Analysis
The numbers of rounds are conservatively chosen based on the security analysis proposed
in Section 5 and Section 6. As some of the components or combinations are new, our
analysis contains several nontrivial ideas and may be of separate interest to cryptanalysts
and designers.

First, in the spirit of the wide trail strategy, [DR02], we prove tight bounds for the
number of active squarings in differential characteristics for the Type-3 Feistel-MDS
combination in Section 5.1. We also study rebound attacks in Section 5.4, a research
direction that is often missed in the ZK hash function design. We demonstrate practical
attacks on a reduced version of Monolith and argue the security of the full version.

Using differential and linear properties of Bar, we prove lower bounds on its algebraic
degree in Section 6.1, which implies resistance against algebraic attacks after a few rounds.
In this regard, we additionally study the complexity of Gröbner basis attacks on toy
versions of Monolith with smaller primes but still realistic Bars layers in Section 6.3.

To summarize, we are not able to even break 5 rounds of the proposed scheme with
any basic attacks proposed in the literature. As future work, we encourage to study
reduced-round and/or toy variants of our design.

5 Security Analysis: Statistical Attacks

5.1 Differential Attacks
Given pairs of inputs with some fixed input differences, differential cryptanalysis [BS90]
considers the probability distribution of the corresponding output differences produced by
the cryptographic primitive.

Let ∆I , ∆O ∈ Ft
p be respectively the input and the output differences through a

permutation P over Ft
p. The differential probability (DP) of having a certain output

difference ∆O given a particular input difference ∆I is equal to

ProbP(∆I → ∆O) =
|{x ∈ Ft

p | P(x + ∆I)− P(x) = ∆O}|
pt

.

In the case of iterated schemes, a cryptanalyst searches for ordered sequences of differences
over any number of rounds that are called differential characteristics/trails. Assuming the
independence of the rounds, the DP of a differential trail is the product of the DPs of its
one-round differences.

Since the Bars layer is not supposed to have good statistical properties, we simply
assume that the attacker can skip it with probability 1. As the maximum differential
probability of the square map is 1/p, Proposition 2 and (6) immediately imply the following
bound.

Corollary 2. Any 4-round differential characteristic for Monolith has a probability of at
most p

−9(t−1)
8 .

It follows that
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• for p = 264− 232 + 1 and t ∈ {8, 12} ≥ 8, any 4-round differential characteristic has a
probability of at most 2−72·(t−1) ≤ 2−504 ≈ (2−128)4, where 128 is the security level,
and

• for p = 231 − 1 and t ∈ {16, 24} ≥ 16, any 4-round differential characteristic has a
probability of at most 2−34.875·(t−1) ≤ 2−523.125 ≈ (2−124)4, where 124 is the security
level.

As a result, even assuming that more characteristics can be used simultaneously in order to
set up a differential attack, a differential-based collision attack on 5 rounds looks infeasible.

5.2 Linear Attacks
Linear cryptanalysis [Mat93] exploits the existence of linear approximations. For primitives
over binary fields, the attack makes use of the high correlations [DGV94] between sums
of input bits and sums of output bits. The generalization of this attack over prime fields
has been proposed in [BSV07, DGGK21]. We claim that our scheme is secure against this
approach, due to the low correlation of the map x 7→ x2 (as for the case of differential
attacks).

5.3 Rebound Attacks
Rebound attacks [MRST09] have been widely used to analyze the security of various
types of hash functions against shortcut collision attacks since the beginning of the SHA-3
competition. It starts by choosing internal state values in the middle of the computation,
and then computing in the forward and backward directions to arrive at the inputs and
outputs. It is useful to think of it as having central (often called “inbound”) and the above
mentioned “outbound” parts. In the attack, solutions to the inbound phase are first found,
and then are filtered in the outbound phase.

Whereas it is not possible to prove the resistance to the rebound attacks rigorously,
we can provide some meaningful arguments to demonstrate that they are not feasible.
The inbound phase deals with truncated and regular differentials. By Corollary 2 we
see that a solution for a 5-round differential cannot be found, and so the inbound phase
cannot cover more than 4 Bricks layers. In the outbound phase, the Concrete layers that
surround these Bricks layers make all differentials diffuse to the entire state, so that the
next Bricks layers destroy all of those. We hence conclude that 6 rounds of Monolith are
sufficient to prevent rebound attacks. In the following, we describe a rebound collision
attack on 3-round (Weakened) Monolith.

Rebound Collision Attack on the 3-Round (Weakened) Monolith. The best rebound
attack that we have found is a near-collision attack on the reduced 3-round permutation
without the Bars layer. We show how to find a state that satisfies a differential ∆1 → ∆8
for certain ∆1, ∆8 which are equal in the last Fp word, i.e., ∆1,t = ∆8,t. As a concrete
application, this yields a zero difference in this word for the compression function x 7→
Trt/2(P(x) + x), which is a near-collision.

The inbound phase covers 3 layers of Bricks separated by 2 Concrete layers:

∆1
Concrete←−−−−−

t→1
∆2

Bricks←−−−−
1

∆3
Concrete−−−−−→

1→t
∆4

Bricks←−−→
t

∆5
Concrete−−−−−→

t←2
∆6

Bricks−−−−→
2

∆7︸ ︷︷ ︸
inbound phase

Concrete−−−−−→
2→t

∆8.

To find such a state pair, we apply the following approach.
1. In the inbound phase we arbitrarily choose δ and set ∆3 = [0, 0, . . . , 0, δ] such that

its nonzero difference is in the last word only and propagates through Bricks−1

untouched. That is, ∆2 = ∆3. Let ∆1 be Concrete−1(∆2).
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2. The inbound phase covers the expansion of ∆2 to t words and back to the 2-word
difference ∆7 = [0, 0, . . . , 0, δ2, δ3]. Note that we have ∆6 = [0, 0, . . . , 0, δ2, δ4]. We
arbitrarily set δ2, δ3 such that ∆8,t = ∆1,t and then choose δ4 such that

Concrete(∆2) = ∆4,1 = ∆5,1 = Concrete−1(∆6).

3. As a result, the differential path for the full 3-round scheme is established, and we
determine the state. The (δ3, δ4) differential determines the input word xt−1 of the
third Bricks layer, and the equation

Bricks(X + ∆4) = Bricks(X) + ∆5.

determines input words x1, x2, . . . , xt−1 of the second Bricks layer. Note that this
is a system of linear equations, and by solving it we can determine the full state.

Overall we obtain a partial collision at a negligible cost (the cost for solving the linear
system of equations can be approximated by Ω(t3), which is much smaller than the cost
for constructing the collision in the case of a random permutation approximated by p1/2).
We are not aware of any possible extension of such attack to more rounds and/or including
Bars, which is left as an open problem for future work.

5.4 Other Statistical Attacks
We claim that 6 rounds are sufficient for preventing other statistical attacks as well. Here
we provide argument to support such conclusion for one of the most powerful statistical
attacks against a hash function, that is, the rebound attack. For that goal, we propose an
analysis of the number of the fixed points and of the truncated differential characteristics.

5.4.1 Fixed Points

Contrary to Reinforced Concrete, the Bars layer of Monolith has very few fixed points.
Both local maps x⊕

(
(x ≪ 1)⊙ (x ≪ 2)⊙ (x ≪ 3)

)
and x⊕

(
(x ≪ 1)⊙ (x ≪ 2)

)
have

about (7/4)n fixed points (for even and odd n, respectively) when considered over Fn
2 (a

bit value is preserved if the product of nearby bits is 0). However, all of them except 0
and 1 = 2n − 1 are destroyed by the circular shift (verified experimentally).

A Bar of Monolith-64, consisting of 8 such S-boxes, admits 28 − 24 + 1 = 241 fixed
points out of 264 − 232 + 1. This implies that the probability that a point is fixed is
approximately 2−56 for Bar and less than 2−56·4 = 2−224 for Bars. Similarly, a Bar of
Monolith-31 admits 24−1 = 15 fixed points out of 231−1. This implies that the probability
that a point is fixed is approximately 2−27 for Bar and less than 2−27·8 = 2−216 for Bars.

For comparison, we recall that a Bar of Reinforced Concrete has 2134.5 fixed points
out of 2254 possibilities. Hence, the probability of encountering a fixed point is approxi-
mately 2−119.5·3 = 2−358.5 for Bars. At the current state of the art, we are not aware of
any attack that exploits these fixed points.

5.4.2 Invariant Subspace Attacks

An invariant subspace attack exploits the existence of a subspace X ⊆ Ft
p that remains

invariant under the round function. (Note that we do not require that the coset of the
subspace stays the same.) The attack is particularly effective either in the case of keyed
ciphers instantiated with weak keys [LAAZ11, LMR15] and in the case of partial SPN
schemes, in which part of the state remains unchanged after the application of the nonlinear
layer. In the latter case, the linear layer and the round constants can be carefully chosen in
order to break the invariant subspaces, as shown in detail in [GRS21, GSW+21]. The wide
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trail bound implies that such subspaces can not be based on high probability differentials:
any r round differential must activate at least (t− 1)(r − 1)/3 squarings, thus making the
differential probability prohibitively low for r > 3.

At the same time, for our design, while statistical attacks are prevented by our
arguments for Bricks and Concrete, and it can can be based on truncated differentials
as in [GRS21, GSW+21]. There, primitives with a partial nonlinear layer (P-SPN) are
analyzed, which may be relevant to the Feistel-based Bricks layer. Concretely, an invariant
subspace shall include a linear subspace where words corresponding to the S-box inputs
take all possible values and the other words are fixed. Such subspaces propagate through
the nonlinear layer with probability 1 and, if they are smaller than the full domain, can
be used for an attack. Again, this does not apply to our construction for the following
reasons:

• as proved in [Gra23, Sect. 4.2.1], there exists no non-trivial invariant subspace for
x 7→ x2 in Fp. Hence, the subspace can exist only in the case in which the inputs of
the square functions are either constant or fully active;

• suppose we take a linear subspace where some inputs to squarings take all possible
values. Then it appears that even when a single squaring is activated, the application
of the Concrete layer results in an affine space covering the whole state due to the
MDS property. This, in turn, activates all other squarings, so that the resulting
subspace has maximum dimension t, which makes it trivial.

As a result, we claim that our design is not vulnerable to invariant subspace attacks. It
follows that the approach used in [BCD+20] for Poseidon in which an attacker exploits
invariant subspaces to set all inputs of Bars to known and precomputed constants, forcing
the operation applied to subspace inputs to be of low degree, does not work.

5.4.3 Truncated Differentials

Truncated differential attacks [Knu94] are used mostly against primitives that have in-
complete diffusion over a few rounds. This is not the case here since (i) Bricks is a full
nonlinear layer, and (ii) the Concrete matrix is MDS. We have not found any other attacks
where a truncated differential can be used as a subroutine either.

5.5 Non-Applicable Attacks
We emphasize that we do not claim security of Monolith against zero-sum partitions
[BCC11] (which can be set up via higher-order differentials [Knu94, BCD+20] and/or
integral/square attacks [DKR97]). In such an attack, the goal is to find a collection of
disjoint sets of inputs and corresponding outputs for the given permutation that sum to
zero (i.e., satisfy the zero-sum property). Our choice is motivated by the fact that, to the
best of our knowledge, it is not possible to turn such a distinguisher into an attack on the
hash and/or compression function. For example, in the case of SHA-3/Keccak [Nat15,
BDPA11], while 24 rounds of Keccak-f can be distinguished from a random permutation
using a zero-sum partition [BCC11] (that is, full Keccak-f), preimage/collision attacks
on Keccak can only be set up for up to 6 rounds of Keccak-f [GLL+20]. Due to this,
Keccak’s designers decided to reduce the security margin of Keccak by defining a
12-round version called “KangarooTwelve” [BDP+18]. By taking these facts into accounts,
and as already done in similar work [GKR+21, GHR+23], we ignore zero-sum partitions
for practical applications.

Same conclusion holds for other attacks, such as the impossible differential [BBS99]
and the zero-linear correlation one [BW12]. Focusing on the impossible differential one,
the attacker exploits differentials that hold with probability zero. As for the case of the
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zero-sum partitions, we are not aware of any collision or (second) pre-image attack based
on impossible differential characteristics.

6 Security Analysis: Algebraic Attacks
Cryptanalytic successes such as Gröbner basis attacks on Friday and Jarvis [ACG+19],
attacks on MiMC combining higher-order differential distinguishers with polynomial factor-
ization [EGL+20, BCP23, LP19, RAS20], or an attack on Grendel [GKRS22] leveraging
polynomial factorization are a stark warning that a thorough analysis of such attack vectors
is important. While the use of Bars is intuitively expected to frustrate such attacks, it is
nevertheless essential to establish a sound basis for arguments against such attacks.

6.1 Degree of the Bars Polynomials
We have verified experimentally that for n ≤ 8 there exists a modular differential for the
S-box Eq. (10) with probability almost 1/4:

Proposition 3. Let n > 4 be such that gcd(n, 3) = 1. Let S be the invertible map over Fn
2

given Eq. (10), that is, x 7→
(
x⊕

(
(x ≪ 1)⊙ (x ≪ 2)⊙ (x ≪ 3)

))
≪ 1. Let S be the

corresponding mapping but over Z2n , where the elements of Fn
2 are viewed as the big-endian

counterparts of elements from Z2n .
The map S has differential probability 1/4− 2−n over Z2n for the mapping {+1} →

{+2}.

Lemma 4. The Bar function for p = 264−232 + 1 (Section 4.3) has differential probability
at least 31/128 over Fp.

Proof. For every even x < p − 1 we have that x + 1 < p. Let D of Bar decompose x
to x1, x2, . . . , xs. Then we have that D(x + 1) differs from D(x) in the last bucket for
x ̸= −1 mod 2n. For such x we have S(xs + 1) = S(x) + 2 from Proposition 3 with
probability 1/4− 2−8. Therefore for the full Bar function we have Bar(x + 1) = Bar(x) + 2
for at least (1/4− 2−8)(264 − 232) > 31/128 values of x, which gives the lemma statement.

We have verified experimentally that for n ≤ 8 there exists a modular differential for
the S-box Eq. (11) with probability 1/16:

Proposition 4. Let n > 4 be such that gcd(n, 2) = 1. Let S′ be the invertible map over Fn
2

given Eq. (11), that is, x 7→
(
x⊕

(
(x ≪ 1)⊙ (x ≪ 2)

))
≪ 1. Let S

′ be the corresponding
mapping but over Z2n , where the elements of Fn

2 are viewed as the big-endian counterparts
of elements from Z2n .

The map S has differential probability 1/16 over Z2n for the mapping {+1} → {+2}.

Lemma 5. The Bar function for p = 231 − 1 (Section 4.3) has differential probability at
least 1/16 over Fp.

The proof is identical to that of Lemma 4. With Lemma 2, we obtain the following
bound on the degree of Bar.

Proposition 5. The Bar operation (and its inverse) has degree at least (i) 261 for
p = 264 − 232 + 1, and (ii) 227 for p = 231 − 1.

In the following, we describe our practical results on toy-Bars functions defined on
smaller prime fields. As expected, they show that the corresponding interpolation polyno-
mial is dense and of high (usually, maximum or close to maximum) degree.
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Table 2: Degree and density of the polynomials resulting from Bar applied to various field
elements.

p Bit splittings Degree Density
28 − 24 + 1 {4, 4} 239 (= p− 2) 100%

213 − 28 + 1 {8, 5}, {4, 4, 5} 7935 (= p− 2) > 99% (7934/7935)
213 − 25 + 1 {5, 8}, {5, 4, 4} 8159 (= p− 2) > 99% (8157/8159)

214 − 210 + 1 {10, 4}, {5, 5, 4} 15359 (= p− 2) > 99% (15358/15359)
214 − 24 + 1 {4, 10} 16367 (= p− 2) 100%
214 − 24 + 1 {4, 5, 5} 16367 (= p− 2) > 99% (16364/16367)

213 − 1 {5, 8}, {8, 5}, {4, 9}, {9, 4} 8189 (= p− 2) > 99% (8188/8189)
27 − 1 {3, 4}, {4, 3} 125 (= p− 2) > 99% (124/125)
25 − 1 – 26 (= p− 5) ≈ 21% (6/29)
27 − 1 – 120 (= p− 7) ≈ 14% (18/125)

213 − 1 – 8178 (= p− 13) ≈ 8% (629/8189)

Degree and Density: Practical Results

Evaluating the actual density of the polynomial resulting from Bar applied to a single field
element in Fp, where p ∈ {264 − 232 + 1, 231 − 1}, is infeasible in practice. Indeed, any
enumeration and subsequent interpolation approach would take far too long.

Therefore, in our experiments we focus on smaller finite fields defined by “similar”
prime numbers. In particular, we focus on n-bit primes of the form 2n − 2η + 1 for η as
close to n as possible. We then apply the S-box Si to smaller parts of the field element,
exactly as in Bar where the S-box is applied to each 8-bit part of the larger field element.
We also vary the sizes of the parts to which the Si are applied in order to get a broader
picture.

The results of our evaluation are shown in Table 2. For example, in the first case,
where p = 28 − 24 + 1, Si is applied to the first 4 bits (starting from the least significant
bit) and then to the next 4 bits, covering the entire field element. The size of these parts
is indicated in the second column. As we can see, the maximum degree is reached for all
tested primes of the form 2n− 2η + 1, where η > 1. Moreover, for these primes, the density
is always close to 100%, mostly matching it. We also applied Si to elements of F2n−1
directly, where n ∈ {5, 7, 13}, which resulted in almost maximum-degree polynomials of low
density (specifically, only 6, 18, and 629 monomials exist in the polynomial representation,
respectively). This suggests that increasing the number of S-box applications per field
element (i.e., increasing the number of smaller parts to which Si are applied) is beneficial
for the density of the resulting polynomial.

We also evaluated the degrees and density values resulting from the inverse S-boxes
applied to the field elements, in order to get an estimation of the algebraic strength of the
inverse operation. The results match the results given in Table 2, where always more than
99% monomials are reached together with a degree close to the maximum.

Results for Ft
p. We also ran tests regarding the density over the entire state. Naturally,

this task gets harder with an increased number of rounds, since the degrees are rising too
quickly. In our tests we focused on p ∈ {28 − 24 + 1, 27 − 1} and t = 4, and we give the
results together with the sizes of the smaller S-boxes in Table 3.

As can be seen, the maximum number of monomials is almost reached after a single
round. We suspect that some of the monomials are not reached due to cancellations, which
is reasonable when considering these small prime fields. Still, we acknowledge this fact by
adding another round on top of that in order to ensure that all polynomial representations
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Table 3: Degree and density of the polynomials after a single round, where t = 4 and two
input variables are used (with the other two input elements being fixed).

p Bit splittings Degree Density
28 − 24 + 1 {4, 4} 239 (= p− 2) > 99% (28785/28920)

27 − 1 {3, 4} 125 (= p− 2) > 98% (7919/8001)
27 − 1 {4, 3} 125 (= p− 2) > 98% (7919/8001)

of the state are dense and of maximum degree. Thus, having 6 rounds achieves 4 rounds
of security margin regarding degrees and density of polynomials.

6.2 Security against Algebraic Attacks via Bars

Here we consider attacks that exploit the fact that several rounds of the permutation do
not have maximum possible algebraic degree. For this, we interpret the output elements
as polynomials of the input elements. Then we formulate a collision or a preimage attack
as a system of equations and try to solve it.

6.2.1 Interpolation Attacks

Interpolation attacks [JK97] exploit the degree of a component to reconstruct its polynomial
and solve a system of equations. However, we have demonstrated that the degree of the
Bar component is close to p. Therefore, after at most 2 rounds of Monolith, the degree in
each variable becomes almost p, which implies that mounting the attack is infeasible.

Impact of Invariant Subspaces. Note that the Bars layer is partial, using only u Bar
components. Thus, excluding the Type-3 Feistel layer, it may be possible to pass r rounds
by guessing r · u intermediate variables. However, as u ≥ t/3, and due to the analysis
proposed in Sect. 5.4.2, this is possible for at most 2 rounds (without exhausting the
degrees of freedom). We conclude that it is not feasible to apply simple algebraic attacks
on 4 or more rounds of Monolith.

6.2.2 Solving a CICO Problem with Univariate polynomials

In the CICO (constrained input/constrained output) problem, the goal is to find a solution
to the system of v polynomial equations of t− v input variables (as the remaining v ones
are set to zero). We formalize it in the following.

Definition 4 (CICO Security). A permutation P : Ft
p → Ft

p is v-CICO secure if no
algorithm with expected complexity smaller than pv finds I1 ∈ Ft−v

p and O2 ∈ Ft−v
p such

that P(0v || I1) = 0v || O2.

The univariate system appears if v = t− 1 or we guess t− v − 1 variables. Note that
our guess may be invalid if the number of equations exceeds the number of variables, so
we have to repeat the guess pv−1 times. Note also that p is smaller than 2128 so pv−1 may
still be feasible.

• If v = 1 and we have guessed t − 2 variables, then we have to solve a single
polynomial equation faster than in time p. The degree of the polynomial reaches
p after 2 applications of the Bars layer, i.e., after 2 rounds. Therefore, solving the
equation will require time ≈ p.
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• If v > 1, and we have guessed t− v − 1 variables, then the probability that a CICO
solution exists for a particular guess is p−(v−1), since we only solve one equation and
hope for other v − 1 to hold. A system of polynomial equations has degree close to
p, so solving it would cost at least p time for any guess. Multiplying by the number
of guesses, we obtain that the total complexity still exceeds p · pv−1 = pv.

6.3 Solving the Multivariate CICO Problem with Gröbner Bases
In a general case, we model the CICO problem as a system of multivariate polynomial
equations generating a zero-dimensional ideal. The main technique for solving these
systems is to use Gröbner bases and apply the following steps.

1. Compute a Gröbner basis for the zero-dimensional ideal of the system of polynomial
equations with respect to the degrevlex term order.

2. Convert the degrevlex Gröbner basis into a lex Gröbner basis using the FGLM
algorithm [FGLM93].

3. Factor the univariate polynomial in the lex Gröbner basis and determine the solu-
tions for the corresponding variable. Back-substitute those solutions, if needed, to
determine solutions for the other variables.

The total complexity of a Gröbner basis attack is hence the sum of the respective com-
plexities of the above steps. We argue that even step 1. is prohibitively expensive for
Monolith.

The complexity of computing a Gröbner basis with (matrix-based) algorithms such as
Lazard [Laz79, Laz83], F4 [Fau99], or Matrix-F5 [BFS15] for an equation system with ne

equations in nv variables over a field F can be bounded by

O
(

ne ·
(

nv + dsolv
nv

)ω)
(12)

operations in F. Here, dsolv denotes the solving degree and ω denotes the linear algebra
exponent. Intuitively, dsolv corresponds to the maximum degree attained during a Gröbner
basis computation. Thus, the overall complexity of computing a Gröbner basis can be
understood as bounded by row-reducing (full-rank) matrices of size ne ·

(
nv+i−1

i

)
×
(

nv+i−1
i

)
,

for i = 0, 1, . . . , dsolv, eventually, leading to the bound in Eq. (12). In practice, the Macaulay
matrices built during a Gröbner basis computation might be sparse and have a substantial
rank defect, and Eq. (12) does not account for this particular structure in the Macaulay
matrices.

6.3.1 Rationale for our Security Arguments

As a conservative choice and to account for the structured Macaulay matrices in the
algebraic model for Monolith, in Eq. (12) we drop any factors from the asymptotic O(·)

notation and set ne = ω = 1, and, hence, use CGB(nv, dsolv) =
(

nv + dsolv
nv

)
as a guideline

for estimating the complexity of actual Gröbner basis computations. We stress that setting
ω = 1 is a highly optimistic scenario from an attacker’s viewpoint.

Establishing concrete estimates for CGB, hence, boils down to bounding the solving
degree dsolv. This task is in general a difficult problem in its own regard, often as hard
as actually computing a Gröbner basis. However, for the special case of (semi-)regular
sequences, there exist bounds on dsolv. In particular, for regular sequences dsolv is upper-
bounded by the Macaulay bound [BFS15]

dMac := 1 +
ne∑

i=1
(di − 1). (13)
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Informally, the case of regular sequences can be regarded as a generic case, formalizing the
notion of “random polynomial systems”. Although the assumption of regular sequences
often fails for algebraic models of circuit-friendly primitives, comparing a given algebraic
model with this generic case can still be an informative approach and help to establish
heuristic estimates for the complexity of Gröbner basis computations when practical
experiments are infeasible. In our analysis, we compare the actual solving degree dsolv
from our practical experiments with dMac. This allows us to extrapolate trends from the
aquired data points to large-scale instances, which are computationally intractable.

When analyzing a given algebraic model, another problem is scalability: it is nontrivial
to properly scale down the original system of equations to some small-scale variant that is
solvable on a standard machine. We tackle this problem and estimate the complexity of a
Gröbner basis attack on the CICO problem for full-scale Monolith as described below. We
point out that we only focus on step 1. of a Gröbner basis attack and show that already
the complexity of this step exceeds the generic CICO security level.

• We consider a small-scale, weakened version of one round of Monolith, denoted
SmallWeak1R, with a small state of only t = 4 elements, and u=2 Bar functions in
the Bars layer. We have

SmallWeak1R := Concrete′ ◦ Bricks ◦ Bars ◦ Concrete′,

where for Concrete′ we use the circulant matrix M = circ(2, 1, 1, 1), which is not
MDS and thus weaker than the MDS matrix used in Monolith. For Bricks, we use
the same Bricks as described in Section 4.4, with t = 4. The Bars function is the
same function described in Section 4.3, with t = 4 and a decomposition into m = 2
buckets for all small primes for which we run actual computations, see also Table 4.
For the S-Box functions inside Bar, we use suitable functions from [Dae95, Table
A.1].

• We use the following CICO problem, called SmallWeak1R-CICO, in our analysis: find
i2, i3, i4, o2, o3, o4 ∈ Fp such that

SmallWeak1R(0, i2, i3, i4) = (0, o2, o3, o4) . (14)

• We suggest an arguably optimal model for SmallWeak1R-CICO, denoted by the same
name, as a system of polynomial equations.

• For various small primes, we run actual GB computations on the model SmallWeak1R-CICO
and observe that for these small-scale instances

dsolv ≥ dMac/4.

• Extrapolating heuristically, we argue that the complexity of computing a Gröbner
basis for SmallWeak1R-CICO, also for larger primes, is around

CGB(nv, dMac/4) =
(

nv + dMac/4
nv

)
. (15)

For the original, full-sized primes pGoldilocks and pMersenne, this yields a complexity
estimate for solving SmallWeak1R-CICO via Gröbner basis techniques of 2154 oper-
ations in Fp for p = pGoldilocks, and 293 operations for p = pMersenne. Compared
to the generic CICO-security level of 264 and 231 function calls for pGoldilocks and
pMersenne, respectively, our analysis suggests ample security margin against Gröbner
basis attacks on SmallWeak1R-CICO.
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Impact of Invariant Subspaces. As for the case of the interpolation attack, we recall
that it is not possible to impose all Bars to be constant, since

• the degrees of freedom are not sufficient, and

• there exists no invariant subspace that results in such scenario, as showed in
Sect. 5.4.2.

6.3.2 Optimal Model for SmallWeak1R-CICO

Algebraic Model for Bar. We suggest the following algebraic model for Bar for a decom-
position of a prime field element into m buckets with sizes 2s1 , 2s2 , . . . , 2sm :

x = x1b1 + x2b2 + · · ·+ xmbm,

0 =
∏2si−1

j=0 (xi − j), 1 ≤ i ≤ m,

y = L1(x1)b1 + L2(x2)b2 + · · ·+ Lm(xm)bm.

Here, b1 = 1 and bi := 2s1+···+si , for 2 ≤ i ≤ m, and Li : Fp → Fp is the interpolation
polynomial over Fp of degree (si−1 for the S-box Si given by

Li(xi) :=
∑

0≤k≤2si−1
Si(k)

∏
0≤j≤2si−1

j ̸=k

xi − j

k − j
.

The resulting system consists of m + 2 equations, namely m equations of respective degrees
2s1 , . . . , 2sm , 1 equation of degree maxi(2si − 1), and 1 equation of degree 1. The m + 2
variables are x1, . . . , xm, x, y.

Algebraic Model for SmallWeak1R-CICO. We consider the problem SmallWeak1R-CICO
that fixes v = 1 words to 0 in the input and output, respectively. In other words, we are
looking for i2, i3, i4, o2, o3, o4 ∈ Fp such that

SmallWeak1R(0, i2, i3, i4) = (0, o2, o3, o4).

The function SmallWeak1R = Concrete′ ◦ Bricks ◦ Bars ◦ Concrete′ is a small-scale and
weakened version of one round of Monolith defined on t = 4 words and u = 2 Bar functions
in the Bars layer. For Concrete′, we use the circulant matrix M = circ(2, 1, 1, 1), which
is not MDS and thus weaker than the MDS matrix in Monolith. Our algebraic model
for SmallWeak1R-CICO, denoted by the same name, is given by the following system of
equations: 

0 = Concrete′−1(v1, v2, v3, v4)1,

w1 = Bar(u1),
w2 = Bar(u2),
0 = (Concrete′ ◦ Bricks)(w1, w2, v3, v4)1.

Here, H(·)i denotes the i-th element of the output of the function H for i ∈ {1, 2, 3, 4}. We
note that each Bar function decomposes a prime field element into m = 2 buckets, hence,
wi = Bar(ui) denotes above algebraic model for Bar with a decomposition into m = 2
buckets. The resulting equation system consists of 10 equations with

• 4 equations for each Bar system wi = Bar(ui), i = 1, 2, and

• 2 equations for modelling the CICO constraint at the input and the output.

In total, we have 10 variables, namely u1, u2, u3, u4, w1, w2 and 2 internal variables for
each Bar system.



Grassi, Khovratovich, Lüftenegger, Rechberger, Schofnegger, Walch 69

Table 4: Results of Gröbner basis computations on several instances of SmallWeak1R-CICO,
described in Eq. (14), for various small primes p, decomposition into m = 2 buckets with
bucket sizes 2s1 , 2s2 , and extrapolation to 1R-CICO. Here, ne and nv denotes the number
of equations and variables, respectively. The degree dsolv denotes the maximum degree
reached during a GB computation with Magma. T is the runtime in microseconds (10−6).
For the complexity C we use the estimate C = CGB(nv, dMac/4). Extrapolated estimates
are in italic.

SmallWeak1R-CICO 1R-CICO
p 13 29 61 113 pMers. pGoldil. pMers. pGoldil.

ne, nv 10, 10 10, 10 10, 10 10, 10 14, 14 22, 22 64, 64 48, 48
si 2, 2 2, 3 2, 4 4, 3 8,8,8,7 8,. . . ,8 8,8,8,7 8,. . . ,8
u 2 2 2 2 2 2 8 4
dMac 18 34 66 74 2294 4590 9177 9181
dsolv 11 14 19 24 573 1147 2295 2296
dMac : dsolv 1.62 2.43 3.47 3.08 4 4 4 4
log2 T 16.5 21.5 25.5 30.5 - - - -
log2 C 10.8 16 22.7 24 92.2 154 419.8 333.7

6.3.3 Results of our Gröbner Basis Experiments

Based on the (heuristic) estimate presented in Eq. (15), we argue that one round of full
Monolith given by 1R := Concrete ◦ Bricks ◦ Bars ◦ Concrete provides ample security
against Gröbner basis attacks as well. Intuitively, it is reasonable to assume that an
increased state size and/or an increased field size do not make the attacks more efficient
(given the same ratio of CICO constraints and Bar applications).

In more detail, let 1R-CICO denote the following CICO-problem for 1R: find I1, O2 ∈
Ft−v

p such that
1R(0v, I1) = (0v, O2),

where 0v denotes a v-tuple with all entries being zero. For pGoldilocks, we have t = 12,
v = 4, and for pMersenne we have t = 24, v = 8. This amounts to a generic CICO-security
level of 2256 and 2248 function calls, respectively. Extrapolating Eq. (15), we arrive at an
estimated Gröbner basis complexity for 1R-CICO of 2334 operations in Fp for p = pGoldilocks,
and 2420 operations for p = pMersenne. We summarize the results of our Gröbner basis
analysis in Table 4.

Discussion of Gröbner Basis Experiments. The results of our Gröbner basis experiments
on small-scale instances of SmallWeak1R-CICO, described in Eq. (14), are depicted in
Table 4. We conducted our experiments on a machine with an Intel Xeon E5-2630 v3 @
2.40GHz (32 cores) and 378GB RAM under Debian 11 using Magma V2.26-2.

For the maximum degree dsolv reached during a Gröbner basis computation, we see
that the ratio dMac : dsolv is higher than 4. Moreover, C = CGB(nv, dMac/4) can be seen as
a lower bound for the actual computation time T .

6.3.4 Alternative Representations

Several constructions were cryptanalyzed using a specially crafted algebraic representation
of internal components [BBLP22, BBL+24]. As this is a heuristic process, the absence of
such representations is difficult to guarantee. On our side, we have investigated in this
section the most effective representation we have found.

The exact attacks from those papers do not seem applicable here. In [BBLP22] the
authors find a strategy to skip 2 rounds of some SPN-like permutation by making use of
statistical properties rather than algebraic one. In more details, one round is skipped due
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to the fact that the considered permutations do not start with a matrix multiplication, but
rather with an S-box layer. An extra round is skipped by exploiting the fact the scheme is
an SPN scheme instantiated with S-boxes that are power maps, and so (a ·x)d = ad ·xd. In
our case, the permutation starts with a matrix multiplication, the bar layer is not defined
via power maps, and bricks is a Feistel network, so the result does not apply.

In [BBL+24], the attacker can exploit a similar trick to skip some initial rounds of
Griffin. Roughly speaking, a proper choice of the inputs make some rounds to be linear,
due to the particular Horst structure used in there. In our case, the bars layer is only
partial, hence, it is possible to skip some of them by choosing an appropriate subspace.

6.4 Algebraic Attacks over F2

We also consider algebraic attacks working over the binary field F2, due to the low degree
of Bars in this setting. Here we demonstrate that the squaring operation of Bricks has a
high degree as a multivariate polynomial over F2.

Since
⌈
2d−0.5⌉ is odd for d = 15 and d = 30, Lemma 1 implies the following bound on

the degree of the squaring function over F2.

Proposition 6. Let p ∈ {pMersenne, pGoldilocks} (8). Let Fsq be an interpolant over F⌈log2 p⌉
2

of the squaring operation F(x) = x2 over Fp.Then Fsq has degree (multivariate over F2)
at least d, where (i) d = 30 for p = 264 − 232 + 1, and (ii) d = 15 for p = 231 − 1.

Since Bars is of degree 2 over F2, and since Concrete is a nonlinear function over a
binary field, we claim that Monolith is secure against algebraic attacks instantiated over
the binary field.

7 Performance Evaluation
7.1 Native Performance
We compare the performance of Monolith and competitors in Table 5. All benchmarks
were taken on an AMD Ryzen 9 7900X CPU (singlethreaded, 4.7 GHz).

We included implementations of Monolith into the framework in [IAI21], and also
added instantiations of widely popular Poseidon [GKR+21], its modification Poseidon2
[GKS23], and also Griffin [GHR+23] with p = 264 − 232 + 1 following their original
instance generation scripts.10

We benchmark these hash functions with a state size of t = 8 for the compression
mode and of t = 12 for the sponge mode in order to have a fair comparison. We also
compare against Tip5 with its fixed state size of t = 16 using the implementation from
[SLS+23],11 and against Tip4′, a faster instance of Tip5 with a fixed state size t = 12,
using the implementation from [Sal23].12 We also compare against Reinforced Concrete
instantiated with the scalar field of the BN254 curve, and against SHA3-256/SHA-256
as implemented in RustCrypto.13 The constant-time versions of Tip5 and Reinforced
Concrete is our modification of the original code, which may not be optimized, thus it is
given as an estimate.

Finally, we compare Monolith-31 with Poseidon and Poseidon2 over the pMersenne
prime field and state sizes of t = 16 and t = 24 (again for sponge and compression mode),
as well as for a constant time implementation (constant time Fp operations and no lookup

10The source code is available at https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/
master/plain_impls.

11https://github.com/Neptune-Crypto/twenty-first
12https://github.com/Nashtare/winterfell
13https://github.com/RustCrypto/hashes

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/plain_impls
https://github.com/Neptune-Crypto/twenty-first
https://github.com/Nashtare/winterfell
https://github.com/RustCrypto/hashes
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Table 5: Native performance in nano seconds (ns) of different hash functions for variable
and constant time implementations. Benchmarks are given for one permutation call, i.e.,
hashing ≈ 500 bits for all but SHA functions. Estimates are in italic.

Hashing algorithm Time (ns) Const. Time (ns)
2-to-1 sponge 2-to-1 sponge

p = 264 − 232 + 1: t = 8 t = 12 t = 8 t = 12
Monolith-64 129.9 210.5 148.5 230.4
Poseidon 1897.6 3288.7 2347.6 4059.1
Poseidon2 944.6 1291.5 1149.2 1617.9
Rescue-Prime 12128.0 19095.0 12128 19095
Griffin 1815.0 1988.4
Tip5 (t = 16) 463.6 500
Tip4′ 247.9
p = 231 − 1: t = 16 t = 24 t = 16 t = 24
Monolith-31 210.3 924.2 237.9 946.4
Poseidon 4478.8 8539.7 4372.9 8538.0
Poseidon2 792.8 1257.4 840.7 1355.3
Other:
Reinforced Concrete (BN254) 1467.1 20000
SHA3-256 189.8
SHA-256 45.3

tables). We see that Monolith-64 is significantly faster than any other arithmetization-
oriented hash function. For example, the fastest one, i.e., Poseidon2, is slower by a factor
7.3 for t = 8. Tip4′, the fastest lookup table based design, is also slower by a factor of 1.9
when using Monolith with the compression mode, and also slower by 36 ns compared to
Monolith with the same state size t = 12.

Most interestingly, the performance gap between arithmetization-friendly hash functions
and traditional ones is now closed, with SHA3-256 being slower than Monolith-64 with
t = 8 and only faster by 21 ns than Monolith-64 in the sponge mode with t = 12. While
we acknowledge that SHA3 achieves a higher throughput when measured in cycles per
byte (cpb) due to its larger rate of 1088 bits, the somewhat lower rate of Monolith-64 is
chosen to best fit the ZK use cases described in this paper. For completeness, we mention
that SHA3-256, as given in Table 5, achieves a performance of 6.56 cbp, while Monolith-64
achieves 9.53 cbp and 15.45 cbp in compression and sponge mode, respectively.

Regarding Monolith-31 for the 31 bit Mersenne prime field we observe that we still get
a fast native performance with 210 ns for t = 16. This is significantly faster than Tip5
which has the same state size, but is implemented with the larger 64 bit prime field. Only
for t = 24 we observe a slower native performance which is due to the usage of a 32× 32
circular MDS matrix in the Concrete layer, which we use to be able to implement it via a
radix-2 FFT (see Note on MDS Matrices below). However, competing designs, such as
Tip5 also rely on MDS matrices and thus will either suffer from the same performance loss,
or if they come up with better matrices/implementations, these can be used in Monolith-31
as well. Nonetheless, one can observe that Monolith-31 is still faster than the closest
competitor for the same field and state size, i.e., Poseidon2, by 300 ns.

Unlike other lookup-based designs, Monolith does not rely on lookup tables and its
structure allows for constant-time implementations without significant performance loss.
The binary χ-like layer can be efficiently implemented using a vectorized implementation
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Table 6: Plonkish arithmetization comparison for various 64-bit schemes. The numbers
are for a single permutation.

Primitive Lookups Nonlinear
constraints Degree Witness size Area-degree

product
Monolith-64-compression 192 44 2 460 920
Monolith-64-sponge 192 64 2 480 960
Tip5 160 60 7 380 2660
Tip4′ 160 40 7 360 2520
Poseidon/Poseidon2 (sponge) 0 118 7 118 826
Rescue-Prime (sponge) 0 96 7 96 672

that does not require an explicit (de-)composition, while unrolling the lookup-tables con-
taining repeated power maps in Reinforced Concrete, Tip5, and Tip4′ adds considerable
workload to the computation. Thus, the overhead of going to a constant-time imple-
mentation only consists of supporting constant-time prime field arithmetic for Monolith,
which can help in efficiently preventing side-channel attacks such as the ones proposed in
[TBP20].

Using a constant-time reduction leads to a slight slowdown in our comparison. However,
the resulting runtimes are still significantly faster than the non-constant-time runtimes of
other circuit-friendly hash functions, such as Poseidon and Griffin, and Tip4′ for t = 8
and t = 12. Moreover, a constant-time Monolith-64 in compression mode is still faster
than SHA3-256 for t = 8 (although we acknowledge the different sponge rates and security
margin of the two constructions).

Finally, for completeness, we give the runtime of each part of the Monolith permutation
for both a constant- and variable-time version in Appendix C.

Note on MDS Matrices. We use matrix multiplications based on fast Fourier transforms
and circulant matrices for the linear layer of Monolith. For t ∈ {8, 12, 16} we use matrices
whose dimensions correspond to the state size. However, for t = 24, we use a circulant
matrix of dimension 32 × 32 [HS24].14 This allows us to efficiently employ a radix-2
algorithm. In more detail, if the input to the linear layer is (x1, . . . , x24), the output is
defined by

(y1, . . . , y24)T = Trunc24(M × (x1, . . . , x24, 0, . . . , 0︸ ︷︷ ︸
8 zeroes

)T ),

where M ∈ F32×32 and Tr(·)n yields the first n elements of the input. While the multipli-
cation uses a 32× 32 MDS matrix, the final output will be the result of the multiplication
by a 24 × 24 (non-circulant) MDS matrix, since every submatrix of an MDS matrix is
also MDS. This approach leads to an advantage of around 15% compared to the naive
multiplication with a generic 24× 24 matrix.

7.2 Performance in Proof Systems
A modern zero-knowledge proof system defines arithmetization rules for the circuit it
attempts to prove. Most new proof systems support the Plonkish arithmetization, where
all input, output, and intermediate variables are put into a witness matrix W with a fixed
number of rows and columns. The data in each row is restricted by polynomial equations
determining the values and computations used. One of these generic equations of degree 2
is aix1x2 + bix3 + cix4 + di = 0, where ai, bi, ci, di are public constants for the i-th row

14We emphasize that it is unknown how to efficiently construct a 24 × 24 circulant MDS matrix over Fp

for large p.
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[GWC19]. The Plonkish arithmetization allows for different tradeoffs w.r.t. the number of
columns, variables being used, and the final degrees. Additionally, various tuples within a
row may be constrained to a set of values in a predefined table T.

A precise comparison of different arithmetizations is hard without implementing and
testing. However, a significant part of the work is to construct s degree-ρ polynomials for
the witness columns and to prove that they satisfy the polynomial equations. The total
work is then estimated as an element in O(d · ρ · s), where d is the maximum degree of
a row polynomial. The cost of using table lookups for FRI-based schemes is currently
equivalent to the use of a single polynomial of degree t = max{ρ, |T|}.

In this section we give possible arithmetizations for translating Monolith into a set
of Plonkish constraints and refer to Appendix B.1 for R1CS constraints. Our Plonkish
arithmetization is designed to accommodate lookup constraints capable of efficiently looking
up 8-bit values. If the proof system is able to use larger tables (e.g., 16-bit ones), then
multiple lookup constraints can be combined into just one larger constraint, reducing the
total number of constraints.

Plonkish Arithmetization. Each composition Concrete ◦ Bricks is described with t
polynomial equations of degree 2. Then, for each Bar in the Bars layer, we enforce the
correct relations with x =

∑m
i=1 2

∑i

j=1
sj x′i and y =

∑m
i=1 2

∑i

j=1
sj y′i, while also making

sure that the limbs in the decomposition correspond to field elements. For pGoldilocks, this
means enforcing that either the least significant 32 bits of Bar’s input are 0 or the most
significant bits are not all 1, i.e.,

(x4224 + x3216 + x228 + x1)(x8224 + x7216 + x628 + x5 − z) = 0, z′(z − 232 + 1) = 1.

For pMersenne = 0x7fffffff we need to make sure that the combined values are ̸= p, which
is equivalent to them not being 28 − 1 (three) or 27 − 1 (one), i.e.,

(x4 + x3 + x2 + x1 − 27 − 3 · 28 + 4) · z′ = 1.

We describe the application of s individual S-boxes with s lookup constraints (x1, y1),
(x2, y2), . . . , (xs, ys). These also include the range checks for each input which are also
necessary for the correctness of the constraints above.

Apart from 2s lookup variables per Bar, we define u variables at the output of the first
Concrete layer (these are the inputs to the Bars layer) and t variables at the output of
each of the following Concrete layers (except for the last one). The reason is that the
variables after the first Concrete layer store linear relations in the input, and only the u
variables entering the Bars layer are needed. For the last layer, the output variables can
be used directly. In total, we have 6 · (2us + u) + 5t + u variables, where {u = 4, s = 8} for
the pGoldilocks case and {u = 8, s = 4} for the pMersenne case (considering S-boxes of ≈ 8
bits).

In Table 6 we compare the (non-optimized) arithmetization of Monolith with the ones
of other 64-bit designs (see Appendix B.2 for details). To achieve a fair comparison, we do
not apply any constraint or witness optimization but try to follow the same approach. We
see that both the number of lookups and constraints in Monolith is slightly larger than in
Tip5 and Tip4’, but the constraint degree is smaller by the factor of 3.5, which should
result in an overall decrease of the prover time by a factor of at least 2 (estimated as
area-degree product). This is reasonable since Tip5 and Tip4’ are able to process more field
elements with a permutation call. Poseidon, Poseidon2, and Rescue-Prime due to their
comparably small witness size and no lookup tables are estimated to still provide faster
proving performance, closely followed by Monolith-64 with its low-degree nonlinear layers.
Again, we stress that these numbers are derived from non-optimized arithmetizations and
are subject to change. For example, one can leverage the low degree of Monolith to reduce
witness size by trading with a larger degree round function. We refer to Appendix B.3
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Table 7: Proving performance in Plonky2 using pGoldilocks and sponge mode.

Permutation Prove (ms) Verify (ms) Size (kB)
Monolith-64-sponge 3.49 0.63 113
Poseidon 6.23 1.12 70

for details. Furthermore, these estimates are based on a simplified performance metric
(area-degree-product) which does not consider every aspect of prover performance, and
benchmarks in real proof systems might differ.

Benchmarks in Plonky2. We implemented Monolith-64 in the Plonky215 proof system
to verify the estimations of Table 6.16 Plonky2 uses FRI commitments and hence works
well with small prime fields. Since it already comes with a custom gate of Poseidon
in sponge mode (t = 12) where the entire gate is put into just one row of the trace,
we implement Monolith-64-sponge with the same parameters. To highlight the main
advantage of Monolith-64, namely its fast native performance, we benchmark proving
a Monolith-64 permutation while using Monolith-64 as the hash function to build the
Merkle trees. Similarly, we benchmark Poseidon when using Poseidon as the hash
function (which is the default setting in Plonky2). The results can be seen in Table 7.
One can observe that since Monolith requires more witnesses than Poseidon and both
gates use just one row in the trace, the resulting proof is larger. However, the combination
of proving Monolith-64 while using it at as the Plonky2 hash function leads to half the
prover and verifier runtime compared to Poseidon.
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A Fast Reduction for Special Primes
A.1 Fast Reduction for Primes of the Form ϕ2 − ϕ + 1
Here we describe the fast reduction modulo a prime number of the form ϕ2 − ϕ + 1. Note
that this includes p = 264−232 +1, where ϕ = 232. We focus on the case of a multiplication,
where two n-bit inputs result in an output of at most 2n bits.

Given Fp for p = ϕ2 − ϕ + 1, it follows that

ϕ2 = ϕ− 1 =⇒ ϕ3 = ϕ2 − ϕ = −1.

Now, let us write a value x to be reduced as

x = x0 + ϕ2x1 + ϕ3x2,

where x0 ∈ Z2n and x1, x2 ∈ Z2n/2 . Then

x = x0 + (ϕ− 1)x1 − x2 (mod p),

where note that log2(x0 + (ϕ − 1)x1 − x2) ≈ log2(p). This reduction can be computed
using only a small number of additions and subtractions.

A.2 Fast Reduction for Primes of the Form 2ρ − 1
Here we describe the fast reduction modulo a prime number of the form 2ρ − 1 which
includes p = 231 − 1. We focus on the case of a multiplication, where two ρ-bit inputs
result in an output of at most 2ρ bits.

Given Fp for p = 2ρ − 1, it follows that 2ρ = 1 + p. Now, let us write a value x to be
reduced as

x = x0 + 2ρx1,

where x0 ∈ Z2ρ and x1 ∈ Fp. Then

x = x0 + x1 + (2ρ − 1) · x1︸ ︷︷ ︸
=0 (mod p)

= x0 + x1 (mod p).

This reduction can be computed using only a small number of additions and binary shifts.

B Arithmetization Details
B.1 R1CS
It is possible, though more expensive, to implement Monolith in legacy proof systems
that only support R1CS equations without any table lookups. In contrast to Reinforced
Concrete, our design admits a reasonably small R1CS representation described in the
following. First, we use t− 1 constraints to generate equations for Bricks. For Bars, we
decompose each element that goes into a Bar into bits thus using one constraint per Bar
for the actual decomposition plus log2(p) ·#Bar constraints for ensuring that the bits are
either 0 or 1. Then each output bit of Bar requires 3 multiplications (2 for AND and 1 for

https://scroll.io/blog/zkEVM
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Figure 5: Variables (or trace elements) when using Monolith with degree-4 constraints.
Newly added variables are emphasized in bold and the degree indicates the maximum
degree of the polynomial equations describing the corresponding state in the given variables.

XOR) for the 8-bit S-box and 2 multiplications for the 7-bit one as used in Monolith-31.
By combining the composition constraints with the following bricks layer we get 1028
constraints for Monolith-64 and 944 constraints for Monolith-31 per Bars. Finally, the
Concrete layer can be included in the constraints of Bricks and Bars, resulting in a
total for R · (1027 + t) R1CS constraints for Monolith-64 and R · (943 + t) constraints for
Monolith-31, where R is the number of rounds.

B.2 Circuits for Other Hash Functions
The Tip5 function applies four 64-bit S-boxes with lookups per round, so 32 8-bit lookups
per round. It also uses 12 degree-7 power functions per round. We allocate variables for
the outputs of the power functions in addition to 64 lookup variables per round.

Similarly, the Tip4’ function also applies 32 8-bit lookups per round to the smaller
state. However, it uses 8 degree-7 power functions per round, proportionally reducing the
number of variables.

The Poseidon2 function (as well as Poseidon which has the same number of rounds
and the same arithmetization) with t = 12 defined for pGoldilocks has 8 full and 22 partial
rounds, thus 118 degree-7 functions in total. We allocate variables for all outputs of the
S-boxes, and link the others via linear equations.

Regarding Rescue-Prime, an instance with t = 12 defined for pGoldilocks requires 8
rounds which each consist of two subrounds which alternate between nonlinear layers
featuring the xd and x1/d power maps. Due to this construction one can find degree-7
constraints spanning a whole round of rescue, leading to 96 degree-7 constraints in total.

B.3 Multiround Constraints for Monolith

We consider p = pGoldilocks and t = 12. When implementing both Monolith and Tip5 in a
single gate, we can immediately observe various similarities. For example, considering 8-bit
lookups, the number of lookups is almost the same, with Tip5 using slightly fewer ones
due to its lower number of rounds (note that both permutations use four lookup words per
round). Moreover, the number of necessary columns is similar in a round-based approach.

The major advantage of Monolith becomes apparent after considering the degree of
the constraints. Indeed, while Tip5 uses a maximum degree of 7 (which is the smallest
integer d such that gcd(pGoldilocks − 1, d) = 1), Monolith uses a maximum degree of
only 2. Not only does this lead to more efficient constraints, but it allows for different
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tradeoffs. For example, consider p = pGoldilocks, t = 12 and a state after the Concrete
layer defined by 12 variables w

(1)
1 , . . . w

(1)
12 . After the subsequent application of Bars, we

add 4 new variables w
(2)
1 , . . . , w

(2)
4 for the state elements modified by the lookup table.

We now apply Bricks and then Concrete to the state. Note that describing the state
in w
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(2)
4 after these transformations results in degree-2 constraints

(ignoring the table lookups), since only one Bricks layer has been applied. Hence, we
may now choose to only add 4 new variables w
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1 , . . . , w

(3)
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last Concrete layer at the positions of the table lookups. After the next Bars layer, the
state is defined by 8 polynomial equations in w
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5 , . . . w

(1)
12 , w

(2)
1 , . . . , w

(2)
4 of degree 2 and

by the 4 new variables w
(4)
1 , . . . , w

(4)
4 resulting from the table lookups. After applying

the next Bricks and Concrete layers, we arrive at a state defined by 12 polynomial
constraints in w

(1)
5 , . . . w

(1)
12 , w

(2)
1 , . . . , w

(2)
4 , w

(4)
1 , . . . , w

(4)
4 of degree 4. A graphical overview

of this approach is shown in Fig. 5.
As a result, with degree-4 constraints we can save t − u trace elements in each pair

of rounds, where u is the number of Bar applications in the Bars layers. This allows us
to achieve a slimmer row with even fewer columns. We point out that this advantage of
Monolith’s low degree also applies in a similar fashion when comparing to other hash
functions which use xd, such as Poseidon, Poseidon2, Rescue, Griffin, Anemoi, and
many more.

C Benchmarks of Different Round Functions
In Table 8, we give the runtime of each part of the Monolith permutation for both a
constant- and variable-time implementation.

Table 8: Native performance of each different round function in Monolith. Implemented
in Rust.

Operation Time (ns) Const. Time (ns)
p = 264 − 232 + 1: t = 8 t = 12 t = 8 t = 12
Concrete 19.5 33.6 19.5 33.6
Bricks 12.2 19.3 16.0 21.8
Bars 10.4 12.9 10.4 12.9
p = 231 − 1: t = 16 t = 24 t = 16 t = 24
Concrete 31.8 112.6 31.9 115.1
Bricks 17.0 21.7 17.0 21.7
Bars 8.4 12.0 8.4 12.0
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