
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 2, pp. 322–347. DOI:10.46586/tosc.v2024.i2.322-347

A Framework to Improve the Implementations of
Linear Layers

Yufei Yuan1,2(�), Wenling Wu1,2(�), Tairong Shi1,3, Lei Zhang1,4 and Yu
Zhang1,2

1 Trusted Computing and Information Assurance Laboratory, Institute of Software Chinese
Academy of Science, Beijing, 100190, China

{yufei2021,wenling,tairong2018,zhanglei,zhangyu2021}@iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing, 100049, China

3 PLA SSF Information and Engineering University, Zhengzhou, 450001,Henan
4 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

Abstract. This paper presents a novel approach to optimizing the linear layer of block
ciphers using the matrix decomposition framework. It is observed that the reduction
properties proposed by Xiang et al. (in FSE 2020) need to be improved. To address
these limitations, we propose a new reduction framework with a complete reduction
algorithm and swapping algorithm. Our approach formulates matrix decomposition
as a new framework with an adaptive objective function and converts the problem to
a Graph Isomorphism problem (GI problem). Using the new reduction algorithm, we
were able to achieve lower XOR counts and depths of quantum implementations under
the s-XOR metric. Our results outperform previous works for many linear layers of
block ciphers and hash functions; some of them are better than the current g-XOR
implementation. For the AES MixColumn operation, we get two implementations
with 91 XOR counts and depth 13 of in-place quantum implementation, respectively.
Keywords: Linear Layer · Implementation · XOR Counts · Quantum Circuit ·
AES.

1 Introduction
In recent years, lightweight cryptography has gained significant attention with the advent
of the Internet of Things (IoTs) and Radio-Frequency Identification (RFID) technologies.
These new rapidly developing applications demand high device performance and energy
efficiency. As a result, there has been a growing interest in reducing the complexity
and energy consumption of hardware implementation while ensuring the security of the
cryptographic system [DEMS16, BJK+20].

To make the implementation of symmetric ciphers as lightweight as possible, researchers
have focused on optimizing some metrics, including gate equivalents, latency, circuit size,
energy consumption, and so on. Since the linear components of lightweight cipher are often
equivalent to a series of XOR operations, the most intuitive requirement is to minimize
the XOR counts [Paa97]. Similarly, in quantum circuit design, the corresponding metrics
involve the depth, the width (the number of qubits), and the gate count (the number of
quantum gates). The quantum logic gates contain Pauli gates, Hadamard gates, CNOT
gates, and others. For the linear layer, the depth of the quantum circuit, the number of
qubits, and the number of CNOT gates are essential metrics to estimate the complexities
in the standard quantum circuit model [NC01].

In designing the primitives of lightweight cryptography, many researchers concentrate
on constructing a low-cost linear matrix while ensuring security and meeting software

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-11-23 Revised: 2024-03-01 Accepted: 2024-05-01 Published: 2024-06-18

https://doi.org/10.46586/tosc.v2024.i2.322-347
mailto:{yufei2021, wenling, tairong2018, zhanglei, zhangyu2021}@iscas.ac.cn
http://creativecommons.org/licenses/by/4.0/

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 323

and hardware performance requirements. Various works such as [SKOP15], [KLSW17],
[CTG16], and [LS16] have explored the design of matrices containing special structures
like circulant, Hadamard, Toeplitz, or involution matrices, aiming to reduce the number
of XOR operations. Moreover, Ascon [DEMS16], the winner of the NIST lightweight
cryptography cipher competition, employs the permutation which costs two binary XOR
operations per bit. Recently in CRYPTO 2023, Solane et al. [EHDRM23] constructed
a new linear layer called the "Twin column parity mixer", which requires only 3.2 XOR
operations per bit and has a bitwise differential branch number of 12 (4 for linear branch
number).

Meanwhile, it has been another focus to optimize the implementation of existing linear
layers. To further delve into reducing the XOR counts, researchers have established three
essential measurement tools in linear layer optimization to formulate the implementation:
d-XOR, g-XOR, and s-XOR counts. The g-XOR and s-XOR counts also correspond to
two different ways to implement the linear layer, and their definitions will be introduced in
detail in the following sections. Many researchers have designed various heuristic algorithms
to optimize the implementation based on these metrics.

Furthermore, finding an optimal implementation with g-XOR counts is equivalent to
solving the problem Shortest Linear Program (SLP), which is NP-hard [BMP13]. Boyar and
Peralta proposed a heuristic algorithm (named BP algorithm) that minimizes the distance
vector [BP10]. Their algorithm defines a base set and updates the distance vector according
to the current base set. In the process of updating, the smaller the distance vector is, the
closer the current base set is to the aimed matrix. The works on [BFI19, ME19, TP20]
have focused on improving the efficiency in different cases, such as dense matrices, by
modifying the tie-breaking phase in the BP algorithm. Lin et al. [LXZZ21] introduced
a new framework that optimizes the implementation, achieving 91 XOR counts for AES
under the g-XOR metric. Their framework mainly relies on several reduction rules and
iteratively searches for the subsequence in the implementation that satisfies the rules. Qun
et al. [LWF+22] introduced the strategy of backward search based on the Constant Matrix
Multiplication (CMM) problem to minimize the depth in implementing the linear layer.
In optimizing the s-XOR counts, Xiang et al. [XZL+20]. proposed a reduction algorithm
based on reduction properties, achieving the best result of 92 XORs under the s-XOR metric
for AES. Under the s-XOR metric, the implementation can be immediately transformed
into an in-place quantum circuit. Moreover, some researchers take other potential metrics
into their counts instead of only considering the XOR counts [LWF+22, HS22].

Regarding quantum circuits, Grover’s algorithm can provide at most a quadratic
speedup on finding the key for a symmetric cipher instead of a classical exhaustive key search
[Gro96]. Thus, many works focus on improving the quantum implementations of some block
ciphers. In [GLRS16], a quantum circuit on AES requiring around 3000 to 7000 qubits
was proposed for Grover’s attack. Furthermore, the works on [LPS20, ZWS+20, JNRV20]
have improved by reducing the number of qubits and lowering the circuit depth. Huang
and Sun [HS22] proposed a new framework for generating a quantum circuit for the round
function of block ciphers, and the linear layer is taken from the result of Xiang et al.
The work in [Max19] achieved an out-of-place quantum implementation with 92 XOR
counts, a depth 22, and a circuit width 318. Zhu and Huang [ZH22] extended the ideas
from Xiang et al. to quantum circuits by utilizing the properties of move-equivalence and
exchange-equivalence and obtained results in the in-place quantum implementation of
the AES MixColumn operation with depth 28 and keeping 92 XOR counts. Recently, at
ASIACRYPT 2023 [LPZW23], Liu et al. proposed some generic techniques to improve
AES quantum implementations, including searching for a new AES MixColumn in-place
implementation with 98 XOR counts and depth 16 without ancilla.

Despite many efforts dedicated to optimizing the XOR counts and the quantum depth
of linear layer circuits [DBBV+21, MZ22], the circuit implementations of linear components

324 A Framework to Improve the Implementations of Linear Layers

still can be better optimized.

1.1 Our Contribution
Our research presents a more comprehensive framework for implementing the linear layer
of a block cipher using heuristic search. This framework mainly employs the method of
elementary matrix decomposition, which is able to convert the sequence directly into a
specific in-place implementation of XOR operations without auxiliary registers.

We first identify a gap in the work by Xiang et al. and propose several definitions
for describing the reduction of type-3 sequences. Moreover, our approach introduces
the concept of equivalent sequences, which allows us to describe the original reduction
properties introduced by Xiang et al. within a novel framework. Using the equivalent
relationship, we model the problem of optimizing type-3 sequences as a GI problem,
which avoids the limitations of previous work and enables the framework to reduce type-3
sequences. The framework also introduces the concept of the objective function and prime
sequence, which make the framework flexible enough to optimize the implementation
from different intentions, e.g., reducing the XOR counts and the quantum circuit’s depth.
Furthermore, we propose a low-complexity algorithm to determine whether elements in
the sequence can be swapped to adjacent positions based on the pairwise exchange nature
of the sequence. The new techniques enable the search for implementations with lower
XOR counts and lower depths of quantum circuits.

We achieved superior results in many reversible matrices using our newly proposed
reduction algorithm. In particular, we have obtained a new implementation of the AES
linear layer with 91 XORs under the s-XOR counts metric, which is equivalent to the
result obtained under the g-XOR metric [LXZZ21]. Additionally, we have applied our
search algorithm to reduce the quantum circuit depth for linear layers by setting the
objective function. As a result, we have obtained a new AES MixColumn in-place quantum
implementation with 98 XOR counts and depth 13 without ancilla, representing the
best result for our known. These results can be applied to the newest AES quantum
implementations in [HS22] and [LPZW23].

The implementations can be verified at https://github.com/YuanYufeiISCAS/Linear
LayerOptFramework.

1.2 Organization
The paper is structured as follows. Section 2 introduces the notation used in this paper and
offers some relevant knowledge and background. Section 3 describes the method of matrix
decomposition and points out the incompleteness of the method. Our new framework to
optimize the s-XOR sequence is introduced in Section 4. Section 5 shows the detailed
results including achieving lower XOR counts and lower depth of quantum implementation
of some linear layers. At last, Section 6 makes a conclusion and discusses future work.

2 Preliminaries
In this part, we introduce the notation in this work and offer some relevant knowledge
about algebra and graph theory.

2.1 Notation

F2 binary finite field

https://github.com
https://github.com

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 325

GL(n,F2) the general linear group of invertible n × n matrices over
the finite field F2

E1
i the i-th type-1 elementary matrix in sequence

E3
i the i-th type-3 elementary matrix in sequence

E(i ↔ j) the specific type-1 matrix is equal to performing row ex-
change between the i-th row and the j-th row

E(i + j) the specific type-3 matrix is equal to performing row addition
over F2 from the j-th row to the i-th row

Am×n a matrix with m rows and n columns with entries from F2
Ai,j the entry in position (i, j) of matrix A
I the identity matrix over GL(n,F2)
s a product sequence of type-1 or type-3 matrix
|s| the length of product sequence
Sl,n the set of all type-3 sequences with length l on GL(n,F2)
Pn

f the set of prime sequences under objective function f on
GL(n,F2)

S̄l,n the set of representatives of all equivalence classes of Sl,n

P̄n
f the set of representatives of all equivalence classes of Pn

f

GA the bipartite graph corresponding to the relation matrix A
GA the bipartite graph GA after coloring the vertices

2.2 Relevant Knowledge
Linear Layer The linear operation in a substitution-permutation network block cipher
can be written as a matrix multiplication like the following form:

Lm×n · Un×1 = Om×1

L is the matrix form of a linear operation, U is the input bit vector and O is the output
bit vector. This work only considers L as a non-singular square matrix.

Elementary Matrix

Definition 1. An n × n square matrix of type-1, type-2, and type-3 is a matrix obtained
from identity matrix In×n by performing an elementary row (or column) operation of row
swapping, row multiplication with non-zero constant, and row addition respectively.

Note that the method of Gauss-Jordan elimination can be used to transform any non-
singular matrix into an identity matrix by performing a series of elementary operations.
Also, every elementary transformation can be described as the multiplication of the
elementary matrix in Definition 1. Formally, we have the Theorem 1:

Theorem 1. [Art11] A is non-singular if and only if A is the product of elementary
matrices.

Because we are dealing with matrices over the binary field, we can just consider the
multiplication of type-1 and type-3 matrices. The general matrix multiplication is not
commutative, however, for multiplication of type-1 and type-3 elementary matrices the
following property (Property 1) holds.

Property 1. [XZL+20] The commutative transfer properties.

1. E(i + j)E(k ↔ l) = E(k ↔ l)E(fk,l(i) + fk,l(j))

2. E(k ↔ l)E(i + j) = E(fk,l(i) + fk,l(j))E(k ↔ l)

326 A Framework to Improve the Implementations of Linear Layers

where

fk,l(x) =

 k, if x = l,
l, if x = k,
x, else.

According to Theorem 1 and Property 1, we can decompose a non-singular matrix
into a product sequence of elementary matrices, where the preceding part is the product
of type-1 matrices and the subsequent part is the product of type-3 matrices. Since row
additions correspond to XOR operations in the implementation of the linear function,
reducing the number of type-3 matrices in multiplications is the key to optimizing the
implementation. Next, we will introduce three metrics in XOR counts to measure the cost
of implementing a specific matrix.

Relevant metrics

Definition 2. d-XOR counts. [KPPY14]
The d-XOR counts of a matrix M in GL(n,F2), denoted by wtd(M) is

wtd(M) = ω(M) − n

where ω(M) denotes the number of ones in the matrix M .

We only use wtd(M) to estimate the cost of implementation. And the following g-XOR
counts and s-XOR counts correspond to the optimal number of XOR operations for two
different implementations.

Definition 3. g-XOR counts. [XZL+20]
Consider a matrix Mn×n over F2, the implementation of M can be viewed as a XOR

sequence made of xi = xj1 ⊕ xj2 , where 0 ≤ j1, j2 ≤ i for i = n, n + 1, ..., n + t − 1 (t is the
length of the corresponding XOR sequence). In the implementation, x0, x1, ..., xn−1 are
the input bits, and the output bits are a subset of xi(i > n − 1). The minimal number of
such operation sequences that compute the n bits output is defined as g-XOR counts.

Definition 4. s-XOR counts. [JPST17]
For a non-singular matrix M ∈ GL(n,F2), the minimal number of t is called s-XOR

counts (sequential XOR-count) of M , such that

M = P

t∏
k=1

E3
k

where P is a permutation matrix and E3
k is a type-3 elementary matrix.

The difference between g-XOR and s-XOR is that operation under the s-XOR metric
stores the result within the input lines. The s-XOR sequence expression directly corresponds
to a series of XOR operations, where the k-th operation is xi = xi ⊕ xj when E3

k =
E(i + j). Consequently, s-XOR representation offers significant advantages in quantum
circuit implementation, such as avoiding additional auxiliary qubits. Moreover, in-place
implementation tends to result in a lower T-depth [Max19]. In classic circuits, we only
need one instruction to execute xi = xi ⊕ xj , while the g-XOR sequence requires an extra
copy instruction and an additional register on platforms that has invariably 2-operand
instructions, typically for some micro-controllers of RISC architectures.

While implementing a linear layer using the s-XOR matrix provides numerous benefits,
the s-XOR counts are consistently higher than the g-XOR counts [XZL+20]. Regarding
the relationship between d-XOR and g-XOR counts, s-XOR is not always less than d-XOR.
In the work of [Köl19], a matrix in GL(7,F2) is presented, which exhibits its s-XOR that is
larger than the d-XOR. Furthermore, researchers employ diverse approaches when studying

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 327

these metrics, and the results from both perspectives often complement each other. In
our heuristic search work, we have also achieved fewer counts as existing results under the
g-XOR metric in many matrices.

After introducing some basic metrics and the matrix decomposition theorems, it
is possible to shift our focus to another field of mathematics, namely graph theory.
What unites these two domains is the profound interaction between algebraic structures,
represented by matrices, and the combinatorial structures of graphs. For instance, matrices
derived from graphs, such as adjacency matrices or incidence matrices, can be subjected to
various decomposition methods, providing valuable structural insights into the underlying
graphs. Furthermore, graph isomorphism enables us to explore matrix similarity, thereby
unifying these two areas under the broad umbrella of mathematical structure analysis.
The concepts of graph, bipartite graph, and graph isomorphism problem are as follows.

Undirected Graph and Bipartite Graph. An undirected graph is a concept in graph
theory [W+01] that consists of a set of vertices and the edges that connect those vertices.
In an undirected graph, the edges have no direction, meaning that all the edges are
bidirectional and that each edge can be traversed from two connected vertices.

An undirected graph G can be presented as a composition of vertices V and a set of edges
E. The vertex set V can be represented as V = {v(1), v(2), ..., v(n)}, where n is the total
number of vertices. The edge set E can be represented as E = {(v(i), v(j))|v(i), v(j) ∈ V },
indicating that for element (v(i), v(j)) ∈ E there is an edge connecting vertices v(i) and
v(j).

Another way of representing a graph is by using its adjacency matrix. An adjacency
matrix is an n × n matrix, where n is the total number of vertices. If there exists an edge
between vertex v(i) and v(j), the elements in the i-th row, j-th column, and j-th row, i-th
column of the adjacency matrix are 1; otherwise, they are 0. The adjacency matrix can be
expressed as:

Ai,j =
{

1, if there is an edge between vertices v(i) and v(j),
0, otherwise.

In a bipartite graph, all vertices can be divided into two disjoint sets: V1 and V2. Every
edge in the graph connects a vertex in V1 to a vertex in V2. The bipartite graph has
no edges between vertices within the same part. Formally, a graph G = (V, E) is said
to be bipartite if there exists a partition V = V1 ∪ V2 such that every edge (v(u), v(w))
in E satisfies v(u) ∈ V1 and v(w) ∈ V2. It is important to note that in the following
discussion, we consider the bipartite graph as a special case of an undirected graph.
For convenience, we denote the vertices set V of a bipartite graph G and i-th vertex as
V (G) = {v(i)|i = 1, 2, ..., m1 + m2} where m1 and m2 represent the sizes of the two vertex
sets respectively. By exchanging the order of the vertices, without loss of generality, we
can ensure that the first m1 vertices are the vertices in V1, and the last m2 vertices are
the vertices in V2. When we consider the bipartite graph with m1 = m2 = m, we can use
square matrix of dimension m to describe the graph. To distiguinsh it from adjacency
matrix, the matrix is called relation matrix and it can be expressed as:

Ai,j =
{

1, if there is an edge between vertices v(i) and v(j + m),
0, otherwise.

Graph Isomorphism Problem For undirected graphs, an isomorphism is a bijective map-
ping between the vertex sets of two graphs that preserves both the adjacency and the
direction of the edges. Formally, if we have two finite undirected graphs G = (V (G), E(G))
and H = (V (H), E(H)), we say G and H are isomorphic if there exists a bijection

328 A Framework to Improve the Implementations of Linear Layers

f : V (G) → V (H) such that for any two vertices u, v ∈ V (G) are adjacent if and only if
f(u), f(v) ∈ V (H) are adjacent. In other words, isomorphisms are adjacency-preseving
bijections between the sets of vertices, and the graph isomorphism problem asks to deter-
mine whether two given graphs are isomorphic [Bab18]. Despite being in the NP class,
the graph isomorphism problem is not known to be NP-complete or in P class [For96].
However, many powerful quasi-polynomial algorithms are sufficient to solve our problem
[HBD17]. In our work, we employ Nauty and Traces1 [MP14] to solve the GI problem,
which is well-suited to handle the vertex-colored graph.

3 Method of Matrix Decomposition
In this section, we first commence with a detailed presentation of Xiang et al.’s methods
to set the stage for further discussions. For further details on the matrix decomposition
method to optimize the implementation of the linear layer, we refer the reader to [XZL+20].

The work of Xiang et al. presents several ingenious methods to decompose a matrix to
a sequence of type-1 or type-3 elementary matrix multiplication s :

1. Gauss-Jordan method shows that there exists a sequence of elementary row transfor-
mations that converts the original invertible linear matrix L to identity matrix I such
that s · M = I, then we have M = s−1. Type-1 and type-3 matrices are involutional
matrices, so attaining a sequence decomposition of M is easy. The method is referred
to as strategy-1.

2. The method described above is based on row swapping and row addition. Similarly,
we can decompose the matrix L through column swapping and column addition to
another sequence s′. Strategy-2 is the designation for this method.

3. The strategy-3 in their work is motivated by reducing the number of type-3 elementary
matrices in the decomposition sequence. They first reduce the number of ones in
matrix L through row addition as much as possible. If there are multiple local
optima, it will choose one operation randomly. When performing row addition of
any two rows that cannot reduce the number of "1" in the matrix, the program is
turned to strategy-1 or strategy-2 to avoid an infinite loop. Combining strategy-1 or
strategy-2 with strategy-3 results in strategy-3-1 and strategy-3-2, respectively.

Assume we get a sequence s through the strategy-3-1 or strategy-3-2 has the form:

s = E1
m−1 · ... · E1

1 · E1
0 · E3

n−1 · ... · E3
1 · E3

0

In order to identify potential reductions, the method exhaustively examines all possible
combinations of two and three type-3 matrices in the given sequence. If these matrices
can be swappped to adjacent positions, the algorithm checks whether they satisfy seven
distinct reduction properties. Only if both conditions are met, a reduction will be made
accordingly.

To introduce the properties, the notation E(i + j) is employed to denote the type-3
elementary matrix with an additional "1" in position (i, j) as compared to the identity
matrix. Similarly, the notation E(i ↔ j) is used to represent the type-1 elementary matrix,
which exchanges the i-th row and the j-th row of the identity matrix. Then we have:

Property 2. [XZL+20](Reduction Properties)

• R1: E(k + i)E(k + j)E(i + j) = E(i + j)E(k + i)

• R2: E(i + k)E(k + j)E(i + j) = E(k + j)E(i + k)
1https://pallini.di.uniroma1.it/.

https://pallini.di.uniroma1.it/

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 329

• R3: E(i + k)E(j + k)E(i + j) = E(i + j)E(j + k)

• R4: E(j + k)E(i + k)E(i + j) = E(i + j)E(j + k)

• R5: E(k + j)E(k + i)E(i + j) = E(i + j)E(k + i)

• R6: E(k + j)E(i + k)E(i + j) = E(i + k)E(k + j)

• R7: E(j + i)E(i + j) = E(i ↔ j)E(j + i)

Among the properties, i, j, and k are all integers and are different from each other.

Property 3. [XZL+20](Swapping Properties)

• E(k + l)E(i + j) = E(i + j)E(k + l)

• E(i + j)E(k + j) = E(k + j)E(i + j)

• E(i + j)E(i + k) = E(i + k)E(i + j)

Among the properties, i, j, k, l are all integers and are different from each other.

We found that in addition to the reduction properties proposed by Xiang et al., there
are more reduction properties. For example, the simplest one:

E(i + j)E(i + j) = I

And the extra properties which are similar to Property 2:

E(i + j)E(k + i)E(i + j) = E(k + i)E(k + j) = E(k + j)E(k + i)

E(i + j)E(j + k)E(i + j) = E(i + k)E(j + k) = E(j + k)E(i + k)

The more complicated properties (noticed that none of them can be deduced from the
existing properties):

E(k + i)E(i + j)E(j + k)E(k + i)E(i + j) = E(i ↔ k)E(j ↔ k)E(k + i)E(j + k)

E(j + k)E(i + j)E(k + i)E(j + k)E(i + j) = E(i ↔ j)E(j ↔ k)E(i + j)E(k + i)

When the number of parameters in the reduction property is much greater than 3
(e.g., introduce variables i, j, k, l to describe the property when the number equals 4), it
will create more than 50 reduction properties like above, which means the Property 2 are
incomplete. Furthermore, the properties proposed by Xiang et al. have other problems
besides completeness; that is, they have redundant properties. Consider two equations,
R3 and R4, in Property 2, the right-hand formulas are equal, and the left-hand formulas
can be obtained by exchanging E(i + k) and E(j + k) through swapping properties. As a
result, we need to use a new mathematical method to revisit these properties so that there
is no redundancy and a complete description of the features that can be reduced.

Apart from obtaining a comprehensive reduction algorithm, it is crucial to determine
whether non-adjacent type-3 matrices in one sequence can be swapped to adjacent positions.
The work of Xiang et al. did not propose an explicit algorithm, and the judgment logic
in their code is as follows: for E3

x and E3
y(x < y) in sequence, judging whether they can

reach the adjacent position only judges whether E3
x can move left one by one until E3

y−1
or E3

y can move right one by one until E3
x+1.

However, this logic needs to be more balanced with the complexity of the sequence
and account for the potential difficulties in pairwise exchanges. This problem is more
complicated when the width of the circuit increases, as the following example shows:

330 A Framework to Improve the Implementations of Linear Layers

Example 1. Suppose the sequence s consists of two subsequences s1 and s2, i.e., s = s1 ·s2.
The subsequences s1 = E(y + x)E(y + t0)...E(y + tm), s2 = E(u0 + y)E(u1 + y)...E(un +
y)E(x+y) such that ti, ui, x, y are different integers. In this situation, we can find E(y +x)
and E(x + y) satisfy the R7 in reduction properties. However, the sequence s cannot
be reduced through the algorithm proposed by Xiang et al. We only need to move the
E(y + x) to the tail of s1 and move the E(x + y) into the head of s2, and then it can apply
the reduction properties.

To overcome this limitation, we design a new algorithm that accurately determines
whether a given matrix can be pairwise exchanged to adjacent positions. This algorithm
provides a more reliable approach to address the challenge of swapping properties.

By incorporating this new algorithm, we can enhance the overall effectiveness and
robustness of the reducing process. This ensures that the identified properties can not
only be reduced but also seamlessly transferred to adjoining positions. In Section 4 of our
research, we present an efficient algorithm that can completely solve the pairwise exchange
problem in O(|s|2) time complexity.

4 A Framework to Optimize s-XOR Sequence
In this section, we attempt to redefine the problem, including the definition of matrix
decomposition. Starting from a new definition, we derive a complete reduction algorithm
within the framework of matrix decomposition.

Definition 5. Let M be an invertible matrix in GL(n,F2). One Matrix Decomposed

Sequence of M is defined as S =
k∏

i=0
Ei such that S · I = M where matrix Ei in the

sequence is either a type-1 or a type-3 matrix. Applying the Property 1, the sequence S
can be transformed to Matrix Decomposed Ordered Sequence, which has the following form:

s = E1
m−1E1

m−2...E1
0 · E3

n−1E3
n−2...E3

0

Such that:
M = S · I = s · I = E1

m−1E1
m−2...E1

0E3
n−1E3

n−2...E3
0 · I

If a sequence only contains type-1 elementary matrices, it is called a type-1 sequence.
Similarly, if a sequence only contains type-3 elementary matrices, it is referred to as
a type-3 sequence. We note the front part of s as type-1 sequence of s, written as
s0 = E1

m−1E1
m−2...E1

0 while the counterpart is s1 = E3
n−1E3

n−2...E3
0 which means the

type-3 sequence of s. In case the sequence is empty (or |s| = 0), it is replaced by the
identity matrix I.

Based on the above analysis, the E1 elementary matrix in the circuit corresponds to
the permute operation, while E3 means the XOR operation of two lines of the circuit. The
order of type-3 sequence and XOR operation in the circuit are the same. However, since
the cost of permutation in the circuit is negligible and the aim is to reduce the number of
type-3 matrices in decomposed sequences, the research mainly focuses on type-3 sequences
and ignores the details of type-1 sequences. In the following section, the notation |s| is
employed to denote the length of type-3 sequences in the matrix decomposed ordered
sequences s.

Definition 6. For two type-3 sequences s1 and s2, they are equivalent if and only if there
exist two permutation matrices pL and pR, such that the following equation holds:

pL · s1 · pR = s2

At the same time, we use s1 ∼ s2 to describe the equivalence relationship.

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 331

The permutation matrix can be written as a type-1 sequence, giving rise to an alternative
way of expressing the equation: sl · s1 · sr = s2. Specifically, the type-1 sequence sl (sr)
equals permutation matrix pL (pR) corresponding respectively.

It is easy to check that the above relation is reflexive (I · s · I = s), symmetric (if
pL · s1 · pR = s2 then p−1

L · s2 · p−1
L = s1) and transitive (since if pL · s1 · pR = s2 and

p′
L · s2 · p′

R = s3, it holds that (p′
L · pL) · s1 · (pR · p′

R) = s3) and therefore it is an equivalence
relation. Consequently, we can explore its properties from the perspectives of graph or
set theory. For two equivalent sequences s1, s2, we assume their values equal to matrix
A, B ∈ GL(m,F2) respectively. Let A = {ai,j}m×m and B = {bi,j}m×m be the relation
matrices of the bipartite graph GA and GB. Under these definitions, we introduce the
following lemma:

Lemma 1. Given two type-3 sequences s1 and s2, if s1 and s2 are equivalent then the
bipartite graph GA and GB are isomorphic where A = s1 · I and B = s2 · I.

Proof. Assume the s1 and s2 are the type-3 sequences on GF (m,F2), then matrix A and
B are square matrices with size m. It is clear that if s1 and s2 are equivalent, there exists
vertices permutation σL and σR such that pL · A · pR = B where pL and pR are the matrix
forms of the permutation. The permutation σL can be obtained from pL through σL(i) = j
when the element in pL with position (i, j) equals 1.

Then it holds that Bi,j = AσR(i),σL(j) for i, j = 1, 2, ...m. According to the definition of
bipartite graph mentioned above, it means for all Bi,j = 1, then (v(i), v(j + m)) ∈ E(GA)
and (v(σR(i)), v(σL(j) + m) ∈ E(GB). In other words, we are able to construct a bijective
mapping f from V (GA) to V (GB):

f(v(i)) =
{

v(σR(i)), if i ≤ m,

v(σL(i − m) + m), else.

It holds that for any two vertices v(i) and v(j) in GA, they are adjacent if and only if their
image under permutation f , i.e., f(v(i)) and f(v(j)) are adjacent in GB .

However, this lemma does not hold conversely because the isomorphic mapping between
bipartite graph GA and GB may cross the vertex partition set V1 and V2. Then, we cannot
transform this situation to the form of Definition 6. We show a simple example:

Example 2. Given two type-3 sequences s1, s2, the corresponding values of s1 and s2
matrices are as follows. Figure 1 shows the bipartite graphs GA and GB generated by s1
and s2.

A = s1 · I =

1 0 0
1 1 0
1 0 1

 , B = s2 · I =

1 1 1
1 0 0
0 1 0

Figure 1: GA and GB

There are no permutations pL and pR such that pL · s1 · pR = s2 holds. Because the
number of ones in each row in matrix A is not in one-to-one correspondence with matrix

332 A Framework to Improve the Implementations of Linear Layers

B. While the graph GA and GB are isomorphic since exist the permutation σ can keep
the relationship of edges within GA:

σ =
(

v(1) v(2) v(3) v(4) v(5) v(6)
v(5) v(6) v(4) v(1) v(3) v(2)

)
Actually, it exist pL and pR such that pL · s1 · pR = (s2 · I)T . Furthermore, in many

other situations, the isomorphic mapping will map vertices in V1 to V2, and also map
vertices in V1 to V1.

We can use two techniques to handle this situation: first, using a directed graph instead
of an undirected one. When we only consider transferring the invertible matrix to the
directed graph, which means if matrix A has elements ai,j = 1, then the directed bipartite
graph has an edge from i ∈ V2 to j ∈ V1. The directed edge will restrict the mapping
within V1 and V2 since the in-degree of the vertices in V2 is zero where greater than zero
in V1.

The second technique, which has been actually applied in our work, is to color the
graph. In graph theory, vertex-colored graphs will consider the color of a vertex as an extra
variable. Formally, a graph with |V | nodes is said to be colored if each node in the graph
is labeled with a positive integer not greater than |V | [JKMT03]. Going back to example
2, we can color the points in V1 as 1 (blue) and, simultaneously, color the points in V2
as 2 (red.) The newly generated colored undirected graphs are not isomorphic anymore.
Because for two vertex-colored graphs, the isomorphic mapping should preserve the edge
and the vertex colors at the same time. Figure 2 shows vertex-colored in Example 1. We
note the colored graphs as GA = C(GA) and GB = C(GB), C coloring the V1 with colour
1 (blue), and coloring the V2 with colour 2 (red). After the above discussion, we can get
the following theorem:

Theorem 2. For two sequence s1 and s2, s1 ∼ s2 iff GA is isomorphic to GB where
A = s1 · I and B = s2 · I.

Proof. According to Lemma 1, we only need to prove the necessity of the theorem. Assume
GA is isomorphic to GB, then it is able to construct permutations σL and σR from a
bijective mapping f : V (GA) → V (GB). Due to the vertex-coloured graphs, f can be
separated to two part now, one’s preimage and image are v(i) where i ≤ m, the other is
the opposite. Then this theorem can be proved similarly by the method of Lemma 1.

Figure 2: GA and GB where the vertices filled with diagonal dashed lines serve as a
representative of "blue" vertices while the vertices filled with dots serve as a representative
of "red" vertices.

Therefore, we transform the process of determining the equivalence of two sequences
into the process of determining the isomorphism of two colored graphs. The latter problem
can be easily solved with the help of Nauty and Traces [MP14].

Definition 7. A type-3 sequence s, s is a composite sequence if there exists another type-3
sequence s′ such that s ∼ s′ and f(s′) < f(s). If not, we define s as a prime sequence. f
is the objective function we want to minimize which is mapping the sequence s to a ∈ R.

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 333

In order to better explain the meaning of prime sequence and objective function, we
take the search for the minimum number of XOR in implementing a reversible linear
matrix as an example up to Section 5.2. In this situation, the objective function f(s) = |s|,
where |s| is the number of type-3 matrices in the sequence s.

Equivalence relations enable the creation of equivalence classes in collections. To study
what kind of sequence can be optimized, we introduce the concept of prime sequence and
composite sequence. If we denote Sl,n is the set of all sequences with a length of l and
square matrix size of n (n also equals the width of the circuit). And for given objective
function f , we denote Pn

f as the set of all prime sequence with square matrix size of n.
Under the same objective function f and square matrix size n, the subscript and superscipt
can be omitted without ambiguity. In the given setting, the notations P and Pn

f are
interchangeable.

In the case of optimized s-XOR counts, it is evident that for sequence s such that |s| = l
cannot be decomposed to a sequence s′ with shorter length if and only if s ∈ P . Moreover,
we can design a trivial exhaustive algorithm to search all P. However, it is important to
note that the size of P can become excessively large as the variable scales up. In such
cases, the use of equivalence classes can be a more effective solution. The set P is able to
divided into P = P̄0 ∪ P̄1 ∪ ... ∪ P̄t, where the set’s elements P̄i are equivalence classes by
the relationship we defined. So, we can only store one element of every equivalence class
as a representative, and the designated set is noted as P̄n

f (P̄ for short).
Algorithm 1 is a trivial algorithm for an exhaustive search for P̄n

f within set S1,n ∪
S2,n ∪ ...∪SK,n where K is a big enough integral number to cover all prime sequences. Due
to the size of SK,n is nK(n − 1)K , and the complexity of practical isomorphism algorithms
on the worst-case is O(2n). Therefore the complexity of Algorithm 1 can be estimated
as O(n2K · 2n · |P̄|). In theory, to find the equivalent sequence that has smaller length,
we can exhaustively search P̄ with objective function f(s) = |s|. And for any s ∈ Sl,n we
can check whether exists p ∈ P such that s ∼ p. However, it is unrealistic to search the
whole P̄ in GL(n,F2) for the large n, since the size of P̄ can be roughly estimated by the
following corollary.

Algorithm 1 Exhaustive search for P̄n
f

Input: The size of general linear group n; the objective function f .
Output: P̄

1: initialize P̄ := ∅;
2: generate S := S1,n ∪ S2,n ∪ ... ∪ SK,n, (K is a big integral)
3: for all s ∈ S do
4: flagisomorphic := false
5: for p ∈ P̄ do
6: if s ∼ p then
7: flagisomorphic := true
8: if f(s) < f(p) then
9: P̄ erase p

10: P̄ append s
11: end if
12: break;
13: end if
14: end for
15: if flagisomorphic == false then
16: P̄ append s
17: end if
18: end for

334 A Framework to Improve the Implementations of Linear Layers

Corollary 1. The size of P̄ is bounded by the following inequality:

⌈
|GL(n,F2)|

(n!)2

⌉
≤

∣∣P̄∣∣ ≤ |GL(n,F2)|
n! = 1

n!

n−1∏
k=0

(2n − 2k)

Proof. The work in [Köl19] proved a similar theory. The difference is that we consider two
permutation matrices simultaneously.

Essentially, ∀p ∈ P is the optimal type-3 sequence decomposition for corresponding
reversible matrix M ′ ∈ GL(n,F2) under objective function f . Assume M ′ has two
matrix decomposed sequences s1, s2 and exist two prime sequence p1 and p2 such that
s1 ∼ p1, s2 ∼ p2 for p1, p2 ∈ P. According to the definition of prime sequence, we have
pL · p1 · pR · I = s1 · I = M ′ and p′

L · p2 · p′
R · I = s2 · I = M ′ which holds p1 ∼ p2. So exists

one and only one equivalence class such that the element in this class is equivalent to any
matrix decomposed sequences of a certain invertible matrix. In other words, we can find
one and only one equivalence class representing a specific reversible matrix.

Then for any two different invertible matrices M1 and M2, Mp · M1 = M2 where Mp is
a permutation matrix. Assume p1, p2 are the prime sequences representing M1 and M2,
respectively. It exists the permutation matrices pL, pR, p′

L, p′
R satisfy that pL · p1 · pR = M1

and p′
L · p2 · p′

R = M2. Thus it has Mp · pL · p1 · pR = p′
L · p2 · p′

R which holds p1 ∼ p2. In
other words, we can use the same equivalence class to represent the matrices M1 and M2.
For one invertible matrix M1, we can get n! different invertible matrix M2 by performing
n! different row permutation, which are belonged to the same equivalence class. It suggests
that the upper bound of the number of distinct equivalence classes can be estimated
by dividing the total number of invertible matrices by n!. When we consider the row
permutation and column permutation simultaneously, it will create some reversible matrix
repeatedly. As the result, we have the property ⌈ |GL(n,F2)|

(n!)2 ⌉ ≤ |P̄| ≤ |GL(n,F2)|
n! .

The corollary demonstrates that if we want to get the complete P̄ which are the
optimial sequence of matrix in GL(n,F2), the data size is enormous when n = 16 or n = 32.
To tackle this challenge, instead of focusing on finding the global optimum, we need to
focus on searching for local optima. We search for reductions which are optimal for every
subsequence with length lm (where lm is a parameter denoting maximum considered length
of a subsequence that can be optimized), which can be swapped to an adjacent position.

The crucial ingredient of the algorithm is the function QueryBetterSequence(s), QBS(s)
for short. It takes a sequence s of type-3 elementary matrix multiplications from GL(n,F2)
of length is equal to lm as input and returns a quadruple (flagreduce, p, pL, pR). If flagreduce is
true, the function could reduce s to p such that f(p) < f(s) and s = pL · p · pR. Otherwise,
there was no such sequence p satifies that f(p) < f(s).

In Algorithm 2, we rely on an query function QBS() and swapping check algorithm
SwapCheck(), which we will elaborate on subsequently. Essentially, the algorithm involves
iterating over all feasible discontinuous subsequences of length l with pointer array ptr
and the function MovePointer() to update the pointer array. Specifically, the function
MovePointer(ptr) attempts to move the last element of the pointer array ptr. If the current
pointer cannot move (that is, reaches the boundary or equals the value of last pointer
minus 1), it tries to move the next pointer, and so on until all pointers cannot be moved.
If the subsequence can be swapped to continuous and can be reduced to a new sequence
with smaller length, the original sequence s is updated accordingly.

In order to create the function QBS() in the program, it is crucial to leverage the
property of equivalence and the algorithm for solving GI problem. For given length lm, after
generating the P̄ through Algorithm 1 then the given sequence s ∈ Slm,n can be optimized
by the following steps. If the sequence s is equivalent to p ∈ P̄ and f(p) < f(s), we can

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 335

Algorithm 2 Reduction algorithm for s ∈ Sl,n

Input: The sequence s to be reduced; function QBS();the length lm of
subsequence in iteration;

Output: reduced sequence from s

1: initialize ptr := {0, 1, 2, ..., lm − 1}
2: initialize loop := true
3: while loop do
4: s′ := s[ptr[0]] || s[ptr[1]] || ... || s[ptr[lm − 1]]
5: (flagswap, posinsert) := SwapCheck(ptr, s)
6: (flagreduce, p, pL, pR) := QBS(s′)
7: if flagreduce and flagswap then
8: Remove items of s with index in ptr
9: Insert p at posinsert

10: Update s based on pL and pR

11: Reset ptr := {0, 1, 2, ..., lm − 1}
12: end if
13: (loop, ptr) := MovePointer(ptr)
14: end while
15: return s

optimize sequence s by using sequence p instead since we have the following equation:

pL · p · pR = s

As a result, we can build the query function assumed above by precomputing the GI
problem to obtain pL and pR. We use an example in Appdendix A to demonstrate the
process.

The function SwapCheck(ptr, s) in Algorithm 2 is able to judge the specific elements in
the sequence whether can be swapped to adjacent locations through Property 3. And if
the swapping flag is true, it will also return the indices of the elements after swapping.
However, we have to claim that the efficiency of this part of the algorithm dramatically
affects the efficiency of our entire reduction algorithm. Although the exchange algorithm
used by Xiang et al. is incomplete, its efficiency is fully guaranteed. For type-3 sequence
s = E3

0E3
1 ...E3

n, the pointer array is ptr = {i0, i1, ...ilm−1} such that i0 ≤ i1... ≤ ilm−1 and
insert position index is posinsert. In our actual use, the exchange algorithm can be divided
into three methods:

Method 1. Judge if exist posinsert ∈ ptr, E3
ik

(ik ∈ ptr) can be swapped to the index
posinsert + k in sequence s.

Method 2. Judge if exist posinsert ∈ {i0, i0 + 1, ..., ilm−1}, E3
ik

(ik ∈ ptr) can be swapped to
the index posinsert + k in sequence s.

Method 3. The generalized swapping algorithm (Algorithm 3).

To solve the problem that for given sequence s and target element index array a (assume
the size is m), we only need to consider the element among in index array a which are not
our targets. It means we need only consider the elements in the interval s′ = s[i0, ..., il′].

Subsequently, a pointer is moved in an orderly fashion, with the current element being
marked as "t". If t happens to be an element in ptr, no further action is required. Otherwise,
there are only two possible options: move it to the left outside or right outside the s′. One
essential guideline is to keep the left side of s′ as all target elements and try to move t to
the left first. If this fails, the next step is to move t to the right. When moving t to the

336 A Framework to Improve the Implementations of Linear Layers

right, we only need to determine whether all elements on the right side can be exchanged.
If not, we must continue the comparison based on the depth-first traversal method. In
the worst-case scenario where each element is to be moved, at most |s′| comparisons are
made; hence, the complexity of the overall algorithm can be estimated as O(|s|2). The
Algorithm 3 pseudocode can be found in Appendix B.

We must point out that when applying Method 3, overly complex matrices could have
efficiency issues (when the matrix size is 32 bits or more). The reason is that the worst
case in Algorithm 2 is that we always perform one optimization when we traverse all
possible pointer values. Assume the complexity of the SwapCheck() algorithm is t0 and
t1 times reduction has been made, then the complexity of the algorithm be estimated as
O(llm · t0 · t1). Thus, striking a balance and using different methods based on different
matrices is imperative.

In conclusion, we have proposed a more general reduction framework for optimizing the
objective function of the type-3 matrix sequence by solving GI problem. This framework
precomputes the function QueryBetterSequence(s) to judge whether the type-3 sequence
with length lm can be reduced. It applies the elimination strategy-3-1 or strategy-3-2
raised by Xiang et al., which continuously creates sequences. Moreover, it will check all
subsequences which can be swapped to adjacent positions for each sequence. This approach
ensures that all subsequences of length l′(l′ ≤ lm) remain optimal, thereby avoiding
the limitations of Xiang et al.’s original algorithm highlighted in Section 3, including
insufficiency and redundancy.

5 Applications
In this section, we apply our improved algorithm to a variety of invertible matrices
and get enhanced implementations under XOR counts and the quantum circuit depth,
respectively. For optimizing XOR counts, we conduct a comprehensive comparison with
existing algorithms, including those proposed by Xiang et al., Paar, and Boyar. Our new
algorithm has achieved the best results we know so far in most of the matrices provided,
including 16 × 16 and 32 × 32 matrices. Notably, we improve the AES MixColumn
implementation with 91 XORs (Table 4) from the result of 92 [XZL+20], which is equal to
the implementation under g-XOR counts [LXZZ21].

In the previous section, we introduced the definition of the objective function, which
we regarded as the length of the type-3 sequence for ease of understanding. However,
the definition of the objective function is very flexible. For example, we can change the
objective function to the quantum circuit depth corresponding to the type-3 sequence. We
apply our algorithm to many ciphers’ linear layers as well, and Table 5 provides the second
AES MixColumn implementation with a depth of 13, which is a considerable improvement
from the previous implementation of 28 [ZH22]. While considering some complex matrices,
our algorithm still faces efficiency issues, including most of the 64 × 64 matrices and high
d-XOR counts matrices in the size of 32 × 32.

5.1 Low XOR counts implementation under s-XOR metric
We applied the algorithm described in Section 4 to various matrices, including the AES
linear layer, to search for an implementation of the linear layer with fewer XOR operations.
For each matrix, we obtain the corresponding result by running the process on a 64-core
computer for over five days. It is evident that, in most cases, there was a significant
improvement compared to the original results. However, it is essential to note that while
this method offers a more comprehensive approach than the one proposed by Xiang et
al., it does have efficiency limitations. Mainly, when the initial sequence generated by
[XZL+20] involves approximately 500 or more XOR operations, the efficiency gap between

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 337

the two algorithms becomes pronounced. In such cases, when the matrix size exceeds
16 × 16, we must switch from the swapping strategy described in Section 4’s method 3 to
method 2. Moreover, the parameter l we set here is 4.

In order to compare efficiency, we have included results from recent studies in Table 2.
To distinguish between the two methods of implementation, namely s-XOR and g-XOR
implementations, we have divided them into separate sub-tables for comparison.

Table 2: Implementation cost of cipher linear layers under different methods.

Linear Layer [KLSW17] [BFI19] [TP20] [LXZZ21] [XZL+20] This paper1

g-XOR s-XOR
AES [JV02] 97 95 94 91 92 91*

Clefia M0 [SSA+07] 106 102 103 96 98 97
Clefia M1 [SSA+07] 111 110 108 108 103 103

Fox mu4 [JV05] 137 131 135 130 136 130*
Twofish [SKW+98] 129 125 122 121 111 110*

Joltik [JNP15] 48 47 44 43 44 44
SmallScale AES [CMR05] 47 45 45 43 43 42*
Whirlwind M0 [BNN+10] 212 210 - 183 183 173*
Whirlwind M1 [BNN+10] 235 234 - 180 190 181

4 × 4 matrices over GL(4,F2)
[SKOP15] 48 46 46 44 44 44

[LS16] 44 44 43 43 44 44
[LW16] 44 44 43 43 44 44

[CTG16] 43 42 41 40 41 41
[JPST17] 47 46 40 40 41 41

4 × 4 matrices over GL(8,F2)
[SKOP15] 98 94 92 91 90 89*

[LS16] 112 110 108 107 121 115
[LW16] 102 102 99 99 104 104

[CTG16] 110 108 106 105 114 112
[SS16] 107 104 102 100 114 113

[JPST17] 86 86 92 80 82 82
[SKOP15](Involutory) 100 94 92 89 91 90

[LW16](Had., Involutory) 91 90 88 86 87 86*
[LW16](Circ., Involutory) 97 - - - 86 86

[SS16](Involutory) 100 98 97 92 93 92*
[JPST17](Involutory) 91 92 86 - 83 82*

8 × 8 matrices over GL(4,F2)
[SKOP15] 209 194 - 172 170 169*

[SS17] 201 203 - 177 183 183
[SKOP15](Involutory) 217 212 - 172 185 182

1 Results with (*) indicates that they are also the state-of-the-art known to us under g-XOR counting.

5.2 Optimizing the depth of quantum implementations of linear layers
The method in section 4 is a universal optimization framework that enables the adaptation
of the objective function to search for low-depth implementations of the linear layer in
quantum circuits. This is achieved by setting f(s), the objective function, to be equal to
the depth of sequence s, then the P̄ store the type-3 sequence in which the elements are
the lowest depth of sequences to get the corresponding matrices. In the 5.2 section, we set
the f(s) = M · depth(s) + |s| where M is a big number that can consider the depth of the
circuit first, and XOR counts second. Specifically, M = 10⌈log10 |s|⌉+2 in our experiment.

In the case of a type-3 sequence, it corresponds to an XOR operation sequence. While
the order of this operation sequence should be maintained, it is not absolute. The only
requirement is to keep the values of xi and xj on which this operation depends the same.
From this perspective, a type-3 sequence can be viewed as a graph, where each operation
represents a node. These nodes contain xi and xj and are connected to the previous nodes
that contain either xi or xj . The nodes in each layer share the same quantum circuit depth,

338 A Framework to Improve the Implementations of Linear Layers

and our objective function is transformed into the depth of this graph. The following
example shows how the function f works on a quantum circuit:

Example 3. Consider a type-3 sequence: E(4 + 5)E(7 + 5)E(1 + 2)E(2 + 4)E(1 + 3)E(0 +
4)E(1 + 2). We initiate a counter array with zeros to store the depth. We then traverse the
entire sequence from the beginning. The first operation, E(1 + 2), checks that the depths
stored in counter[1] and counter[2] are both 0. Consequently, the E(1 + 2) depth is set to
1. The same procedure is followed for E(0 + 4). However, when we reach E(1 + 3), we
find that counter[1] is 1 and counter[3] is 0. In this case, we take the maximum value and
increment the depth of E(1 + 3) by one, resulting in depth 2. By following this process,
we can determine the depth of the entire sequence, which in this example is 3. Figure 3
shows how it works.

We apply this approach to the AES cipher’s linear layer and obtain a quantum circuit
with depth 13, which is in Table 5 and the other linear layer results are in Table 3. A
comparison with the method proposed by [ZH22] reveals that our implementation exhibits
high parallelism. In most layers, the number of included parallel operations exceeds 5,
whereas in Zhu et al.’s method, a considerable portion of the circuit layers only includes
less than three parallel operations. However, we have to claim that the result in Table
3 does not keep the best XOR counts, and the implementations might use several extra
XORs to achieve high parallelism. As mentioned in the introduction, many works use the
result of the s-XOR sequence to construct an AES quantum circuit since the s-XOR is an
in-place implementation of a linear layer and does not need ancilla qubits. It always leads
to lower width and full depth in the circuit. Taking the work in [HS22] as an example, they
proposed low-depth quantum circuits for AES, which applied the linear layer raised by
Xiang et al.[XZL+20]. They used #Q estimator to get the implementation depth to 30. If
taking our new implementation, it can decrease the full depth from 2198 (with T-depth-4
S-box) to 2072 and from 2312 (with T-depth-3 S-box) to 2186 while using extra 216 XOR
operations. The number of additional CNOT gates is less than 0.1% of the total number
of CNOT gates in the original quantum circuit.

Figure 3: Conversion of quantum circuits from a type-3 sequence

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 339

Table 3: Quantum circuit depth comparison for implementing
cipher linear layers under different methods

Linear Layer size [XZL+20] [ZH22] This paper
XOR Depth XOR Depth XOR Depth

AES [JV02] 32 92 41 92 28 98 13
ANUBIS [Bar00] 32 98 40 98 20 102 14

Clefia M0 [SSA+07] 32 98 41 98 27 105 15
Clefia M1 [SSA+07] 32 103 41 103 16 106 13

Fox Mu4 [JV05] 32 136 75 136 48 161 31
QARMA128 [Ava17] 32 48 12 48 5 48 5
Twofish [SKW+98] 32 111 53 111 29 113 22

Whirlwind M0 [BNN+10] 32 183 93 183 51 249 46
Whirlwind M1 [BNN+10] 32 190 90 190 54 264 50

Joltik [JNP15] 16 44 23 44 17 48 9
MIDORI [BBI+15] 16 24 9 24 3 24 4

SmallScale AES [CMR05] 16 43 29 43 19 46 10
4 × 4 matrices over GL(4,F2)

[SKOP15] 16 44 30 44 22 47 11
[LS16] 16 44 30 44 25 49 12
[LW16] 16 44 29 44 27 48 12

[CTG16] 16 41 27 41 21 43 10
[JPST17] 16 41 28 41 18 45 9

4 × 4 matrices over GL(8,F2)
[SKOP15] 32 90 42 90 20 96 14

[LS16] 32 121 79 121 54 136 29
[LW16] 32 104 69 104 42 129 27

[CTG16] 32 114 72 114 47 132 26
[SS16] 32 114 58 114 40 147 26

[JPST17] 32 82 43 82 22 86 13
[SKOP15](Involutory) 32 91 39 91 16 94 13

[LW16](Had., Involutory) 32 87 39 87 19 96 11
[SS16](Involutory) 32 93 42 93 18 98 13

[JPST17](Involutory) 32 83 34 83 14 85 11
8 × 8 matrices over GL(4,F2)

[SKOP15] 32 170 89 170 49 249 48
[SS17] 32 183 83 183 44 247 49

[SKOP15](Involutory) 32 185 85 185 37 248 46

340 A Framework to Improve the Implementations of Linear Layers

Table 4: The implementation of AES MixColumn with 91 XORs.

No. Operation No. Operation No. Operation
1 x[15] = x[15] + x[23] 32 x[12] = x[12] + x[19] 63 x[18] = x[18] + x[9]
2 x[25] = x[25] + x[1] 33 x[19] = x[19] + x[27] 64 x[27] = x[27] + x[11] y[11]
3 x[10] = x[10] + x[18] 34 x[11] = x[11] + x[10] 65 x[24] = x[24] + x[16] y[8]
4 x[5] = x[5] + x[13] 35 x[27] = x[27] + x[3] 66 x[1] = x[1] + x[16]
5 x[3] = x[3] + x[19] 36 x[3] = x[3] + x[2] 67 x[23] = x[23] + x[22] y[15]
6 x[4] = x[4] + x[28] 37 x[2] = x[2] + x[10] 68 x[16] = x[16] + x[7]
7 x[16] = x[16] + x[0] 38 x[10] = x[10] + x[26] 69 x[16] = x[16] + x[0] y[16]
8 x[1] = x[1] + x[9] 39 x[3] = x[3] + x[26] 70 x[22] = x[22] + x[6]
9 x[23] = x[23] + x[7] 40 x[26] = x[26] + x[25] 71 x[30] = x[30] + x[22] y[6]
10 x[7] = x[7] + x[31] 41 x[2] = x[2] + x[25] y[26] 72 x[22] = x[22] + x[13] y[30]
11 x[28] = x[28] + x[20] 42 x[25] = x[25] + x[17] 73 x[13] = x[13] + x[20]
12 x[22] = x[22] + x[14] 43 x[9] = x[9] + x[25] 74 x[20] = x[20] + x[12] y[12]
13 x[8] = x[8] + x[16] 44 x[17] = x[17] + x[8] 75 x[26] = x[26] + x[18] y[10]
14 x[0] = x[0] + x[8] 45 x[8] = x[8] + x[7] y[24] 76 x[11] = x[11] + x[19] y[3]
15 x[14] = x[14] + x[30] 46 x[19] = x[19] + x[23] 77 x[6] = x[6] + x[14] y[22]
16 x[30] = x[30] + x[6] 47 x[10] = x[10] + x[1] y[2] 78 x[7] = x[7] + x[31] y[31]
17 x[24] = x[24] + x[15] 48 x[25] = x[25] + x[15] 79 x[19] = x[19] + x[3] y[19]
18 x[13] = x[13] + x[29] 49 x[3] = x[3] + x[7] y[27] 80 x[12] = x[12] + x[28] y[4]
19 x[6] = x[6] + x[5] 50 x[4] = x[4] + x[7] 81 x[18] = x[18] + x[10] y[18]
20 x[5] = x[5] + x[21] 51 x[7] = x[7] + x[15] 82 x[17] = x[17] + x[16]
21 x[21] = x[21] + x[28] 52 x[15] = x[15] + x[14] 83 x[9] = x[9] + x[17] y[17]
22 x[28] = x[28] + x[23] 53 x[25] = x[25] + x[0] y[9] 84 x[17] = x[17] + x[1] y[25]
23 x[29] = x[29] + x[5] 54 x[0] = x[0] + x[23] 85 x[28] = x[28] + x[4] y[28]
24 x[5] = x[5] + x[4] y[29] 55 x[1] = x[1] + x[23] 86 x[21] = x[21] + x[13] y[5]
25 x[18] = x[18] + x[2] 56 x[23] = x[23] + x[31] 87 x[13] = x[13] + x[5] y[13]
26 x[28] = x[28] + x[3] 57 x[31] = x[31] + x[30] 88 x[31] = x[31] + x[15] y[7]
27 x[3] = x[3] + x[11] 58 x[0] = x[0] + x[24] y[0] 89 x[1] = x[1] + x[25] y[1]
28 x[11] = x[11] + x[15] 59 x[14] = x[14] + x[29] 90 x[15] = x[15] + x[23] y[23]
29 x[4] = x[4] + x[12] 60 x[29] = x[29] + x[21] y[21] 91 x[14] = x[14] + x[22] y[14]
30 x[20] = x[20] + x[4] 61 x[4] = x[4] + x[19] y[20]
31 x[12] = x[12] + x[11] 62 x[19] = x[19] + x[18]

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 341

Table 5: The quantum implementation of AES MixColumn with depth of 13 and 98 XORs

Depth Operation Depth Operation Depth Operation
1 x[18] = x[18] + x[26] 5 x[2] = x[2] + x[1] 10 x[10] = x[10] + x[2]
1 x[20] = x[20] + x[12] 5 x[24] = x[24] + x[0] 11 x[14] = x[14] + x[13]
1 x[21] = x[21] + x[5] 6 x[10] = x[10] + x[18] 11 x[31] = x[31] + x[30]
1 x[23] = x[23] + x[31] 6 x[3] = x[3] + x[11] y[19] 11 x[25] = x[25] + x[17] y[1]
1 x[11] = x[11] + x[27] 6 x[21] = x[21] + x[28] 11 x[0] = x[0] + x[8] y[16]
1 x[8] = x[8] + x[24] 6 x[27] = x[27] + x[26] 11 x[2] = x[2] + x[18]
1 x[22] = x[22] + x[6] 6 x[0] = x[0] + x[15] 11 x[15] = x[15] + x[7] y[7]
1 x[25] = x[25] + x[1] 6 x[24] = x[24] + x[16] 11 x[27] = x[27] + x[11] y[27]
2 x[31] = x[31] + x[15] 6 x[12] = x[12] + x[4] 12 x[13] = x[13] + x[5] y[21]
2 x[4] = x[4] + x[20] 6 x[20] = x[20] + x[31] 12 x[14] = x[14] + x[29] y[14]
2 x[5] = x[5] + x[29] 7 x[18] = x[18] + x[9] 12 x[16] = x[16] + x[8] y[0]
2 x[27] = x[27] + x[3] 7 x[26] = x[26] + x[25] 12 x[7] = x[7] + x[31] y[23]
2 x[6] = x[6] + x[14] 7 x[15] = x[15] + x[23] 12 x[30] = x[30] + x[6]
2 x[19] = x[19] + x[18] 7 x[12] = x[12] + x[19] 12 x[1] = x[1] + x[25] y[9]
2 x[12] = x[12] + x[28] 7 x[1] = x[1] + x[0] 12 x[2] = x[2] + x[26] y[18]
2 x[1] = x[1] + x[9] 7 x[24] = x[24] + x[31] y[8] 13 x[31] = x[31] + x[23] y[31]
3 x[30] = x[30] + x[14] 7 x[28] = x[28] + x[20] 13 x[5] = x[5] + x[21] y[5]
3 x[15] = x[15] + x[7] 7 x[21] = x[21] + x[13] y[29] 13 x[30] = x[30] + x[22] y[22]
3 x[3] = x[3] + x[18] 8 x[9] = x[9] + x[25] 13 x[8] = x[8] + x[24] y[24]
3 x[29] = x[29] + x[21] 8 x[23] = x[23] + x[22] 13 x[6] = x[6] + x[14] y[6]
3 x[13] = x[13] + x[20] 8 x[11] = x[11] + x[19]
3 x[27] = x[27] + x[31] 8 x[26] = x[26] + x[10] y[26]
3 x[28] = x[28] + x[4] 8 x[1] = x[1] + x[31]
3 x[9] = x[9] + x[24] 8 x[18] = x[18] + x[17] y[10]
4 x[14] = x[14] + x[5] 8 x[12] = x[12] + x[3] y[12]
4 x[7] = x[7] + x[6] 8 x[28] = x[28] + x[4] y[4]
4 x[18] = x[18] + x[2] 9 x[9] = x[9] + x[16] y[17]
4 x[3] = x[3] + x[23] 9 x[22] = x[22] + x[14] y[30]
4 x[4] = x[4] + x[27] 9 x[25] = x[25] + x[8]
4 x[19] = x[19] + x[15] 9 x[23] = x[23] + x[7] y[15]
4 x[17] = x[17] + x[24] 9 x[11] = x[11] + x[10] y[3]
4 x[29] = x[29] + x[20] y[13] 9 x[19] = x[19] + x[15]
4 x[30] = x[30] + x[22] 9 x[17] = x[17] + x[1] y[25]
5 x[6] = x[6] + x[21] 9 x[20] = x[20] + x[12] y[20]
5 x[16] = x[16] + x[23] 10 x[25] = x[25] + x[31]
5 x[5] = x[5] + x[12] 10 x[19] = x[19] + x[27] y[11]
5 x[4] = x[4] + x[15] y[28] 10 x[14] = x[14] + x[30]
5 x[27] = x[27] + x[10] 10 x[1] = x[1] + x[16]
5 x[20] = x[20] + x[11] 10 x[8] = x[8] + x[15]

6 Conclusion
In this work, we present a new flexible framework of heuristic search for optimizing the
XOR counts under s-XOR and the depth of the quantum circuit. With the new definition
and introduction of the new equivalent relationship, we solve the reducing problem by
solving the GI problem instead of using reducing properties. The new approach avoids
the previous limitations and achieves superior results in many reversible matrices. For
AES MixColumn, we achieve an implementation with 91 XORs which equals the best
implementation under the g-XOR metric. Furthermore, compared with previous work, the
depth of quantum depth has been reduced from depth 16 to depth 13 without ancilla. The
results show the new approach is effective and has the potential to improve the existing
quantum circuits.

As a future work, it would be interesting to study the more effective way to create
original type-3 sequences instead of using strategy-3-1 or strategy-3-2. Moreover, the
research about solving SLP or SLPD problems can be potentially inspired by this work.

342 A Framework to Improve the Implementations of Linear Layers

Acknowledgments
The authors would like to thank the anonymous reviewers for their sightful comments and
patient suggestions. This work is supported by the National Natural Science Foundation
of China (No. 62072445 and No. 62202493) and the CAS Project for Young Scientists in
Basic Research (Grant No. YSBR-035).

References
[Art11] Michael Artin. Algebra (Second Edition). Pearson Prentice Hall, 2011.

[Ava17] Roberto Avanzi. The QARMA Block Cipher Family. Almost MDS Ma-
trices Over Rings with Zero Divisors, Nearly Symmetric Even-mansour
Constructions with Non-involutory Central Rounds, and Search Heuristics
for Low-latency S-boxes. IACR Transactions on Symmetric Cryptology, pages
4–44, 2017.

[Bab18] László Babai. Group, graphs, algorithms: the graph isomorphism problem.
In Proceedings of the International Congress of Mathematicians: Rio de
Janeiro 2018, pages 3319–3336. World Scientific, 2018.

[Bar00] Paulo SLM Barreto. The Anubis Block Cipher. NESSIE, 2000.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
Block Cipher for Low Energy. In Advances in Cryptology–ASIACRYPT 2015:
21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29–December
3, 2015, Proceedings, Part II 21, pages 411–436, 2015.

[BFI19] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. More Results on
Shortest Linear Programs. In Advances in Information and Computer Secu-
rity: 14th International Workshop on Security, IWSEC 2019, Tokyo, Japan,
August 28–30, 2019, Proceedings 14, pages 109–128, 2019.

[BJK+20] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. Skinny-
aead and Skinny-hash. IACR Transactions on Symmetric Cryptology, pages
88–131, 2020.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic Minimization Tech-
niques with Applications to Cryptology. Journal of Cryptology, 26:280–312,
2013.

[BNN+10] Paulo Barreto, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen, and Elmar
Tischhauser. Whirlwind: a New Cryptographic Hash Function. Designs,
codes and cryptography, 56:141–162, 2010.

[BP10] Joan Boyar and René Peralta. A New Combinational Logic Minimization
Technique with Applications to Cryptology. In Experimental Algorithms:
9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May
20-22, 2010. Proceedings 9, pages 178–189, 2010.

[CMR05] Carlos Cid, Sean Murphy, and Matthew JB Robshaw. Small Scale Variants
of the AES. In International Workshop on Fast Software Encryption, pages
145–162, 2005.

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 343

[CTG16] Beierle Christof, Kranz Thorsten, and Leander Gregor. Lightweight Mul-
tiplication in GF(2n) with Applications to MDS Matrices; CRYPTO 2016.
LNCS 9814, 2016.

[DBBV+21] Timothee Goubault De Brugiere, Marc Baboulin, Benoît Valiron, Simon
Martiel, and Cyril Allouche. Reducing the Depth of Linear Reversible
Quantum Circuits. IEEE Transactions on Quantum Engineering, 2:1–22,
2021.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon V1. 2. Submission to the CAESAR Competition, 5(6):7, 2016.

[EHDRM23] Solane El Hirch, Joan Daemen, Raghvendra Rohit, and Rusydi H Makarim.
Twin Column Parity Mixers and Gaston-A New Mixing Layer and Permuta-
tion. Cryptology ePrint Archive, 2023.

[For96] Scott Fortin. The Graph Isomorphism Problem. 1996.

[GLRS16] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Stein-
wandt. Applying Grover’s Algorithm to AES: Quantum Resource Estimates.
In International Workshop on Post-Quantum Cryptography, pages 29–43,
2016.

[Gro96] Lov K Grover. A Fast Quantum Mechanical Algorithm for Database Search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[HBD17] Harald Andrés Helfgott, Jitendra Bajpai, and Daniele Dona. Graph Iso-
morphisms in Quasi-polynomial Time. arXiv preprint arXiv:1710.04574,
2017.

[HS22] Zhenyu Huang and Siwei Sun. Synthesizing Quantum Circuits of AES with
Lower T-depth and Less Qubits. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 614–644, 2022.

[JKMT03] Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Com-
pleteness results for graph isomorphism. Journal of Computer and System
Sciences, 66(3):549–566, 2003.

[JNP15] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik V1. 3. CAESAR
Round, 2, 2015.

[JNRV20] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia.
Implementing Grover Oracles for Quantum Key Search on AES and LowMC.
In Advances in Cryptology–EUROCRYPT 2020: 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II 30, pages 280–310,
2020.

[JPST17] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux. Opti-
mizing Implementations of Lightweight Building Blocks. Cryptology ePrint
Archive, 2017.

[JV02] Daemen Joan and Rijmen Vincent. The Design of Rijndael: AES-the Ad-
vanced Encryption Standard. Information Security and Cryptography, 2002.

344 A Framework to Improve the Implementations of Linear Layers

[JV05] Pascal Junod and Serge Vaudenay. FOX: a New Family of Block Ciphers.
In Selected Areas in Cryptography: 11th International Workshop, SAC 2004,
Waterloo, Canada, August 9-10, 2004, Revised Selected Papers 11, pages
114–129, 2005.

[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. Shorter
Linear Straight-line Programs for MDS Matrices. IACR Transactions on
Symmetric Cryptology, pages 188–211, 2017.

[Köl19] Lukas Kölsch. XOR-counts and Lightweight Multiplication with Fixed Ele-
ments in Binary Finite Fields. In Advances in Cryptology–EUROCRYPT
2019: 38th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019,
Proceedings, Part I 38, pages 285–312, 2019.

[KPPY14] Khoongming Khoo, Thomas Peyrin, Axel Y Poschmann, and Huihui Yap.
FOAM: Searching for Hardware-optimal SPN Structures and Components
with a Fair Comparison. In Cryptographic Hardware and Embedded Systems–
CHES 2014: 16th International Workshop, Busan, South Korea, September
23-26, 2014. Proceedings 16, pages 433–450, 2014.

[LPS20] Brandon Langenberg, Hai Pham, and Rainer Steinwandt. Reducing the Cost
of Implementing the Advanced Encryption Standard As a Quantum Circuit.
IEEE Transactions on Quantum Engineering, 1:1–12, 2020.

[LPZW23] Qun Liu, Bart Preneel, Zheng Zhao, and Meiqin Wang. Improved Quantum
Circuits for AES: Reducing the Depth and the Number of Qubits. Cryptology
ePrint Archive, 2023.

[LS16] Meicheng Liu and Siang Meng Sim. Lightweight MDS Generalized Circulant
Matrices. In International Conference on Fast Software Encryption, pages
101–120, 2016.

[LW16] Yongqiang Li and Mingsheng Wang. On the Construction of Lightweight
Circulant Involutory MDS Matrices. In International Conference on Fast
Software Encryption, pages 121–139, 2016.

[LWF+22] Qun Liu, Weijia Wang, Yanhong Fan, Lixuan Wu, Ling Sun, and Meiqin
Wang. Towards Low-latency Implementation of Linear Layers. Cryptology
ePrint Archive, 2022.

[LXZZ21] Da Lin, Zejun Xiang, Xiangyong Zeng, and Shasha Zhang. A Framework to
Optimize Implementations of Matrices. In Cryptographers’ Track at the RSA
Conference, pages 609–632, 2021.

[Max19] Alexander Maximov. AES MixColumn with 92 XOR Gates. Cryptology
ePrint Archive, 2019.

[ME19] Alexander Maximov and Patrik Ekdahl. New Circuit Minimization Tech-
niques for Smaller and Faster AES SBoxes. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pages 91–125, 2019.

[MP14] Brendan D McKay and Adolfo Piperno. Practical Graph Isomorphism, II.
Journal of symbolic computation, 60:94–112, 2014.

[MZ22] Dmitri Maslov and Ben Zindorf. Depth Optimization of CZ, CNOT, and
Clifford Circuits. IEEE Transactions on Quantum Engineering, 3:1–8, 2022.

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 345

[NC01] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quantum
Information. Phys. Today, 54(2):60, 2001.

[Paa97] Christof Paar. Optimized Arithmetic for Reed-Solomon Encoders. In Pro-
ceedings of IEEE international symposium on information theory, page 250,
1997.

[SKOP15] Siang Meng Sim, Khoongming Khoo, Frédérique Oggier, and Thomas Peyrin.
Lightweight MDS Involution Matrices. In Fast Software Encryption: 22nd
International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015,
Revised Selected Papers 22, pages 471–493, 2015.

[SKW+98] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and
Niels Ferguson. Twofish: A 128-bit Block Cipher. NIST AES Proposal,
15(1):23–91, 1998.

[SS16] Sumanta Sarkar and Habeeb Syed. Lightweight Diffusion Layer: Importance
of Toeplitz Matrices. Cryptology ePrint Archive, 2016.

[SS17] Sumanta Sarkar and Habeeb Syed. Analysis of Toeplitz MDS Matrices. In
Australasian Conference on Information Security and Privacy, pages 3–18,
2017.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu
Iwata. The 128-bit Blockcipher CLEFIA. In Fast Software Encryption: 14th
International Workshop, FSE 2007, Luxembourg, Luxembourg, March 26-28,
2007, Revised Selected Papers 14, pages 181–195, 2007.

[TP20] Quan Quan Tan and Thomas Peyrin. Improved Heuristics for Short Linear
Programs. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 203–230, 2020.

[W+01] Douglas Brent West et al. Introduction to Graph Theory, volume 2. 2001.

[XZL+20] Zejun Xiang, Xiangyoung Zeng, Da Lin, Zhenzhen Bao, and Shasha Zhang.
Optimizing Implementations of Linear Layers. IACR Transactions on Sym-
metric Cryptology, pages 120–145, 2020.

[ZH22] Chengkai Zhu and Zhenyu Huang. Optimizing the Depth of Quantum Im-
plementations of Linear Layers. In International Conference on Information
Security and Cryptology, pages 129–147, 2022.

[ZWS+20] Jian Zou, Zihao Wei, Siwei Sun, Ximeng Liu, and Wenling Wu. Quan-
tum Circuit Implementations of AES with Fewer Qubits. In Advances in
Cryptology–ASIACRYPT 2020: 26th International Conference on the Theory
and Application of Cryptology and Information Security, Daejeon, South
Korea, December 7–11, 2020, Proceedings, Part II 26, pages 697–726, 2020.

A An example in optimizing sequence
To better explain how to optimize the sequence through solving GI problem, we take a
matrix M ∈ GL(4,F2) and try to optimize the number of XOR counts in implementation.
Assume the value of M is:

M =

0 1 1 0
1 1 0 0
0 1 0 0
1 1 0 1

346 A Framework to Improve the Implementations of Linear Layers

Moreover, we get a Matrix Decomposed Ordered Sequence of M through strategy 3-1 or
strategy 3-2 in Section 3:

s = E(0 ↔ 1)E(1 ↔ 2)E(3 + 0)E(0 + 2)E(2 + 1)E(0 + 2).
We first consider using the reduction properties proposed by Xiang et al. to optimize

the sequence s. As discussed above, we can ignore the type-1 matrices that consume zero
XOR operation. For type-3 subsequence s′ = E(3 + 0)E(0 + 2)E(2 + 1)E(0 + 2) in s, the
algorithm iterates all subsequences in s′ with length of 3 and length of 2. Furthermore, we
have Table 6, which shows that the sequence s′ cannot be reduced:

Table 6: All cases of subsequences in s′ with length of 3 and length of 2

Case Problem
E(0 + 2)E(2 + 1)E(0 + 2)

Cannot be reduced through Property 2E(3 + 0)E(0 + 2)
E(0 + 2)E(2 + 1)
E(2 + 1)E(0 + 2)

other cases Cannot be swapped to adjacent position

Now, we use the method in Section 4 to analyze the sequence s′. In the setting of
optimizing the sequence length, we will first let the objective function f(s) = |s| and
parameter n = 4. Then, the framework will generate all equavalence classes on GL(4,F2)
with Algorithm 1. Assume we obtain one prime sequence p = E(1 + 2)E(0 + 2), and its
corresponding value Mp ∈ GL(4,F2):

Mp =

1 0 1 0
0 1 1 0
0 0 1 0
0 0 0 1

When the algorithm iterates all subsequences in s′ with length of 3 and length of 2, it will
calculate the corresponding matrix (the first case in Table 6):

M1 = E(0 + 2)E(2 + 1)E(0 + 2) · I =

1 1 0 0
0 1 0 0
0 1 1 0
0 0 0 1

It is found that the bipartite graphs GMp

and GM1 are isomorphic. And with the help of
Theorem 2 and GI problem solver, we can get two permutation matrices pL and pR such
that Ms = pL · Mp · pR, where:

pL = E(1 ↔ 2), pR = E(1 ↔ 2)
Then we have:

M1 = E(0 + 2)E(2 + 1)E(0 + 2) = pL · p · pR = E(1 ↔ 2)E(1 + 2)E(0 + 2)E(1 ↔ 2)
= E(2 + 1)E(0 + 1)

After substituting the new Ms sequence with length of 2 into original sequence s, we
will get:

s = E(0 ↔ 1)E(1 ↔ 2)E(3 + 0)E(2 + 1)E(0 + 1).
Notice that the optimization process does not use any reduction property.

Yufei Yuan, Wenling Wu, Tairong Shi, Lei Zhang and Yu Zhang 347

B The general swapping algorithm

Algorithm 3 Swapping check algorithm s ∈ Sl,n

Input: indexArray: the index array we aim to exchange the corresponding element to
adjacent location; s: the original sequence;

Output: flagswap: Whether the element can be swapped together; index: The location
after swap successfully.

1: initialize nowSeqInterval := 0
2: initialize i := indexArray[0]
3: initialize leftNum := 0
4: initialize targetElement := {s[indexArray[0]], s[indexArray[1]], ...}
5: initialize elementRight := []
6: while i < indexArray[−1] do
7: if i ∈ indexArray then
8: continue
9: end if

10: # Move s[i] to the left by default
11: moveDirection := left
12: for j ∈ targetElement do
13: if s[i] cannot swap with j then
14: moveDirection = right; break
15: end if
16: end for
17: if moveDirection == left then
18: swap s[i] to left and update
19: leftNum+ = 1; i+ = 1; continue
20: end if
21: if moveDirection == right then
22: if s[i] can swap to right then
23: i+ = 1; continue
24: append s[i] to elementRight
25: end if
26: if s[i] cannot swap to right then
27: return false
28: end if
29: end if
30: end while
31: update s through elementRight
32: index = leftNum + indexArray[0]
33: return true

	Introduction
	Our Contribution
	Organization

	Preliminaries
	Notation
	Relevant Knowledge

	Method of Matrix Decomposition
	A Framework to Optimize s-XOR Sequence
	Applications
	Low XOR counts implementation under s-XOR metric
	Optimizing the depth of quantum implementations of linear layers

	Conclusion
	An example in optimizing sequence
	The general swapping algorithm

