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Abstract. In this paper, we study the quantum security of block ciphers based
on Simon’s period-finding quantum algorithm. We explored the relations between
periodic functions and truncated differentials. The basic observation is that truncated
differentials with a probability of 1 can be used to construct periodic functions, and
two such constructions are presented with the help of a new notion called difference-
annihilation matrix. This technique releases us from the tedious manual work of
verifying the period of functions. Based on these new constructions, we find an
8-round quantum distinguisher for LBlock and a 9/10/11/13/15-round quantum
distinguisher for SIMON-32/48/64/96/128 which are the best results as far as we
know. Besides, to explore the security bounds of block cipher structures against
Simon’s algorithm based quantum attacks, the unified structure, which unifies the
Feistel, Lai-Massey, and most generalized Feistel structures, is studied. We estimate
the exact round number of probability 1 truncated differentials that one can construct.
Based on these results, one can easily check the quantum security of specific block
ciphers that are special cases of unified structures, when the details of the non-linear
building blocks are not considered.
Keywords: Simon’s Algorithm · Truncated Differentials · LBlock · SIMON ·
Unified Structures

1 Introduction
With the development of physics and computation techniques, quantum computation has
subverted the cognition of traditional theories of computation, and thus attracted extensive
attention, especially in the field of cryptography, since the emergence of large-scale quantum
computers affects the security of existing cryptographic schemes significantly.

The proposal of Shor’s algorithm [Sho97] is a milestone in developing quantum compu-
tation. Shor’s algorithm can solve problems such as the factorization of large integers and
the computation of discrete logarithms in polynomial time, which leads to the cracking of
the public key cryptography designed based on those problems in the quantum scenario.
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In addition, Grover’s algorithm [Gro96] and Simon’s algorithm [Sim97] also challenge the
security of existing symmetric cryptographic schemes. Grover’s algorithm quadratically
accelerates the exhaustive key search for any cryptographic primitives. Simon’s algorithm
can be used to derive the period of periodic functions in polynomial time, by which the
attacks on symmetric cryptographic structures can be conducted.

Various methods have been proposed to be used as cryptanalysis tools in the classical
scenario, which should also be established for evaluating the post-quantum security of
current cryptographic primitives and providing the necessary preparation for designing
new quantum-resistant cryptographic primitives, as the authors suggested in [KLLN16a].
At present, quantum attacks on cryptographic primitives can be roughly divided into
two categories. One is the use of existing quantum algorithms to quantize classical
cryptanalysis techniques, such as quantum differential and linear attacks [KLLN16b],
quantum Demirci and Selçuk meet-in-the-middle attacks [HS18, BNS19b], quantum slide
attacks [DDW20, BNS19a], and quantum rebound attacks [HS20, DSS+20, CKS21]. The
other, as classical cryptanalysis does, is to consider combining the problems that quantum
algorithms can solve with the flaws that exist in cryptographic primitives to complete
the attack. Along this line of research, Simon’s algorithm has attracted much attention
since it was used by Kuwakado and Morii to distinguish the 3-round Feistel structure
in 2010 [KM10]. Later, Simon’s algorithm was also applied in [KM12] to conduct a
key recovery attack on the Even-Mansour structure, and the authors proved that the
Even-Mansour structure was no longer secure under quantum scenarios.

Roughly, Simon’s algorithm based quantum attacks can be divided into two categories.
The first one is to distinguish a round-reduced block cipher, such as the 3-round distin-
guisher of Feistel structure presented in [KM10]. Soon after, quantum distinguishers for
generalized Feistel structures [DLW19, HKK20, ZWSW23], improved quantum distinguish-
ers for Type-1 generalized Feistel structures [NIDI19], and chosen-ciphertext distinguisher
for Feistel and Feistel-FK structures [IHM+19] are proposed. Furthermore, Leander et
al. presented a clever idea combining Grover’s algorithm and Simon’s algorithm at ASI-
ACRYPT 2017 [LM17], and a key recovery attack for FX structure. Inspired by this idea,
Dong and Wang [DW18] proposed a key recovery attack on the 5-round Feistel structure
based on the 3-round distinguisher. The other line of research converts the weakness of
modes of operations into recovering the period of well-designed periodic functions, such as
the key recovery attack of the Even-Mansour cipher [KM12]. Following this idea, Kaplan
et al. broke several modes of operations at CRYPTO 2016 [KLLN16a], such as CBC-MAC,
GCM, and OCB. Usually, the period in such attacks contains the key information, thus,
recovering the period can directly retrieve the key.

Although Simon’s quantum algorithm has many applications in the cryptanalysis of
symmetric ciphers, it requires access to a quantum encryption oracle to which it may
acquire superposition states. Recently, this requirement has been removed by offline
Simon’s algorithms [BHN+19], where an attacker can only access a classical encryption
oracle and run Simon’s algorithm in an offline style with an increase in the time complexity.
However, both Simon’s algorithm and the offline Simon’s algorithm need to devise a
periodic function.
Our Contributions. In this paper, we focus on the quantum security of basic symmetric
primitives and investigate the construction of periodic functions for round-reduced block
ciphers. We establish the links between periodic functions and truncated differentials
and present a classical view of quantum distinguishing attacks for the first time. Our
contributions are threefold.

(1) We observe that a periodic function always exhibits a differential with probability 1, and
prove that as long as there is an r-round truncated differential whose output differences
can be annihilated, a periodic function can be constructed. Moreover, two types of
periodic functions that cover most existing studies and general constructions for such
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periodic functions from truncated differentials with probability 1 are presented, which
prevents us from manually verifying the periodic property of constructed functions.
Moreover, this indicates that the study of classical truncated differentials can be a
guide for the study of quantum distinguishing attacks for a round-reduced block cipher.

(2) As an illustration, our general techniques are applied to LBlock and SIMON block
ciphers. Regarding LBlock, an 8-round distinguisher which is 4 rounds longer than
the previous generic result can be constructed. For the SIMON family block ciphers,
we construct 9/10/11/13/15-round distinguishers for SIMON-32/48/64/96/128, while
the best previous generic results cover 6 rounds for all SIMON variants. We provide
a comparison table in Table 1. All our distinguishers can be easily verified from the
view of truncated differentials.

(3) Finally, we study the quantum resistance of block cipher structures, where the de-
tails of non-linear components are not considered. The round number of quantum
distinguishers for the unified structure is estimated. It’s proved that for a d-branch
unified structure with a few restrictions, one can always construct a (2d− 1)-round
quantum distinguisher. Specifically, this result applies to classical Feistel, MARS-like,
and SM4-like structures.

Organization. This paper is organized as follows. Section 2 introduces some notations
and briefly revisits Simon’s quantum algorithm. We introduce a new technique on how to
construct periodic functions from truncated differentials in Section 3. Section 4 presents
an extended periodic function. Section 5 applies our technique to LBlock and SIMON block
ciphers. We study the round number of such quantum distinguishers for unified structures
in Section 6. Section 7 concludes the paper.

2 Preliminaries
2.1 Notation
This subsection introduces the notations that will be used throughout this paper. Let F2
denote the finite field with two elements, and Fn

2 denote the n-dimensional vector space
over F2. All vectors that appear in this paper are treated as column vectors. With a bit of
abuse of notations, we let a = (a1, ..., an) ∈ Fn

2 denote a column vector, where we omit
the transpose notation for clarity. 0n represents an n-dimensional zero vector. Denote the
bit-wise XOR and AND operations by ⊕ and &, respectively. Let b = (b1, ...., bn) ∈ Fn

2 ,
a · b ≜ a1b1 ⊕ · · · ⊕ anbn denote the inner product of a and b. Let V be a subset of Fn

2 ,
V ⊥ = {x ∈ Fn

2 | x· y = 0, ∀ y ∈ V } is the orthogonal complement of V . If V is a subspace,
V ⊥ is the orthogonal complement subspace of V . Let Sj(x) denote the left cyclic shift of
x by j bits for x ∈ Fn

2 .

2.2 Truncated Differential
The idea of truncated differentials was first introduced by Knudsen et al. in [Knu94] and
later formalized in [BLN14, LTW18, ZSLS15]. Different from a classical differential, a
truncated differential focuses on difference propagations from a set of input differences to
a set of output differences. In this paper, we adopt the more general definition in [ZSLS15]
shown below.

Definition 1 ([ZSLS15]). Let E : Fn
2 → Fn

2 be a block cipher, ∆I ⊂ Fn
2 and ∆O ⊂ Fn

2 be
two subsets. ∆I → ∆O = {α→ β | ∃ α ∈ ∆I , β ∈ ∆O, x ∈ Fn

2 , s.t. E(x⊕ α)⊕ E(x) = β}
is called a truncated differential of E. Moreover, Pr(∆I → ∆O) = Pr{E(x)⊕ E(x⊕ α) ∈
∆O|α ∈ ∆I} is called the probability of ∆I → ∆O.
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Table 1: The Distinguishers of SIMON and LBlock.

Cipher Round Setting Method Ref.

LBlock

3
Quantum

qCPA [IHM+19]
4 qCCA [IHM+19]
8 qCPA Sect. 5.1
14

Classical
Differential [WZ11]

14 Linear [WZ11]
17 Integral [WHG+19]

SIMON-32

5
Quantum

qCPA [IHM+19]
6 qCCA [IHM+19]
9 qCPA Sect. 5.2
14

Classical
Differential [LLW17]

14 Linear [KLT15]
14 Integral [XZBL16]

SIMON-48

5
Quantum

qCPA [IHM+19]
6 qCCA [IHM+19]
10 qCPA Sect. 5.2
17

Classical
Differential [KLT15]

17 Linear [KLT15]
17 Integral [XZBL16]

SIMON-64

5
Quantum

qCPA [IHM+19]
6 qCCA [IHM+19]
11 qCPA Sect. 5.2
23

Classical
Differential [LLW17]

22 Linear [KLT15]
18 Integral [XZBL16]

SIMON-96

5
Quantum

qCPA [IHM+19]
6 qCCA [IHM+19]
13 qCPA Sect. 5.2
31

Classical
Differential [LLW17]

33 Linear [LPS21]
22 Integral [XZBL16]

SIMON-128

5
Quantum

qCPA [IHM+19]
6 qCCA [IHM+19]
15 qCPA Sect. 5.2
41

Classical
Differential [LLW17]

42 Linear [LPS21]
26 Integral [XZBL16]
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Moreover, if Pr(∆I → ∆O) = 1, we call it a probability 1 truncated differential.

2.3 Simon’s Algorithm
In this subsection, we briefly introduce Simon’s quantum algorithm [Sim97]. Throughout
this paper, we assume that readers have basic knowledge about quantum computation.
Simon’s algorithm was originally proposed to solve the following problem.
Simon’s problem Given a vectorial Boolean function f : Fn

2 → Fm
2 with the promise that

there exists an s ∈ Fn
2 \ {0n}, such that for any x, y ∈ Fn

2 , f(x) = f(y)⇔ x⊕ y ∈ {0n, s},
the goal is to find s.

The condition that f(x) = f(y) ⇔ y = x ⊕ s for any distinct x and y is called the
Simon’s promise. According to the birthday bound, O(2n/2) queries are needed to find s in
the classical setting, while only O(n) quantum queries are required by Simon’s algorithm
in the quantum setting. We assume that the attacker has access to a quantum oracle Uf ,
which is defined as Uf |x⟩ |y⟩ = |x⟩ |x⊕ f(y)⟩. Simon’s algorithm works as follows:

1. Initialize two quantum registers |0⟩⊗n and |0⟩⊗m.

2. Apply the Hadamard transform to the first register to obtain an equal superposition,

1√
2n

∑
x∈Fn

2

|x⟩ |0⟩ .

3. Apply the unitary operator Uf to obtain the state

1√
2n

∑
x∈Fn

2

|x⟩ |f(x)⟩ .

4. Measure the second register in the computational basis and get a random output
value denoted by y. According to Simon’s promise, there is a pair of input {x, x⊕ s}
such that f(x) = f(x⊕ s) = y. Thus, the quantum state of the first register after
the measurement is

1√
2

(|x⟩+ |x⊕ s⟩).

5. Apply the Hadamard transform to the first register again to obtain the state

1√
2n+1

∑
z∈Fn

2

[(−1)z·x(1 + (−1)z·s)] |z⟩ .

6. Measure the first register in the computational basis and get a random output value
denoted by z. If z · s = 1, the amplitude of |z⟩ is 0, which means the probability of
measuring such a z is 0. Therefore, one obtains z · s = 0 from the above fact.

Repeating the above subroutine O(n) times, n− 1 linearly independent vectors orthog-
onal to s can be obtained with a high probability. Furthermore, s can be recovered by
solving linear equations.

2.4 The Extension of Simon’s Algorithm
In practical settings, Simon’s promise is not always completely satisfied in most cases.
For example, when round functions are not permutations, there is no guarantee that the
periodic function designed in [KM10] strictly satisfies Simon’s promise. That is, one has a
function f satisfying the only condition that y = x⊕ s implies f(x) = f(y) for any x. In
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this case, Simon’s algorithm no longer seems to work. In the following, we call such an f a
periodic function and s a period of f .

In order to solve the shortcomings when the Simon’s promise is not strictly satisfied,
Kaplan et al. [KLLN16a] studied Simon’s algorithm and they introduced the parameter
ε(f, s), where

ε(f, s) = max
t∈{0,1}n\{0n,s}

Pr[f(x) = f(x⊕ t)],

and concluded that as long as a periodic function f is constructed, which satisfies that
there exists p0 such that ε(f, s) ≤ p0 < 1, one can also use Simon’s algorithm with f to
recover the period s with probability at least 1− (2( 1+p0

2 )c)n after cn queries. Although
Kaplan et al.’s technique is applicable to any (vectorial) Boolean functions, it is tricky to
evaluate an upper bound of ε(f, s).

Later, Ito et al. [IHM+19] further relaxed the condition to design quantum distinguishers.
Suppose that we are given an oracle O : Fn

2 → Fn
2 which is either a cryptographic primitive

E ∈ Perm(n) or a random permutation Π ∈ Perm(n), where Perm(n) denotes the set of
all permutations over n-bit strings, the goal is to distinguish these two cases. Suppose
that the quantum oracles UO and UO−1 are given. Assume that a function fO : Fl

2 → Fm
2

can be constructed by querying the oracles UO and UO−1 , which satisfies that it is a
periodic function when O = E, and it is not periodic with a high probability when O is a
random permutation. Instead of recovering a period for constructing distinguishers, Ito
et al. [IHM+19] focused on the dimension of the vector space spanned by those vectors
returned by applying Simon’s algorithm to fO. If fO has a period s, the obtained vectors
must be orthogonal to s. Hence the dimension of the vector space spanned is less than l.
On the other hand, if fO has no periods, the dimension can reach l. Thus, the evaluation
of ε(f, s) is no longer required. This means as long as a periodic function is constructed, it
is not required to prove the period is unique and a distinguishing attack can be achieved.

2.5 Automatic Search of Periodic Functions

Recently, Canale et al. proposed a generic algorithm for the automatic search of period
functions and presented the first efficient key-recovery attacks against constructions like
5-round MISTY L-FK and 5-round Feistel-FK using Simon’s algorithm at CRYPTO
2022 [CLS22]. They represent those functions dependent on a round-reduced cipher E
by a class of circuits, and these circuits can make use of oracle gates of E. Moreover,
the oracle gates for several internal parts of E, such as the key-less round functions, are
provided. Then, they automatically examine all circuits for periodicity.

Although their approach discovered many improved quantum distinguishers, this tech-
nique has several limitations. On the one hand, their approach is still quite complex in
practice. On the other hand, their results do not cover periodic functions that have been
constructed for some cryptographic primitives. In order to make the search algorithm prac-
tical, their approach just instantiates a reduced cipher with a small input size. Thus, the
search algorithm may return an invalid periodic function, which further needs a verification
process. Besides, the search algorithm requires exhaustively evaluating all possible com-
binations, whose complexity may be practically infeasible for more sophisticated ciphers.
Compared with our approach which will be illustrated later, their approach fails to leverage
the specific properties of the round function, while our approach exploits such properties
in a difference-based technique, thus, potentially leading to longer distinguishers.
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3 Links between Periodic Functions and Truncated Differ-
entials

Revisiting the previous work [KM10, KM12, NIDI19, DLW19, HK20], the key to construct-
ing a quantum distinguisher based on Simon’s algorithm is to design a periodic function.
Previous studies construct periodic functions by analyzing the properties of underlying
primitives case by case. In this section, we present a more general way to design periodic
functions, which makes it easier to verify their periods.

3.1 Observations on Periodic Functions
Before we formally introduce our general technique, we would like to first make an in-depth
study on periodic functions. The general idea is to try to connect periodic functions with
differentials.

Suppose f : Fn
2 → Fm

2 is a periodic function with a period s (s ≠ 0n), i.e., f(x) = f(x⊕s)
for any x ∈ Fn

2 . Note that (x, x⊕ s) is a natural input pair with an input difference s when
considering differential cryptanalysis. Thus, we can restate periodic functions from the
perspective of differential cryptanalysis.
Lemma 1. f : Fn

2 → Fm
2 is a periodic function if and only if there exists an s (s ≠ 0n),

such that the difference transition from s to 0 is of probability 1, i.e., Pr[s f→ 0] = 1.
However, it is unlikely to exist such an input-output difference pair for a symmetric

cipher. For instance, if f is a block cipher, this difference pair indicates that there are two
plaintexts that are encrypted to the same ciphertext, which will never happen for a block
cipher as decryption is necessary. Thus, we consider a more general case for symmetric
ciphers.

3.2 Constructing Periodic Functions from Truncated Differentials
In this section, we show how to construct periodic functions from the perspective of
truncated differentials, before which we first present a new notion which we call the differen
ce-annihilation matrix.
Definition 2. Let ∆O ⊂ Fn

2 be a non-empty set of differences. Assume that there exists
a non-zero matrix L and such that Lx = γ for any x ∈ ∆O, where γ ∈ Fn

2 is a fixed value.
Then, we call L a difference-annihilation matrix of ∆O.
Theorem 1. Let E : Fn

2 → Fn
2 be a block cipher, which has a probability 1 truncated

differential ∆I → ∆O. Assume that there exists a difference-annihilation matrix M ∈ Fk×n
2

of ∆O with a full row rank, such that Mx = γ for any x ∈ ∆O. Let γ0 and γ1 be two k-bit
constants, such that γ0 ⊕ γ1 = γ. Define a function g as

g : F2 × Fn
2 → Fk

2

(b, x) 7→M · E(x)⊕ γb.

Then, g is a periodic function with (1, s) being its period for any s ∈ ∆I .

Proof. ∀ s ∈ ∆I , ∀ x ∈ Fn
2 , since Pr[∆I

E→ ∆O] = 1, E(x)⊕ E(x⊕ s) ∈ ∆O always holds.
Thus we have

g(0, x)⊕ g(1, x⊕ s)
=M · E(x)⊕ γ0 ⊕M · E(x⊕ s)⊕ γ1

=M · (E(x)⊕ E(x⊕ s))⊕ γ

=γ ⊕ γ = 0k.

This proves that g is a periodic function, and (1, s) is a period of g for any s ∈ ∆I .
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Remark 1 When γ = 0 in Theorem 1, one can check that all of (0, s), (1, s) and (1, 0)
are periods of g. In this case, we can simplify the construction of g as g(x) = M · E(x),
and s is a period of g for any s ∈ ∆I .
Remark 2 Denote l = |∆O| the number of vectors in ∆O, and denote τi (i = 0, 1, . . . , l−1)
the i-th vector of ∆O. Let ∆̄O = {τi ⊕ τ0 | i = 1, 2, . . . , l − 1}. Algorithm 11 can return
such an M and the corresponding γ.

Algorithm 1: Evaluating the non-zero matrix M for any set ∆O ⊆ Fn
2

Input: the output set ∆O of truncated differential;
Output: difference-annihilation matrix M , fixed constant γ;

1 τ0 ← the first vector of ∆O;
2 Evaluate ∆̄O from ∆O as in Remark 2;
3 v0, ..., vr−1 ← maximal linearly independent system of ∆̄O;
4 if r = n then
5 return Nonexistence;
6 end
7 else
8 Solving linear equations: v0 · x = 0, ..., vr−1 · x = 0, and denote u0, ..., uk−1 a

set of basis of the solution space; // r ⊕ k = n

9 M ← (u0, ..., uk−1)T;
10 γ ←Mτ0;
11 return M, γ;
12 end

Definition 3. Let E : Fn
2 → Fn

2 be a block cipher, which has an r-round truncated
differential ∆I → ∆O with probability 1. If there exists a difference-annihilation matrix
M of ∆O, we call the periodic function as constructed in Theorem 1 a Type-I periodic
function of Er, where Er is the r-round reduced version of E.

Example 1. The Feistel structure EFeistel : Fn
2 × Fn

2 → Fn
2 × Fn

2 , has a 2-round truncated
differential ∆I = {(0n, γ)} → ∆O = {(u, γ) | u ∈ Fn

2} with probability 1, where γ ∈ Fn
2 and

γ ≠ 0n. Take (0n, γ) as the first vector τ0 of ∆O, Algorithm 1 returns the following matrix
M1 = (O I) and γ = M1τ0, where I and O denote the n×n identity and zero matrices over
F2. Let γ0, γ1 ∈ Fn

2 be two arbitrarily chosen constants, such that γ0 ⊕ γ1 = γ. According
to Theorem 1, g1(b, y, z) = M1 · EFeistel

2 (y, z)⊕ γb is a periodic function.

4 Extending Quantum Distinguishers
4.1 New Insights on the 3-Round Distinguisher by Kuwakado and Morii
If we try to use a Type-I periodic function to construct a distinguisher for the Feistel
structure, we can only get a 2-round distinguisher as in Example 1. However, there exists
a 3-round quantum distinguisher given by Kuwakado and Morii as shown in Figure 1. The
periodic function g′

1 used by such a distinguisher is defined as follows.

g′
1 : F2 × Fn

2 → Fn
2

(b, x) 7→ R3 ⊕ γb,

where (L3, R3) = EFeistel
3 (γb, x), γ0 and γ1 are two fixed n-bit constants.

1As in most cases, the truncated differential is constructed by evaluating which bits have active
differences, and this results in a well-structured output difference set. In this case, the maximal linearly
independent system is constructed by traversing its differentially active bits.
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Figure 1: The 3-round Distinguisher of the Feistel structure.

According to Figure 1, in order to construct such a 3-round quantum distinguisher,
the left branch of the input needs to be fixed to two distinct constants (γ0 and γ1) with a
difference γ = γ0 ⊕ γ1, such that the output difference of the first round function is a fixed
unknown value s = F1(γ0)⊕ F1(γ1), which is key-related. In this case, if the difference of
the right branch equals the output difference of the first round function, the left branch of
the input to the second round has a zero input difference. As {(0n, γ)} → {(u, γ) | u ∈ Fn

2}
is a truncated differential of 2-round Feistel structure with probability 1. Thus, g′

1 is a
periodic function, and the 3-round quantum distinguisher can be constructed.

4.2 Type-II Periodic Function
Inspired by the 3-round distinguisher of the Feistel structure, we further extend the Type-I
periodic functions to construct new periodic functions.

Theorem 2. Let E : Fn
2 → Fn

2 be a block cipher, which has an r2-round truncated
differential ∆I → ∆O with probability 1. Assume that there exists a difference-annihilation
matrix M ∈ Fk×n

2 of full row rank with Mx = γ for any x ∈ ∆O. Moreover, assume that
the r1-round difference transition from δ → ∆I has a probability of 1 when one of the inputs
belongs to a t-dimensional2 (t < n) affine space w ⊕W , where W = span{ζ1, ζ2, ..., ζt}
(i.e., ζ1, ζ2, ..., ζt constitute a basis of W ). Denote δ⊥ the projection of δ to W ⊥, and δ̂
the projection of δ to W . Let φ be a bijective linear transformation, and φ is defined as

φ : Ft
2 →W

(x1, ..., xt) 7→ x1ζ1 ⊕ · · · ⊕ xtζt.

Let w0 = w, w1 = w ⊕ δ⊥, and γ0, γ1 be two constants such that γ = γ0 ⊕ γ1. Let g be
defined as

g : F2 × Ft
2 → Fk

2

(b, x) 7→M · Er1+r2(wb ⊕ φ(x))⊕ γb.

Then, g is a periodic function with a period (1, s), where s = φ−1(δ̂).
2If t = n, the affine space is the full space Fn

2 and one can construct (r1 + r2)-round probability 1
truncated differentials with no input restrictions.
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Proof. Since φ(x) ∈W for any x ∈ Ft
2,

w0 ⊕ φ(x) = w ⊕ φ(x) ∈ w ⊕W.

Thus, w0 ⊕ φ(x), as one of the input to Er1+r2 , falls into w ⊕W . Moreover,

[w0 ⊕ φ(x)]⊕ [w1 ⊕ φ(x⊕ φ−1(δ̂))] = w0 ⊕ w1 ⊕ δ̂ = δ⊥ ⊕ δ̂ = δ.

According to the fact that the difference transition δ → ∆I has a probability of 1 when
one of the inputs belongs to w ⊕W , it can deduced that

Er1(w0 ⊕ φ(x))⊕ Er1(w1 ⊕ φ(x⊕ φ−1(δ̂)) ∈ ∆I .

Let s = φ−1(δ̂), Er2 ◦ Er1(w0 ⊕ φ(x))⊕ Er2 ◦ Er1(w1 ⊕ φ(x⊕ s)) ∈ ∆O always holds,
due to Pr[∆I

Er2→ ∆O] = 1. Thus,

g(0, x)⊕ g(1, x⊕ s)
=M · Er1+r2(w0 ⊕ φ(x))⊕ γ0 ⊕M · Er1+r2(w1 ⊕ φ(x⊕ s))⊕ γ1

=M · (Er2 ◦ Er1(w0 ⊕ φ(x))⊕ Er2 ◦ Er1(w1 ⊕ φ(x⊕ s)))⊕ γ

=γ ⊕ γ = 0k.

This proves that g is a periodic function, and (1, s) is a period.

Remark 3 Figure 2 illustrates the construction of periodic functions in Theorem 2
from a differential point of view. Given an input x, the left and right branches of Figure 2
represent the encryption procedure of a differential pair with input difference φ−1(δ̂).
Besides, in order to obtain identical outputs, wi and γi are XORed to the left and right
branches for i = 0 and 1, respectively. What marked with red in the middle of Figure 2
presents the intermediate differences during the encryption procedure.
Remark 4 It should be noted that wi and γi (i = 0, 1) are explicitly XORed to the two
branches in Figure 2, thus, they should be known to the attacker. In this case, one can get
identical outputs if the inputs have a difference of φ−1(δ̂), and this results in a periodic
function whose period φ−1(δ̂) can be recovered by Simon’s algorithm. This observation
confirms the fact that only δ⊥ is used to construct the periodic function in Theorem 2.

Definition 4. Let E : Fn
2 → Fn

2 be a block cipher, which has an r2-round truncated
differential ∆I → ∆O of probability 1, and an r1-round truncated differential δ → ∆I of
probability 1 with the restriction that one of the inputs belongs to an affine space w ⊕W .
If there exists a difference-annihilation matrix M ∈ Fk×n

2 of ∆O and the projection of δ
to W ⊥ is known, we call the periodic function as constructed in Theorem 2 a Type-II
periodic function of Er1+r2 , where Er1+r2 is the (r1 + r2)-round reduced version of E.

Example 2. Reconsidering the 3-round quantum distinguisher of the Feistel structure
by Kuwakado and Morii, the periodic function used in such a distinguisher is a Type-II
periodic function as shown in Figure 1. The symbols marked with red present the difference
transition δ = (γ, s)→ (?, γ) for the 3-round Feistel structure, where γ is a fixed constant
and s = F1(γ0) ⊕ F1(γ1) with γ0 ⊕ γ1 = γ (F1 is the first round function). In this case,
r2 = 2, r1 = 1, and the input affine space is w ⊕ W = (γ0, 0n) ⊕ {(0n, u) | u ∈ Fn

2}.
The 2-round truncated differential {(0n, γ)} → {(u, γ) | u ∈ Fn

2} holds with probability
1 for and input. Define φ as φ(x) = (0n, x), where x ∈ Fn

2 . Moreover, it can be
checked that δ⊥ = (γ, 0n) ∈ W ⊥, δ̂ = (0n, s) ∈ W . In this case, the 1-round difference
transition from δ⊥ ⊕ δ̂ = δ = (γ, s) → {(0n, γ)} has a probability of 1 when one of
the inputs belongs to w ⊕W . Let w0 = w = (γ0, 0n), w1 = w ⊕ δ⊥ = (γ1, 0n). Thus,
according to Theorem 2, we can reconstruct Kuwakado and Morii’s 3-round distinguisher
as g′

1 = M1 · EFeistel
3 (wb ⊕ φ(x))⊕ γb = M1 · EFeistel

3 (γb, x)⊕ γb = R3 ⊕ γb, where M1 is
defined as in Example 1.
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Figure 2: An illustration of Type-II periodic functions.

In addition to the Feistel structure, the period functions used in the quantum dis-
tinguishers of Type-1 GFS [DLW19, CGD21, NIDI19], Type-2 GFS [DLW19, CGD21],
the Lai-Massey structure [MGWH22], SM4 [HK20, CGD21, CHLS20], MARS [CGD21] and
Skipjack-A/B [CGD21] are also Type-II periodic functions.

5 Applications to LBlock and SIMON

5.1 8-Round Distinguisher of LBlock

LBlock is designed from a variant of Feistel structures with the only difference that a
left circular shift is performed on the right branch. Therefore, the 4-round quantum
distinguisher of Feistel structure designed in [IHM+19] is also applicable to LBlock. How-
ever, when considering the details of the round function from truncated differentials with
probability 1, longer quantum distinguishers can be devised.

The round function of LBlock adopts the SPN structure as shown in Figure 3. Let a
single Sbox in the round function be differentially active (as a single active Sbox leads
to a slower diffusion) to construct probability 1 truncated differentials. We found that
each of the eight possible active Sboxes leads to the same round number of probability 1
truncated differentials. Specifically, we can deduce that if an input difference δI ∈ Vi, the
output difference δO ∈ Vindex(i) for 0 ≤ i ≤ 7, where index = {2, 0, 3, 1, 6, 4, 7, 5} and

Vi = {(x0, ..., x7) ∈ (F4
2)8 | xi ∈ F4

2, xj = 04 for j ̸= i}, 0 ≤ i ≤ 7.

Thus, let 032 ̸= α ∈ V0, α0 and α1 be two 32-bit constants with α0 ⊕ α1 = α. Figure 3
illustrates a 7-round truncated differential ∆I = {(032, α)} → ∆O with probability 1 for
LBlock, where

∆O = {(u, y) ∈ (F32
2 )2 | u ∈ F32

2 , y ∈ V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5 ⊕ V6 ⊕ V7}.
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Figure 3: The 8-round distinguisher of LBlock.

Furthermore, there exists W = {(032, u) | u ∈ F32
2 },w = (α0, 032), δ⊥ = (α, 032) ∈ W ⊥,

δ̂ = (032, s) ∈ W , s = F1(α0) ⊕ F1(α1), such that the 1-round difference transition
δ⊥ ⊕ δ̂ = (α, s) → {(032, α)} has a probability of 1 when one of the inputs belongs to
w ⊕W . Let w0 = w = (α0, 032), w1 = w ⊕ δ⊥ = (α1, 032). The corresponding linear
transformation φ is defined as φ(x) = (032, x), where x ∈ F32

2 . Applying Algorithm 1 to
∆O, it returns a difference-annihilation matrix M2, where the row vectors of M2 constitute
a basis of ∆⊥

O = {(032, u) | u ∈ V0}. According to Theorem 2, we can construct a Type-II
periodic function for the 8-round LBlock ELBlock

8 as

g2 : F2 × F32
2 → F4

2

(b, x) 7→M2 · ELBlock
8 (αb, x).

5.2 7/9-Round Distinguisher of SIMON-32

In [IHM+19], Ito et al. presented a 6-round distinguisher for Feistel-FK structures. Thus,
a 6-round distinguisher for the SIMON family can be obtained directly. In the following, we
take SIMON-32 as an example to illustrate how to construct longer distinguishers.

7-Round Distinguisher of SIMON-32 The round function of SIMON-32 without the round
key is defined as

F (x) = S8(x)&S1(x)⊕ S2(x), x ∈ F16
2 .

Figure 4 illustrates a 6-round truncated differential

∆I = {(016, α)} → ∆O = {(u, y) ∈ (F16
2 )2 | u ∈ F16

2 , y ∈ V1,15}

with probability 1 for SIMON-32, where α = (1, 015) ∈ F16
2 , and V1,15 = {(y0, . . . , y15) ∈

F16
2 | y1 = 0, y15 = 0}. Let α0, α1 ∈ Fn

2 , such that α0 ⊕ α1 = α. Then, there exists
W = {(016, u) | u ∈ F16

2 }, w = (α0, 016), δ⊥ = (α, 016) ∈ W ⊥, δ̂ = (016, s) ∈ W,
s = F1(α0)⊕F1(α1), where F1 is the first round function of the 7-round reduced SIMON-32.
One can verify that the 1-round difference transition δ⊥ ⊕ δ̂ = (α, s)→ ∆I = {(016, α)}
has a probability of 1 when one of the inputs belongs to w ⊕W . Let w0 = w = (α0, 016),



308 Quantum Distinguishers Based on Simon’s Algorithm and Truncated Differentials

 

  

    
 

  

?

Figure 4: The 7-Round distinguisher of SIMON-32.
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7-Round Distinguisher  

Figure 5: The 9-Round Distinguisher of SIMON-32.

w1 = w ⊕ δ⊥ = (α1, 016), and the corresponding linear transformation φ is defined as
φ(x) = (016, x), x ∈ F16

2 . Then, the 7-round Type-II periodic function of SIMON-32 is

g3 : F2 × F16
2 → F2

2

(b, x) 7→M3 · ESIMON
7 (αb, x),

where the row vectors of M3 are composed of a set of basis of ∆⊥
O = {(016, u) | u ∈ V ⊥

1,15}.

9-round Distinguisher of SIMON-32 [IHM+19] presented a technique to construct longer
distinguishers for Feistel-FK structures, which is also applicable to the SIMON family. The
9-round distinguisher for SIMON-32 can be obtained by placing the 7-round one from the
second round to the eighth round, and adding one round before and after the 7-round
distinguisher, respectively.

Since (1, s) is a period of g3, and s = F1(α0)⊕ F1(α1) = F (α0)⊕ F (α1), where F is
the round function of SIMON without the round key, which implies that the period does not
contain any key information. Let λb = αb⊕k1 for b ∈ F2, where k1 is the first round key of
the 9-round reduced SIMON-32. Thus, λ0, λ1 ∈ Fn

2 are two distinct and unknown constants
with λ0 ⊕ λ1 = α0 ⊕ α1 = α. Replacing αb involved in the above 7-round distinguisher by
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λb. Furthermore, we define

g′
3 : F2 × F16

2 → F2
2

(b, x) 7→M ′
3(F (R9)⊕ L9),

where (L9, R9) = ESIMON
9 (x, F (x)⊕ αb), the row vectors of M ′

3 are composed of a set of
basis of V ⊥

1,15. As illustrated in Figure 5, g′
3 is a periodic function for the 9-round reduced

SIMON-32, and s′ = F (λ0)⊕ F (λ1) = F (α0 ⊕ k1)⊕ F (α1 ⊕ k1) is a period.

Distinguishers for other SIMON variants Similarly, one can also construct longer dis-
tinguishers for other SIMON variants. The results are listed in Table 2, where ∆I and
∆O denote the input and output difference of the corresponding truncated differentials,
and R1 represents the round number of truncated differentials with probability 1, respec-
tively. Wn;Γ = {(u, y) ∈ (Fn

2 )2 | u ∈ Fn
2 , y = (y0, y1 . . . , yn−1) ∈ Fn

2 , yi = 0, i ∈ Γ}, and
Γ ⊂ {0, 1, . . . , n − 1}. Since one can always extend the truncated differentials for one
round, and add two rounds using the technique in [IHM+19]. Thus, R = R1 + 3 represents
the round number of quantum distinguishers.

Table 2: Quantum Distinguishers of the SIMON Family.

Block size R1 ∆I ∆O R

32 6 {(016, 1, 015)} W16;{1,15} 9
48 7 {(024, 1, 023)} W24;{1} 10
64 8 {(032, 1, 031)} W32;{1,31} 11
96 10 {(048, 1, 047)} W48;{1,47} 13
128 12 {(064, 1, 063)} W64;{1,63} 15

Note It is not difficult to observe that the periodic functions used to construct quantum
distinguishes for LBlock and SIMON have a few output bits. Specifically, the periodic
functions for LBlock and SIMON-32/48/64/96/128 have output sizes of 4 and 2/1/2/2/2
bits, respectively. However, this feature does not affect the distinguishing properties. It
has been proved in [MS22] that Simon’s algorithm still works with a small (approximately
doubled) overhead even if the output size of periodic functions is a single bit.

6 Quantum Distinguishers of Cipher Structures
From previous sections, we can deduce that both Type-I and Type-II periodic functions
contain a truncated differential with probability 1. This motivates us to study the round
number that such truncated differentials can reach. Note that the periodic function for
the 3-round Feistel structure holds for any bijective round functions, which is a structural
property of the Feistel structure. Although, one can find longer distinguishers when
focusing on a particular Feistel block cipher, such as LBlock and SIMON. It’s necessary
to study the weakness of such cipher structures against quantum distinguishing attacks.
Thus, in order to study the round number of truncated differentials with probability 1,
we may ignore the details of non-linear components as in [SLR+15], where the authors
presented the idea of structures to characterize ciphers’ properties which are independent
of the specific details of non-linear components.

6.1 The Unified Structure
In this section, we briefly revisit the structure theory [SLR+15] and the unified struc-
ture [LSL+22].
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Figure 6: The Unified Structure FA,B,π.

Definition 5 ([SLR+15]). Let E : Fn
2 → Fn

2 be a block cipher with bijective S-boxes as
the basic non-linear components. A structure EE on Fn

2 is defined as a set of block ciphers
that are exactly the same as E except that the S-boxes can take all possible bijective
transformations on the corresponding domains.

Basically, a structure is a set of block ciphers that differ only in their non-linear
components. When studying cryptographic properties, one only needs to focus on those
holding for all instances within the structure, i.e., irrelevant to the particular details of
non-linear components. In the following, when we state a specific property of a structure,
it holds for all instances of this structure. In [LSL+22], the authors revisited the Feistel
and Lai-Massey structures and presented a conversion between these two classical cipher
structures. As a result, they presented a unified structure covering these two structures as
well as most generalized Feistel structures. The unified structure is illustrated in Figure 6.

In a unified structure, the input is divided into d branches and the width of each
branch is n bits. Each round is composed of four steps: the first step applies linear
transformations to each input branch, which is denoted by Ai for the i-th branch, where
Ai is an m × n matrix for i = 1, 2, . . . , d; the second step first sums the output of the
first step and then applies a permutation f : Fm

2 → Fm
2 to the sum; the third step applies

a linear transformation Bi to the output of f and sums the output to the i-th branch,
where Bi is an n×m matrix for i = 1, 2, . . . , d; the last step applies a branch permutation
denoted by π to all branches. In the following, we will denote an r-round unified structure
by FA,B,π(f1, ..., fr), where fi is the i-the round function. Moreover, it has been proved
in [LSL+22] that FA,B,π(f1, ..., fr) is invertible if and only if

∑d
i=1 AiBi = O. Denote

A = (A1 · · · Ad) which is an m× dn matrix, and B = (BT
1 · · · BT

d )T which is a dn×m
matrix. Since π is a permutation on d branches and each branch is of n bits, we will
interchangeably use π as either a d×d matrix over Fn

2 or a dn×dn matrix over F2 without
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causing ambiguity. Denote

Ar =


A

Aπ
...

Aπr

 ,Br = (B πB · · · πrB) .

6.2 Probability 1 Truncated Differentials
[LSL+22] has shown that rank(Ad−1) < nd always leads to the existence of a truncated
differential with probability 1 for any rounds. In this section, we will illustrate that
rank(Bd−1) < nd also leads to a truncated differential with probability 1.

Theorem 3. Given a unified structure FA,B,π(f1, ..., fr). If rank(Bd−1) < nd, there
always exists a truncated differential with probability 1 for any r.

Proof. Since rank(Bd−1) < nd, there exists an (nd − rank(Bd−1)) × nd non-zero matrix
L of full row rank such that LBd−1 = O. Taking ord(π) = d into consideration, for any
integer i, we have LπiB = O.

Let 0 ̸= ∆0 ∈ Fnd
2 be the input difference to FA,B,π(f1, ..., fr). Let the input and

output differences to fi be αi and βi ∈ Fn
2 , and ∆i be the output difference of the i-th

round, where i = 1, 2, . . . , r. Then we have
∆0 = π∆0 ⊕ πBβ1,

∆1 = π2∆0 ⊕ π2Bβ1 ⊕ πBβ2,
...

∆r = πr∆0 ⊕ πrBβ1 ⊕ πr−1Bβ2 ⊕ · · · ⊕ πBβr.

Therefore,

L∆r = L
(
πr∆0 ⊕ πrBβ1 ⊕ πr−1Bβ2 ⊕ · · · ⊕ πBβr

)
= Lπr∆0 ⊕ LπrBβ1 ⊕ Lπr−1Bβ2 ⊕ · · · ⊕ LπBβr

= Lπr∆0.

Thus, for any input difference ∆0, L annihilates the difference πrBβ1⊕πr−1Bβ2⊕· · ·⊕πBβr

and {∆0} → {∆r | L∆r = Lπr∆0} is a truncated differential with probability 1.

Consequently, Ad−1 and Bd−1 should have a rank of nd to prevent an attacker from
constructing probability 1 truncated differentials for arbitrary rounds. In Proposition 1,
we present the exact round number for such differentials.

Proposition 1. Denote FA,B,π(f1, ..., fr) a unified structure with d branches and each of
size n bits. Let Ai and Bi as denoted above with

∑d
i=1 AiBi = O, and fi’s are bijective.

Then, there always exists an (r1 + r2)-round probability 1 truncated differential, where r1
is the minimal number such that rank(Ar1) = nd, and r2 is the minimal number such that
rank(Br2) = nd.

Proof. According to the definition of r1, the matrix Ar1−1 is not of full column rank. Thus,
there exists a non-zero vector ∆0 ∈ Fnd

2 such that Ar1−1∆0 = 0. Let ∆0 be the input
difference to FA,B,π(f1, ..., fr), it can be verified that the input difference to f1 is A∆0 = 0.
Therefore, the output difference of the first round is ∆1 = π∆0 and the input difference
to f2 is Aπ∆0 which is also equal to zero. Similarly, it can be deduced that the input
difference to the first r1 round functions is zero, and the output difference of the first r1
rounds is thus deterministically being ∆r1 = πr1∆0.
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Since Br2−1 = (B πB · · · πr2−1B) is not of full row rank, we can find a non-zero
matrix M such that M(B πB · · · πr2−1B) = O. Denote the output difference of fr1+i

by βr1+i where i = 1, ..., r2. Thus, the output difference of the (r1 + 1)-th round is
∆r1+1 = π(πr1∆0 ⊕ Bβr1+1). Moreover, the output difference of the (r1 + r2)-th round
is ∆r1+r2 = πr1+r2∆0 ⊕ πr2Bβr1+1 ⊕ πr2−1Bβr1+2 ⊕ · · · ⊕ πBβr1+r2 . Left multiplying the
matrix Mπ−1 to ∆r1+r2 , one can get

Mπr1+r2−1∆0 ⊕Mπr2−1Bβr1+1 ⊕ · · · ⊕MBβr1+r2 = Mπr1+r2−1∆0. (1)

Thus, Mπ−1 is a difference-annihilation matrix and it annihilates πr2Bβr1+1⊕πr2−1Bβr1+2⊕
· · · ⊕ πBβr1+r2 . Therefore, a truncated differential from {∆0} to {η ∈ Fnd

2 | Mπ−1η =
Mπr1+r2−1∆0} can be constructed for FA,B,π(f1, ..., fr) with probability 1.

Example 3. Let ESM4 : F128
2 → F128

2 denote the unified structure derived from SM4, which
means ESM4 is a set of block ciphers identical to SM4 except the round functions. The
corresponding parameters are as follows. A1 = B2 = B3 = B4 = O, B1 = A2 = A3 =
A4 = I, where O and I denote the 32× 32 zero and identity matrices over F2, respectively.
Moreover, the branch permutation is

π =


O I O O
O O I O
O O O I
I O O O

 .

Thus, A = (O I I I), B = (I O O O)T. Since

A3 =


O I I I
I O I I
I I O I
I I I O

 ,B3 =


I O O O
O O O I
O O I O
O I O O


are full rank matrices, we have r1 = r2 = 3.

Furthermore, A2(α, α, α, 0) = 0, where 0 ̸= α ∈ F32
2 , and there exists the following

non-zero matrix M = (O I O O) such that M(B πB π2B) = (O O O).
Accordingly, we can get {η ∈ F128

2 | Mπ−1η = Mπ5(α, α, α, 0)} = {(α, u2, u3, u4) |
u2, u3, u4 ∈ F32

2 }. Thus a truncated differential {(α, α, α, 0)} → {(α, u2, u3, u4) | u2, u3, u4 ∈
F32

2 } with probability 1 and covering 6 rounds can be constructed for ESM4, which can be
obtained directly from Figure 7.

6.3 Bounding Probability 1 Truncated Differentials
Proposition 1 presents a lower bound for probability 1 truncated differentials that one can
construct. Conversely, if the round number r > r1 + r2, it can be proved that, for any
fixed input difference ∆0, one cannot find a truncated differential with probability 1 such
that all instance of FA,B,π(f1, ..., fr) conforming it.

Proposition 2. Denote FA,B,π(f1, ..., fr) a unified structure with d branches and each
of size n bits. Let Ai and Bi as denoted above with

∑d
i=1 AiBi = O. Assume AπiB’s

(i = 1, 2, . . . , d− 1) are invertible matrices, and fi’s are bijective. Then, there doesn’t exists
an r-round probability 1 truncated differential when r > r1 + r2, where r1 is the minimal
number such that rank(Ar1) = nd, and r2 is the minimal number such that rank(Br2) = nd.

Proof. For any given non-zero input difference ∆0 to the structure, assume that the first r′

rounds have a zero difference to the round function. According to the proof of Proposition 1,
it can be deduced that r′ ≤ r1.
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Figure 7: A 7-Round distinguisher of SM4.

Denote the output difference of fr′+i by βr′+i, then the input difference to the (r′ +i)-th
round is

∆r′+i = πr′+i−1∆0 ⊕ πi−1Bβr′+1 ⊕ · · · ⊕ πBβr′+i−1

for i = 1, 2, . . . , r − r′, and the input difference to fr′+i is

αr′+i = Aπr′+i−1∆0 ⊕Aπi−1Bβr′+1 ⊕ · · · ⊕AπBβr′+i−1.

When i = 1, αr′+1 = Aπr′∆0 ≠ 0. Thus, βr′+1 can take any non-zero difference. Since
αr′+2 = Aπr′+1∆0⊕AπBβr′+1, βr′+2 can take any non-zero difference when Aπr′+1∆0 = 0.
Moreover, βr′+2 can be zero if Aπr′+1∆0 ̸= 0 and Aπr′+1∆0 ⊕AπBβr′+1 = 0. Similarly,
αr′+i = Aπr′+i∆0⊕Aπr′+i−1Bβr′+1⊕· · ·⊕AπBβr′+i−1, thus βr′+i can take any difference
for i ≥ 3.

Assume that there exists a matrix M such that

M ·∆r+1 = M · πr∆0 ⊕M · πr−r′
Bβr′+1 ⊕ · · · ⊕M · πBβr

is a fixed constant. For any fixed βr′+1, βr′+2, . . . , βr−1, there are two possibilities for the
input difference αr to fr. The first case is that αr ̸= 0 and βr can take any non-zero
difference. Since

M ·∆r+1 ⊕M · πr∆0 ⊕M · πr−r′
Bβr′+1 ⊕ · · · ⊕M · π2Bβr−1

is fixed and equal to M ·πBβr. It requires that M ·πB = 0. The other case is that αr = 0,
and we can choose other values for βr′+1, βr′+2, . . . , βr−1 such that αr ̸= 0. Therefore, it
can be deduced that M · πB = O. Thus, M · πB must be a zero matrix in either case.
Similarly, M · πr−r′

B = · · · = M · π2B = O, and Mπ(B πB · · · πr−r′−1B) = O. Since
r − r′ − 1 ≥ r2, it can be inferred that (B πB · · · πr−r′−1B) is of full row rank, and M
must be a zero matrix.

This subsection presents the upper bound on the round number of probability 1
truncated differentials for a unified structure. Thus, we have the following results.
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Proposition 3. Denote FA,B,π(f1, ..., fr) a unified structure with d branches and each of
size n bits. Let

∑d
i=1 AiBi = O. Assume that AπiB’s (i = 1, 2, . . . , d− 1) are invertible

matrices, and fi’s are bijective. Then, a Type-I periodic function covers at most (r1 + r2)
rounds for FA,B,π(f1, ..., fr), where r1 is the minimal number such that rank(Ar1) = nd,
and r2 is the minimal number such that rank(Br2) = nd.

It should be noted that Proposition 3 presents an upper bound for Type-I periodic
functions for a unified structure. If one considers a specific instance within the structure,
longer Type-I periodic functions may exist.

6.4 On the Extension of Probability 1 Truncated Differentials
A Type-I periodic function is constructed directly from a truncated differential with
probability 1. However, a Type-II periodic function is constructed from a truncated
differential by extending it backward for several rounds. To make the difference transition
hold deterministically when extending backward, one has to restrict the input to a subset.
This subsection further discusses the extension of probability 1 truncated differentials for
unified structures.

Given a unified structure FA,B,π(f1, ..., fr) with a truncated differential ∆I → ∆O of
probability 1, we only consider the case that |∆I | = 1, i.e., there is only a single input
difference as this is the common case. Denote the difference in ∆I by ∆, which is a fixed
and known constant. Assume that we propagate ∆ backward for r rounds. And we denote
the round index from −1 to −r when extending backward. Let x be the input to the
structure. Let u−i and v−i denote the input and output of f−i for i = 1, 2, . . . , r. Then,

u−r =Ax,

u1−r =Aπx⊕AπBv−r,

...
u1 =Aπr−1x⊕Aπr−1Bv−r ⊕ · · · ⊕AπBv−2.

To make differences propagate deterministically, the input u−i’s to the first r round
functions should be constants. Note that v−i’s are the output of the round function, which
are also constants. Thus, Aπix should be fixed constant for i = 0, 1, . . . , r−1. Without loss
of generality, we assume that Ar−1x = 0. and denote W the solution space of Ar−1x = 0.
Thus, W ⊥, which is the orthogonal complement of W , is the linear space spanned by the
row vectors of Ar−1.

In this case, when we consider a pair of inputs with a given input difference, the
output difference of the r-round encryption is an unknown constant, as the input to each
round function is fixed which results in an unknown fixed round function output difference.
Denote the input and output difference of f−i by α−i and β−i, the input difference of the
(−i)-th round by ∆−i. Then,

∆−1 =π−1∆⊕Bβ−1,

∆−2 =π−2∆⊕ π−1Bβ−1 ⊕Bβ−2,

...
∆1−r =π1−r∆⊕ π2−rBβ−1 ⊕ · · · ⊕Bβ1−r,

∆−r =π−r∆⊕ π1−rBβ−1 ⊕ · · · ⊕Bβ−r.

It should be noted that ∆ is a fixed and known constant. β−i’s are fixed and unknown
constants. According to Theorem 2, the projection of ∆−r to W ⊥ should be a known
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constant. That is, 
A

Aπ
...

Aπr−1

 (
B π−1B · · · π1−rB

)


β−r

β1−r

...
β−1



=


AB Aπ−1B · · · Aπ1−rB

AπB AB · · · Aπ2−rB
...

...
. . .

...
Aπr−1B Aπr−2B · · · AB




β−r

β1−r

...
β−1


(2)

should be a constant known to the attacker. This indicates that the extended round
number is related to specific forms of AπiB. In the following, we discuss two commonly
used generalized Feistel structures to illustrate the backward extension.
Case 1 AπiB = I for i = 1, 2, ..., d− 1, where d is the branch number. Note that the
classical two-branch Feistel network, SM4-like, and MARS-like structures fall into this
case.
Case 2 AπB = I and AπiB = O for i = 2, 3, ..., d − 1, where d is the branch number.
This case applies to the Type-1 generalized Feistel structure.

For the first case, Equation (2) indicates that
O I · · · I
I O · · · I
...

...
. . .

...
I I · · · O




β−r

β1−r

...
β−1

 =


β1−r ⊕ β2−r ⊕ · · · ⊕ β−1
β−r ⊕ β2−r ⊕ · · · ⊕ β−1

...
β−r ⊕ β1−r ⊕ · · · ⊕ β−2

 (3)

should be known constants. When r = 1, Equation (3) is equivalent to ABβ1 = 0, which
is a fixed and known constant. Thus, one can always extend a probability 1 truncated
differential for one round. However, when r ≥ 2, Equation (3) involves some unknown
constants βi’s, and this prevents us from extending the distinguisher for more than one
round.

Proposition 4. Denote FA,B,π(f1, ..., fr) a unified structure with d branches and each
of size n bits. Let

∑d
i=1 AiBi = O. Assume that AπiB = I for i = 1, 2, . . . , d − 1, and

fi’s are bijective. Then, there exists an (r1 + r2 + 1)-round quantum distinguisher for
FA,B,π(f1, ..., fr), where r1 is the minimal number such that rank(Ar1) = nd, and r2 is
the minimal number such that rank(Br2) = nd.

Example 4. Take SM4 in Example 3 as an example again. A 6-round truncated differential
from {(α, α, α, 0)} to {(α, u2, u3, u4)|u2, u3, u4 ∈ F32

2 } can be constructed for ESM4 with
probability 1. This extension requires W = {x ∈ F128

2 |Ax = 0} = {(u0, u1, u2, u1 ⊕
u2) | u0, u1, u2 ∈ F32

2 }. Moreover, we note that {(u, 0, 0, 0) | u ∈ F32
2 } is a subspace

of W . So we can take W = {(u, 0, 0, 0) | u ∈ F32
2 }, w = (0, α0, α0, α0), the input

difference δ = (s, α, α, α), where α0, α1 are fixed and known constants, α0 ⊕ α1 = γ, and
s = F1(α0)⊕F1(α1). Clearly the projection of δ to W ⊥ equals (0, 0, α, 0), which is a known
constant. which can be obtained directly from Figure 7.

For the second case, we can still make a similar analysis. However, this situation is a
bit tricky here, and we focus on extending the input difference which is constructed as
presented in Section 6.2.

Proposition 5. Denote FA,B,π(f1, ..., fr) a unified structure with d branches and each of
size n bits. Let

∑d
i=1 AiBi = O. Assume that AπB = I, AπiB = O (i = 2, 3, . . . , d− 1),
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?
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? ??

Figure 8: 9-Round Distinguisher of 4-branch Type-1 GFS.

and fi’s are bijective. Assume that r1 = d−1 is the minimal number such that rank(Ar1) =
nd and r2 is the minimal number such that rank(Br2) = nd. Then, there exists an (2r1+r2)-
round quantum distinguisher for FA,B,π(f1, ..., fr).

Proof. According to Section 6.2, we can construct an (r1+r2)-round probability 1 truncated
differential, whose input difference ∆ satisfies A∆ = Aπ∆ = · · · = Aπr1−1∆ = 0, Aπr1∆ ̸=
0. Therefore, we consider propagating ∆ backward for r = r1 rounds.

Since AB = O, AπB = I, and AπiB = O for i = 2, 3, . . . , d − 1, it follows that
α−i = A∆−i = Aπ−i∆ for i = 1, 2, . . . , r1. As A∆ = Aπ∆ = · · · = Aπr1−1∆ = 0,
we have Aπr1−i∆ = 0 for i = 1, . . . , r1. Thus, α−i = Aπd−i∆ = Aπr1−(i−1)∆ = 0 for
i = 2, 3, . . . , r1, and this results to β−2 = β−3 = · · · = β−r1 = 0. With a similar deduction
as in Proposition 4, Equation (2) indicates that

O O · · · O O
I O · · · O O
...

...
. . .

...
...

O O · · · I O




β−r1

β1−r1
...

β−1

 =


0

β−r1
...

β−2

 =


0
0
...
0

 . (4)

Thus, the projection of ∆−r1 to W is indeed a known constant, and one can extend such a
probability 1 truncated differential for r1 = d− 1 rounds.

Example 5. Figure 8 illustrates a 9-round distinguisher for the 4-branch Type-1 generalized
Feistel structure that can be constructed according to Proposition 5, where r1 = r2 = 3.
This distinguisher is constructed based on the 6-round truncated differential {(0, 0, 0, γ)} →
{(u1, γ, u2, u3) | u1, u2, u3 ∈ Fn

2} with probability 1, where γ ∈ Fn
2 , γ ̸= 0. Then, one can

extend the input difference backward for 3 rounds. This extension requires

W = {x ∈ F4n
2 | A2x = 0} = {(0, 0, 0, u) | u ∈ Fn

2}.

And we can take w = (c0, c1, γ0, 0), the input difference δ = (0, 0, γ, s), where c0, c1, γ0, γ1
are fixed and known constants, γ0 ⊕ γ1 = γ, and

s = F3(F2(F1(c0)⊕ c1)⊕ γ0)⊕ F3(F2(F1(c0)⊕ c1)⊕ γ1).

Clearly the projection of δ to W ⊥ equals (0, 0, γ, 0), which is a known constant.

It should be noted that Proposition 4 and 5 present a structural property of cipher
structures, which holds for all instances within such a structure. In particular, the 7-round
quantum distinguish holds for all SM4 variants with a different permutation round function.
However, one should realize that longer quantum distinguishers may exist if the round
function details are considered.
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7 Conclusion
In this paper, we established the links between quantum distinguishers and truncated
differentials with probability 1 for the first time. This enables us to use classic truncated
differential cryptanalysis techniques to analyze the quantum security of block ciphers.
Moreover, a general approach to constructing quantum distinguishers from truncated
differentials is proposed in this paper, which can serve as a generic quantum cryptanalysis
vector applicable to any block cipher. Moreover, this technique releases us from the
tedious manual work of verifying the periodic property functions. As an illustration of our
technique, we found better distinguishers for SIMON and LBlock.

On the other hand, we studied quantum resistance against unified structures. We
established an upper bound on the length of probability 1 truncated differential, which
bounds the round number of quantum distinguishers constructed from Type-I periodic
functions. Although longer quantum distinguishers may exist for a specific cipher, this
upper bound reflects the structural property of the underlying cipher structure. It can
help with the cipher designs to evaluate its linear building blocks.
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