
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 2, pp. 222–253. DOI:10.46586/tosc.v2024.i2.222-253

On Impossible Boomerang Attacks
Application to Simon and SKINNYee

Xavier Bonnetain1, Margarita Cordero1, Virginie Lallemand1, Marine
Minier1 and María Naya-Plasencia2

1 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
firstname.name@loria.fr

2 Inria, Paris, France
maria.naya_plasencia@inria.fr

Abstract. The impossible boomerang attack, introduced in 2008 by Jiqiang Lu,
is an extension of the impossible differential attack that relies on a boomerang
distinguisher of probability 0 for discarding incorrect key guesses. In Lu’s work,
the considered impossible boomerang distinguishers were built from 4 (different)
probability-1 differentials that lead to 4 differences that do not sum to 0 in the middle,
in a miss-in-the-middle way.
In this article, we study the possibility of extending this notion by looking at finer-
level contradictions that derive from boomerang switch constraints. We start by
discussing the case of quadratic Feistel ciphers and in particular of the Simon ciphers.
We exploit their very specific boomerang constraints to enforce a contradiction that
creates a new type of impossible boomerang distinguisher that we search with an
SMT solver. We next switch to word-oriented ciphers and study how to leverage the
Boomerang Connectivity Table contradictions. We apply this idea to SKINNYee,
a recent tweakable block cipher proposed at Crypto 2022 and obtain a 21-round
distinguisher.
After detailing the process and the complexities of an impossible boomerang attack in
the single (twea)key and related (twea)key model, we extend our distinguishers into
attacks and present a 23-round impossible boomerang attack on Simon-32/64 (out of
32 rounds) and a 29-round impossible boomerang attack on SKINNYee (out of 56
rounds). To the best of our knowledge our analysis covers two more rounds than the
(so far, only) other third-party analysis of SKINNYee that has been published to
date.
Keywords: Cryptanalysis · Impossible boomerang attack · Simon · SKINNYee

1 Introduction
Boomerang attacks were introduced in 1999 by David Wagner in [Wag99]. This type of
attacks rely on distinguishers exploiting the fact that, for two given differences α and
δ, the following relation is verified more often for the block cipher E than for a random
permutation:

E−1(E(M) ⊕ δ) ⊕ E−1(E(M ⊕ α) ⊕ δ) = α (1)

In this first work, the technique proposed to build such a distinguisher was based on two
differentials, one of probability p covering the first rounds (denoted E0) and the other of
probability q covering the next rounds (denoted E1, where E = E1 ◦ E0). The occurences
of these differentials over E0 and E1 were considered as independent events that could
thus be combined together with probability p2q2 to build a distinguisher on E.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-11-23 Revised: 2024-03-01 Accepted: 2024-05-01 Published: 2024-06-18

https://doi.org/10.46586/tosc.v2024.i2.222-253
mailto:firstname.name@loria.fr
mailto:maria.naya_plasencia@inria.fr
http://creativecommons.org/licenses/by/4.0/

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 223

EK1
0

EK1
1

EK1
m

EK2
0

EK2
1

EK2
m

EK3
0

EK3
m

EK4
0

EK4
1

EK4
m

α α

β β

γ

δ

γ

δ

M1

M2

M3

M4

C1

C2

C3

C4

EK1
0

EK1
1

EK2
0

EK2
1

EK3
0

EK3
1

EK4
0

EK4
1

α α

β β

γ

δ

γ

δ

M1

M2

M3

M4

C1

C2

C3

C4

EK3
1

Figure 1: Naive construction of a related-key boomerang distinguisher (left) and sandwich
construction (right).

Soon after the introduction of this construction, many publications [Mur11, Kir15,
BK09] showed that the underlying strong independence assumption is frequently wrong,
resulting in the p2q2 probability estimate being far from the actual probability. Re-
searchers then studied how to get a better approximation, starting with the sandwich
framework [DKS10] that cuts the cipher in 3 parts instead of 2 (E = E1 ◦ Em ◦ E0)
as depicted on the right in Figure 1. The middle part Em is introduced in order to
pick out and study separately the rounds where the top and bottom differential trails
intermingle. Following results proposed techniques to study the probability of the middle
part in a systematic way, as for instance the BCT framework [CHP+18] for the case
where Em is one round of SPN cipher, and its multiple related works on other cipher
types [BHL+20, WWS23] or on more rounds [WP19, SQH19, YSS+22].

In addition to the study of the possible boomerang distinguishers, a perpendicular
direction introduced the impossible boomerang distinguisher notion [Lu08]. The idea is
similar to what is done for impossible differential distinguishers [Knu98, BBS99a], that is
to rely on a pair of differences that never appear together to discard wrong key guesses.
The technique devised in [Lu08] relies on 4 different trails leading with probability 1
to 4 (truncated) differences β, β′, γ, γ′ positioned in a middle round and satisfying that
β ⊕ β′ ⊕ γ ⊕ γ′ ̸= 0, which implies the impossibility (see on the left in Figure 2).

M1

C1

M2

α

β

M3

M4

C4

α′

β′γ′

δC2

γ

C3
δ′

proba.1

proba.1

proba.1

proba.1

proba.1

M1

M2

M3

M4

proba.1 proba.1

proba.1

proba.1

δ

δ

α α

C1

C2 C4

C3

incompatibility
boomerang

γ ⊕ β ⊕ γ′ ⊕ β′ 6= 0

EK1
0

EK1
1

EK4
0

EK3
0

EK4
1EK2

1

EK2
0

EK3
1

EK2

EK1

EK4

EK3

Figure 2: Construction of an impossible boomerang distinguisher as introduced by Lu
(left) and a specific case supported by our extension (with α′ = α and δ′ = δ) (right).

Our Contributions. In this article we study possible extensions of the theory of [Lu08] by
using impossibilities coming from boomerang switch contradictions: for Sbox-based ciphers
we show how to leverage the BCT theory and rely on a coefficient of value 0, while we

224 On Impossible Boomerang Attacks

Table 1: Summary of previous and new results on Simon-32/64. SK: single-key. RK:
related-key scenario and number of related keys. RX: rotational-XOR. FC: full codebook.

Nb Rounds Type of attacks Data Time Ref.
22 Differential (SK) 232 (FC) 258.76 [QHS15]
23 Linear (SK) 231.19 256.5 [CW16]
24 Integral (SK) 232 (FC) 263 [CCW+18]
25 RX-Rectangle (4 RK) 234 (FC) 259.7 [BL23b]
23 Imp. Boom. (4 RK) 234 (FC) 261.75 Section 5.1.2
23 Imp. Boom. (16 RK) 236 (FC) 253.1 Section 5.1.3
23 Imp. Boom. (16 RK) 235 259.85 Section 5.1.3

Table 2: Summary of previous and new results on SKINNYee. SK: single-key. RT:
related-tweak.

Nb Rounds Type of attacks Data Time Ref.
26 Integral (SK/RT) 266 2113 [HSE23]
27 Imp. Differential (SK/RT) 262.79 2123.04 [HSE23]
29 Imp. Boomerang (SK/RT) 266 2126.6 Section 5.2.2
29 Imp. Boomerang (SK/RT) 267.2 2119.2 Section 5.2.3

show how similar ideas can be developed for bit-oriented ciphers and in particular how one
can benefit from the simple round function of the ciphers of the Simon family [BSS+15].

We present distinguishers on the 10 variants of Simon and extend the more promising
one into a 23-round attack on Simon-32/64 (see Table 1), reaching two less rounds than the
current state of the art [BL23b] (that was obtained with a standard boomerang technique).
We apply our technique based on the BCT contradiction to the recent tweakable block
cipher SKINNYee [NSS22] and propose a 29-round attack, beating by 3 and 2 rounds the
integral and impossible differential attacks proposed in the (up to our knowledge) only
existing third-party analysis article [HSE23].

Outline. After recalling some definitions, we give in Section 2 a short review of the
boomerang incompatibilities reported in the literature, that we discuss in Section 3 from
the perspective of building impossible boomerang distinguishers. We next propose two
extensions of the impossible boomerang distinguisher of Lu and provide in Section 4 a
thorough analysis of the complexity of an impossible boomerang attack, detailing the
single (twea)key case and the related (twea)key scenario, for two possible approaches. Last
but not least, we present two applications of our new technique in Section 5: one 23-round
attack on Simon-32/64 (and distinguishers of the other versions) and a 29-round attack
on SKINNYee (see Table 2).

2 Preliminaries

2.1 Boomerang Tables
In this subsection we recall the classical definitions of the boomerang tables, namely the
BCT, the UBCT and the LBCT, that were introduced to easily compute the probability

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 225

of 1-round boomerang switches for SPN ciphers. We also give the definition of the Feistel
variant, the FBCT.
Definition 1 (BCT [CHP+18]). Let S be a permutation of Fn

2 , and α1, β2 ∈ Fn
2 . The

Boomerang Connectivity Table (BCT) of S is a two-dimensional table defined by:
BCT (α1, β2) = #{x ∈ Fn

2 | S−1(S(x) ⊕ β2) ⊕ S−1(S(x ⊕ α1) ⊕ β2) = α1}.

Definition 2 (UBCT [WP19, DDV20]). Let S be a permutation of Fn
2 . The Upper

Boomerang Connectivity Table (UBCT) of S is a three-dimensional table defined by:
UBCT(α1, α2, β2) = #{x ∈ Fn

2 | S−1(S(x) ⊕ β2) ⊕ S−1(S(x ⊕ α1) ⊕ β2) = α1,

S(x) ⊕ S(x ⊕ α1) = α2} where α1, α2, β2 ∈ Fn
2 .

Definition 3 (LBCT [WP19, DDV20]). Let S be a permutation of Fn
2 . The Lower

Boomerang Connectivity Table (LBCT) of S is a three-dimensional table defined by:
LBCT(α1, β1, β2) = #{x ∈ Fn

2 | S−1(S(x) ⊕ β2) ⊕ S−1(S(x ⊕ α1) ⊕ β2) = α1,

S(x) ⊕ S(x ⊕ β1) = β2} where α1, β2, β1 ∈ Fn
2 .

Similar tables were introduced to deal with Feistel ciphers using Sboxes in their round
function. The counterpart of the BCT is the FBCT, defined as follows:
Definition 4 (FBCT [BHL+20]). Let S be a function from Fn

2 to itself. The Feistel
Boomerang Connectivity Table (FBCT) is a two-dimensional table defined by:

FBCT (α1, β2) = # {x ∈ Fn
2 |S(x) ⊕ S(x ⊕ α1) ⊕ S(x ⊕ β2) ⊕ S(x ⊕ α1 ⊕ β2) = 0} .

2.2 Previous Impossible Boomerang Notions
Since the advent of boomerang distinguishers, many works have remarked the actual
probability of the distinguisher can be vastly different than predicted by a model. In
particular, in some cases it was argued the probability of the distinguisher was actually 0,
that is, it is impossible. However, there are two very different notions of impossibility:
Incompatible characteristics. The probability of a boomerang distinguisher can be es-

timated from the probability of some characteristics, using some approximation
techniques. It might be that these characteristics are incompatible, that is, it is not
possible to have a quartet of messages that follows the characteristics considered.

Impossible boomerang distinguisher. There exist no messages M that satisfy the boome-
rang equation (Equation (1)).

The first notion allows to claim an attack is invalid, as the argument supporting the
existence of a high-probability boomerang distinguisher does not hold. It is however weaker
than the second notion, as by random chance the boomerang might still occur, using
unaccounted for characteristics.

We detail in what follows different examples from the literature.

2.2.1 Results by Murphy

The initial probability estimation techniques for boomerang probabilities were criticized by
Murphy in [Mur11]. He proposed boomerang distinguishers constructed from characteristics
on DES and AES that were predicted to have a given probability, but actually have
probability 0, or, as Murphy wrote:

“This [DES/AES] boomerang never comes back.”
These examples are only incompatible characteristics, as part of the differential propa-

gation in the cipher is fixed.

226 On Impossible Boomerang Attacks

2.2.2 Results by Dunkelman, Keller and Shamir

In the journal version of the article introducing the sandwich framework [DKS14], Dunkel-
man and co-authors presented two boomerang characteristics of probability zero: one
obtained when slightly modifying the key schedule of the considered cipher, and the
second when slightly changing the distinguisher. The stress was put on the importance of
thoroughly estimating the probability of the connecting part of Em.

2.2.3 The Impossible Boomerang Attack

The so-called impossible boomerang attack is a cryptanalysis technique introduced by
Jiqiang Lu. He first introduced it in his PhD Thesis [Lu08] and published it later in
the article [Lu11]. Described as a combination of the boomerang attack and of the
impossible differential cryptanalysis, it relies on an impossible boomerang distinguisher
that, as its name indicates, is a boomerang distinguisher of probability 0. To build such
a distinguisher, the author starts by rewriting the cipher E as the composition of two
sub-ciphers (E = E1 ◦ E0) and searches for 4 (truncated) probability-1 differentials: two
over E0, and two over E−1

1 , with the condition that the 4 differences in the middle do not
sum to zero. Following the notation on the left in Figure 2, these are denoted α

E0−−→ β,
α′ E0−−→ β′, δ

E−1
1−−−→ γ and δ′ E−1

1−−−→ γ′, respectively, with β ⊕ β′ ⊕ γ ⊕ γ′ ̸= 0.
The middle contradiction implies that it is impossible to observe together that E(M1)⊕

E(M3) = δ′ and E(M1 ⊕ α) ⊕ E(M3 ⊕ α′) = δ, and this observation can be turned into a
key recovery attack. Similarly to the impossible-differential case, it consists in adding a
few rounds before and/or after the distinguisher, making (partial) round key guesses to
compute the differences at the start and at the end of the distinguisher, and discarding
any key guess that would imply the previous impossible relations.

As explained by Lu, the single-key impossible boomerang distinguisher is actually of
little interest, as it directly implies that an impossible differential distinguisher of the
same size can be obtained (and, a priori, it can be turned into a more efficient attack as
it is based on pairs of messages instead of quartets). We recall below the proposition 1
from [Lu11]:

Proposition 1 (Limitation of the single-key impossible boomerang attack [Lu11]). From
a single key impossible boomerang distinguisher, an impossible differential for the same
number of rounds can be obtained. A block cipher resistant to related-key impossible
differential cryptanalysis will not necessarily resist a related-key impossible boomerang
attack.

The proof of the first assertion uses the fact that the contradiction β ⊕ β′ ⊕ γ ⊕ γ′ ̸= 0
(as can be seen on the left in Figure 2) can be rewritten as β⊕γ ≠ β′ ⊕γ′ which implies that
at least either β ⊕ γ ≠ 0 or β′ ⊕ γ′ ̸= 0. It leads to an impossible differential distinguisher
over E = E1 ◦ E0 based on two probability-1 differentials, one over E0 with an input
difference of α (resp. α′) and the other over E−1

1 starting with a difference of δ (resp. δ′)
that contradict in the middle.

The related-key impossible boomerang attack is the straightforward extension of the
impossible boomerang attack to the related-key case, where keys are managed as in the
related-key boomerang attack [BDK05, HKLP05]. This scenario might have advantages
over the impossible differential one, mainly because two key differences can be used. This
technique was applied to AES in [Lu11].

2.2.4 Results by Peyrin and Tan

In [PT22], the authors present characteristics that are possible assuming round inde-
pendence but that are actually either key-dependent (meaning that the characteristic is

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 227

actually a weak-key characteristic), or even actually impossible. Both differential and
boomerang distinguishers based on such characteristics are identified in published papers.
This is another example of incompatible characteristics, this time from the fact that one
differential characteristic has probability 0.

2.2.5 The Double Boomerang Connectivity Table

Finally, the Double Boomerang Connectivity Table is a two-dimensional table named
in [HBS21] and studied in detail in [YSS+22]. Its goal is to capture the probability that a
boomerang comes back over two consecutive Sboxes. Its definition relies on the random
subkey assumption. It is similar to the BCT, but over two rounds, as shown in Figure 3.
We study this table in more detail in Section 3.1.

Definition 5 (DBCT [HBS21, YSS+22]). The Double Boomerang Connectivity Table
(DBCT) of an Sbox S is defined from its UBCT and LBCT as:

DBCT (α1, β3) =
∑

α2, β2

UBCT (α1, α2, β2) · LBCT (α2, β2, β3).

x1

S

S

z1

x2

α1

x3

S
x4

S

z4

S

z2

S

α1

α2 β2 α2

β3

β3

z3
S

k

k

k

k

x1

S

S

z1

x2

S

α1

x3

S
x4

S

z4

S

z2

S

α1

M

M M

M

α2 β2

β2

α2

α′
2 β′

2

β′
2

α′
2

β3

β3

z3
S

k

k

k

k

β2

S

Figure 3: Parameters of a DBCT (left) and of a general DBCT with a linear layer in the
middle (right). A UBCT is computed at the top (in red) and an LBCT is computed at
the bottom (in blue). Notations from [YSS+22].

In [YSS+22], a general DBCT is used to claim some 2-round transitions in some
boomerang characteristics from [CDJ+20, BL23a] have probability 0, which invalidates
the corresponding distinguishers.

3 New Insights on Boomerang Impossibilities
3.1 The DBCT Theory
We focus here on the general setting represented on the right in Figure 3 that takes into
account the linear layer between Sboxes, corresponding to the following definition:

Definition 6 (DBCT (general case) [YSS+22]). Let S be an Sbox layer, M a linear layer.
The Double Boomerang Connectivity Table (DBCT) of the cipher S ◦ M ◦ S is defined as:

DBCT (α1, β3) =
∑

α′
2 = M(α2)

β′
2 = M(β2)

UBCT (α1, α2, β2) · LBCT (α′
2, β′

2, β3).

228 On Impossible Boomerang Attacks

Using this variant of the DBCT, it was claimed that boomerang distinguishers from
[CDJ+20, BL23a] were invalid.

Limits of the DBCT. The DBCT only considers transitions where, in the middle, the
quartet of differences has the form1 (before and after the linear layer) (α, β, α, β) where α
and β are some differences. This is however a restriction as it misses the admissible set
of middle differences (α, β, γ, α ⊕ β ⊕ γ) with α ̸= γ. Hence, having DBCT (α1, β3) = 0
does not imply that the two-round boomerang distinguisher with input difference α1 and
output difference β3 has probability 0. Thus, the analysis of [YSS+22] is partial, as the
DBCT by itself cannot prove a 2-round boomerang is impossible.

On the possibility of general differences. We now study in which cases it is impossible
to have middle differences not of the form (α, β, α, β).

Theorem 1 (DBCT with restricted activity pattern.). Let α1, β3 be two differences. If
there are no non-zero differences α′, β′ such that α′ has a sparser activity pattern than α1,
β′ a sparser activity pattern than β3 and β′ = Mα′, then the middle differences in the
two-round boomerang distinguisher defined by α1 and β3 must be of the form (α, β, α, β).
In this case, the DBCT actually conveys the probability, on average over the middle round
keys, of the corresponding 2-round boomerang distinguisher.

Remark 1. In the above theorem, "a sparser activity pattern" has to be understood as
"inactive Sboxes are still inactive, active Sboxes can be active".

Proof. We note αL
2 , αR

2 the differences from α1 after the first Sbox layer (on the left and on
the right sides, respectively), and β′F

2 , β′B
2 the differences before the second Sbox layer that

lead to β3 (on the front and back sides, respectively). As the sum of the four differences
must be 0, after the linear layer we must have:

M(αL
2) ⊕ β′F

2 ⊕ M(αR
2) ⊕ β′B

2 = 0 ⇔ M(αL
2 ⊕ αR

2) = β′F
2 ⊕ β′B

2 .

αL
2 and αR

2 (resp. β′F
2 and β′B

2) have the same activity pattern as α (resp. β). Hence,
if there is no non-zero differences α, β with a sparser activity pattern than α and β such
that M(α) = β, then we must have αL

2 = αR
2 and β′F

2 = β′B
2 .

Finally, as the differences not considered by the DBCT cannot appear in the middle of
the boomerang configuration in this case, the DBCT gives the number of solutions of the
boomerang equation.

Corollary 1. In the case of AES, all 2-round boomerang distinguishers whose differences
have overall at most 4 active Sboxes per super-Sbox are captured by the DBCT.

DBCT with related-tweak/related-keys. With key or tweak differences, the differences
in the middle are a bit more complex. If the tweakey addition is before the linear layer,
then the constraint becomes:

M(αL
2 ⊕ ∆T1) ⊕ β′F

2 ⊕ M(αR
2 ⊕ ∆T2) ⊕ β′B

2 = 0 ⇔ M(αL
2 ⊕ αR

2 ⊕ ∆T1 ⊕ ∆T2) = β′F
2 ⊕ β′B

2 .

In general, the tweakey difference is the same for one pair of messages and for the other
pair of messages in the quartet. In this case, the constraint is not changed. Otherwise,
instead of considering the activity pattern of α, we have to consider the activity pattern
of (α ⊕ ∆T1 ⊕ ∆T2), that is, the input and the difference of tweak differences. Of course,
if the tweakey addition is after the linear layer, the situation is reversed and one has to
consider, instead of β, the activity pattern of (β ⊕ ∆T1 ⊕ ∆T2).

1in Figure 3 it corresponds to the differences (α2, β2, α2, β2) before M and to (α′
2, β′

2, α′
2, β′

2) after it.

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 229

Impact on the claims. With the above theorem, it is possible to confirm the 2-round
impossible boomerang configurations detected in [YSS+22], as the studied characteristics
are on AES-based ciphers and have differences with a sparse enough activity pattern (with
super-Sboxes containing either 2 or 3 active Sboxes).

Generalization. In the recent article [WSW+23], a variant of the DBCT that allows
all possible differences, called the DBCT*, is proposed. This tool is able to detect any
key-independent 2-round impossible boomerang distinguisher. Note that the impact on
the previous work is not investigated in [WSW+23].

3.2 Extending the Impossible Boomerang Distinguisher Notion by using
New Contradictions

Our idea is to study the possibility to define an impossible boomerang distinguisher
using the miss-in-the-middle principle [BBS99b] where the miss event corresponds to
a boomerang incompatibility instead of a simple inequality of the differences as done
in [Lu11].

The parameters used in this extension are the same as previously: a set of 4 internal
state differences α, α′, δ, δ′ together with two key differences2 defining four keys (see on
the right in Figure 2). The top differences (α, α′) are propagated with probability 1 in the
encryption direction, and the bottom differences (δ, δ′) are propagated with probability 1
in the decryption direction, under the corresponding key differences. This set of parameters
leads to an impossible boomerang distinguisher if a boomerang incompatibility occurs at
some step.

Contradicting Boomerang Switches. Our main idea to build new impossible boomerang
distinguishers is to propagate differences with probability 1 so that an impossible boomerang
switch (over one or two rounds) appears in a deterministic way in the middle. This impos-
sible boomerang switch can be expressed in the form of boomerang tables contradictions,
or in an ad hoc manner. A first example could be to obtain a one-round contradiction
corresponding to a null BCT coefficient (for an SPN cipher) or to a null FBCT coefficient
(for a Feistel cipher using Sboxes). The GBCT and FGBCT [LWL22] (which are general-
ization of these tables in which differences on the facing sides are not equal) could also
be used. In the case of a two-round contradiction and as discussed above in Section 3.1,
the correct tool to catch a contradiction is the DBCT*. Again, one could also consider an
extended version where the differences are not equal on facing sides.

We remark here that with Lu’s technique, the attacker must set α ̸= α′ or δ ≠ δ′ as
these differences are propagated with probability one and must lead to four differences that
do not sum to 0 in the middle (see Figure 2). When considering contradictions based on
one or two-round impossible boomerang switches, this restriction does not hold anymore
and an attacker might also select α = α′ and δ = δ′. Our new framework thus extends the
framework of [Lu11] (as an inequality implies a boomerang incompatibility, the previous
distinguishers are included) and allows a larger set of possibilities for the initial differences.

In our attacks on Simon and SKINNYee (discussed in Section 5), we focus on the
case where α = α′ and δ = δ′. If this specific case looks restrictive at first sight, it actually
simplifies both the search with the automatic tool (as only two differential trails need to
be build) and the key recovery procedure (as the same partial decryptions can be made on
facing sides of the boomerang).

Boomerang incompatibilities for Sbox-based ciphers. The first extension of Lu’s frame-
work we propose is to look at boomerang contradictions that happen through one round of

2The same technique can of course be adapted to related tweak or related tweakey scenarios.

230 On Impossible Boomerang Attacks

an Sbox-based cipher. Instead of looking for the inequality β ⊕ β′ ⊕ γ ⊕ γ′ ̸= 0 connecting
differences at the same level, we look for a pair of differences (a, b) ∈ (Fn

2)2 positioned
before and after one round R, in the top and bottom trail respectively so that:

∀X ∈ Fn
2 R−1(R(X) ⊕ b) ⊕ R−1(R(X ⊕ a) ⊕ b) ̸= a.

For Sbox-based ciphers this relation has been studied in detail (in the context of possible
distinguishers), and the study of the probability of a 1-round boomerang configuration
was actually made systematic by the use of a table (that can be seen as the counterpart
of the Difference Distribution Table but for boomerang relations instead of differential
relations) named the BCT (Boomerang Connectivity Table) for SPN ciphers [CHP+18]
and the FBCT (Feistel Boomerang Connectivity Table) for Feistel ciphers [BHL+20].

In the impossible boomerang context a similar approach can be used. The fact that the
Sboxes are applied in parallel on different parts of the state allows to rewrite the previous
relation for one round as relations for one Sbox each. An attacker can now focus on the
reduced problem of finding probability-1 differential trails that lead to differences ai and
bi (in Fs

2) corresponding to the boomerang table of one Sbox S of s bits, in the top and
bottom trail respectively, so that:{

BCT (ai, bi) = 0 for an SPN cipher,
FBCT (ai, bi) = 0 for a Feistel cipher.

(2)

We detail an application of this idea to the SKINNYee cipher in Section 5.2.

Boomerang incompatibility for quadratic Feistel ciphers. The idea of looking for
boomerang incompatibilities over 1 round can be extended to bit-oriented ciphers, with the
difficulty that the attacker must know how to guarantee an incompatibility. We develop
this idea for quadratic Feistel ciphers as it was observed in [BL23b] that this type of ciphers
fall into the extreme case where a one-round boomerang can only have a probability of 0
or 1, depending on the differences at play (but not on the state value).

3.2.1 Bit-Oriented Ciphers: The Quadratic Feistel Ciphers Case

We consider a boomerang construction made from 4 differences that are propagated with
probability 1 through the middle of the cipher, and we study how to guarantee that the
distinguisher is of probability 0. After only a few rounds of probability-1 propagation,
some bit differences become undetermined, and there is no guarantee that a given unknown
bit difference on a side is equal to the corresponding bit difference on the facing side of the
boomerang distinguisher (i.e. in the other pair in the quartet), even if the same difference
has been considered at the beginning (i.e., even if α = α′). This observation means in
particular that we need to be careful when defining the boomerang incompatibility, as two
sides might not follow the same differential characteristic.

We thus consider the generic case in Figure 4 where possibly all differences are distinct
and try to determine how to guarantee a contradiction. We denote by f the Feistel cipher’s
round function and write the equalities that must be verified for a boomerang made of 4
different differences to come back:

{
f(xℓ) ⊕ f(xℓ ⊕ δ′

r) ⊕ f(xℓ ⊕ αℓ) ⊕ f(xℓ ⊕ αℓ ⊕ δr) = αr ⊕ α′
r ⊕ δℓ ⊕ δ′

ℓ,

δr ⊕ δ′
r ⊕ αℓ ⊕ α′

ℓ = 0.
(3)

To build an impossible boomerang distinguisher in a miss-in-the-middle way we need
to come up with 4 starting differences that lead with probability 1 to a contradiction of
one of these two equations for at least one round.

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 231

f ⊕ f ⊕

f ⊕

(αℓ, αr) (α′
ℓ, α

′
r)

f

(δℓ, δr)

xℓ xr

⊕
(δ′ℓ, δ

′
r)

Figure 4: Generic boomerang configuration over one round of a Feistel cipher.

The difficulty of finding such a contradiction depends on the details of the cipher.
Inspired by what was presented in [BL23b], we study the case of the quadratic Feistel
cipher Simon. Equation (3) applied to Simon gives:

(δ′

r ≪ 2) ⊕ (δr ≪ 2) ⊕ (xℓ ≪ 1)((δ′
r ⊕ δr) ≪ 8) ⊕ ((δ′

r ⊕ δr) ≪ 1)(xℓ ≪ 8)
⊕(δ′

r ≪ 1)(δ′
r ≪ 8) ⊕ (δr ≪ 1)(δr ≪ 8) ⊕ (δr ≪ 1)(αℓ ≪ 8) ⊕ (αℓ ≪ 1)(δr ≪ 8)

⊕αr ⊕ α′
r ⊕ δℓ ⊕ δ′

ℓ = 0
δr ⊕ δ′

r ⊕ αℓ ⊕ α′
ℓ = 0

(4)
As we want to be able to conclude without knowing the value of the internal state

bits (xℓ), we fix the additional constraint that δ′
r = δr (which implies that α′

ℓ = αℓ). The
previous relations are reduced to:

(δr ≪ 1)(αℓ ≪ 8) ⊕ (αℓ ≪ 1)(δr ≪ 8)
⊕αr ⊕ α′

r ⊕ δℓ ⊕ δ′
ℓ = 0

δr ⊕ δ′
r = 0

αℓ ⊕ α′
ℓ = 0

(5)

In conclusion, a possibility to find an impossible boomerang distinguisher for these
ciphers would be to ensure that the last two equalities are verified (so that only the
differences are required to conclude) while the first one is not.

3.2.2 Sbox-Based Ciphers: Using BCT Contradictions

The idea is to find α and δ so that when propagated with probability 1 these differences
give a BCT configuration that is of probability 0. In practice, it means that we want that
in a given round the difference entering an Sbox of the top trail is known and equal to a
non-zero value t while in the bottom trail the difference corresponding to the output of the
same Sbox of the same round is also known and is equal to v ̸= 0 so that BCT (t, v) = 0.

3.2.3 Sbox-Based Ciphers: Using DBCT Contradictions

A natural extension of distinguishers based on BCT contradictions are distinguishers based
on DBCT/DBCT* contradictions. This technique appears advantageous at first, as it
would allow to capture contradictions not seen by the BCT and that directly cover 2 rounds.
However, it requires to build the DBCT* (or at least some of its coefficients), which is a
computationally expensive process, and it also requires to build a distinguisher in which
both the input and output differences of a super-Sbox are known (while for ensuring a
BCT contradiction only a known input and output Sbox differences are required).

In practice, we observed that having a known difference for a full super-Sbox was a
very strong constraint, and it is likely that distinguishers relying on a BCT contradiction
can cover more rounds and provide overall a longer distinguisher than those based on
DBCT* contradictions.

232 On Impossible Boomerang Attacks

4 Complexity Analysis of an Impossible Boomerang Attack
In this section we will discuss and provide the complexities of impossible boomerang
attacks, considering the distinguishers and the added key recovery rounds. As it was
originally done in [BNS14] for impossible differential attacks, we provide some lower-bound
formulas on the time and memory complexities, that are matched assuming the early abort
guess-and-filter step can be done efficiently. In all cases, a careful check should be done for
concrete applications.

We will start by determining the number of needed quartets and their associated data
complexity regarding a generic attack configuration for a block cipher in the single key
scenario. We will then discuss two methods to conduct the full attack and detail their
complexities. Next, we will analyze the related tweakeys case, and finally we will discuss
the multiple tweakeys setting and its effect on the complexity.

4.1 Data Complexity
As depicted in Figure 5, we consider an attack based on an impossible boomerang distin-
guisher Ed extended by some rounds at the top and at the bottom for the key recovery.
n is the block size, k is the master key size and we denote by ∆in and ∆out the set of
input and output differences that may lead to the distinguisher ends α and β. The size of
these sets are denoted |∆in| = 2din and |∆out| = 2dout . We let 2−cin and 2−cout denote
the probability of reaching the distinguisher differences α and β from differences in ∆in

and ∆out. Kin and Kout are the key bits involved in the differential propagation before
and after the distinguisher, respectively.

Note that if the distinguisher only allows for a unique (i.e. fully specified, not truncated)
input (resp., output) difference, then cin = din (resp. cout = dout).

M1

M2

M3

M4

α α

C2 C4

C3

∆in

β

∆out

C1

Nb

Nf

Nd

β

∆out

Eb

Ef

Eb Eb

Eb

Ed

Ed

Ed

Ed

EfEf

Ef

dout

2−cin

2−cout

=

∆in =
din

Figure 5: Parameters and setup for a key sieving phase with an impossible boomerang
distinguisher Ed. Depending on the considered distinguisher, α and β might be fully
specified differences or a set of differences.

Without loss of generality, we assume the queries are performed to the encryption
oracle, but we could also choose to perform them to the decryption oracle.

The amount of data needed is given by D = 2s × 2din , which corresponds to the
encryption of 2s structures of 2din messages each, where in a structure the difference
between any two elements is in the set ∆in.

From such an amount of data, it is possible to construct P = 2s × 22din−1 pairs, and
from these pairs Q = 22s × 24din−2 × 2−2n+2dout quartets that have differences in ∆in

and ∆out
3. As the probability for a given quartet to discard a key is 2−2cin−2cout , the

3While the quartets, as the pairs, are not ordered, from two pairs (x, x′) and (y, y′), we can make two
distinct quartets, (x, x′, y, y′) and (x, x′, y′, y).

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 233

probability of not discarding a key is:

(1 − 2−2cin−2cout)Q = p,

and we have the following approximation:

(1 − 2−2cin−2cout)Q ≃ exp
(
−Q × 2−2cin−2cout

)
.

Overall, the fraction of keys to test is:

p ≃ exp
(
−22s+4din+2dout−2n−2−2cin−2cout

)
Extreme case. If we consider a block cipher in a single-key scenario with an impossible
boomerang distinguisher with fixed input and output differences, we cannot query more
than the full codebook. At best the percentage of keys that remain to be tested is
p ≃ exp

(
−2−2)

≃ 78%. This is slightly worse than with impossible differentials, where
using the full codebook we only need to test exp

(
−2−1)

≃ 60% of the keys.

Related-key/Related tweaks. When the encryption function is not the same for all
inputs in the quartet, the equations are essentially the same, except that we need to do
distinct queries for each function, and that we no longer lose a factor 2 when doing pairs
and quartets, that is, D = 4 × 2s+din , P = 2 × 2s+2din , Q = 22s+4din+2dout−2n.

Up to some small factors, this corresponds to the single-key case. We present below
two distinct approaches for key recovery.

4.2 Key Recovery with Quartet Filtering
In the first technique we start by generating the data, we consider all the quartets satisfying
∆in and ∆out as in the boomerang configuration, and next, for each key guess, we determine
the quartets leading to the impossible differences of the distinguisher (α and β) and discard
the guess if some quartets survive. In this case we have:

• Cost of data generation: D

• Cost of producing Q: P + Q

• Cost of early abort guess-and-filter: Cguess × Q × 2|Kin∪Kout|

22cin+2cout

• Cost of final exhaustive search: p2k = exp
(
−Q × 2−2cin−2cout

)
2k.

In the above formula, we assume managing the list of pairs and producing quartets has
a cost of 1 encryption per element. Moreover, Cguess is the cost of the partial encryption
and decryption (with early abort) made in order to verify if a given quartet is compatible
with the current key guess. We set its cost to be equal to 1 round of encryption.

The term −2cin − 2cout corresponds to the probability of reaching the impossible
boomerang differences (α and β) from the quartet, and can be adapted to cases where not
all input and output differences lead to an impossibility.

The memory complexity will be determined by the cost of storing the data and the
pairs, as we need to find collisions between pairs to construct the quartets. We do not
need to store the discarded keys as we can check keys on-the-fly if no quartet remains after
the guess-and-filter procedure:

M = D + P + Q.

234 On Impossible Boomerang Attacks

4.3 Key Recovery with Pair Filtering
The second method resemble (to some extend) the traditional key recovery step in
boomerang attacks, as described for instance in [ZDM+20]. Instead of computing all
the needed potential quartets for the attack that satisfy ∆in and ∆out, as in the previous
step, we use the data differently.

Before building the quartets, we guess the key bits Kin involved in the upper part (or
Kout if it is better, without loss of generality) and with it we build the pairs (M1, M2)
and (M3, M4) that satisfy one of the input differentials at the beginning of the impossible
boomerang distinguisher. We next produce quartets from these pairs by selecting (M1, M2)
and (M3, M4) so that C1 ⊕ C3 and C2 ⊕ C4 are part of the ∆out set of differences. This
procedure is described in Algorithm 1.

We detail the cost when there is only one input differential α to the distinguisher,
and when the related-key setting is considered. The formulas can easily be adapted to
the general case, but the details will depend on the constraints of the distinguisher (for
example, shall the input differences be equal for the two pairs of a quartet?).

Algorithm 1 Key Recovery of a Related-Key Impossible Boomerang Attack.
1: Construct 2s structures of size 2din , encrypting messages under the 4 keys.
2: for all possible values for the top key bits do
3: From the structures and the key guess, build (M1, M2) and (M3, M4) satisfying
4: M2 = E−1

b (Eb(M1) ⊕ α) and M4 = E−1
b (Eb(M3) ⊕ α)

5: Search for collisions on the positions of the n − dout expected inactive bits of the
ciphertexts of M1 and M3 and of M2 and M4

6: for all possible values for the bottom key bits do
7: Test the bottom key bits with an early abort process
8: end for
9: If no quartet remains, check if the key guess is correct by brute-forcing the remaining

bits.
10: end for

In this case, the complexities are the following:

• Cost of data generation: D = 4 × 2s+din

• Cost of building pairs leading to α: 2|Kin| × 2 × 2s+din × 2|Eb|
|E|

• Cost of producing quartets from the pairs:

2|Kin| × 22s+2din+2dout−2n

• Cost of early abort guess-and-filter:

2|Kin| × Cguess × 22s+2din+2dout−2n × 2|Kout\Kin|

22cout

• Cost of final exhaustive search: p2k = exp
(
−22s+2din+2dout−2n−2cout

)
2k

In the second step |Eb| is the number of rounds before the distinguisher and |E| is the
total number of attacked rounds. As we do a partial encryption then a decryption, we
process 2|Eb| rounds at this step.

The data complexity stays the same. The memory complexity will be determined by
the cost of storing the data and the quartets.

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 235

4.4 Discussion on the Possible Key Recovery Approaches
The main specificity of the second approach is the elaborate way of building pairs: at
the expense of guessing the required input key bits, the attacker is assured that the
pairs fulfill the input difference of the distinguisher. If we compare the two formulas, the
only difference is that in the second approach, there are 22din times less quartets, at the
expense of computing the quartets 2|Kin| times. Hence, as long as |Kin| < 2din, the second
approach is better.

One advantage of the first technique is that the attacker can more freely organize the
early abort phase, possibly by alternating partial encryptions in the upper part with partial
decryption in the lower part (to reach strong filters first), while the second approach first
fully processes the upper part Eb, and then does partial decryptions on Ef .

Several attacks on AES are presented in the publications introducing the notion of
impossible boomerang attacks [Lu08, Lu11]. The related-key impossible boomerang attack
on 8-round AES-192 presented in [Lu11] uses a technique very similar to the technique
we detail in Section 4.2, while the 9-round related-key attack on AES-256 of [Lu11]
builds pairs like in Section 4.3. The author however uses an ad hoc analysis, and to
the best of our knowledge we are the first to provide generic procedures with formulas.
Interestingly, from our understanding, Lu uses a probabilistic extension in the key recovery
rounds, in a similar manner to what is done in several impossible differential attacks on
AES [LDKK08, MDRMH10, BLNS18].

4.5 Optimizing Related Keys
4.5.1 Improving pair generation

Interestingly, in boomerang and impossible boomerang attacks, the pair generation step
is independent of the ciphertext value. This means this part is actually independent of
the queries, as long as the plaintexts are fixed in advance (and not adaptative). Thus,
assuming the differences at the input are the same, the pairs one would make for K1, K2
under the key guess K̂ are the same as the ones one would make for K3, K4 under the key
guess K̂ ⊕ K1 ⊕ K3. This means we only need to compute the pairs on average once per
key guess instead of twice.

This optimization is specific to boomerangs with identical input differences in related-key
scenarios.

4.5.2 Testing the remaining keys

In a related-key scenario, the boomerang quartets use 4 different keys so the time complexity
should be compared to the exhaustive search of the secret key in the same scenario, which
is reduced from 2k to 2k−2 as we can test 4 keys at once.

At the same time, the final exhaustive search part of the remaining candidates in the
impossible attack can also be done slightly more efficiently than simply testing all surviving
keys. Indeed, for similar reasons we can test 4 keys at once. We will do all the tests, except
the ones for which all keys have already been eliminated. In general, if we have access
to 2r encryption oracles whose key relations form a vector space of dimension r, and a
random key survives the attack with probability p, the exhaustive search part of our key
recovery can be done in time

2k × 1
2r

(
1 − (1 − p)2r

)
.

This formula quickly converges to p for small values of p, meaning that if we are far
away from the exhaustive search cost, we don’t gain anything compared to the naive
approach. Still, this allows to interpolate between the gain of the filter (p) and the generic

236 On Impossible Boomerang Attacks

gain of related-key exhaustive search (1/2r). In particular, it gives a gain in cases where
the naive approach would fail, for example with p = 1/e and r = 2.

This optimization is generic to related-key cryptanalysis under the assumption that
the set of key relations is a vector space and that the procedure that eliminates wrong
keys removes them independently of the key relation (that is, the probability that a given
key is eliminated does not depend on whether its related keys are eliminated).

4.6 Using Multiple Related-Tweak Impossible Differential Distinguish-
ers

For a tweakable block cipher Ek(M, T), we consider here a case where for many non-zero
differences δTin ∈ ∆Tin and δTout ∈ ∆Tout, we can construct an impossible boomerang
distinguisher using Ek(·, T), Ek(·, T ⊕ δTin), Ek(·, T ⊕ δTout), Ek(·, T ⊕ δTin ⊕ δTout), that
is, we have many impossible boomerang distinguishers, depending on the tweak differences
we choose. As there are more impossibilities here, we can hope for a greater amount of
quartets from the same amount of data, which would improve the attack and its data
complexity. We note 2tin = |∆Tin|, 2tout = |∆Tout|. We also assume ∆Tin and ∆Tout do
not overlap. We note pt the probability that a difference (δTin, δTout) allows to produce
an impossible distinguisher.

Then, to leverage this degree of freedom, we construct 2s structures where we take all
possible values over ∆in, but also over ∆Tin and ∆Tout.

Hence, if we neglect the small constants, we use D = 2s+din+tin+tout data. From
these data, we can construct P = 2s+2din+2tin+tout pairs, as the pair elements must have
δTout = 0 (as ∆Tin and ∆Tout do not overlap). Then, from this pair we can construct
Q = pt22s+4din+2tin+2tout−2n+2dout quartets. Indeed, a matching quartet must have
δTin = 0 on the other faces, and we can only keep quartets with a matching (δTin, δTout).

Overall, we have Q = D2 × 22din+2dout−2npt, which is at best (if pt = 1) the same than
with a single distinguisher. That is, from a given amount of data, we cannot make more
quartets than before, meaning the data complexity cannot be significantly improved this
way.

However, this does not mean such a set of impossible boomerang distinguishers is
useless, for multiple reasons:

• It increases the maximal amount of data that we can use to make quartets, and this
is more efficient than adding a constant in the tweak and using the same distinguisher
multiple times,

• With a fixed amount of data, it allows to reduce the number of plaintexts per tweak,
with a limited impact on the complexity,

• As the same plaintexts are encrypted under multiple tweaks, parts of the partial
decryptions are independent of the tweak and can be done once for all the considered
tweaks.

4.7 Experimental Validation of the Key-Recovery
We developed a Python proof-of-concept of the key-recovery procedure presented in Sec-
tion 4.3. We considered a toy version of Simon with a 16-bit state and 32-bit key. We
found a 15-round related-key impossible boomerang distinguisher, with fixed input and
output differences, and added 3 rounds of key recovery before and after. The experiments
matched perfectly with the theory: a wrong key is not discarded during the attack with
probability around 1/e when considering the full codebook over the 4 related keys.

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 237

5 Applications
As an illustration of our two extensions of the impossible boomerang framework, we
propose an application to the Simon family of block ciphers, leveraging the technique
detailed in Section 3.2.1, and an application to SKINNYee, applying the idea of the BCT
contradiction of Section 3.2.2. The source code of our models is available at:

https://github.com/xbonnetain/boomerang-distinguishers.

5.1 Impossible Boomerang Attacks of Simon
Specification of Simon. Simon and Speck are two families of lightweight block ciphers
that were proposed by Beaulieu et al. in [BSS+15]. We focus here on Simon, which comes
in 10 variants, denoted Simon-2n/k, where 2n is the block size and k the key size. The
possible sets of parameters are defined in Table 3 while the round function and the key
schedule structure are depicted in Figure 6. In each round, the left n-bit state is modified
by a quadratic transformation composed of left rotations and an AND operation. The
result is XORed to the right n-bit state and to the n-bit round key, and the two halves
are swapped. The round keys are computed with a linear key schedule that takes as input
the k = mn-bit master key and uses a round constant c ⊕ (zj)i where c = 2n − 4 and (zj)i

denotes the ith bit of the constant sequence4 zj .

<<< 1

<<< 8

<<< 2

b

ki

ki+2 ki+1 ki

>>> 3⊕

⊕
>>> 1

c⊕ (zj)i

ki+3

⊕

⊕

Figure 6: Round function of Simon (left) and key schedule for the case m = 4 key words
(right).

Table 3: Parameters of the 10 versions of Simon.

block size (2n) 32 48 64 96 128
key size (mn) 64 72 96 96 128 96 144 128 192 256
key words (m) 4 3 4 3 4 2 3 2 3 4

const seq z0 z0 z1 z2 z3 z2 z3 z2 z3 z4
rounds 32 36 36 42 44 52 54 68 69 72

5.1.1 Models

We propose two models to automatically find impossible boomerang distinguishers for
Simon with an SMT model.

Boomerang incompatibility. Our first approach is to build upon the SMT model for Si-
mon boomerang distinguishers from [BL23b]. We added support for impossible boomerang
distinguishers by considering only probability-1 transitions and adding the constraint that
one of the boomerang round transitions had to be impossible. We also extended the model
to support all 10 variants of Simon.

4We refer to [BSS+15] for the details of these values.

https://github.com/xbonnetain/boomerang-distinguishers

238 On Impossible Boomerang Attacks

Unsat model. The other approach we propose is to simply model the cipher in SMT, fix
the input and output differences of the boomerang distinguisher together with the key
differences and try to find a (message, key) pair that fulfills this boomerang configuration.
If the solver finds this is unsat, then we have an impossible boomerang distinguisher.
Some works on impossible differentials had a similar approach: [ST17] searches whether a
characteristic that connects the input and output differential exists, and [HLJ+20] models
differential propagation in states.

Our approach has the advantage of being able to exactly capture any impossible
boomerang, even if the incompatibility stems from finer constraints like key-schedule
relations that are not seen if we only look at the characteristics. However, we need to check
separately for each difference pair (∆in, ∆out), and we restricted ourselves to weight-1
differences. We also managed to make the model work in the related-key setting by forcing
round key differences of the form (∆in, 0, . . . , 0) at the beginning and (0, . . . , 0, ∆out) at
the end. While such approach does not cover all possible related-key contradictions, it
maximizes the number of blank rounds. Experimentally, this approach did not find any
boomerang distinguisher that was not found with the previous approach, but the model is
extremely simple and the solving was quite fast, less than 1 core-hour for each instance
except the 128-bit versions in related-key. We also obtained some partial related-key results
for Simon-128/128 and Simon-128/256.

Model validation. Our approach heavily relies on the soundness of both the models we
wrote and the SMT solver. We validated the models using the following approaches:

• All Simon-32/64 distinguishers were experimentally validated on the full codebook
on 64 random keys.

• We cross-checked some distinguishers between the models: we can force the differences
from the output of one model in the other, and see if the result matches. Of course an
unsat instance might not correspond to an incompatibility, but experimentally this
was the case. Unfortunately we could not cross-check the related-key incompatibility
outputs using the unsat model, as it was too slow.

• As the unsat model is mostly an implementation in SMT of Simon, we validated it
using the Simon test vectors.

5.1.2 Distinguishers and Attack on Simon

Distinguishers. We applied our model to the 10 variants of Simon to find impossible
boomerang distinguishers in three different scenarios: the single key case, the related-key
case and the rotational-xor related key case (which, as a reminder, relies on relations of
the form (x, (x ≪ λ) ⊕ α) instead of difference relations, see [AL16]). Our results with
the incompatibility model are summarized in Table 4. Results with the unsat model are
summarized in Table 5.

One of our more promising results in view of the state of the art is on Simon-32/64,
for which we obtain impossible boomerang distinguishers for up to 17 rounds. Numerous
maximal-length distinguishers exist and we represent a 17-round related-key impossible
boomerang distinguisher with a few active bits in α and δ (3 and 1, respectively) in
Figure 13 of Appendix A.

Attack. The number of rounds covered by our distinguishers being not competitive
with the state of the art of the cryptanalysis for the large variants of Simon (see for
instance [LPS21] for a recent overview) we focus on Simon-32/64 and we illustrate the
impossible boomerang attack on that variant.

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 239

Table 4: Highest number of rounds for which an impossible boomerang distinguisher is
found by our model for the 10 variants of Simon.

Block size 32 48 64 96 128
Key size 64 72 96 96 128 96 144 128 192 256

Single-key 7 6 7 7 7
Related-key 17 15 17 16 19 17 20 20 23 25

Rotational-xor
related-key 17 15 18 17 20 18 21 21 23 27

Table 5: Results of our unsat model. ∆ is the shift between the input and output active
bit, meaning that for all x, there is an impossible boomerang distinguisher with one active
input bit at index x and one active output bit at index x + ∆.† the model was too slow,
we did not check all the rotations and some ∆ might be missing.

Block size 32 48 64 96 128
Key size 64 72 96 96 128 96 144 128 192 256

SK
Rounds 7 6 7 7 7

∆ 1,15 1,5,9,11,13,
15,19,23 1,7,15,17,25,31 1,7,15,

33,41,47 1,7,15,49,57,63

RK
Rounds 17 15 17 16 18 16 19 19 - 24

∆ 1,3,8 4,23 2 3,6,17,22,
23,24,27 2,31 11,37 5 7,11,

53,57† - 52,56†

We present an attack covering 23 rounds of Simon-32/64 based on the 17-round
related-key impossible boomerang distinguisher depicted in Figure 13. We add 3 rounds
at the top and 3 rounds at the bottom for the key recovery. To determine the parameters
of the attack, we start by propagating with probability one the difference at the input and
at the output of the distinguisher up and down to the plaintext and to the ciphertext,
respectively. An illustration of the propagation is given in Figure 7, on which we can see
that din = 21 bits and dout = 11 bits (corresponding to the light green bits). Note that as
the round key is added at the end of the round function we consider equivalent first and
last rounds that only correspond to the round key addition, as the other operations do not
depend on secret values.

The second important parameter is the number of key bits that an attacker needs to
guess in order to check that the input (resp. output) difference of the distinguisher meets
the expected differences. These are represented by the small yellow triangles in the figures,
and are determined by referring to the properties of the only non-linear operation of the
round function, that is of the AND. The differential properties of the AND have been
discussed in many papers so we only briefly recall here what guess is required to compute
an output difference.

Lemma 1. To uniquely determine the output difference of the AND of two bits x and y,
an attacker needs to guess:

• Nothing, if ∆x = ∆y = 0 (both input bits are inactive),

• The value of x if ∆x = 0 and ∆y = 1, respectively the value of y if ∆y = 0 and
∆x = 1 (only one input bit is active),

240 On Impossible Boomerang Attacks

≪ 1

≪ 8

≪ 2

⊙ ⊕

⊕

⊕key

≪ 1

≪ 8

≪ 2

⊙ ⊕

⊕

⊕key

≪ 1

≪ 8

≪ 2

⊙ ⊕

⊕

⊕key

active bit maybe active bit inactive bit

x1
ℓ

x3
ℓ

x2
r

x3
r

x2
ℓ

x1
r

x0
rx0

ℓ

15 bits

key guess

of key guess

6 bits
of key guess

≪ 1

≪ 8

≪ 2

⊙ ⊕

⊕

⊕key

≪ 1

≪ 8

≪ 2

⊙ ⊕

⊕

⊕key

≪ 1

≪ 8

≪ 2

⊙ ⊕

⊕

⊕key

active bit maybe active bit inactive bit

x20
ℓ x20

r

x21
r

x22
ℓ x22

r

x21
ℓ

key guess

2 bits

11 bits

of key guess

of key guess

Figure 7: Key recovery rounds for our attack on Simon-32/64: 3 top rounds (left) and
3 bottom rounds (right). The difference propagation is depicted, together with the key
bits that are needed in value to check that the input (resp. output) difference of the
distinguisher is met.

• Whether the value of x is equal to the value of y if ∆y = 1 and ∆x = 1 (both bits are
active).

Proof. The result simply follows from the expression of the output difference of the AND
of x and y, given by xy ⊕ (x ⊕ ∆x)(y ⊕ ∆y) = ∆x∆y ⊕ y∆x ⊕ x∆y.

By following these principles we obtain that |Kin| = 21 bits and |Kout| = 13 bits as
illustrated in Figure 7.

Now that all the parameters are identified, we can look at the details of the attack
complexity. As detailed in Section 4, the first step of the attack is the data generation.
Several structures of 2din = 221 messages are created under the keys K1, K2, K3 and
K4, related by the required master key differences. As we consider a single impossible
boomerang distinguisher, we will request the full codebook on the 4 keys. The number
of structures per key is equal to 2s = 2n−din = 211. The data complexity is equal to
D = 4 × 2s+din = 234.

Following the technique presented in Section 4.3, the pair generation will cost 2|Kin| ×
232 × 4

23 = 250.5. We have to compute for each plaintext encrypted with K1 its matching
plaintext encrypted with K2 (and identically for K3 and K4) according to the first key
guesses. This costs 4 rounds of Simon, as we need to encrypt 2 rounds and then decrypt 2
rounds (we assume here that the attacker computed equivalent plaintexts by peeling off
the operations that do not depend on the key, as depicted in Figure 7). Moreover, as the
input difference is the same for the two pairs, we can reuse them between key guesses (see
Section 4.5.1), meaning each set of pairs can be used for 2 guesses.

We then do the collision step and generate the quartets. This costs

2|Kin| × 232×2−32×2+2×dout = 243 encryptions,

and produces 22dout = 222 quartets per key guess.
We end the impossible search by doing the quartet filtering with early abort. There

are 6 active AND at round 21 for which we can compute the output difference in one key
guess. Each difference produces a filter of probability 1

4 , as the same key guess is used for
the two sides of the boomerang. Thus, even taking into account the additional key guesses,

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 241

the total number of quartets vanishes rapidly in the early abort, and this last part has a
cost negligible compared to 250.5.

Overall, we can expect that a key passes the test with probability exp
(
−222 × 2−22)

=
1/e. Hence, the final exhaustive search costs 264 ×

(
1 − (1 − 1/e)4)

/4 = 261.75 (see
Section 4.5.2).

5.1.3 Improved Attack on Simon-32/64

As the round function and key schedule of Simon are rotation-invariant, every differential
distinguisher actually defines a family of 16 distinguishers. We unfortunately cannot
directly exploit all of them easily as they rely on distinct key relations. However, if an
attacker is allowed to query encryptions under multiple key relations, the same data can
be reused for several distinguishers and some operations are shared.

For 0 ≤ i < 16, each distinguisher requires access to the keys (K, K ⊕ ∆1
i , K ⊕ ∆2

i , K ⊕
∆1

i ⊕ ∆2
i). This is the affine space K ⊕

〈
∆1

i , ∆2
i

〉
. Note that the distinguishers will work

for any coset of this vector space, that is, with the keys K ⊕ ∆′ ⊕
〈
∆1

i , ∆2
i

〉
, for any ∆′.

Now, we choose two distinguishers, i and j, and consider the affine space of 16 keys
K ⊕

〈
∆1

i , ∆2
i , ∆1

j , ∆2
j

〉
. In this space we have access to 4 cosets of

〈
∆1

i , ∆2
i

〉
, and 4 cosets

of
〈
∆1

j , ∆2
j

〉
. Thus, querying encryption under 16 keys offers the possibility to use 2

distinguishers 4 times each.

Key recovery. The key recovery will essentially be 8 independent key recoveries. There
is however one part that can be optimized: as the pair generation step only depends on
the plaintexts and not on the ciphertexts, the actual pairs do not directly depend on the
key, but only on the guessed value for Kin. Thus, pairs for a given key guess Kin in the
distinguisher using K ⊕

〈
∆1

i , ∆2
i

〉
can be reused for the copy that use K ⊕ ∆′ ⊕

〈
∆1

i , ∆2
i

〉
with the key guess Kin ⊕∆′, and similarly for the other copies. Overall, the pair generation
step is only done twice and not 8 times.

We consider we have 2s structures for each distinguisher, which corresponds to D =
2s+din+4 initial encryption queries. The pair generation costs 2 × 2|Kin| × 2s+din × 4

23 per
distinguisher (it is done once per distinguisher, hence the factor 2). Quartet generation costs
2|Kin| ×22s+2din+2dout−2n and produces 22s+2din+2dout−2n quartets per key guess, it will be
repeated 8 times. As before, the early abort step is of negligible cost and the probability that
one key guess survives one of the 8 distinguishers is around exp

(
−22s+2din+2dout−2n−2cout

)
.

Full codebook. If we take the full codebook over the 16 keys, the probability a wrong
key survives is exp(−8). Thus, the overall cost is

16 × 232︸ ︷︷ ︸
D

+ 2 × 2|Kin| × 232 × 4
23︸ ︷︷ ︸

P(×2)

+ 8 × 2|Kin| × 22dout︸ ︷︷ ︸
Q(×8)

+ exp(−8) × 264︸ ︷︷ ︸
Exhaustive search

≃ 253.1.

Note that we did not use the optimization from Section 4.5.2 as it has a negligible impact
here.

Reduced data complexity. We can also optimize the attack to obtain a final probability
to keep a key comparable to the previous attack. This gives an attack using 210 structures,
for an overall data complexity of 210+21+4 = 235. Thus, while the data per key can be
reduced (only 231 data is encrypted for each key), the overall data cost increases slightly
in comparison to the attack proposed in Section 5.1.2. This is due to the quadratic factor
that links the number of structures and the final probability. The cost will be dominated
by the final exhaustive search, in 259.85.

242 On Impossible Boomerang Attacks

Using more key relations. We could devise a more efficient attack using even more key
relations and guessing less bits of Kin before making the quartets. However, increasing
the number of relations makes the attack less relevant, especially as there are only 64 key
bits here.

Alignment of structures. Note that the structures for the two distinguishers intertwine
(as they are built upon the same data), and they are not aligned, as the involved bits
are rotated. Nonetheless, if we take two distinguishers rotated of 4 bits, they have 6
shared input bits that are on positions of fixed difference (the x0

r bits in Figure 7 are
(2, 6), (5, 9), (6, 10), (7, 11), (10, 14) and (11, 15), when numbering from left to right). Hence,
as long as we encrypt at least 226 data per key, we can assume all the structures are full.

5.2 Impossible Boomerang Attacks of SKINNYee
Specification of SKINNYee. SKINNYee has been introduced by Naito et al. at Crypto
2022 [NSS22] as an extension of the SKINNY tweakable block cipher [BJK+16] that would
fit their new mode called HOMA. It reuses most of the round function of SKINNY but
has a different technique to manage the tweak and the key. The tweakey framework is not
used and the tweak and the key remain separated and are added to different parts of the
state: the round key on the bottom two rows, and the round tweak on the top two rows
(see Figure 8). Other differences from SKINNY are the number of rounds (that is raised
to 56) and the details of the round constant generation. Also, since there are 4 tweak
states, an additional LFSR, LFSR4, is introduced to supplement LFSR2 and LFSR3 in
the tweak schedule. These are defined as follows, where x0 is the LSB:

0
4
8
12

1
5
9
13

2
6
10
14

3
7
11
15

Xr Yr

TWr

Kr%4

Zr Wr Xr+1

SC AC

ART

AddRoundKey

≫ 1

≫ 2

≫ 3

ShiftRows MixColumns

Figure 8: Round function of SKINNYee (picture based on [Jea16]).

LFSR2 : (x3||x2||x1||x0) → (x2||x1||x0||x3 ⊕ x2)
LFSR3 : (x3||x2||x1||x0) → (x0 ⊕ x3||x3||x2||x1)
LFSR4 : (x3||x2||x1||x0) → (x1||x0||x3 ⊕ x2||x2 ⊕ x1)

In each round the 4 tweak states are updated by a cell permutation PT (PT =
[9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]), and each of the cells of the first two rows of
the internal state of state number 2, 3 and 4 is updated with LFSR2, LFSR3 and LFSR4
respectively.

Only one variant of SKINNYee is proposed, with a 64-bit state, a 128-bit key and a
256-bit tweak, completed by 3 bits of domain separator. The authors aim for SKINNYee
being a secure tweakable-pseudo-random permutation (TPRP) and exclude the related-key
scenario. When used in their mode HOMA, the tweak value is chosen by the mode and is
not controlled by an attacker.

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 243

5.2.1 Model

We build a word-oriented model to find BCT-based impossible boomerang distinguishers
on SKINNYee by adapting the tool for impossible differential distinguishers developed
along the article [HSE23]. Our problem is translated into a constraint satisfaction problem
(CSP). As a reminder, a CSP is described by 3 sets: X, D and C, that respectively represent
the variables, the domain of the variables (that is, the possible values they can take) and
the constraints the variables should satisfy.

The model takes as input the number of rounds in the upper and in the lower trails,
and looks for an impossible boomerang distinguisher based on a BCT contradiction at the
junction of the two trails. It uses variables to represent the differences in the internal state
and in the round tweaks of the top trail and of the bottom trail, and we give constraints
explaining how these are propagated through the rounds. We require that the setting
leading to a BCT contradiction happens, and ask the model if a solution exists for the
provided parameters.

We reuse the encoding of [SGWW20, HSE23] to handle the different types of differences
in the internal states. The variable AX[i] is used to represent the activeness of the cell
X[i] (0 ≤ i ≤ 15) and can take 4 values, while DX[i] stores the exact difference when it is
known:

AX[i] =

0 ∆X[i] = 0
1 ∆X[i] is non zero and known
2 ∆X[i] can be any nonzero value
3 ∆X[i] can take any value

DX[i] ∈

{0} AX[i] = 0
{1, ..., 15} AX[i] = 1
{−1} AX[i] = 2
{−2} AX[i] = 3

Constraints are added to ensure that at each time the activity and difference variables
associated to the same cell X[i] are consistent:

Link(AX[i], DX[i]) :=

if AX[i] = 0 then DX[i] = 0
else if AX[i] = 1 then DX[i] > 0
else if AX[i] = 2 then DX[i] = −1
else DX[i] = −2

These variables are set for each of the 16 nibbles of internal state at step X, Y and Z
(following the notations of Figure 8) of the encryption, and independently for both the top
and the bottom trail. A series of constraints is then added to model the propagation with
probability one of the plaintext difference of the top trail in the encryption direction and
of the ciphertext difference of the bottom trail in the decryption direction.

For instance, a cell X[i] of known active difference equal to 0x2 (so represented by
AX[i]=1 and DX[i]=2) should become active but of unknown difference after traversing
the Sbox layer (AY[i]=2 and DX[i]=-1). We refer to [HSE23] for a description of these
constraints, that we reused as it is.

As there are no differences in the key, only the tweak difference is modeled. We reuse
the technique of [HSE23] that takes into account the permutation PT of the tweak schedule
and bounds the number of cancellations. An important difference of our model is that the
upper and lower trails are independent, which in particular means that we introduce two
tweak states. As detailed in the next section and as one could expect, the trail found by
the solver makes good use of this by positioning 3 cancellations in the top trail and 3 in
the bottom trail, resulting in many blank rounds.

To force a contradiction at the junction of the upper and lower trail, we add a constraint
that states that the input of one of the 16 Sboxes of the last Sbox layer is active and of
known value while at the same time the output of the same Sbox in the lower trail is also
active and of known value, that is: ((AXU[RU, i] == 1) /\(AYL[0, i] == 1)) (where
i is the Sbox index (0 ≤ i ≤ 15) and RU is the number of rounds in the upper trail).

244 On Impossible Boomerang Attacks

Once a (truncated) solution is found by the model, the actual input, output and tweak
differences must be set so that the known values appearing in the BCT contradiction
actually correspond to a BCT coefficient of value 0. In the distinguisher provided below it
corresponds to fixing the master tweak differences so that they develop into a contradicting
pair in round 14.

We use the constraint modeling language MiniZinc [NSB+07] and use the CP solver
Or-Tools [PF19].

5.2.2 Distinguishers and Attacks on SKINNYee

Distinguisher. We applied the previous model to SKINNYee and found a 21-round
impossible boomerang distinguisher, depicted in Figure 14 in Appendix B. Since the
boomerang construction allows to have different tweak differences for the top and for the
bottom trail it allows to position 8 rounds with no active Sbox at the top and at the
bottom. (This would not have been possible for an impossible differential distinguisher
where only one tweak difference is used and is common to both the top and the bottom
trail). Thanks to the linear tweak schedule the attacker knows the exact difference of
several words after numerous rounds and can use this to build a BCT contradiction.

Attack. We use the 21-round boomerang impossible distinguisher presented in Figure 14
and add 4 rounds at the top and 4 rounds at the bottom for the key recovery, as depicted
in Figure 10 and Figure 11 respectively. As in the case of Simon, the first and last
operations do not depend on secret parameters so we can partially encrypt and decrypt
the data set before starting the attack to remove the unnecessary operations.

In addition to this, in the first two rounds of the attack we use an equivalent round key
(and similarly round tweak) that corresponds to MC(SR(Kr)) (similarly MC(SR(TWr))).
Into detail, the states corresponding to the key Kr and its equivalent version EKr are as
depicted in Figure 9.

0 1 2 3

4 5 6 7

Kr EKr

0 12 3

2 3 0 1

2⊕ 5 3⊕ 6 0⊕ 7 1⊕ 4

MC ◦ SR

Figure 9: Value of the equivalent key (EKr = MC(SR(Kr))) in function of the nibbles of
the key (Kr).

As depicted in Figure 10, the number of active bits at the input is din = 5 × 4 = 20.
The number of key guesses made in EK0 is equal to 5 × 4 = 20 bits (refer to Figure 9 to
see the equal nibbles and the positions where no key appears) and in EK1 2 × 4 = 8 bits
need to be guessed, which means that |Kin| = 28 bits.

Now referring to Figure 11, one can observe that dout = 12 × 4 = 48 bits are active at
the ciphertext side. The 17 nibbles of key showed in the figure actually reduce to less as
K0 was already partly guessed in the top part. More into details, for the bottom 4 rounds
of key recovery we need nibble 0 to 7 of K0 (following the numbering of Figure 9), but
nibbles 0, 1 and 3 were already guessed, together with the XOR of nibbles 2 and 5 and the
XOR of nibbles 3 and 6. Guessing the lower key at once would thus requires 12 nibbles of
key guess.

Improvement. The filtering factor (2−2n+2dout) appearing when building quartets of
messages can actually be further improved by noticing that an additional condition can
be checked when pairing pairs together. We refer to Figure 12 for an illustration of the
process.

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 245

X2 Y2 Z2 W2 X3 Y3 Z3 W3 X4

X0 Y0

SC SR

EX0W0

MC

X1 Y1

SC SR

Z1 W1

MC

X2

⊕EK0 ⊕EK1

⊕K2 ⊕K3

⊕ETW0

⊕TW1

⊕TW2 ⊕TW3

active and known active maybe activeinactive bits of K0, K1, K2, K3 (resp.)

dv
v
d
d

v
d

d

v
d

d

v
v

v

v
v

v

v
vd

d
v

v

v v
v d

v
v

vv

vdv

v
v

v
d
vd

v

v
v

v
vv

v

v

v
v

v
v
vv

v

v

v

value is needed difference is neededv d

SC SR MC SC SR MC

v v v
v

v
v

vv
v

v
v

Figure 10: Top 4 rounds added for key recovery in our 29-round attack on SKINNYee.
The difference propagation is depicted, together with the nibbles that are needed in value
to check that the input difference of the distinguisher is met.

active and known active maybe activeinactive bits of K0, K1, K2, K3 (resp.)

value is needed difference is neededv d

X25 Y25 Z25 W25 X26

⊕K1

⊕TW25

v

MC SC SR MC
v v v

X26 Y26 Z26 W26 X27 Y27 Z27 W27 X28

⊕K2 ⊕K3

⊕TW26 ⊕TW27

v
vSC SR MC SC SR MC

X28 Y28 Z28 W28 X29

⊕K0

⊕TW28

SC SR MC

d

d
v

v

d

d
v

v

v

v
v

v

v

v
v

v

d v

v
v

v

d

v v v v
v v v

v v v
v vd

d
v

d
dv

v v

v d

v v v
v v v

v v v
v

v v v
v v v

v v v
v

v v v
v v v

v
v

v v

v v v v
v v v

v

v v v v

v v

v
v v v v

v v v

v

v v v v

v v v
v v v v

v v v

v

v v v v

v v

v
v
v

vv

v
v
v
v

v
v v

v
v

v
v

v

v

Figure 11: Bottom 4 rounds added for key recovery in our 29-round attack on SKINNYee.
The difference propagation is depicted, together with the nibbles that are needed in value
to check that the output difference of the distinguisher is met.

We consider that the technique presented in Section 4.3 is followed, and that in
particular the attack starts by the construction of pairs of messages thanks to a key guess
of the |Kin| top key bits. Once this is done, the attacker aims at building quartets of
messages by referring to the ciphertext differences of pairs. In our specific case, the attacker
can actually rely on the fact that part of the last round key is known (from the top key
guess and as the key schedule is very simple) to base this pairing step on a stronger filter.

The additional condition corresponds to the verification that the nibble difference at
position 14 of W27 is 0 for the internal state corresponding to the pair (C1, C3) and to the
pair (C2, C4). As shown in Figure 12, the attacker has sufficient information to compute
W27[14] once the |Kin| key bits have been guessed. The idea is thus to compute W27[14]
for each message and to store it together with the ciphertext in view of the collision process
to build quartets. In addition to checking that the ciphertexts C1 and C3 (resp. C2 and
C4) collide on the n − dout required bits, the attacker thus checks the additional collision
on the nibble W27[14], which rises the filter value to 2−2n+2dout−2×4.

Complexity of the attack. The detail of the complexities is as follows. 2s structures of
2din = 220 messages are queried under 4 related tweaks (chosen among the 103 values
that ensure a BCT contradiction). The full codebook is queried under these 4 public
values, that is, 2s = 2n−din = 244, setting the data complexity to D = 4 × 2s+din = 266.

246 On Impossible Boomerang Attacks

active and knownactive maybe activeinactive

bits of K0

difference (only) is knownd

W27

MC

X28 Y28 Z28 W28 X29

⊕K0

⊕TW28

SC SR MC
x

x x x x
x x x

x

x x x

x x

x

x
x

x x

value is knownx

x x x x
x x x x

x
x

x x

x x x x
x x x x
x

x
x

x x

x x x x
x x x x
x

sum of the values is known

x

x xx x

x d d

? value and difference is unknown

d
d

?
?

? d

?
?
?

?
?
?

? d

d
d

x

check that X28[2]⊕X28[14] = 0

expected W27

difference:

Figure 12: Depiction of the free filter of 4 bits obtained in the last two rounds of the
attack.

The pair generation according to the guess of the |Kin| = 28 top key bits requires a time
equivalent to 2|Kin| × 2n × 2 × 8

29 = 291.14 encryptions. The (improved) collision step
to create the quartets is then of complexity: 2|Kin| × 264×2−64×2+2×dout−2×4 = 2116 and
creates 22×dout−2×4 = 288 quartets per key guess. The final filtering step is done with the
early abort technique, where the quartets associated to a specific key guess are gradually
decrypted over the last 4 rounds (which requires key guesses from |Kout| bits) to check if
the difference β is obtained twice, in which case the key guess can be discarded.

In view of the configuration of the 4 last rounds (see Figure 11 and Figure 12), the
attacker can for instance start focusing on the first column of X28. A zero-difference is
expected in byte 4 and 8 of W27, which implies that the difference in X28[4] and in X28[12]
must be equal. Since Y28[4] is known in value and in difference and Y28[12] is known in
difference, the attacker can use the following well-known principle to determine the value
of K0[4]:

Lemma 2. For a given Sbox S and given two non-zero differences ∆a and ∆b, the equation
S(x ⊕ ∆a) ⊕ S(x) = ∆b has one solution x on average. The solutions can be efficiently
computed.

Formally, the attacker determines K0[4] so that: S−1(Z28[12] ⊕ K0[4]) ⊕ S−1(Z28[12] ⊕
K0[4] ⊕ ∆Z28[12]) = ∆X28[4] with the pair (C1, C3) and obtains one value on average.
Using the second pair (C2, C4) they check if this value matches the same requirement,
which has a probability of 2−4 on average. Doing so the following filtering operations are
made on a further reduced amount of quartets, and the rest of the early-abort phase is of
negligible cost.

The last step of the attack doing the exhaustive search of the undetermined key bits
has a cost of 2128

e = 2126.6 encryptions.

5.2.3 Improved attack on SKINNYee

Using multiple tweaks. As there are 103 pairs (δTin, δTout) that lead to a contradiction,
we can leverage them to obtain a better attack, as explained in Section 4.6. We query 2s

structures of 220 plaintexts, encrypted under 256 tweaks. Thus the data complexity is
D = 2s+din+8. We next follow the pair filtering process and start by guessing |Kin| = 28
top key bits, and for each guess we can construct 2s+din+12−1 pairs. Hence, the cost of this
step is 228+11+s+din × 8

29 . From these pairs we produce 103
256 2|Kin|+2s+2din+2dout−2n+16−2 =

103
256242+2(s+din+dout−n) quartets. Overall the probability a wrong key survives is around
exp

(
− 103

256 22s+2din−2n+14)
.

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 247

Maximal filtering. We can take s = n − din = 44, as before. Then D = 272, and the
probability that a wrong key survives is around 2−9510. Thus, this is clearly sufficient to
eliminate all wrong keys, and arguably too much.

Uniquely identifying the key. We can have the more reasonable aim to uniquely identify
the value of Kin ∪ Kout. Then we need a probability of 2−76, which can be obtained with
s = 240.5 structures. Thus we use D = 268.5 data overall, the cost of pair generation will
be 297.6, and the collision will produce overall 2121.7 quartets. As with the first attack, the
early-abort filtering for Kout will have a negligible cost. Thus, overall the attack will cost
2121.7.

Balancing the cost. Similarly, with s = 39.2, we can balance the cost of the quartet
generation and the final exhaustive search step, with an overall cost of 2119.2, using
D = 267.2 data overall.

Minimal data complexity. If we want the same filtering probability as in the first attack,
in 1/e, we can take s = 237.7. Thus we use D = 265.7 data overall, the cost of pair
generation will be 294.8 and the collision will produce overall 2116.1 quartets. Finally
the dominant cost will be the exhaustive search, in 2128/e ≃ 2126.6. Interestingly, data
complexity is very slightly lower than in the first attack.

6 Conclusion

In this work we extend the notion of impossible boomerang attack from [Lu08] by leveraging
the recent advances in the understanding of boomerang incompatibilities. We use these
incompatibilities to define new models to find impossible boomerang distinguishers on
Simon and SKINNYee. Moreover, we provide a fine analysis of the complexities of such
attacks, and apply this framework to Simon and SKINNYee. We obtain a 23-round
attack on Simon-32/64 and a 29-round attack on SKINNYee. This last attack breaks
two more rounds than the previous best known attack on SKINNYee.

We observed that with impossible boomerangs there is an even starker data threshold
than with impossible differentials: for SKINNYee, between an attack that allows to gain 1
bit over exhaustive search and an attack that fully identifies the key, there is only a factor
7 in data.

Acknowledgments

The authors would like to thank the anonymous ToSC reviewers and Fukang Liu for their
valuable comments.

This work has been partially supported by the French Agence Nationale de la Recherche
through the OREO project under Contract ANR-22-CE39-0015, through the France 2030
program under grant agreement No. ANR-22-PECY-0010 CRYPTANALYSE and it has
been partially funded by the European Union (ERC-2023-COG, SoBaSyC, 101125450).
Views and opinions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Research Council Executive Agency.
Neither the European Union nor the granting authority can be held responsible for them.

248 On Impossible Boomerang Attacks

References
[AL16] Tomer Ashur and Yunwen Liu. Rotational cryptanalysis in the presence

of constants. IACR Trans. Symm. Cryptol., 2016(1):57–70, 2016. https:
//tosc.iacr.org/index.php/ToSC/article/view/535.

[BBS99a] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack
reduced to 31 rounds using impossible differentials. In Jacques Stern, editor,
EUROCRYPT’99, volume 1592 of LNCS, pages 12–23. Springer, Heidelberg,
May 1999.

[BBS99b] Eli Biham, Alex Biryukov, and Adi Shamir. Miss in the middle attacks
on IDEA and Khufu. In Lars R. Knudsen, editor, FSE’99, volume 1636 of
LNCS, pages 124–138. Springer, Heidelberg, March 1999.

[BDK05] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and
rectangle attacks. In Ronald Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS, pages 507–525. Springer, Heidelberg, May 2005.

[BHL+20] Hamid Boukerrou, Paul Huynh, Virginie Lallemand, Bimal Mandal, and
Marine Minier. On the Feistel counterpart of the boomerang connectivity
table (long paper). IACR Trans. Symm. Cryptol., 2020(1):331–362, 2020.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 123–153. Springer, Heidelberg, August 2016.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the
full AES-192 and AES-256. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 1–18. Springer, Heidelberg, December 2009.

[BL23a] Augustin Bariant and Gaëtan Leurent. Truncated boomerang attacks and
application to AES-based ciphers. In Carmit Hazay and Martijn Stam,
editors, EUROCRYPT 2023, Part IV, volume 14007 of LNCS, pages 3–35.
Springer, Heidelberg, April 2023.

[BL23b] Xavier Bonnetain and Virginie Lallemand. On boomerang attacks on
quadratic Feistel ciphers new results on KATAN and Simon. IACR Trans.
Symm. Cryptol., 2023(3):101–145, 2023.

[BLNS18] Christina Boura, Virginie Lallemand, María Naya-Plasencia, and Valentin
Suder. Making the impossible possible. Journal of Cryptology, 31(1):101–133,
January 2018.

[BNS14] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing
and improving impossible differential attacks: Applications to CLEFIA,
Camellia, LBlock and Simon. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 179–199. Springer,
Heidelberg, December 2014.

[BSS+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. SIMON and SPECK: Block ciphers for the
internet of things. Cryptology ePrint Archive, Report 2015/585, 2015.
https://eprint.iacr.org/2015/585.

https://tosc.iacr.org/index.php/ToSC/article/view/535
https://tosc.iacr.org/index.php/ToSC/article/view/535
https://eprint.iacr.org/2015/585

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 249

[CCW+18] Zhihui Chu, Huaifeng Chen, Xiaoyun Wang, Xiaoyang Dong, and Lu Li.
Improved integral attacks on SIMON32 and SIMON48 with dynamic key-
guessing techniques. Secur. Commun. Networks, 2018:5160237:1–5160237:11,
2018.

[CDJ+20] Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-
López, Mridul Nandi, and Yu Sasaki. ESTATE: A lightweight and low energy
authenticated encryption mode. IACR Trans. Symm. Cryptol., 2020(S1):350–
389, 2020.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song.
Boomerang connectivity table: A new cryptanalysis tool. In Jesper Buus
Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, volume
10821 of LNCS, pages 683–714. Springer, Heidelberg, April / May 2018.

[CW16] Huaifeng Chen and Xiaoyun Wang. Improved linear hull attack on round-
reduced simon with dynamic key-guessing techniques. In Thomas Peyrin,
editor, FSE 2016, volume 9783 of LNCS, pages 428–449. Springer, Heidelberg,
March 2016.

[DDV20] Stéphanie Delaune, Patrick Derbez, and Mathieu Vavrille. Catching the
fastest boomerangs application to SKINNY. IACR Trans. Symm. Cryptol.,
2020(4):104–129, 2020.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-
key attack on the KASUMI cryptosystem used in GSM and 3G telephony.
In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 393–410.
Springer, Heidelberg, August 2010.

[DKS14] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-
key attack on the KASUMI cryptosystem used in GSM and 3G telephony.
Journal of Cryptology, 27(4):824–849, October 2014.

[HBS21] Hosein Hadipour, Nasour Bagheri, and Ling Song. Improved rectangle attacks
on SKINNY and CRAFT. IACR Trans. Symm. Cryptol., 2021(2):140–198,
2021.

[HKLP05] Seokhie Hong, Jongsung Kim, Sangjin Lee, and Bart Preneel. Related-key
rectangle attacks on reduced versions of SHACAL-1 and AES-192. In Henri
Gilbert and Helena Handschuh, editors, FSE 2005, volume 3557 of LNCS,
pages 368–383. Springer, Heidelberg, February 2005.

[HLJ+20] Xichao Hu, Yongqiang Li, Lin Jiao, Shizhu Tian, and Mingsheng Wang.
Mind the propagation of states - new automatic search tool for impossible
differentials and impossible polytopic transitions. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of LNCS,
pages 415–445. Springer, Heidelberg, December 2020.

[HSE23] Hosein Hadipour, Sadegh Sadeghi, and Maria Eichlseder. Finding the impos-
sible: Automated search for full impossible-differential, zero-correlation,
and integral attacks. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part IV, volume 14007 of LNCS, pages 128–157.
Springer, Heidelberg, April 2023.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/

250 On Impossible Boomerang Attacks

[Kir15] Aleksandar Kircanski. Analysis of boomerang differential trails via a SAT-
based constraint solver URSA. In Tal Malkin, Vladimir Kolesnikov, Alli-
son Bishop Lewko, and Michalis Polychronakis, editors, ACNS 15, volume
9092 of LNCS, pages 331–349. Springer, Heidelberg, June 2015.

[Knu98] Lars Knudsen. Deal-a 128-bit block cipher. complexity, 258(2):216, 1998.

[LDKK08] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New
impossible differential attacks on AES. In Dipanwita Roy Chowdhury,
Vincent Rijmen, and Abhijit Das, editors, INDOCRYPT 2008, volume 5365
of LNCS, pages 279–293. Springer, Heidelberg, December 2008.

[LPS21] Gaëtan Leurent, Clara Pernot, and André Schrottenloher. Clustering effect
in simon and simeck. In Mehdi Tibouchi and Huaxiong Wang, editors,
ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 272–302. Springer,
Heidelberg, December 2021.

[Lu08] Jiqiang Lu. Cryptanalysis of block ciphers. PhD thesis, University of London
UK, 2008.

[Lu11] Jiqiang Lu. The (related-key) impossible boomerang attack and its ap-
plication to the AES block cipher. Des. Codes Cryptogr., 60(2):123–143,
2011.

[LWL22] Chenmeng Li, Baofeng Wu, and Dongdai Lin. Generalized boomerang
connectivity table and improved cryptanalysis of GIFT. In Yi Deng and Moti
Yung, editors, Information Security and Cryptology - 18th International
Conference, Inscrypt 2022, Beijing, China, December 11-13, 2022, Revised
Selected Papers, volume 13837 of Lecture Notes in Computer Science, pages
213–233. Springer, 2022.

[MDRMH10] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud
Modarres-Hashemi. Improved impossible differential cryptanalysis of 7-
round AES-128. In Guang Gong and Kishan Chand Gupta, editors,
INDOCRYPT 2010, volume 6498 of LNCS, pages 282–291. Springer, Hei-
delberg, December 2010.

[Mur11] Sean Murphy. The return of the cryptographic boomerang. IEEE Trans.
Inf. Theory, 57(4):2517–2521, 2011.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard CP
modelling language. In Christian Bessiere, editor, Principles and Practice
of Constraint Programming - CP 2007, 13th International Conference, CP
2007, Providence, RI, USA, September 23-27, 2007, Proceedings, volume
4741 of Lecture Notes in Computer Science, pages 529–543. Springer, 2007.

[NSS22] Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Secret can be public:
Low-memory AEAD mode for high-order masking. In Yevgeniy Dodis
and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume 13509 of
LNCS, pages 315–345. Springer, Heidelberg, August 2022.

[PF19] Laurent Perron and Vincent Furnon. Or-tools. https://developers.
google.com/optimization, 2019.

[PT22] Thomas Peyrin and Quan Quan Tan. Mind your path: On (key) dependencies
in differential characteristics. IACR Trans. Symm. Cryptol., 2022(4):179–
207, 2022.

https://developers.google.com/optimization
https://developers.google.com/optimization

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 251

[QHS15] Kexin Qiao, Lei Hu, and Siwei Sun. Differential security evaluation of simeck
with dynamic key-guessing techniques. Cryptology ePrint Archive, Report
2015/902, 2015. https://eprint.iacr.org/2015/902.

[SGWW20] Ling Sun, David Gerault, Wei Wang, and Meiqin Wang. On the usage of
deterministic (RK) TDs and MDLAs for SPN ciphers. IACR Trans. Symm.
Cryptol., 2020(3):262–287, 2020.

[SQH19] Ling Song, Xianrui Qin, and Lei Hu. Boomerang connectivity table revisited.
IACR Trans. Symm. Cryptol., 2019(1):118–141, 2019.

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search tool
from design and cryptanalysis aspects - revealing structural properties of
several ciphers. In Jean-Sébastien Coron and Jesper Buus Nielsen, edi-
tors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 185–215.
Springer, Heidelberg, April / May 2017.

[Wag99] David Wagner. The boomerang attack. In Lars R. Knudsen, editor, FSE’99,
volume 1636 of LNCS, pages 156–170. Springer, Heidelberg, March 1999.

[WP19] Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds.
IACR Trans. Symm. Cryptol., 2019(1):142–169, 2019.

[WSW+23] Libo Wang, Ling Song, Baofeng Wu, Mostafizar Rahman, and Takanori
Isobe. Revisiting the boomerang attack from a perspective of 3-differential.
IEEE Transactions on Information Theory, 2023.

[WWS23] Dachao Wang, Baocang Wang, and Siwei Sun. SAT-aided automatic search
of boomerang distinguishers for ARX ciphers. IACR Trans. Symm. Cryptol.,
2023(1):152–191, 2023.

[YSS+22] Qianqian Yang, Ling Song, Siwei Sun, Danping Shi, and Lei Hu. New
properties of the double boomerang connectivity table. IACR Trans. Symm.
Cryptol., 2022(4):208–242, 2022.

[ZDM+20] Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang. Gener-
alized related-key rectangle attacks on block ciphers with linear key schedule:
applications to SKINNY and GIFT. Des. Codes Cryptogr., 88(6):1103–1126,
2020.

https://eprint.iacr.org/2015/902

252 On Impossible Boomerang Attacks

A 17-round related-key impossible boomerang distinguisher
of Simon-32/64

Top Trail (E0 and Em)

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

Bottom Trail (Em and E1)

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

≪ 1

≪ 8

≪ 2

⊗

Figure 13: Related-key impossible boomerang distinguisher of 17-round Simon-32/64.
White cells are inactive bits, light colored ones are undetermined and darker ones are
active.

X. Bonnetain, M. Cordero, V. Lallemand, M. Minier, M. Naya-Plasencia 253

B 21-round impossible boomerang distinguisher of SKINNYee

X0 Y0

SC SR

Z0

⊕

W0

MC

X1 Y1

SC SR

Z1

⊕

W1

MC

X2

X2 Y

SC SR

Z

⊕

W

MC

X3 Y

SC SR

Z

⊕

W

MC

X4

X4 Y

SC SR

Z

⊕

W

MC

X5 Y

SC SR

Z

⊕

W

MC

X6

X6 Y

SC SR

Z

⊕

W

MC

X7 Y

SC SR

Z

⊕

W

MC

X8

X8 Y

SC SR

Z

⊕

W

MC

X9 Y

SC SR

Z

⊕

W

MC

X10

X10

SC

?

?

?

? ?

active and known

active

maybe active

X10

SC SR
⊕

MC SC SR
⊕

MC

X12

X12 Y

SC SR

Z

⊕

W

MC

X13 Y

SC SR

Z

⊕

W

MC

X14

X14 Y

SC SR

Z

⊕

W

MC

X15 Y

SC SR

Z

⊕

W

MC

X16

X16 Y

SC SR

Z

⊕

W

MC

X17 Y

SC SR

Z

⊕

W

MC

X18

X18 Y

SC SR

Z

⊕

W

MC

X19 Y

SC SR

Z

⊕

W

MC

X20

X20

SC

?

active and known

active

maybe active

WZYX11WZY

SR

Z

⊕

W

MC

X21

UPPER TRAIL

LOWER TRAIL

B
C
T
contradiction

Figure 14: 21-round impossible boomerang distinguisher of SKINNYee.

	Introduction
	Preliminaries
	Boomerang Tables
	Previous Impossible Boomerang Notions

	New Insights on Boomerang Impossibilities
	The DBCT Theory
	Extending the Impossible Boomerang Distinguisher Notion by using New Contradictions

	Complexity Analysis of an Impossible Boomerang Attack
	Data Complexity
	Key Recovery with Quartet Filtering
	Key Recovery with Pair Filtering
	Discussion on the Possible Key Recovery Approaches
	Optimizing Related Keys
	Using Multiple Related-Tweak Impossible Differential Distinguishers
	Experimental Validation of the Key-Recovery

	Applications
	Impossible Boomerang Attacks of Simon
	Impossible Boomerang Attacks of SKINNYee

	Conclusion
	17-round related-key impossible boomerang distinguisher of Simon-32/64
	21-round impossible boomerang distinguisher of SKINNYee

