
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 2, pp. 190–221. DOI:10.46586/tosc.v2024.i2.190-221

Dynamic Cube Attacks against Grain-128AEAD
Chen Liu and Tian Tian

Information Engineering University, Zhengzhou 450001, China
LC_LiuChen@126.com, tiantian_d@126.com

Abstract. In this paper, we revisit the division property based dynamic cube attack
on the full Grain-128 presented by Hao et al. at FSE 2020 and demonstrate that their
attack on the full Grain-128 is invalid, that is, no key information could be successfully
recovered. The theoretical framework for the dynamic cube attack provided by Hao
et al. is correct, but the technique for building the MILP model in the dynamic cube
attack has flaws. Besides, strong evidence indicates that their bias estimation method
is not applicable to Grain-128AEAD and Grain-128. Accordingly, we introduce the
three-subset division property without unknown subset (3SDP/u) into dynamic cube
attacks and present a correct MILP modeling technique. In addition, we propose a
heuristic technique called Polynomial Approximation with regard to Bias (PAB) to
evaluate the bias in superpolies in the dynamic cube attack, which can provide a
more accurate bias evaluation for high-dimension cubes. As a result, we implemented
the dynamic cube attack based on 3SDP/u on 190-round Grain-128AEAD, and we
could recover 3 key bits with a complexity 2103.44 and the success probability was
evaluated to be 99.68%. For Grain-128, some zero-sum distinguishers of cube size 80
are given for the first time.
Keywords: Dynamic Cube Attacks · Division Property · MILP · Grain-128AEAD
· Grain-128

1 Introduction
Since the cube attack was first introduced by Dinur and Shamir in [DS09], it has become
an important cryptanalysis tool for stream ciphers. In cube attacks, the first output bit of
a stream cipher can be regarded as a black-box polynomial f(k, v) with respect to the
secret key variables k and public IV variables v. Given a non-empty subset I of IV indices,
f(k, v) can be rewritten uniquely as

f(k, v) = vI · pI(k, v)⊕ qI(k, v),

where vI =
∏

i∈I vi and each term of qI(k, v) is not divisible by vI . The IV variables in
{vi | i ∈ I} are called cube variables. In the preprocessing phase, by assigning all possible
combinations of 0/1 values to the cube variables, 2|I| polynomials are obtained from f ,
and their symbolic sum pI is called the superpoly of I in f . Generally, the non-cube
variables are set to 0-constant in specific cube attacks, and in this case, pI is a polynomial
in k. Cube attacks aim to find proper sets I such that the superpolies pI(k) are balanced
polynomials with low-degree, which can provide 1-bit secret key information theoretically.
The equations on the secret key variables could be built by inquiring about the value of
pI(k) online. Finally, some key information could be restored by solving these equations.
Additionally, a distinguisher variant of cube attacks, referred to as cube tester, was first

This work was supported by the National Natural Science Foundation of China under Grant No.
62372464.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-03-01 Accepted: 2024-05-01 Published: 2024-06-18

https://doi.org/10.46586/tosc.v2024.i2.190-221
mailto:LC_LiuChen@126.com
mailto:tiantian_d@126.com
http://creativecommons.org/licenses/by/4.0/

Chen Liu and Tian Tian 191

introduced in [ADMS09], which is used to detect non-random properties of a superpoly of
a carefully selected cube such as constantness, linearity, and bias.

The dynamic cube attack, a variant of cube attacks proposed in [DS11], serves as a
potent cryptanalytic technique extensively applied in the evaluation of security in the
Grain family [DS11, DGP+11, RBMA16, HJL+20]. Unlike cube attacks, dynamic cube
attacks recover secret key information by exploiting distinguishers on superpolies, such
as bias and constantness. The basic idea of dynamic cube attacks is to simplify or even
nullify the ANFs of several critical intermediate state bits by imposing dynamic constraints
on some IV variables called dynamic variables, which aims to simplify the ANF of the
output function and induce non-random properties to the corresponding superpoly. The
dynamic constraints typically depend on some cube variables and key expressions. By
guessing the values of key expressions (or secret key variables) involved in the constraints,
the correct guesses can be obtained by detecting the non-randomness of the corresponding
superpoly. Ideally, under a correct key guess, the corresponding superpoly will show a kind
of non-randomness; conversely, under wrong key guesses, the corresponding superpolies
behave randomly. By using the dynamic cube attack, Dinur and Shamir proposed a
weak-key attack on the full version of Grain-128 in [DS11]. Subsequently, Dinur et al.
further proposed a key-recovery attack on the full version of Grain-128 in [DGP+11] and
experimentally verified the correct guesses for a dozen of keys. By adjusting the strategy
of imposed conditions, Rahimi et al. presented a key-recovery attack against 100-round
Grain v1 in [RBMA16].

In [HJL+20], Hao et al. argued that a theoretically reliable key-recovery attack should
evaluate not only the non-randomness for the correct key guess but also the randomness
for the wrong ones. Based on this idea, they pointed out that previous dynamic cube
attacks are unreliable, as these attacks typically overlooked the empirical or theoretical
validation of the randomness of the superpoly under wrong key guesses.

To solve this problem, Hao et al. applied the division property to dynamic cube attacks
and proposed a new dynamic cube attack (which we call division property based dynamic
cube attack) along with the corresponding MILP1 modeling technique. By applying
the division property and the MILP modeling technique, large cubes can be exploited
to construct zero-sum distinguishers in dynamic cube attacks, which is very useful for
distinguishing correct guesses from incorrect guesses. To achieve this goal, a “qualified”
cube must satisfy the following requirements: for the correct key guess, the cube should
introduce a zero-sum property (i.e., the bias of the corresponding superpoly is 2−1); for
each wrong key guess, the superpoly should be of high degree with a bias smaller than 2−1.
However, using high-dimensional cubes makes detecting the bias through experimental
testing infeasible since the computation complexity exceeds the available computational
capabilities. Therefore, to evaluate biases in superpolies of high-dimensional cubes, Hao
et al. drew links between the bias and the division property through a specific algebraic
structure and a heuristic assumption. Based on the links, they proposed a theoretical
method for estimating the biases of superpolies. Strictly speaking, it is necessary to
evaluate the biases of the superpolies for all possible wrong guesses. But, it is impractical
to do this due to a large number of wrong key guesses. Therefore, the authors proposed
a method to pick up a special wrong key guess that is expected to have a bias that is
closest to the bias of the correct key guess. Thus, the dynamic cube attack is deemed to be
successful if the correct key guess can be distinguished from the special wrong key guess.
Finally, the authors in [HJL+20] applied the division property based dynamic cube attack
to the full Grain-128 and recovered about 3-bit key information with a complexity of 297.86

and a success probability of 99.83%. It is currently the best theoretical key recovery attack
for the full Grain-128.

1Short for Mixed Integer Linear Programming, which is widely applied to various cryptanalysis
techniques

192 Dynamic Cube Attacks against Grain-128AEAD

Motivation. In recent years, several cube attacks have been proposed against Grain-
128AEAD [HLM+20, HLM+21, HST+21, HHPW22]. These attacks aim to recover a
superpoly for more initialization rounds. But, as the number of initialization rounds
increases, the recovered superpolies become highly complex and exhibit significant bias.
Such superpolies are considered “bad” in cube attacks because, theoretically, they can
only provide key information of less than 1 bit, leading to an attack with a computation
complexity close to that of the exhaustive search attack. As a comparison, the dynamic
cube attack makes use of biased superpolies without recovering their full algebraic normal
forms that are typically complex, and it has theoretical complexity significantly lower than
that of the exhaustive search attack when applied to Grain-128. Besides, some dynamic
cube attacks against Grain-128 could even experimentally recover some key bits. Thus, the
dynamic cube attack seems to be a potentially powerful attack against Grain-128AEAD
as well as Grain-128.

When we revisited the dynamic cube attack against the full version of Grain-128
proposed in [HJL+20], we found that the attack has some issues which results in that the
key-recovery result against the full Grain-128 is invalid. The primary issue is that the
MILP modeling technique for the dynamic cube attack did not consider the structural
characteristics of the Grain family, making the established MILP models contain many
redundant division trails. Therefore, the cubes constructed by the modeling technique and
deemed “qualified” failed to meet the requirements for distinguishing between correct and
wrong key guesses. Another issue is that the significant gap between the estimated and
actual biases could also affect the effectiveness of the attack. The method for estimating
bias proposed in [HJL+20] relies on a heuristic assumption. The accuracy of the estimated
bias obtained using this method depends on the validity of this assumption. However,
based on many experiments, we found that the assumption is not universally applicable
to the Grain family of ciphers as the estimated bias using the method in [HJL+20] is
significantly smaller than the actual bias in our experiments.

Contributions. In this paper, we focus on improving the dynamic cube attack against
Grain-128AEAD. As mentioned above, the inaccuracies in the MILP modeling technique
and the bias evaluation method lead to the key-recovery result in [HJL+20] against the
full Grain-128 being invalid. Our main contribution is to present a more robust dynamic
cube attack against the Grain family of ciphers both in implementation and theory. In
specific, our contribution consists of the following three aspects.

Firstly, we introduce a heuristic technique called Polynomial Approximation with
respect to Bias (PAB), which can provide a more accurate bias evaluation for a superpoly
of a high-dimensional cube. Compared to the method proposed in [HJL+20], the PAB
technique leverages the algebraic properties of the Grain family, enabling more precise bias
estimation. Secondly, we apply the 3SDP/u to dynamic cube attacks for the first time
and propose a more accurate MILP modeling method based on the 3SDP/u, which takes
the structural characteristics of the Grain family into consideration. Thirdly, a method
was proposed to analyze the impact of wrong key guesses on superpolies from an algebraic
perspective. This method aims to identify all possible wrong key guesses that are least
distinguishable from the correct key guess. Unlike the method in [HJL+20], our approach
has more theoretical foundation to support its correctness.

As an illustration, we apply our methods to Grain-128AEAD and Grain-128 and obtain
the following results.

1. We present a key-recovery attack against 190-round Grain-128AEAD with theoretical
analysis of the success probability, which is the first dynamic cube attack against
Grain-128AEAD. In our attack on Grain-128AEAD, we identify the nullification
strategy by employing an automated search algorithm. It only nullifies two internal
state bits by guessing 6 key bits. As a result, our attack provides 3 bits of key infor-
mation with a complexity of 2103.44 and a theoretically estimated success probability

Chen Liu and Tian Tian 193

of 99.68%.
We summarized the previous and our attack results for Grain-128AEAD in Table 1.
Compared with Hao et al.’s cube attack in [HLM+21], our attack can be regarded
as a more “practical” key recovery attack since we can independently recover 3 key
bits. In [HLM+21], it is explained from the perspective of entropy that 15 recovered
superpolies with high biases can provide 5.03 bits of key information, which is a
“theoretical” analysis and how to solve theses 5.03 bits of key information in practice
is unknown.

2. Based on the new modeling technique, we further discuss the feasibility of Hao et
al.’s dynamic cube attack against the full Grain-128. Through a large number of
experiments, we claim that within the framework of dynamic cube attacks proposed
in [HJL+20], it is challenging to execute an effective key-recovery attack against
Grain-128.

3. We compare the accuracy of our bias estimation method with the previous method
given in [HJL+20] by performing experiments on the reduced-round Grain-128AEAD.
It can be seen from Table 10 that the accuracy of our new bias evaluation method is
much better than the previous method for Grain-128AEAD. Besides we also give the
main reasons for the inaccuracies in estimating bias with the previous method.

All our results and the source code are available in our git repository.

Table 1: Summary of the attack results for round-reduced Grain-128AEAD
Attack type round r Key information available Computation complexity Ref.

Dynamic cube attacks 190 3 2103.44 Section 6.1
Cube attacks 190 5.03 298.91 [HLM+21]
Cube attacks 191 1281 2126.26 [HST+21]
Cube attacks 192 1282 2127 [HHPW22]

1They recovered two massive superpolies with a high-bias, which are considered to be able to provide
1.7-bit key information from the perspective of entropy.

2They recovered one massive superpoly, which is proved balanced through experimental testing and
is considered capable of providing 1-bit key information.

2 Preliminaries
2.1 Notations
Let n be a positive integer. An n-variable Boolean function f(x0, x1, . . . , xn−1) is a
mapping from Fn

2 into F2, and we also denote it by f(x) for simplicity. It can be uniquely
written as

f(x) =
⊕

µ∈Fn
2

aµxµ, aµ ∈ F2, (1)

where xµ =
∏n−1

i=0 xµi

i ≜ πµ(x) , which is called the Algebraic Normal Form (ANF) of
f(x). A Boolean function of the form xµ for some vector µ ∈ Fn

2 is called a monomial.
In particular, 1 = x0 is a monomial. By Eq.(1), if aµ = 1, then we say the monomial xµ

appears in f(x), denoted by xµ → f ; otherwise denote xµ ↛ f . The algebraic degree of
f(x) is defined by

deg(f) = max{wt(µ)|xµ → f},
where wt(µ) is the Hamming Weight of µ, and is denoted by deg(f). A vector of length
2n consisting of all the outputs of f(x) is called the truth table of f . The quantity εf such
that

Pr(f(x) = 0) ≜ |{x ∈ Fn
2 | f(x) = 0}|

2n
= 1

2 + εf ,

https://github.com/StrawberryBoy123/DynamicCubeAttack.git

194 Dynamic Cube Attacks against Grain-128AEAD

is called the bias of f(x), which describes the 0/1 distribution of the truth table of f(x).
It can be seen that − 1

2 ≤ εf < 1
2 . If εf = 0, then the number of 0’s is equal to that of 1’s

in the truth table of f , and in this case, f is called a balanced Boolean function. If εf > 0,
then the number of 0’s is larger than that of 1’s, and in this case, the output of f is more
likely to be 0 for a random input. In particular, if εf is close to 1

2 , then f is close to being
the zero constant function.

Beside Boolean functions, we need to introduce another type of polynomial ring.
Let Z[x0, . . . , xn−1] be the polynomial ring in n variables over the integer ring Z and
(x2

0 − x0, . . . , x2
n−1 − xn−1) be the ideal in Z[x0, . . . , xn−1] generated by {x2

i − xi | 0 ≤ i ≤
n−1}. Then the quotient ring Z[x0, . . . , xn−1]/(x2

0−x0, . . . , x2
n−1−xn−1) is a commutative

ring with identity, and we denote it by Z̄[x], where x = (x0, x1, . . . , xn−1). Since x2
i = xi

in Z̄[x], it follows that every polynomial f(x) ∈ Z̄[x] can be written uniquely as

f(x) =
∑

µ∈Fn
2

αµxµ, αµ ∈ Z.

2.2 Frequency test to Boolean functions
Let f(x) be an n-variable random Boolean function, that is, its truth table contains
as many zeroes as ones. This implies that Pr(f(x) = 1) = Pr(f(x) = 0) = 1

2 for a
uniformly distributed discrete random variable x over Fn

2 . Let X = {x1, x2, . . . , xN} be
a non-empty subset of Fn

2 . Assume f is random on X (that is, f(x1), f(x2), . . . , f(xN)
are random samples from the truth table of f). Denote the number of 1’s in the N -
tuple (f(x1), f(x2), . . . , f(xN)) by S. Then the central limit theorem implies that for a
sufficiently large N , the distribution of

y = S −N/2√
N/4

= 2S −N√
N

is approximately the standard normal distribution N (0, 1). Generally, when N is greater
than 25 or 30, this approximation will be good [HTZ13, Chapter 5.6]. Next, we devise a test
for random Boolean functions. Choose a significance level 0 < α ≤ 0.05. If Φ(|y|) ≤ 1− α

2 ,
then we say the function f passes the frequency test for randomness with a significance
level α, where Φ is the distribution function of N (0, 1), that is,

Φ(|y|) = 1√
2π

∫ |y|

−∞
e− u2

2 du.

Otherwise, we say f(x) fails the frequency test for randomness with the significance level
α and in this case we also say f is biased.

Finally, we discuss the sample size N in the above frequency test to detect a Boolean
function f ′ with bias εf ′ > 0. The bias implies that Pr(f ′(x) = 1) = 1

2 − εf ′ for a random
input x ∈ Fn

2 . Find the number uα such that Φ(uα) = 1 − α
2 . If we want f ′ to fail the

frequency test for randomness, then the sample size N should be the solution of

N(1
2 − εf ′)− N

2√
N
4

< −uα,

that is,

N >
u2

α

(2εf ′)2 . (2)

Thus, we can detect that f ′ is biased by the frequency test for randomness with the
significance level α when the size of X is at least (2εf ′)−2 · u2

α. To make the assertion for a
Boolean function being biased more reliable, in the following we set N = 2 · (2εf ′)−2 · u2

α.

Chen Liu and Tian Tian 195

2.3 Three-subset division property without unknown subset
The concept of the three-subset division property without unknown subset (shortly 3SDP/u)
was proposed by Hao et al. at Eurocrypt 2020 in [HLM+20], which is widely applied to
cube attacks against stream ciphers. The 3SDP/u is one of the best methods to resolve the
problem of determining the presence or absence of a monomial in the ANF of a Boolean
function. In [HLM+20], the definition of the 3SDP/u was not given directly, but an
equivalent definition called the modified three-subset division property was proposed.

Definition 1 (Modified three-subset division property). Let X be a multiset whose
elements take a value of FN

2 . Let L also be a multiset whose elements take a value of
FN

2 . When the multiset X has the modified three-subset division property (shortly T 1N

L),
it fulfils the following conditions:⊕

x∈X
xµ =

{
1 if there is an odd number of µ’s in L,
0 otherwise.

Generally, an iterative stream cipher can be decomposed into a composition of basic
vectorial Boolean functions: COPY, AND, and XOR. We present the propagation rules
of the 3SDP/u for these basic vectorial Boolean functions below and provide their MILP
models in Appendix A.

Proposition 1 (COPY). Let x = (x0, x1, ..., xm−1) and y = (x0, x0, x1, ..., xm−1) be the
input and output vector of a Copy function. Let X and Y be the input and output multisets,
respectively. Assuming that X has T 1m

L , Y has T 1m+1

L′ where L′ is computed as

L′ ← (l′
0, l′′

0 , l1, . . . , lm−1), if l′
0 ∨ l′′

0 = l0,

for all l ∈ L. Note that the operator ∨ represents the OR operation, and here L′ ← l
denotes that l is inserted into the multiset L′.

Proposition 2 (AND). Let x = (x1, x2, ..., xm) and y = (x1 · x2, x3, ..., xm) be the input
and output vector of an And function. Let X and Y be the input and output multisets,
respectively. Assuming that X has T 1m

L , Y has T 1m−1

L′ where L′ is computed as

L′ ← (l0, l2, . . . , lm−1), if l0 = l1,

for all l ∈ L.

Proposition 3 (XOR). Let x = (x1, x2, ..., xm) and y = (x1 ⊕ x2, x3, ..., xm) be the input
and output vector of a Xor function. Let X and Y be the input and output multisets,
respectively. Assuming that X has T 1m

L , Y has T 1m−1

L′ where L′ is computed as

L′ ← (l0 + l1, l2, . . . , lm−1), if l0 · l1 = 0,

for all l ∈ L.

To determine whether a given monomial appears in the ANF of the output function
for an iterative cryptosystem with r-round initialization, the authors in [HLM+20] defined
the concept of three-subset division trail.

Definition 2 (Three-subset division trail [HLM+20]). Let TLi be the three-subset division
property of the input for the ith round function. Let us consider the propagation of
the three-subset division property {l} def= L0 → L1 → · · · → Lr. Moreover, for any
bit-vector l′

i+1 ∈ Li+1, there must exist a bit-vector l′
i ∈ Li such that l′

i can propagate
to l′

i+1 by the propagation rules of the 3SDP/u, denoted by l′
i

p−→ l′
i+1. Furthermore, for

(l0, l1, . . . , lr) ∈ L0 × L1 × · · · × Lr, if li can propagate to li+1 for all i ∈ {0, 1, . . . , r − 1},
we call l0

p−→ l1
p−→ · · · p−→ lr an r-round three-subset division trail.

196 Dynamic Cube Attacks against Grain-128AEAD

Let f(x) be a basic vectorial Boolean function, and y = f(x). For an input bit-vector
µ, the corresponding output bit-vector ω can be derived using the propagation rules of
the 3SDP/u. In this case, the monomial xµ appears in the ANF of yω with respect to x,
the correctness of which is guaranteed by the propagation rules.

However, when the function f(x) is not a basic vectorial Boolean function, µ
p−→ ω

does not necessarily mean that the monomial xµ appears in the ANF of yω with respect
to x. It is implied that the monomial xµ appears in the expression of yω with respect to
x, under the condition that the expression does not consider the cancellation property of
the operation xor. This is because a Boolean function can typically be decomposed into a
composition of basic vectorial Boolean functions, and there are more than one possible
ways for propagation according to the rule of COPY, rendering µ propagate to ω through
several different ways. Assuming that there are a total of N different trails connecting µ
and ω, it implies that there are N monomials xµ appearing in the expression of yω with
respect to x, without taking into account the cancellation property. Further, if N is even,
then the monomial xµ does not appear in the ANF of yω with respect to x due to the
cancellation property; otherwise, xµ appears in the ANF of yω. To illustrate more clearly,
we provide a simple example.

Example 1. Let x = (x0, x1, x2) ∈ F3
2 and y = f(x) = (x0 ⊕ x1 ⊕ x2, x1x2, x0). The

function f can be decomposed into the following procedure, say

(x0, x1, x2) COP Y=====⇒ (x0, x1, x2, x1, x2, x0),
XOR====⇒ (x0 ⊕ x1 ⊕ x2, x1, x2, x0),
AND====⇒ (x0 ⊕ x1 ⊕ x2, x1x2, x0) ≜ (y0, y1, y2).

To check whether x(1,1,1) appears in y(1,1,1) = x0x1x2, we need to enumerate all
possible three-subset division trails connecting x(1,1,1) and y(1,1,1). By computation, there
are in total 3 trails as follows

(1, 1, 1) p−→ (1, 0, 0, 1, 1, 1) p−→ (1, 1, 1),

(1, 1, 1) p−→ (0, 1, 0, 1, 1, 1) p−→ (1, 1, 1),

(1, 1, 1) p−→ (0, 0, 1, 1, 1, 1) p−→ (1, 1, 1).

Therefore, the monomial x(1,1,1) appears in the ANF of y(1,1,1) with respect to x.
Conversely, there are only 2 three-subset division trails connecting x(0,1,1) and y(1,1,0) =

(x0 ⊕ x1 ⊕ x2) · x1x2 = x0x1x2 given by

(0, 1, 1) p−→ (0, 1, 0, 1, 1, 0) p−→ (1, 1, 0),

(0, 1, 1) p−→ (0, 0, 1, 1, 1, 0) p−→ (1, 1, 0).

Therefore, the monomial x(0,1,1) does not appear in the ANF of y(1,1,0) with respect to x.

Similarly, for an iterated stream cipher with r-round initialization f(k, v), if we want
to determine whether a monomial πl(s0) appears in f , it is necessary to enumerate all
possible three-subset division trails connecting πl(s0) and f . When the number of trails is
odd, the monomial πl(s0) appears in the ANF of f ; otherwise, πl(s0) does not appear in
the ANF of f .

Based on the propagation rules of these basic functions and the concept of three-subset
division trail, Hao et al. proposed a general modeling technique to recover the superpolies
against the stream ciphers in [HLM+20, HLM+21], which is a basic tool for all superpoly
recovery algorithms proposed after it. For details on the corresponding MILP models for
specific stream ciphers, please refer to [HLM+20, HLM+21].

Chen Liu and Tian Tian 197

2.4 A divide-and-conquer algorithm for superpoly recovery
A divide-and-conquer algorithm for recovering superpolies was proposed in [Sun21, HST+21].
Its basic idea is to decompose the complex system that failed to be solved within a time
limit, into several simpler subsystems for resolution by employing a divide-and-conquer
strategy based on the algebraic expression of the internal update function. If any subsys-
tems remain unsolved within a time limit, they are further decomposed into even simpler
subsystems until all subsystems are successfully resolved.

In specific, expressing the output bit z as a polynomial of some intermediate state
variables (not necessarily at the same time instance), say z = f(s1, s2, . . . , sm), and then
the process of recovering the superpoly of the output bit z for a given cube I could be
divided into recovering the superpoly of every monomial of f for the cube I. That is,
if f(s1, s2 . . . , sm) has N monomials, then the MILP model to recover the superpoly of
z could be decomposed into N smaller MILP models as N branches for recovering the
superpolies of N monomials. The MILP models for some branches could be solved very
efficiently, such as 0-constant superpolies, while the MILP models for some branches
are time-consuming. For those branches with MILP models that are hard to resolve, a
preset time limit is used to terminate them. Therefore, for each monomial of f , if the
corresponding MILP model is solved within the time limit, then the superpoly of the
monomial has been recovered; otherwise, it indicates that the superpoly of the monomial
is still unknown. Then, each monomial with an unsolved MILP model is further divided
into more branches by expressing it as polynomials of deeper intermediate states. The
above procedure is iterated until all monomials are resolved. Finally, all the superpolies
are collected and assembled into the whole superpoly of the output bit.

3 Revisiting Hao et al.’s dynamic cube attack
In this section, we will first provide a brief introduction to Hao et al.’s dynamic cube attack
in Section 3.1 and then discuss the issues in their attack on the full Grain-128 in Sections
3.2 and 3.3, respectively.

3.1 Brief introduction to the dynamic cube attack
In this subsection, we briefly introduce the division property based dynamic cube attack
presented by Hao et al. in [HJL+20]. For a stream cipher with n-bit key variables
x = (x0, . . . , xn−1) and m-bit public IV variables v = (v0, . . . , vm−1), the ANF of its
arbitrary intermediate state bit can be regarded as a polynomial s(x, v) as follows,

s(x, v) =
∑

µ∈Fm
2

αµvµ, where αµ ∈ F2[x].

Naturally, the output bit can be represented as a polynomial involving the intermediate
state bits. Hence, if we can identify crucial intermediate state bits for the output bit and
nullify them, then the output bit can be significantly simplified, making it vulnerable to
cube testers. An intermediate state bit s

(r)
i , generated at round r and position i, can be

nullified by assigning specific IV variables to a dynamic value determined by the ANF of
s

(r)
i . Assume that s

(r)
i can be expressed as

s
(r)
i = s

(r)
i (x, v) = vl ⊕ g(x, v),

where each monomial in g does not contain the variable vl. Then, the state bit s
(r)
i can be

nullified by assigning g(x, v) to vl. Let v′ = (v0, . . . , vl−1, g, vl+1, . . . , vm−1) be a vector
derived from v. The state bit s

(r)
i is nullified for s

(r)
i = s

(r)
i (x, v′) = 0. The expression g is

198 Dynamic Cube Attacks against Grain-128AEAD

referred to as the dynamic value and the variable vl is referred to as the dynamic variable.
If there are several crucial state bits s

(r1)
i1

, . . . , s
(rt)
it

(we always assume r1 ≤ · · · ≤ rt

hereafter) to be nullified, then the dynamic variables vl1 , . . . , vlt
need to be replaced by the

corresponding dynamic values g1, . . . , gt recursively. Since the dynamic values are uniquely
determined by the pairs in NS = {(vl1 , s

(r1)
i1

), . . . , (vlt
, s

(rt)
it

)}, the authors referred to the
set NS as the “nullification strategy”.

Once a nullification strategy NS and a cube I are confirmed, we can identify a set of
key expressions (including key variables) that need to be guessed. By guessing the values of
these key expressions, we can obtain a set of dynamic values. To-be-guessed key expressions
are denoted as G = (g0, g1, . . . , gκ−1) where gj ∈ F2[x] for j ∈ {0, . . . , κ− 1}. There are a
total of 2κ different key guesses, denoted by Gµ = (g0 ⊕ µ[0], . . . , gκ−1 ⊕ µ[κ− 1]), where
µ ∈ {0, . . . , 2κ − 1} and µ[i] represents the ith bit of µ. Obviously, µ = 0 is the correct
key guess. For a predefined nullification strategy, it is necessary to find a batch of cubes
that satisfy the following criteria: the corresponding superpolies should be 0-constant
polynomials (i.e., the bias is 2−1) under the correct key guess; under any wrong key guess,
the corresponding superpolies should be high-degree polynomials with a bias less than
2−1. Such cubes can effectively differentiate between correct and wrong key guesses, thus
recovering key information.

There are two important contributions in [HJL+20] for the dynamic cube attack. One
is applying the conventional bit-based division property (CBDP) with the “flag” technique
to the dynamic cube attack and proposing a new MILP modeling method. The MILP
model established by this method can be used to estimate the algebraic degree of the
superpoly for a given cube, provided that the nullification strategy is predefined and the
assignment of the non-cube IV is fixed. The models can not only describe the zero-sum (or
bias) for the correct key guess but also analyze the randomness in the wrong guesses. This
modeling method forms the basis for division property based dynamic cube attacks. See
[HIJ+19, HJL+20] for more details about the propagation rules of CBDP and its MILP
modeling techniques.

The other is drawing links between the bias and the division property. To achieve this,
two new concepts were proposed: split set and minimal split set, along with an assumption.
They found that the bias of a superpoly is closely related to the split set and further proved
that the minimal split set can draw lower bounds on the bias in superpolies under the
given assumption. Based on these two new concepts and the assumption, a new method
was proposed to theoretically estimate the bias for superpolies of large cubes.

Definition 3. ([HJL+20]) Let pI(k) be a superpoly. Let Λ be a subset of secret key
indices. It defines a key class WΛ ⊂ Fn

2 as follows:

WΛ = {x ∈ Fn
2 |xi = 0 for all i ∈ Λ}.

Such Λ is referred to as a split set if the superpoly pI(k) satisfies pI(x) ≡ 0 for all x ∈WΛ.
Further, we call this Λ a minimal split set if, for all Λ′ with size |Λ′| < |Λ| and the
corresponding key class WΛ′ , there is pI(x)/≡0 for x ∈WΛ′ .

Assumption 1. ([HJL+20]) For a minimal split set Λ and its corresponding key class
WΛ, we assume

Pr(pI(x) = 0|x ∈W Λ) = 2−1, where W Λ ≜ Fn
2\WΛ.

For a superpoly pI(k), let Λ be a minimal split set of pI(k). Then it follows from
Definition 3 and Assumption 1 that

Pr(pI(k) = 0) = 2−1 + 2−(|Λ|+1),

and so the bias of pI(k) is set to be 2−(|Λ|+1). Note that the accuracy of such bias
evaluation depends on the rationality of Assumption 1.

Chen Liu and Tian Tian 199

Although Hao et al. provided a reliable framework for dynamic cube attacks in theory,
the implementation of their attack against the full Grain-128 is not in accordance with
their theory, which makes the key-recovery attack invalid.

3.2 Inaccuracy in the MILP models for dynamic cube attacks
The MILP modeling technique for dynamic cube attacks proposed in [HJL+20] can be
utilized to evaluate the algebraic degree of the superpoly, provided that the nullification
strategy and the cube are predefined. This modeling technique is essential for constructing
qualified cubes, and its accuracy determines the effectiveness of the results of dynamic
cube attacks. Upon analyzing this modeling technique, we discovered that the specific
modeling process did not consider the algebraic structure of Grain family of ciphers. This
oversight led to many redundant division trails in their models, which may result in an
inaccurate estimation of the algebraic degree of a superpoly.

Through further experiments, we discovered that the qualified cubes used in [HJL+20]
do not meet the specified requirements. Specifically, the superpolies corresponding to these
cubes are 0-constant polynomials under both correct and wrong key guesses, making it
impossible to correctly distinguish between correct and wrong key guesses. To illustrate
the issues in this modeling technique, we will first describe the propagation of division
property from an algebraic perspective.

The propagation of division property from an algebraic perspective. Generally,
an iterative stream cipher f(k, v) can be further decomposed into a composition of simple
vectorial Boolean functions as follows,

f(k, v) = Fout ◦ Fr ◦ · · · ◦ F0(k, v), (3)

where Fi : FN
2 → FN

2 (i ∈ {1, 2, . . . , r}), F0 : Fn+m
2 → FN

2 , and Fout : FN
2 → F2. Denote

s(i) ∈ FN
2 as the output of Fi for i ∈ {0, . . . , r}. We refer to Eq.(3) as a composite

expression of f(k, v). Obviously, the composite expression of f is not unique. From an
algebraic perspective, the 3SDP/u actually describes how a given monomial is propagated
in a composite expression of f(k, v).

Let us consider the propagation of the 3SDP/u as follows,

{l} F0−−→ L0
F1−−→ L1

F2−−→ · · · Fr−−→ Lr
Fout−−−→ Lout, (L)

where l = (µ, ν) ∈ Fn+m
2 . For the sequence of multisets L, if the multiset Lout is nonempty,

there must exist a three-subset division trail, denoted by

l
p−→ l0

p−→ · · · p−→ lr
p−→ 1, (ι)

where li ∈ Li for i ∈ {0, . . . , r}. According to the propagation rules of 3SDP/u, li
p−→ li+1

means that the monomial πli(s(i)) appears in the polynomial πli+1(s(i+1)) ∈ Z̄[s(i)].
Similarly, li−1

p−→ li
p−→ li+1 means that the monomial πli−1(s(i−1)) can appear in the

expansion of πli+1(li+1) with respect to s(i−1). The trail ι describes a propagation of the
monomial πl(k, v) in a composite expression of f(k, v), and indicates that the monomial
πl(k, v) appears in the expansion of f with respect to k and v. However, the expansion of
different composite expressions of f with respect to k and v may vary. This means that in
other composite expressions of f , the three-subset division trails connecting the monomial
πl(k, v) and f may not necessarily exist. We will illustrate this point through a simple
example.
Example 2. Let x = (x0, x1, x2, x3) ∈ F4

2. Let f(x) = x0x1 ⊕ x0x2 ⊕ x1x2 ⊕ x1x3 ⊕
x2x3 ⊕ x0 ⊕ x3 ∈ F2[x]. The function f can be represented as f1 = Fo ◦F2 ◦F1(x), where

y = F1(x) = (x0, x1, x2, x3, x3),
z = F2(y) = (y0, y0 + y1 + y4, y2, y0 + y2 + y4),

200 Dynamic Cube Attacks against Grain-128AEAD

and Fo(z) = z1z3. It is clear that the monomial z1z3 can be expanded as the polynomial
of x in Z̄[x] as follows,

z1z3 = (y0 + y1 + y4) · (y0 + y2 + y4) (∈ Z̄[y])
= y0y1 + y0y2 + 2y0y4 + y1y2 + y1y4 + y2y4 + y0 + y4 (∈ Z̄[y])
= x0x1 + x0x2 + 2x0x3 + x1x2 + x1x3 + x2x3 + x0 + x3 (∈ Z̄[x])

Let f2 = Fo ◦ F ′
2 ◦ F ′

1(x) be another composite expression of f , where

y = F ′
1(x) = (x0, x1, x2, x3, x0 + x3),

z = F ′
2(y) = (y0, y1 + y4, y2, y2 + y4).

The expandsion of z1z3 can be obtained as follows,

z1z3 = (y1 + y4) · (y2 + y4) = y1y2 + y1y4 + y2y4 + y4 (∈ Z̄[y])
= x1x2 + x1 · (x0 + x3) + x2 · (x0 + x3) + (x0 + x3) (∈ Z̄[x])

For the first composite expression f1, there is an even number of division trails
connecting x0x3 to f . In contrast, no three-subset division trail connects x0x3 to f for
the second composite expression f2. Therefore, if we set x0 and x3 as cube variables and
construct the MILP model based on the composite expression f1, the estimated algebraic
degree of the superpoly in f is not accurate due to redundant trails in the MILP model.

Therefore, when constructing the MILP model for a stream cipher f(k, v), the usage of
an inadequate composite expression for f can result in numerous redundant trails within
the corresponding MILP model. The propagation rules of CBDP are similar to those of
3SDP/u, so the propagation of CBDP faces the same issues as 3SDP/u. This issue is
the primary reason for the failure of the dynamic cube attack against the full Grain-128
proposed in [HJL+20].

Inaccuracy in the original MILP models. The original modeling technique for
dynamic cube attacks is to model round by round. Therefore, the r-round Grain-128
G(k, v) is first decomposed into a composition of the round functions as Eq.(3).

Let (s(i+1), b(i+1)) = Fi+1(s(i), b(i)) for i ∈ {0, . . . , r−1} and (s(0), b(0)) = F0(k, v). In
any round i, only two state bits, si+128 and bi+128, are updated respectively by zi⊕ fi⊕ si

and zi ⊕ gi ⊕ si, and the rest of the state bits are shifted. The additional binary variables
fi, gi and zi can be represented as the polynomial of s(i) and b(i).

In the process of modeling the function Fi+1, the additional binary variables fi, gi,
and zi are first defined, and the algebraic relation between them and s(i) as well as b(i) are
added to the model as constraints. Then, the expressions of s(i+1) and b(i+1) with respect
to s(i), b(i), fi, gi and zi are added to the model. However, the MILP model established
by this method may have redundant division trails, since zi ⊕ si is involved in both two
update functions of si+128 and bi+128, which makes the following equations hold,

si+128bi+128 = (fi + zi + si) · (gi + zi + si) (∈ Z̄[s(i), b(i), fi, gi, zi])
= fi · gi + (fi + gi) · (zi + si)
+ 2zi · si + zi + si. (∈ Z̄[s(i), b(i), fi, gi, zi])

Another issue with the original MILP models is that the imposed constraints, based on
the nullification strategy, do not consider the specific structure of Grain-128. We will use
the nullification strategy in [HJL+20] as an example to illustrate this issue.

For the nullification strategy NS = {(v30, b158)}, the IV variable v30 is first set as
a dynamic variable, and its dynamic value is determined by the ANF of b158 under

Chen Liu and Tian Tian 201

a specific key guess. For the correct key guess, we have the equations b158 = 0 and
v30 = g30 + z30, which are added to the MILP model as the constraints. Then, the other
state bit s158 is updated by the expression z30 + f30 + s30 in the MILP model. The
modeling process described above is algebraically sound, but it may result in many division
trails in the MILP model that should not exist. This is because the MILP model does
not consider the cancellation property. Due to the nullification strategy NS , the equations
v30 = z30 + g30 and s30 = v30 are satisfied in the MILP model, thereby, the equation
s158 = z30 + f30 + s30 = 2 · z30 + f30 + g30 also satisfying in the MILP model, which makes
many redundant trails in this model.

In [HJL+20], the presence of numerous redundant trails in the model led to inaccurate
results, causing the cubes identified as “qualified” to be unable to distinguish between
correct and wrong key guesses. This directly rendered the key-recovery attack against the
full Grain-128 invalid.

3.3 Empirical analysis of the impact caused by wrong key guesses
Evaluating the bias of the superpoly for each wrong key guess in practical scenarios presents
challenges due to the exponential increase in the quantity of wrong key guesses as the
number of key expressions to be guessed rises. This task necessitates solving numerous
MILP models, which is a time-consuming process and incurs substantial computational
costs. Constrained by the MILP modeling technique and computational capacity, Hao et al.
introduced a resolution, which is to identify a specific wrong key guess that is considered
to have potentially significant bias and is closest to the bias under the correct key guess.

For a predefined nullification strategy, NS = {(l1, s
(r1)
i1

), . . . , (lt, s
(rt)
it

)}, Hao et al.
considered the wrong key guess satisfying the conditions s

(rt)
it

= 1 and s
(rj)
ij

= 0 (1 ≤
j ≤ t− 1) as special, since under such a wrong key guess, the intermediate state bit s

(rt)
it

has the simplest ANF, i.e., s
(rt)
it

= 1, and the other intermediate state bits that require
nullification are successfully nullified. By contrast, the ANFs of the intermediate state bits
that required nullification become more complex under other wrong key guesses.

Intuitively, as the complexity of the ANFs of the intermediate state bits that require
nullification increases, the complexity of the superpoly may also increase, potentially
resulting in a smaller bias of the superpoly. Therefore, the special wrong key guess is
considered to have the most significant bias among all wrong key guesses. Based on the
above view, if a batch of cubes can successfully differentiate between the correct key guess
and such a specific wrong key guess, it implies that the batch of cubes can successfully
differentiate between the correct key guess and all wrong key guesses. This solution
not only reduces the requirements for modeling techniques but also greatly reduces the
computational workload.

However, the validity of this viewpoint lacks inferences drawn from theoretical analysis;
instead, it is based on personal experiences and intuition, which may lead to the division
property based dynamic cube attack encountering similar issues as the traditional dynamic
cube attack; that is, the constructed cubes may not guarantee successful differentiation
between the correct key guess and all wrong key guesses.

4 More accurate bias evaluation for high-dimension cubes
Due to computational constraints, evaluating biases for high-dimension cubes has always
been an extremely challenging problem. Hao et al. in [HJL+20] first established connections
between the bias phenomenon and the division property, introducing a bias evaluation
method based on the minimal split set. However, this method has significant limitations
because its accuracy depends on Assumption 1. If Assumption 1 is unsuitable for a certain

202 Dynamic Cube Attacks against Grain-128AEAD

cryptosystem, then this method cannot provide a relatively accurate estimate of bias. In
[HJL+20], this method was applied in the division property based cube attack against the
full Grain-128. However, based on our experiments, we found that Assumption 1 is not
universally true for the Grain family of ciphers.

In this section, we present a new technique called Polynomial Approximation with
regard to Bias (PAB) to evaluate the bias of the superpolies for the dynamic cube attack.
The basic idea is that when dealing with a complex unknown polynomial, we identify
and leverage its various algebraic properties to construct a simpler, known polynomial.
By leveraging these properties, the constructed polynomial closely reflects the bias of the
original one. Consequently, the original polynomial can be evaluated by detecting bias of
the constructed polynomial. Prior to presenting the new method for evaluating bias in
Section 4.1, we will first describe a trivial method for calculating the actual bias in Section
4.2.

4.1 A trivial method for calculating practical bias
Identifying biases of superpolies of high-dimension cubes through experimental testing
is not feasible in cube attacks due to the computational complexity involved, which far
exceeds current computational capabilities. In current cube attacks against stream ciphers,
the dimensions of cubes that can be experimentally tested are mostly around 40 dimensions,
not exceeding 50 dimensions.

With the three-subset division property without unknown set (3SDP/u) and its MILP
modeling technique proposed in [HLM+20, HLM+21], it is possible to recover the exact
ANF of a superpoly. Subsequently, by combining 3SDP/u with the divide-and-conquer
strategy, a series of state-of-the-art methods were proposed in [Sun21, HST+21, HHPW22],
which demonstrate high efficacy in the massive superpoly recovery. Therefore, we can use
the accurately recovered superpoly to calculate its bias directly. Fortunately, recovering
the corresponding superpoly in dynamic cube attacks is more accessible than in other
variants of the cube attack, as a nullification strategy is applied to simplify the superpoly
of the output bit, which makes enumerating all feasible solutions in the MILP model easier.

For a predetermined nullification strategy, if the superpoly under a specific wrong key
guess has been successfully recovered, we can use experimental testing to detect its bias
directly. Let pI(k) represent the recovered superpoly of a given cube I. The process of
detecting bias of pI is simple and follows these steps.

1. Identify the key variables included in pI , denoted as K = {ki1 , ki2 , . . . , kit
}.

2. Randomly assign values to the key variables in K multiple times, denoted as
κ1, . . . , κN , as N different inputs for the superpoly pI .

3. compute the bias εN = 2−1 −N−1 ·
∑N

i=1 pI(κi).

As described in Section 2.2, if the obtained value εN satisfies Eq.(2), it can be regarded as
the practical bias of pI , and this bias can be detected with the significance level α using
N random inputs of pI . If N does not satisfy Eq.(2), choose a new N ′ such that

N ′ ≥ u2
α

2ε2
N

,

and repeat the aforementioned process.

4.2 Polynomial Approximation with regard to Bias
While the process of recovering a massive superpoly is currently quite effective, it still
involves significant computational and time expenses. Additionally, as the number of

Chen Liu and Tian Tian 203

initialization rounds of a cryptosystem increases, the superpoly simplified by the nulli-
fication strategy will also become more complex, making it difficult to recover its exact
ANF. Therefore, a method is required to provide accurate bias evaluation with fewer
computational requirements and faster processing times.

In this part, we will introduce a new method for evaluating bias based on a new
technique, called Polynomial Approximation with regard to Bias. The new technique is not
to recover the entire superpoly but to recover a portion of it and identify specific algebraic
properties of the remaining portion, thereby constructing a polynomial with a bias similar
to that in the complete superpoly, which we refer to as an approximate polynomial of the
superpoly. Accordingly, the bias of the superpoly can be evaluated by detecting the bias
of the approximate polynomial.

An r-round iterative stream cipher f(k, v) can be decomposed into a composition of
round functions as Eq.(3). By choosing a proper positive number r0 ∈ {0, . . . , r − 1},
f(k, v) can be represented as follows:

f(k, v) = Fo ◦ Fr ◦ · · · ◦ Fr0+1(s(r0)),

=
⊕

ω∈Ω(r0)

πω(s(r0)),

where Ω(r0) ≜ {ω ∈ FN
2 |πω(s(r0))→ f}, and s(r0) = Fr0 ◦ · · · ◦ F0(k, v). For a specified

cube I, we denote the superpoly of I in πω(s(r0)) as p
(r0)
ω , and try to recover these

superpolies. The method of superpoly recovery is to construct the corresponding MILP
model Mr0

ω with a time limit for each monomial πω(s(r0)) in f . If the model Mr0
ω is not

solved within the time limit, the procedure will be forcibly terminated. Depending on
whether the model Mr0

ω determined by ω ∈ Ω(r0) can return all feasible solutions within
the time limit, the function f can be represented as

f =
⊕

ω∈Ω(r0)
s

πω(s(r0))⊕
⊕

ω∈Ω(r0)
u

πω(s(r0)) ≜ f (r0)
s ⊕ f (r0)

u ,

where

Ω(r0)
s ={ω ∈ Ω(r0)|Mr0

ω is solved within the time limit and p(r0)
ω has been recovered },

Ω(r0)
u ={ω ∈ Ω(r0)|Mr0

ω is unsolved within the time limit and p(r0)
ω is still unknown }.

Obviously, the superpoly p
(r0)
s in f

(r0)
s has been recovered, namely p

(r0)
s =

⊕
ω∈Ω(r0)

s
p

(r0)
ω .

Furthermore, if the set Ω(r0)
u is empty, the superpoly pI will be successfully recovered.

However, recovering the superpoly is a challenging task, making it almost impossible for
the set Ω(r0)

u to be empty, and our primary goal is to handle the monomials determined by
the set Ω(r0)

u .
Each monomial ω ∈ Ω(r0)

u undergoes a detection process to ascertain whether its
superpoly is divisible by the variables k0, . . . , kn−1. Assuming that the superpoly p

(r0)
ω is

divisible by the variables {ki1 , . . . , kit}, it can be represented as follows:

p(r0)
ω = kµ · q(r0)

ω ,

where µ(∈ Fn
2) satisfys kµ =

∏t
j=1 kij

. It is noteworthy to highlight that the polynomial
q

(r0)
ω still remains unknown. If the superpoly in each monomial ω ∈ Ω(r0)

u has such a
representation, i.e., p

(r0)
ω = kµω · q(r0)

ω , then the entire superpoly pI can be represented as

pI = p(r0)
s ⊕

⊕
ω∈Ω(r0)

u

kµω · q(r0)
ω .

204 Dynamic Cube Attacks against Grain-128AEAD

Otherwise, we will choose another positive integer r1 ∈ {0, . . . , r0 − 1}, and then expand
the polynomial f

(r0)
u into a polynomial f (r1) in terms of s(r1) as follows,

f (r1) =
⊕

ω∈Ω(r1)

πω(s(r1)),

where Ω(r1) = {ω ∈ FN
2 |πω(s(r1))→ f

(r0)
u }. We repeat the process of dealing with Ω(r0)

along with the number of rounds reducing (0 < rt < · · · < r1 < r0) until we obtain the
following equation, i.e.,

pI = ps ⊕
⊕

ω∈Ω(rt)
u

kµω · q(rt)
ω , (4)

where ps =
⊕t

i=0 p
(ri)
s . The worst-case scenario of this process is that Ω(rt)

u is an empty
set, indicating that the entire superpoly has been recovered.

For each ω ∈ Ω(rt)
u , the superpoly p

(rt)
ω in πω(s(rt)) is considered a relatively complex

polynomial due to the inability to enumerate all potential three-subset division trails within
a time limit. The polynomial q

(rt)
ω serves as the predominant component of polynomial

p
(rt)
ω , thus indicating that polynomial q

(rt)
ω possesses a level of complexity equivalent to that

of polynomial p
(rt)
ω , making it difficult to recover the ANF of q

(rt)
ω . Hence, it is crucial to

determine how to provide an approximate polynomial that maintains a bias similar to the
bias of q

(rt)
ω when constructing an approximate polynomial of the superpoly pI . According

to the equation p
(rt)
ω = kµ · q(rt)

ω , the part kµ in p
(rt)
ω that is most correlated with the

key variables {k0, . . . , kn−1} has been extracted. Therefore, we consider the correlation
between q

(rt)
ω and the key variables notably feeble.

Given this understanding, it is possible to introduce a new variable xω ∈ F2 as substi-
tutes for the unidentified polynomial q

(rt)
ω , leading to the derivation of a new polynomial

p′
I expressed in terms of k and {xω}ω∈Ω(rt)

u
as follows,

p′
I = ps ⊕

⊕
ω∈Ω(rt)

u

kµω · xω. (5)

It can be seen that p′
I is a simple and identified polynomial whose bias can be detected

by the method described in Section 4.1. However, there is a significant gap between the
practical bias p′

I and pI , and the reasons mainly lie in two aspects.

1. The polynomial q
(rt)
ω has a bias that is not equal to 0. Although the polynomial

q
(rt)
ω is extremely complex, it does not mean that it is balanced. Therefore, the

new variable xω used to replace q
(rt)
ω should not be randomly distributed over F2,

implying that Pr(xω = 1) ̸= Pr(xω = 0).

2. Too many new variables were introduced. There are correlations among the
polynomials {q(rt)

ω }
ω∈Ω(rt)

u
and variables k; however, the newly introduced variables

are not correlated with each other or with the original variables. This implies that
the more new variables we add, the smaller the bias of p′

I will be, which can be
proven by the piling-up lemma.

To mitigate these issues, we introduced a new algebraic property of polynomials, referred
to as the minimum algebraic degree. Based on this property, we proposed a heuristic
method to estimate the probability of each new variable taking the value of 1.

Definition 4 (The minimal algebraic degree). The Boolean function f can be represented
as follows,

f(x) =
⊕

µ̸=(0,...,0)∈Fn
2

aµxµ ⊕ c, where aµ and c ∈ F2.

Chen Liu and Tian Tian 205

We denote the minimal algebraic degree of the function f as degm(f), defined as

degm(f) = (−1)c ·min{wt(µ)|xµ → f}.

A heuristic method for probability estimation. For each ω ∈ Ω(rt)
u , we heuristically

use the minimal algebraic degree of q
(rt)
ω , denoted by dω, to define the probability of xω

taking the value 1, i.e.,

Pr(xω = 1) =
{

2−dω , if dω > 0,

1− 2dω , otherwise.

The heuristic method is based on a simple property: for a monomial
∏d

j=1 xij
, when

xi1 , . . . , xid
are random variables over F2, it has the probability given by

Pr
(d∏

j=1
xij = 1

)
= 2−d.

As the value of d increases, the probability of the monomial taking the value 1 decreases.
Intuitively, when a polynomial has a high minimal algebraic degree, the probability of
it taking the value 1 may be very small. Furthermore, if there are correlations among
monomials in this polynomial, it may bring this intuition closer to the actual scenario. In
our experiments, we observed that for the Grain family, particularly for Grain-128AEAD
and Grain-128, there is a high correlation among the monomials in their superpolies, and
their superpolies generally have high minimal algebraic degrees. Therefore, for a superpoly
with a high correlation between monomials and with d-minimal algebraic degree, we regard
it as a monomial of degree d. Besides, for the new variable x used to substitute the
superpoly, the probability of it taking value 1 is required to be 2−d.

For the sake of simplicity, we will only focus on the case where the minimum algebraic
degree is greater than 0 hereafter, which also aligns with the algebraic characteristics of
the Grain family.

A set of rules for polynomial transformations. We provide a set of polynomial
transformation rules designed to integrate unknown polynomials, aiming to reduce the
introduction of new variables. The specific rules are listed as follows:

rule 1: If there are polynomials kµ · q(rt)
ω1 , . . . , kµ · q(rt)

ωl involved in Eq.(4), we use a
new symbol polynomial g to represent the sum (q(rt)

ω1 ⊕ · · · ⊕ q
(rt)
ωl), and these

polynomials can be replaced by kµ · g. The minimal algebraic degree of g can
be obtained by degm(g) = min{dω1 , . . . , dωl

}.

rule 2: If there are such polynomials kµ1 · q(rt)
ω1 and kµ2 · q(rt)

ω2 in Eq.(4) satisfying
that kµ2 is divisible by kµ1 , we use a new symbol polynomial g to represent
the sum (q(rt)

ω1 ⊕ kµ2

kµ1 · q
(rt)
ω2), and thereby the polynomials can be replaced by

kµ1 · g. The minimal algebraic degree of g can be obtained by degm(g) =
min{dω1 , dω2 + (wt(µ2)− wt(µ1))}.

rule 3: If there are at least three polynomials (ki1 · · · kij) ·kl1 ·q
(rt)
ω1 , (ki1 · · · kij) ·kl2 ·q

(rt)
ω2 ,

(ki1 · · · kij) · kl3 · q
(rt)
ω3 in Eq.(4), we use a new symbol polynomial g to represent

the sum (kl1 · q
(rt)
ω1 ⊕ kl2 · q

(rt)
ω2 ⊕ kl3 · q

(rt)
ω3), and thereby these polynomials can be

replaced by (ki1 · · · kij) · g. The minimal algebraic degree of g can be obtained
by degm(g) = 1 + min{dω1 , dω2 , dω3}.

206 Dynamic Cube Attacks against Grain-128AEAD

Based on the polynomial transformation rules, a simplified form of Eq.(4) can be
derived as follows,

pI = ps ⊕
t⊕

i=1
kµi · gi.

Besides, the minimal algebraic degree of gi has been obtained, denoted by di. By replacing
the polynomials g1, . . . , gt with new variables x1, . . . , xt ∈ F2, we can obtain an approximate
polynomial of the superpoly pI , i.e.,

p′
I = ps ⊕

t⊕
i=1

kµi · xi.

Note that the new variables satisfy the conditions: Pr(xi = 1) = 2−di , for i ∈ {1, . . . , t}.
The construction of this approximate polynomial involves leveraging the known part

and the algebraic properties of the undetermined part of the superpoly. It makes the
constructed polynomial closer to the superpoly in terms of algebraic properties, further
making the bias of the approximate polynomial more similar to the bias of the superpoly.

Therefore, we can compute the actual bias ε′ of the approximate polynomial p′
I by

the method described in Section 4.1. Moreover, we use the bias ε′ of the approximate
polynomial p′

I to evaluate the bias of the superpoly pI .

5 A reliable implementation of dynamic cube attacks
In this section, we introduce a reliable implementation of dynamic cube attacks against
the Grain family of ciphers, which includes an algebraic analysis of the impact caused
by wrong key guesses and a more accurate MILP modeling technique for dynamic cube
attacks.

5.1 Algebraic analysis of the impact caused by wrong key guesses
In dynamic cube attacks, it is necessary to evaluate the biases of the superpolies for all
possible wrong key guesses. However, it is impractical to do this due to the need to
solve a large number of MILP models, which is time-consuming and entails a significant
computational cost. Therefore, we also need to identify specific wrong key guesses that
may have significant biases and are closest to the bias of the correct guess. We refer to
these key guesses as “bad” wrong key guesses.

For a predefined nullification strategy NS and a given cube I, based on the ANFs of
the intermediate state bits that need to be nullified, we can identify a set of dynamic
variables vd1 , . . . , vdt , and their respective dynamic values fd1(k, v), . . . , fdt(k, v). It is
worth noting that, through simple algebraic substitutions, it can be ensured that none of
fd1 , . . . , fdt

contain any dynamic variables.
The first output bit z = f(k, v) can be uniquely decomposed into the following form,

i.e.,

f(k, v) = q0(k, v)⊕
⊕

µ̸=(0,...,0)∈Ft
2

t∏
i=1

(vdi
⊕ fdi

)µi · qµ(k, v), (6)

where there are no dynamic variables involved in the polynomial qµ(k, v), for each vector
µ ∈ Ft

2. Based on Eq.(6), we can analyze the impact of different wrong key guesses on the
biases of the corresponding superpolies. Taking the specific strategy in [HJL+20] as an
example, we will provide a simple explanation.

Chen Liu and Tian Tian 207

For the nullification strategy NS = {(v30, b158)}, the dynamic variable v30 is required
to satisfy the following equation,

v30 = g0 ⊕ k42v38 ⊕ k125v72 ⊕ v43v50 ⊕ v90. (7)

For Eq.(7), if the variables v38 and v72 are treated as non-cube variables with fixed values,
guessing the values of k42 and k125 is meaningless, due to the equation v30 = g′

0⊕v43v50⊕v90.
In this situation, the constructed cubes can not provide 3-bit key information. Therefore,
the variables v38 and v72 should be set to cube variables.

The function f(k, v) can be decomposed into the expression as Eq.(6), i.e.,

f(k, v) = q · (v30 ⊕ g0 ⊕ k42v38 ⊕ k125v72 ⊕ v43v50 ⊕ v90)⊕ h,

where q and h are the polynomials with respect to the key variables k and the cube
variables vI .

Let µ be a positive integer. Denote the guess values of (g0, k42, k125) by (g0⊕µ[0], k42⊕
µ[1], k125 ⊕ µ[2]). Each value of µ corresponds to a unique key guess, and we refer to
µ as the key-guess pattern. Since the value of v30 is determined by the guess values of
(g0, k42, k125), the function f can be further represented as follows,

f(k, v) = q · (µ[0]⊕ µ[1] · v38 ⊕ µ[2] · v72)⊕ h.

Since the superpoly under the key-guess pattern µ = 0 is required to be a 0-constant
polynomial, the corresponding superpoly in h should be a 0-constant polynomial. The
polynomial q can be uniquely decomposed as follows,

q = q0 ⊕ v38 · q1 ⊕ v72 · q2 ⊕ v38v72 · q3,

where the IV variables v38, v72 are not involved in the polynomials q0, q1, q2, q3. Therefore,
the function f can be further represented as follows,

f(k, v) = (q0 ⊕ v38 · q1 ⊕ v72 · q2 ⊕ v38v72 · q3) · (µ[0]⊕ µ[1] · v38 ⊕ µ[2] · v72)⊕ h

= µ[0] · v38v72 · q3 ⊕ µ[0] · (q0 ⊕ v38 · q1 ⊕ v72 · q2)
⊕ µ[1] · v38v72 · (q2 ⊕ q3)⊕ µ[1] · (q0 ⊕ v38 · q1)
⊕ µ[2] · v38v72 · (q1 ⊕ q3)⊕ µ[2] · (q0 ⊕ v72 · q2)⊕ h

≜ v38v72 · (µ[0] · q3 ⊕ µ[1] · q2 ⊕ µ[1] · q3 ⊕ µ[2] · q1 ⊕ µ[2] · q3)⊕ h′

Due to the variables v42 and v72 set to cube variables, the superpoly in f only comes from
v38v72 · (µ[0] ·q3⊕µ[1] ·q2⊕µ[1] ·q3⊕µ[2] ·q1⊕µ[2] ·q3). Let p1, p2, p3 be the corresponding
superpoly in the polynomials v38v72 · q0, v38v72 · q1, v38v72 · q2 respectively. Therefore, the
superpoly p in f also can be represented as follows,

p = (µ[0]⊕ µ[1]⊕ µ[2]) · p3 ⊕ µ[1]p2 ⊕ µ[2]p1.

We show the superpoly under different key-guess patterns in Table 2.

Table 2: The superpoly under different key-guess patterns.
(µ[0], µ[1], µ[2]) the superpoly p (µ[0], µ[1], µ[2]) the superpoly p

(0, 0, 0) 0 (1, 0, 0) p3
(0, 1, 0) p2 ⊕ p3 (1, 1, 0) p2
(0, 0, 1) p1 ⊕ p3 (1, 0, 1) p1
(0, 1, 1) p1 ⊕ p2 (1, 1, 1) p1 ⊕ p2 ⊕ p3

For the Grain family of ciphers, the output bit can be expressed as a polynomial
with respect to the secret key and public IV variables. As the initialization rounds

208 Dynamic Cube Attacks against Grain-128AEAD

increase, the superpolies in the polynomial representing the output bit become incredibly
complex. Typically, the linear combination of different superpolies is considered even more
complicated, as there are no significant cancellations of monomials. Therefore, we can
come to the following conclusion.

Let c = (c1, c2, c3) ∈ F3
2, and pc = c1 · p1 ⊕ c2 · p2 ⊕ c3 · p3 be a linear combination of

the superpolies p1, p2 and p3. Denote the bias of a polynomial p as ε(p). For each c ∈ F3
2,

the bias ε(pc) satisfies the following condition: ε(pc) ≤ min{ε(pi)|ci = 1 for i ∈ {1, 2, 3}}.
As shown in Table 2, when the key-guess mode is µ = 1, 3, or 5, the associated

superpolies may exhibit more significant biases. Therefore, it is necessary to identify the
biases of the superpolies under key-guess modes µ = 1, 3, and 5, as it is uncertain which
one exhibits a greater bias. By employing the nulling strategy NS , if we can construct a
series of qualified cubes that successfully distinguish between the key guessing mode µ = 0
and key guessing modes µ = 1, 3, and 5, then we believe that these cubes can be used
to distinguish between correct and wrong key guesses. Leveraging these cubes, we can
execute a reliable dynamic cube attack against Grain-128. Compared to the analysis in
[HJL+20], our method relies more on theoretical deduction, which is more reasonable.

Theoretically, this analysis method is a general and effective approach to identify
the potential “bad” wrong key guesses in dynamic cube attacks for most stream ciphers.
However, when the imposed conditions are complicated, the analysis becomes too intricate
to find the possible “bad” key guesses.

5.2 A new MILP model for dynamic cube attacks
In this subsection, we introduce a new MILP modeling technique for dynamic cube attacks
targeting the Grain family.

5.2.1 Specifications of Grain-128AEAD and Grain-128

The Grain family of ciphers include Grain v1, Grain-128, Grain-128a, and Grain-128AEAD.
The Grain family of ciphers consists of two registers: an NFSR b = (b0, . . . , bn−1) and an
LFSR s = (s0, . . . , sn−1), along with two feedback functions g and f for the NFSR and
the LFSR.

In the initialization phase, the n-bit key and the m-bit IV are first loaded into b and
s, respectively, while the other state bits are set to constant values. Then, the cipher is
clocked 2n times without generating a keystream. Simultaneously, the output produced
from certain bits of the NFSR and the LFSR is fed to the cipher, as illustrated in Figure 1.

Figure 1: Structure of the Grain family

Grain-128AEAD and Grain-128 are both members of the Grain family designed to

Chen Liu and Tian Tian 209

provide 128-bit security. Grain-128AEAD is one of the ten finalist candidates of the NIST
LWC standardization process. Grain-128 is the preliminary version of Grain-128AEAD,
whose specification is simpler than Grain-128AEAD. Their internal state at time t consists
of an LFSR and an NFSR, both with a length of 128 bits, denoted by s(t) = (st, . . . , st+127)
and b(t) = (bt, . . . , bt+127), respectively.

For Grain-128AEAD, the initial states can be represented as follows:

b(0) = (b0, b1, . . . , b127) = (k0, k1, . . . , k127),
s(0) = (s0, s1, . . . , s127) = (v0, v1, . . . , v95, 1, . . . , 1, 0).

Let zt be an output of the pre-output function as time t, and it is computed as

zt = h(s(t), b(t))⊕ st+93 ⊕
⊕
j∈A

bt+j ,

where A = {2, 15, 36, 45, 64, 73, 89}, and h(s(t), b(t)) is defined as

h(s(t), b(t)) = bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42 ⊕ st+60st+79 ⊕ bt+12bt+95st+94.

Moreover, the functions g(b(t)) and f(s(t)) are defined as follows,

f(s(t)) = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96,

g(b(t)) = bt+0 ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84

⊕ bt+88bt+92bt+93bt+95 ⊕ bt+22bt+24bt+25 ⊕ bt+70bt+78bt+82.

The internal state bits st+128 and bt+128 are computed by

st+128 = zt ⊕ f(s(t)),
bt+128 = zt ⊕ st ⊕ g(b(t)).

In the initialization phase, the state is updated 256 times without producing an output.
After the initialization, the update function is adjusted so that zt is not fed to the state
but rather used as a pre-output keystream. Grain-128AEAD inherits many specifications
from Grain-128a proposed in [ÅHJM11]. Assuming that the first bit of the pre-output
keystream can be observed, there is no difference between Grain-128AEAD and Grain-128a.
Hereinafter, we study the round-reduced Grain-128AEAD under the above assumption.

For Grain-128, the feedback function for the NFSR is more sparse and is specified as

g(b(t)) = bt+0 ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67 ⊕ bt+11bt+13

⊕ bt+17bt+18 ⊕ bt+27bt+59 ⊕ bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84.

Moreover there is a small tweak in the h function as

h(s(t), b(t)) = bt+12st+8 ⊕ st+13st+20 ⊕ bt+95st+42 ⊕ st+60st+79 ⊕ bt+12bt+95st+95,

where st+95 is used to instead of st+94. The others are identical to Grain-128AEAD.

5.2.2 A new modeling technique

Let s(r) = (sr, . . . , sr+n−1) and b(r) = (br, . . . , br+n−1) represent the intermediate states
of the Grian family of cipher after the r-th round of iteration. In the initialization phase,
the internal state bits sr+n and br+n can also be updated by

st+n = z′
t ⊕ f ′,

bt+n = z′
t ⊕ g,

210 Dynamic Cube Attacks against Grain-128AEAD

where z′
t ≜ zt ⊕ st and f = f ′ ⊕ st. The purpose of updating the intermediate state bits

with the functions z′, f ′, and g is to avoid the issue mentioned in Section 3.2.
For a given nullification strategy NS = {(vlj , s

(rj)
n−1)}j∈Js ∪ {(vtj , b

(rj)
n−1)}j∈Jb

and a
predefined cube I, the dynamic variables and their dynamic values can be determined.
For a pair (vd, s

(rd)
n−1) ∈ NS and a key-guess pattern µ, denote φ

(0)
d as the dynamic value of

the dynamic variables vd under the key-guess pattern µ = 0. Let δ
(µ)
d be the ANF of the

to-be-nullified state bit s
(rd)
n−1 under a key-guess pattern µ. Hence, the dynamic values of

vd can be represented as φ
(µ)
d = φ

(0)
d ⊕ δ

(µ)
d , and we have the following equation:

δ
(µ)
d = s

(rd)
n−1 = z′(s(rd−1), b(rd−1))⊕ f ′(s(rd−1)) = vd ⊕ φ

(0)
d . (8)

Obviously, only one of z′ and f contains the dynamic variable vd. If the dynamic variable
vd comes from z′ and rd /∈ Rb, then the constraint b

(rd)
n−1 = z′(s(rd−1), b(rd−1))⊕ g(b(rd−1))

has been replaced in the model with the constraint b
(rd)
n−1 = g(b(rd−1)) + f ′(s(rd−1)) + δ

(µ)
d .

While these constraints are algebraically equivalent due to Eq.(8), this modification in
the MILP model helps reduce unnecessary division trails within the model, as described
in Section 3.2. For the pair (vd, b

(rd)
n−1) ∈ NS that satisfies similar conditions, we use the

identical processing method to replace the original constraint with the new one.
Compared with the original MILP modeling method proposed in [HJL+20] for dynamic

cube attacks, our new modeling technique can achieve a more accurate MILP model. First,
it is known that 3SDP/u is more accurate than the CBDP, and Algorithm 2 is based
on 3SDP/u while the original model is based on CBDP. Second, the specific algebraic
structure of the Grain family is taken into consideration in Algorithm 2 to avoid generating
numerous redundant trails. Our modeling technique is demonstrated in Algorithms 1 and
2, focusing on the modeling ideas while omitting some technical details. The detailed
modeling process has been uploaded to the GitHub repository as code.

Algorithm 1: A New MILP Model for the Grain family
1: procedure GrainFamilyInit(Model M, Cube I, Nullification strategy
NS = {(vlj , s

(rj)
n−1)}j∈Js ∪ {(vtj , b

(rj)
n−1)}j∈Jb , Key-guess pattern µ)

2: M.var ← bvar = (svar[0], . . . , svar[n− 1]) as binary variables
3: M.var ← svar = (bvar[0], . . . , bvar[n− 1]) as binary variables
4: M.var ← kvar = (kvar[0], . . . , kvar[n− 1]) as binary variables
5: M.var ← vvar = (vvar[0], . . . , vvar[m− 1]) as binary variables
6: M.obj ← max{

∑n−1
i=0 kvar[i]}

7: M.con← vvar[i] = 1 for i ∈ I
8: M.con← vvar[j] = 0 for j /∈ I ∪ {lj}j∈Js ∪ {tj}j∈Jb

9: According to NS and µ, deduce the ANFs of the dynamic values corresponding to the
dynamic variables, i.e., {vlj , f

(µ)
lj
} for j ∈ Js and {vtj , f

(µ)
lj
} for j ∈ Jb.

10: for j ∈ Js do
11: M.con←ModelPoly(M, vvar[lj], fµ

j ,kvar, vvar)
12: for j ∈ Jb do
13: M.con←ModelPoly(M, vvar[tj], fµ

j ,kvar, vvar)
14: M.con← bvar[i] = kvar[i] for i ∈ {0, . . . , n− 1}
15: M.con← svar[i] = vvar[i] for i ∈ {0, . . . ,m− 1} ▷ for Grain-128AEAD, there is a another

constraint, i.e., M.con← svar[n− 1] = 0
16: return (M, svar, bvar,kvar, vvar)
17: end procedure

In Algorithm 1, we added the algebraic relationship between dynamic variables and dy-
namic values as constraints into the model. The procedure ModelPoly adds polynomials
as constraints into the model. Algorithm 2 illustrates the application of algebraic struc-
tures for the Grain family in our new modeling technique. The procedures ModelFuncF,

Chen Liu and Tian Tian 211

Algorithm 2: A New MILP Model for the Grain family
1: procedure GrainFamilyModel(Cube I, Nullification strategy
NS = {(vlj , s

(rj)
n−1)}j∈Js ∪ {(vtj , b

(rj)
n−1)}j∈Jb , Key-guess pattern µ)

2: Prepare an empty MILP model M
3: Update M as (M, svar, bvar,kvar, vvar)← GrainFamilyInit(M, I,NS , µ)
4: According to NS and µ, deduce the ANFs of the to-be-nullified state bits {s(rj)

n−1}j∈Js and
{b(rj)

n−1}j∈Jb , denoted by {φ(µ)
j }j∈Js and {ψ(µ)

j }j∈Jb , respectively.
5: for r from 1 to R do
6: if r /∈ {rj}j∈Js∪Jb do
7: M.var ← fvar, gvar, zvar, zvar1, zvar2, newb, news as binary variables
8: M.con←ModelFuncF(M, fvar, svar)
9: M.con←ModelFuncG(M, gvar, bvar)

10: M.con←ModelFuncZ(M, zvar, bvar, svar)
11: M.con← zvar = zvar1 ∨ zvar2
12: M.con← newb = zvar1 + gvar
13: M.con← news = zvar2 + fvar
14: else if r ∈ {rj}j∈Js∩Jb do
15: M.var ← newb, news as binary variables
16: M.con←ModelPoly(M, newb, φr,kvar, vvar)
17: M.con←ModelPoly(M, news, ψr,kvar, vvar)
18: M.con← (bvar[0], svar[0]) = (0, 0)
19: else if r ∈ {rj}j∈Jb and vtj involved in z′ do
20: M.var ← gvar, fvar, newb, news, xvar, xvar1, xvar2 as binary variables
21: M.con←ModelPoly(M, xvar, φr,kvar, vvar)
22: M.con← xvar = xvar1 ∨ xvar2
23: M.con←ModelFuncF(M, fvar, svar)
24: M.con←ModelFuncG(M, gvar, bvar)
25: M.con← newb = xvar1
26: M.con← news = xvar2 + fvar + gvar
27: M.con← svar[0] = 0
28: else if r ∈ {rj}j∈Jb and vtj not involved in z′ do
29: M.var ← zvar, fvar, newb, news, xvar as binary variables
30: M.con←ModelPoly(M, xvar, φr,kvar, vvar)
31: M.con←ModelFuncF(M, fvar, svar)
32: M.con←ModelFuncZ(M, zvar, bvar, svar)
33: M.con← newb = xvar
34: M.con← news = fvar + zvar
35: else if r ∈ {rj}j∈Js and vlj involved in z′ do
36: M.var ← fvar, gvar, newb, news, xvar, xvar1, xvar2 as binary variables
37: M.con←ModelPoly(M, xvar, ψr,kvar, vvar)
38: M.con← xvar = xvar1 ∨ xvar2
39: M.con←ModelFuncF(M, fvar, svar)
40: M.con←ModelFuncG(M, gvar, bvar)
41: M.con← newb = xvar1 + fvar + gvar
42: M.con← news = xvar2
43: M.con← svar[0] = 0
44: else if r ∈ {rj}j∈Js and vlj not involved in z′ do
45: M.var ← zvar, gvar, newb, news, xvar as binary variables
46: M.con←ModelPoly(M, xvar, φr,kvar, vvar)
47: M.con←ModelFuncG(M, gvar, bvar)
48: M.con←ModelFuncZ(M, zvar, bvar, svar)
49: M.con← newb = gvar + zvar
50: M.con← news = xvar
51: (bvar[0], . . . , bvar[126], bvar[127])← (bvar[1], . . . , bvar[127], newb)
52: (svar[0], . . . , svar[126], svar[127])← (svar[1], . . . , svar[127], news)
53: M.var ← ovar as binary variable
54: M.con←ModelFuncZ(M, ovar, bvar, svar)
55: M.con← bvar[i] = 0 for i ∈ {0, . . . , n− 1}
56: M.con← svar[i] = 0 for i ∈ {0, . . . , n− 1}
57: return (M,kvar, vvar)
58: end procedure

212 Dynamic Cube Attacks against Grain-128AEAD

ModelFuncG, and ModelFuncZ used in Algorithm 2 are specific implementations for
the function g and the modified functions f ′ and z′.

The models established by Algorithm 2 can be used to estimate the algebraic degree of a
superpoly and recover the superpoly for a given cube. Moreover, by adjusting the objective
function as described in Algorithm 1 toM.obj ← min{

∑n−1
i=0 kvar[i]}, the modified model

can be employed to estimate the lower bound of the minimal algebraic degree of the
superpoly. Additionally, if the initially feasible models become infeasible by adding the
constraint M← kvar[i] = 0 to the model, then we can determine that the superpoly is
divisible by the key variable ki. By solving n MILP models with different constraints, i.e.,
M← kvar[i] = 0 for i ∈ {0, . . . , n− 1}, all key variables that divide the superpoly can be
identified.

6 Applications to Grain-128AEAD and Grain-128
In this section, we applied dynamic cube attacks based on the 3SDP/u to Grain-128AEAD
and Grain-128. As a result, we successfully conducted a key-recovery attack on 190-round
Grain-128AEAD, with the ability to recover 3 key bits with a probability exceeding 99.68%.
Additionally, we provided a feasibility analysis of a dynamic cube attack against full-version
Grain-128. Furthermore, we compared two different methods of bias evaluation. The solver
for the MILP model we used is: Gurobi Solver (version 9.0.3), and the platform we used
is: AMD Ryzen 5950X 16-core Processor 3.7 GHz, 128G RAM, and Ubuntu 22.04 LTS.
The source codes and experimental results are both available in our git repository.

6.1 Dynamic cube attack on Grain-128AEAD
Through automated searching, we found a qualified nullification strategy NS , which contains
2 pairs: NS = {(v23, b151), (v24, b154)}. We find that when b151 and b152 are nullified by
setting v23 and v24 to dynamic variables, the superpoly of I = {0, . . . , 95}\{23, 24} at
round 190 is 0-constant polynomial. According to the ANFs of b151 and b152, the dynamic
variables v23 and v24 can be represented as follows,

v23 = v36v43 ⊕ v83 ⊕ k118v65 ⊕ k35v31 ⊕ g0,

v24 = v37v44 ⊕ v84 ⊕ k119v66 ⊕ k36v32 ⊕ g1,
(9)

where g0 and g1 are the polynomial of key variables. Let κ1 ≜ (g0, k35, k118) and κ2 ≜
(g1, k36, k119). According to the expression, we need to guess the values of κ ≜ (κ1, κ2).

Let µ = (µ1, µ2) ∈ Z2 be the key-guess pattern of κ. Under a key-guess pattern µ, the
corresponding key guess is

κµ ≜ (g0 ⊕ µ1[0], k35 ⊕ µ1[1], k118 ⊕ µ1[2], g1 ⊕ µ2[0], k36 ⊕ µ2[1], k119 ⊕ µ2[2]).

According to the algebraic analysis method proposed in Section 5.1, the output of 190-round
Grain-128AEAD can be represented as follows,

f(k, v) = f (0) ⊕ f (1)(k, v) · (µ1[0]⊕ µ1[1] · v31 ⊕ µ1[2] · v65)
⊕ f (2)(k, v) · (µ2[0]⊕ µ2[1] · v32 ⊕ µ2[2] · v66)
⊕ f (3)(k, v) · (µ1[0]⊕ µ1[1] · v31 ⊕ µ1[2] · v65) · (µ2[0]⊕ µ2[1] · v32 ⊕ µ2[2] · v66)

= f (0) ⊕ (f (1)
0 ⊕ v31f

(1)
1 ⊕ v65f

(1)
2 ⊕ v31v65f

(1)
3) · (µ1[0]⊕ µ1[1] · v31 ⊕ µ1[2] · v65)

⊕ (f (2)
0 ⊕ v32f

(2)
1 ⊕ v66f

(2)
2 ⊕ v32v66f

(2)
3) · (µ2[0]⊕ µ2[1] · v32 ⊕ µ2[2] · v66)

⊕ f (3) · (µ1[0]⊕ µ1[1] · v31 ⊕ µ1[2] · v65) · (µ2[0]⊕ µ2[1] · v32 ⊕ µ2[2] · v66).

(10)

https://github.com/StrawberryBoy123/DynamicCubeAttack.git

Chen Liu and Tian Tian 213

The superpolies in v31v65f
(1)
i and v32v66f

(2)
i are respectively denoted as p

(1)
i and p

(2)
i ,

where i ∈ {1, 2, 3}. By analyzing Eq.(10), it is concluded that the key-guess patterns
µ = (1, 0), (3, 0), (5, 0), (0, 1), (0, 3), (0, 5) are considered to be “bad”. The details are
listed in Table 3.

Table 3: The details for selected “bad” key-guess patterns
µ = (µ1, µ2) the superpoly pµ µ = (µ1, µ2) the superpoly pµ

(1, 0) p
(1)
3 (0, 1) p

(2)
3

(3, 0) p
(1)
2 (0, 3) p

(2)
2

(5, 0) p
(1)
1 (0, 5) p

(2)
1

Table 4: The qualified cubes used for attacking 190-round Grain-128 AEAD. The nullification
strategy is NS = {(v23, b151), (v24, b152)}.

cube I
the bias ε(µ1,µ2) under the “bad” key-guess patterns (µ1, µ2)

(1, 0) (3, 0) (5, 0) (0, 1) (0, 3) (0, 5)

I0 = {0, . . . , 95}\{23, 24, 95} 0.353606 0.206203 0.234221 0.4230747 0.399117 0.4361982
I1 = {0, . . . , 95}\{23, 24, 77, 40} 0.387184 0.299633 0.294281 0.4387169 0.354754 0.4249859
I2 = {0, . . . , 95}\{23, 24, 71, 40} 0.387218 0.346762 0.344177 0.4813395 0.4379272 0.4396868
I3 = {0, . . . , 95}\{23, 24, 68, 40} 0.316473 0.257362 0.241364 0.4721603 0.4406729 0.4352102
I4 = {0, . . . , 95}\{23, 24, 67, 42} 0.367339 0.274574 0.250311 0.4757776 0.392146 0.4511347
I5 = {0, . . . , 95}\{23, 24, 61, 55} 0.367626 0.24719 0.188051 0.4761515 0.4403486 0.4232893
I6 = {0, . . . , 95}\{23, 24, 61, 52} 0.38121 0.281216 0.258658 0.4892836 0.4862223 0.472414
I7 = {0, . . . , 95}\{23, 24, 60, 41} 0.370648 0.289206 0.250978 0.4867525 0.4836922 0.4671307
I8 = {0, . . . , 95}\{23, 24, 55} 0.379585 0.20465 0.213818 0.4711533 0.4273214 0.4395924
I9 = {0, . . . , 95}\{23, 24, 50} 0.339352 0.235249 0.221518 0.471941 0.4487085 0.4553604
I10 = {0, . . . , 95}\{23, 24, 49, 41} 0.324727 0.18964 0.227296 0.4730148 0.4603596 0.4364719
I11 = {0, . . . , 95}\{23, 24, 44, 33} 0.380052 0.292162 0.264006 0.49561977 0.49242878 0.456008
I12 = {0, . . . , 95}\{23, 24, 42, 27} 0.387638 0.281886 0.278914 0.479454 0.4136972 0.470829
I13 = {0, . . . , 95}\{23, 24, 77, 41, 40} 0.334992 0.212773 0.253929 0.4375563 0.315454 0.4094419
I14 = {0, . . . , 95}\{23, 24, 71, 46, 40} 0.366632 0.309636 0.275089 0.480011 0.4891071 0.4603796
I15 = {0, . . . , 95}\{23, 24, 71, 60, 40} 0.309626 0.140639 0.229797 0.388562 0.380021 0.335477
I16 = {0, . . . , 95}\{23, 24, 49, 46, 35} 0.380275 0.284727 0.225223 0.49509048 0.49503422 0.4813623
I17 = {0, . . . , 95}\{23, 24, 49, 46, 40} 0.341744 0.282315 0.250940 0.4590654 0.4652958 0.4487858
I18 = {0, . . . , 95}\{23, 24, 49, 46, 41} 0.38393 0.253141 0.231102 0.4838247 0.4805527 0.4533014
I19 = {0, . . . , 95}\{23, 24, 49, 46, 45} 0.329613 0.32315 0.206355 0.4760637 0.4771605 0.4480047
I20 = {0, . . . , 95}\{23, 24, 60, 49, 46} 0.368801 0.283889 0.222698 0.4751892 0.4819527 0.4385643
I21 = {0, . . . , 95}\{23, 24, 75, 49, 46} 0.380912 0.290606 0.224708 0.484374 0.4801178 0.450757
I22 = {0, . . . , 95}\{23, 24, 49, 41, 35} 0.313745 0.148555 0.209636 0.49448395 0.4807119 0.4658022
I23 = {0, . . . , 95}\{23, 24, 42, 41, 27} 0.389872 0.262617 0.244953 0.49575138 0.4516106 0.4830332
I24 = {0, . . . , 95}\{23, 24, 76, 42} 0.356276 0.305232 0.317458 0.49332905 0.4739418 0.4831657
I25 = {0, . . . , 95}\{23, 24, 72} 0.345942 0.207445 0.138506 0.4693813 0.4510098 0.4379272
I26 = {0, . . . , 95}\{23, 24, 72, 61} 0.330338 0.189197 0.121749 0.4762859 0.4642897 0.4043407
I27 = {0, . . . , 95}\{23, 24, 69, 29} 0.386326 0.318699 0.258453 0.4800005 0.4519835 0.4615879
I28 = {0, . . . , 95}\{23, 24, 68, 46} 0.382341 0.299612 0.222552 0.486948 0.4850311 0.4703856
I29 = {0, . . . , 95}\{23, 24, 61, 32} 0.372087 0.294085 0.227592 0.49308872 0.4638119 0.083961
I30 = {0, . . . , 95}\{23, 24, 55, 41} 0.383193 0.254925 0.252210 0.4804106 0.4482346 0.4562445
I31 = {0, . . . , 95}\{23, 24, 54} 0.379627 0.237605 0.28257 0.4856052 0.4630537 0.458209
I32 = {0, . . . , 95}\{23, 24, 50, 44} 0.372524 0.228606 0.240152 0.4957962 0.484704 0.464653
I33 = {0, . . . , 95}\{23, 24, 50, 41} 0.274916 0.172963 0.1509 0.4690971 0.430047 0.4502716
I34 = {0, . . . , 95}\{23, 24, 49, 35} 0.385032 0.294983 0.27245 0.493433 0.4884911 0.4795504
I35 = {0, . . . , 95}\{23, 24, 46, 28} 0.378247 0.299514 0.23912 0.4755831 0.489665 0.4692144
I36 = {0, . . . , 95}\{23, 24, 41, 27} 0.344182 0.227023 0.221251 0.49296188 0.4623575 0.4599113
I37 = {0, . . . , 95}\{23, 24, 70, 42, 41} 0.347362 0.274938 0.239745 0.49620628 0.4766798 0.4822416
I38 = {0, . . . , 95}\{23, 24, 68, 61, 42} 0.378164 0.283128 0.267408 0.4750986 0.4426651 0.418539
I39 = {0, . . . , 95}\{23, 24, 68, 46, 42} 0.352967 0.292024 0.218067 0.4866066 0.4863405 0.4649763
I40 = {0, . . . , 95}\{23, 24, 68, 42, 41} 0.388642 0.27685 0.264484 0.49326611 0.463604 0.4774561
I41 = {0, . . . , 95}\{23, 24, 76, 61, 41} 0.399852 0.237556 0.280949 0.49482155 0.4734402 0.4454041
I42 = {0, . . . , 95}\{23, 24, 61, 60, 46} 0.378113 0.299518 0.25487 0.4923811 0.49433804 0.4730492
I43 = {0, . . . , 95}\{23, 24, 61, 50, 44} 0.366341 0.222016 0.214379 0.49053955 0.4833498 0.4406195
I44 = {0, . . . , 95}\{23, 24, 61, 46, 45} 0.338963 0.378028 0.230568 0.49240112 0.4890747 0.463501
I45 = {0, . . . , 95}\{23, 24, 60, 46, 45} 0.310297 0.31269 0.185132 0.479125 0.4852772 0.454525
I46 = {0, . . . , 95}\{23, 24, 51, 42, 41} 0.369997 0.322962 0.241527 0.495255 0.4258976 0.4170637
I47 = {0, . . . , 95}\{23, 24, 50, 44, 41} 0.374805 0.191571 0.198668 0.49560547 0.49258804 0.4706526
I48 = {0, . . . , 95}\{23, 24, 71, 49, 35} 0.309337 0.223654 0.200107 0.4647303 0.4269733 0.4178019
I49 = {0, . . . , 95}\{23, 24, 75, 46, 42} 0.33437 0.248691 0.195266 0.4613829 0.4739819 0.45644
I50 = {0, . . . , 95}\{23, 24, 76, 41, 40} 0.354204 0.222609 0.272528 0.4736853 0.446743 0.4405336

According to the definite nullification strategy NS and these “bad” key-guess patterns,
we found some qualified cubes by constructing and solving corresponding MILP models,
denoted as I0, . . . , I50. Their biases under “bad” key-guess patterns were detected by
conducting experimental testing on the corresponding superpolies that have been recovered.
The amount of data used to detect the biases is 220, which satisfies Equation (2). This
implies that the detected biases can be considered practical biases in these superpolies under
“bad” key-guess patterns. Both the cubes used and their biases under “bad” key-guess
patterns were listed in Table 4.

Our dynamic cube attack process is consistent with the one described in [HJL+20]. It

214 Dynamic Cube Attacks against Grain-128AEAD

follows the steps outlined below.

1. Guess κ1 ≜ (g0, k35, k118) and κ2 ≜ (g1, k36, k119).

2. For each guess, compute the values of the superpolies of the cubes I listed in 4 under
the predefined nullification strategy.

3. If any of the 51 values is non-zero, the key guess is wrong; otherwise, keep the key
guess as a correct key guess condidate.

Complexity and Success Probabilities. The time and data complexities of the attack
are both 26 ·

∑50
i=0 2|Ii| = 2103.44. The memory complexity is only 26 counters of 51-bits,

which is negligible. Since the correct key guess ensures 51 0-summations, evaluating the
success probability PS is equivalent to evaluating the probability for a wrong key guess to
generate 51 zero summations. Therefore, for a key-guess pattern (µ1, µ2), the theoretically
success probability P

(µ1,µ2)
S can be evaluated as P

(µ1,µ2)
S = 1−

∏50
i=0(2−1 + ε(µ1,µ2)). We

list the theoretical success probabilities for selected “bad” key-guess patterns in Table 5.
It can be seen from Table 5 that the probability of successfully distinguishing between
the key-guess pattern µ = (0, 0) and the “bad” key-guess pattern µ = (0, 1) is the lowest
compared to all other bad key-guess patterns. It is because the corresponding superpolies
always have the most significant biases under the key-guess pattern µ = (0, 1), approaching
2−1.

Table 5: the success probabilities for selected “bad” key-guess patterns
µ = (µ1, µ2) (1, 0) (3, 0) (5, 0) (0, 1) (0, 3) (0, 5)

p(µ1,µ2) p
(1)
3 p

(1)
2 p

(1)
1 p

(2)
3 p

(2)
2 p

(2)
1

P
(µ1,µ2)
S 0.9995967 0.9999992 0.9999999 0.6840611 0.8930240 0.9540340

According to Eq.(2) and the conclusion described in Section 5.1, we can estimate the bias
of the superpoly under different key-guess patterns, thus evaluating the corresponding
success probability. For the key-guess patterns (µ1, µ2) where µ1 > 0, the bias ε(µ1,µ2)

satisfies ε(µ1,µ2) ≤ ε(µ1,0), which implies that the success probability P
(µ1,µ2)
S satisfies

P
(µ1,µ2)
S ≥ P

(µ1,0)
S . Therefore, P

((1,0))
S , P

((3,0))
S , and P

((5,0))
S can be used to evaluate the

lower bound for P
(µ1,µ2)
S . We have listed the estimated success probabilities for all key-guess

patterns in Table 6.

Table 6: the success probabilities for all key-guess patterns

(µ1, µ2) P
(µ1,µ2)
S (µ1, µ2) P

(µ1,µ2)
S

(1, ∗) P
(1,0)
S (0, 1) P

(0,1)
S

(2, ∗) P
(3,0)
S (0, 2) P

(0,3)
S

(3, ∗) P
(3,0)
S (0, 3) P

(0,3)
S

(4, ∗) P
(5,0)
S (0, 4) P

(0,5)
S

(5, ∗) P
(5,0)
S (0, 5) P

(0,5)
S

(6, ∗) P
(5,0)
S (0, 6) P

(0,5)
S

(7, ∗) P
(5,0)
S (0, 7) P

(0,5)
S

We present the attack results in Table 7. We explain the contents in the table,
taking the second row as an example. We can successfully identify the key-guess patterns
{(µ1, µ2)|0 < µ1 ≤ 7, 0 ≤ µ2 ≤ 7} with a theoretical success rate of 99.68% as the wrong
key guesses. That is, out of 64 different key guesses, we can filter out 56 wrong key guesses
with a success rate of 99.68%, providing log2(64

8) = 3 bits key information.

Chen Liu and Tian Tian 215

Table 7: The dynamic cube attack against 190-round Grain-128AEAD
Excludable key guessing The success Key information

patterns (µ1, µ2) probability available

{(µ1, µ2)|0 < µ1 ≤ 7, 0 ≤ µ2 ≤ 7} 99.68% log2(64
64−56) = 3 bits

{(µ1, µ2)|0 ≤ µ1, µ2 ≤ 7}\{(0, µ2)|0 ≤ µ2 ≤ 3} 82.57% log2(64
64−60) = 4 bits

{(µ1, µ2)|0 ≤ µ1, µ2 ≤ 7}\{(0, µ2)|0 ≤ µ2 ≤ 1} 65.85% log2(64
64−62) = 5 bits

{(µ1, µ2)|0 ≤ µ1, µ2 ≤ 7}\{(0, 0)} 45.04% log2(64
64−63) = 6 bits

6.2 Zero-sum distinguisher for Full Grain-128

In this subsection, we provide a further discussions on the feasibility of Hao et al’s dynamic
cube attack against the full Grain-128.

Under the same nullification strategy NS = {90, b158}, we applied our new MILP
modeling method to evaluate the cubes used in [HJL+20]. We found that their superpolies
are 0-constant polynomials under both correct and wrong key guesses. This indicates that
these cubes were unable to distinguish between correct and wrong key guesses.

By searching for cubes with dimensions ranging from 70 to 80, we found a batch of
qualified cubes that meet the requirements: under the correct key guess, their superpolies
are 0-constant polynomials; under wrong key guesses, their superpolies are non-constant
polynomials with high degrees. However, these cubes were also unable to distinguish
between correct and wrong key guesses because their superpolies have a bias of almost 2−1

under wrong key guesses. Additionally, we observed that under wrong key guesses, the
minimal algebraic degrees of their superpolies are generally high, ranging from a minimum
of 9 to a maximum of 23. That is why their superpolies have biases very close, even equal
to 2−1. We presented some cubes along with their respective minimal algebraic degrees in
Table 11 (available in Appendix B) and Table 8. The comprehensive results have been
uploaded to our Git repository.

Table 8: The minimal algebraic degrees of the superpolies under the “bad” key-guess patterns
cube I µ = 1 µ = 3 µ = 5 cube I µ = 1 µ = 3 µ = 5

I0 15 14 13 I25 13 10 9
I1 13 11 12 I26 12 10 11
I2 10 9 9 I27 15 13 13
I3 13 11 12 I28 19 17 18
I4 14 12 12 I29 19 19 15
I5 13 11 12 I30 19 15 17
I6 11 10 10 I31 20 18 19
I7 14 9 13 I32 20 19 17
I8 12 11 11 I33 22 21 19
I9 14 12 10 I34 20 17 17
I10 12 11 12 I35 23 21 19
I11 15 14 15 I36 23 17 18
I12 10 9 9 I37 21 17 17
I13 11 10 10 I38 14 9 11
I14 16 14 15 I39 21 20 18
I15 15 13 11 I40 18 16 16
I16 14 12 12 I41 18 16 17
I17 16 13 13 I42 19 18 16
I18 15 11 12 I43 21 18 18
I19 16 12 13 I44 17 17 16
I20 15 13 12 I45 17 14 15
I21 16 12 14 I46 17 14 15
I22 13 10 11 I47 17 13 14
I23 16 12 14 I48 20 17 16
I24 16 12 15 I49 18 15 15

216 Dynamic Cube Attacks against Grain-128AEAD

As the dimension of cubes decreases and the search space increases, it becomes chal-
lenging to find cubes with 0-constant superpolies under the correct key guess. To further
explore the structural characteristics of Grain-128, we attempted to recover the superpolies
of the full-version Grain-128 without applying any nullification strategies. As a result, we
successfully recovered the superpolies of a batch of cubes with 80 dimensions, including 9
0-constant superpolies. These cubes with 0-constant superpolies can serve as the zero-sum
distinguishers for the full-version Grain-128, and listed in Table 9. All the recovered
superpolies have been uploaded to our git repository.

Table 9: The zero-sum distinguishers for the full-version Grain-128
{0, . . . , 95}\{12, 25, 27, 29, 30, 35, 39, 40, 41, 43, 57, 62, 67, 70, 76, 91}
{0, . . . , 95}\{28, 29, 30, 31, 35, 39, 40, 41, 43, 44, 45, 61, 71, 76, 85, 89}
{0, . . . , 95}\{13, 20, 29, 30, 38, 39, 40, 41, 43, 49, 52, 54, 63, 70, 76, 81}
{0, . . . , 95}\{26, 30, 38, 40, 41, 43, 44, 50, 69, 72, 73, 75, 78, 84, 87, 90}
{0, . . . , 95}\{17, 30, 33, 38, 39, 40, 41, 43, 44, 54, 60, 66, 70, 71, 92, 94}
{0, . . . , 95}\{30, 31, 38, 39, 40, 41, 42, 43, 50, 53, 56, 69, 76, 81, 90, 93}
{0, . . . , 95}\{15, 27, 32, 35, 38, 39, 40, 41, 43, 44, 50, 67, 72, 80, 86, 90}
{0, . . . , 95}\{26, 30, 32, 39, 40, 41, 43, 44, 50, 55, 59, 67, 68, 73, 76, 90}
{0, . . . , 95}\{18, 26, 30, 38, 39, 40, 41, 43, 44, 49, 50, 52, 53, 85, 90, 92}

In our experiments without any nullification strategy, we observed that all of the
recovered superpolies of high-dimensional cubes exhibit significant biases close to 2−1,
along with having a high algebraic degree and minimal algebraic degree. Additionally,
these superpolies are very sparse. Based on the above experimental results, we infer that
the superpolies of high-dimensional cubes in the full Grain-128 generally exhibit significant
biases, as well as high algebraic degree and minimal algebraic degree. Moreover, when
a nullification strategy is applied to the full Grain-128, even under wrong key guesses,
the superpolies may still be simplified, particularly for the “bad” key guesses. Besides,
the biases of superpolies may be more significant, approaching 2−1. Therefore, under
the framework of the dynamic cube attack proposed by Hao et al., we consider that it is
difficult to carry out key-recovery attacks solely by altering the nullification strategy.

6.3 Comparison of two different bias evaluation methods
In this section, we will compare the accuracy of bias estimation method based on the PAB
technique given in Section 4.2 and the method based on the minimal split set given in
[HJL+20] by experimental testing on the reduced-round Grain-128AEAD. The nullification
strategy and cubes employed were derived from Section 6.1. We apply the two methods
to the superpolies under the key-guess pattern µ = (5, 0), respectively. The results are
explicitly shown in Table 10. We provide a straightforward explanation of the data
in Table 10, using the data from the 30th row as an example, which is “I30, 0.252210,
{(k88, 5), (k89, 4)}, 0.242751, Λ = {46, 47, 88, 89}, 0.03125”. For the cube I30, the practical
bias obtained by directly testing the recovered superpoly is 0.252210. By using the PAB
technique, we can represent the superpoly as p′

I = ps ⊕ k88g1 ⊕ k89g2, where degm(g1) = 5
and degm(g2) = 4. Furthermore, by using the corresponding approximate polynomial, the
bias of the superpoly is evaluated to be 0.242751. As for the method based on the minimal
split set, the minimal split set is given by Λ = {46, 47, 88, 89}, and the estimated bias of
the superpoly is 2−(|Λ|+1) = 0.03125.

It can be seen from Table 10 that the accuracy of the new bias evaluation method
is much better than that of the minimal split method for Grain-128AEAD. We further
investigate the reason for this phenomenon. Based on numerous experiments, we have
observed that the minimal algebraic degrees of the superpolies in Grain-128AEAD are

Chen Liu and Tian Tian 217

Table 10: Bias evaluation for 190-round Grain-128AEAD under NS = {(v23, b151), (v24, b152)}
and µ = (5, 0).

Cube Superpoly PAB the minimal split set

I Recovery {(kµω , dω)} evaluated bias the minimal split set Λ evaluated bias

I0 0.234221 {(k88k89, 3)} 0.236503 |Λ| ≥ 5 ≤ 0.015625
I1 0.294281 {(k88k89, 3)} 0.289374 Λ = {47, 57, 64, 89} 0.03125
I2 0.344177 {(k89, 5)} 0.343991 Λ = {36, 47, 57, 89} 0.03125
I3 0.241364 {(k89, 4)} 0.241931 |Λ| ≥ 5 ≤ 0.015625
I4 0.250311 {(k88k89, 3)} 0.244338 |Λ| ≥ 5 ≤ 0.015625
I5 0.188051 {(k88, 4), (k89, 4)} 0.18449 |Λ| ≥ 5 ≤ 0.015625
I6 0.258658 {(k88k89, 2)} 0.252482 Λ = {47, 57, 88, 89} 0.03125
I7 0.250978 {(k88k89, 3)} 0.246790 Λ = {46, 64, 88, 89} 0.03125
I8 0.213818 {(k88, 4), (k89, 4)} 0.207318 |Λ| ≥ 5 ≤ 0.015625
I9 0.221518 {(k89, 4)} 0.231354 |Λ| ≥ 5 ≤ 0.015625
I10 0.227296 {(k88k89, 4)} 0.225621 Λ = {46, 58, 88, 89} 0.03125
I11 0.264006 {(k88k89, 3)} 0.263735 Λ = {46, 56, 88, 89} 0.03125
I12 0.278914 {(k88k89, 4), (k88k103, 4)} 0.271873 |Λ| ≥ 5 ≤ 0.015625
I13 0.253929 {} 0.253144 Λ = {46, 47, 88, 89} 0.03125
I14 0.275089 {(k89, 4)} 0.269062 Λ = {57, 64, 88, 89} 0.03125
I15 0.229797 {(k89, 3)} 0.217179 |Λ| ≥ 5 ≤ 0.015625
I16 0.225223 {(k88, 3)} 0.217594 Λ = {46, 64, 88, 89} 0.03125
I17 0.250940 {(k89, 5)} 0.247095 Λ = {58, 64, 88, 89} 0.03125
I18 0.231102 {(k88, 3)} 0.223129 Λ = {46, 64, 88, 89} 0.03125
I19 0.206355 {(k88, 2), (k89, 5)} 0.189639 |Λ| ≥ 5 ≤ 0.015625
I20 0.222698 {(k88, 3), (k89, 5)} 0.210399 |Λ| ≥ 5 ≤ 0.015625
I21 0.224708 {(k88, 3), (k89, 5)} 0.216341 |Λ| ≥ 5 ≤ 0.015625
I22 0.209636 {(k89, 4)} 0.204303 Λ = {46, 88, 89} 0.0625
I23 0.244953 {(k89, 4)} 0.236709 |Λ| ≥ 5 ≤ 0.015625
I24 0.317458 {(k89, 7)} 0.317111 Λ = {46, 47, 48, 88} 0.03125
I25 0.138506 {(k89, 3)} 0.140588 |Λ| ≥ 5 ≤ 0.015625
I26 0.121749 {(k89, 2)} 0.115462 |Λ| ≥ 5 ≤ 0.015625
I27 0.258453 {(k89, 3)} 0.247838 |Λ| ≥ 5 ≤ 0.015625
I28 0.222552 {(k89, 4)} 0.225904 |Λ| ≥ 5 ≤ 0.015625
I29 0.227592 {(k89, 3)} 0.219513 |Λ| ≥ 5 ≤ 0.015625
I30 0.252210 {(k88, 5), (k89, 4)} 0.242751 Λ = {46, 47, 88, 89} 0.03125
I31 0.28257 {(k88k89, 4)} 0.280329 Λ = {46, 47, 58, 88} 0.03125
I32 0.240152 {(k89, 4)} 0.243257 Λ = {46, 88, 89, 124} 0.03125
I33 0.1509 {(k89, 3)} 0.164343 |Λ| ≥ 5 ≤ 0.015625
I34 0.27245 {(k89, 3)} 0.251105 Λ = {46, 47, 88, 89} 0.03125
I35 0.23912 {(k88k89, 4)} 0.237271 |Λ| ≥ 5 ≤ 0.015625
I36 0.221251 {(k89, 4)} 0.222968 |Λ| ≥ 5 ≤ 0.015625
I37 0.239745 {(k89, 5)} 0.238529 Λ = {19, 46, 88, 89} 0.03125
I38 0.267408 {(k88k89, 4)} 0.269031 |Λ| ≥ 5 ≤ 0.015625
I39 0.218067 {(k88, 2)} 0.205309 |Λ| ≥ 5 ≤ 0.015625
I40 0.264484 {(k89, 4)} 0.257638 Λ = {46, 58, 88, 89} 0.03125
I41 0.280949 {(k88k89, 4)} 0.286235 Λ = {46, 64, 88, 89} 0.03125
I42 0.25487 {(k89, 3)} 0.242833 |Λ| ≥ 5 ≤ 0.015625
I43 0.214379 {(k89, 3)} 0.216105 |Λ| ≥ 5 ≤ 0.015625
I44 0.230568 {(k89, 3)} 0.22729 Λ = {47, 57, 88, 89} 0.03125
I45 0.185132 {(k88, 2), (k89, 3)} 0.163287 |Λ| ≥ 5 ≤ 0.015625
I46 0.241527 {} 0.241939 Λ = {40, 46, 88, 89} 0.03125
I47 0.198668 {(k89, 3)} 0.200201 |Λ| ≥ 5 ≤ 0.015625
I48 0.200107 {(k89, 4), (k88, 3)} 0.18751 Λ = {46, 64, 88, 89} 0.03125
I49 0.195266 {(k88, 2)} 0.187071 |Λ| ≥ 5 ≤ 0.015625
I50 0.272528 {(k89, 5)} 0.277182 |Λ| ≥ 5 ≤ 0.015625

typically very high under wrong key guesses. Therefore, for the identified minimal split
set, the superpoly still exhibits a high minimal algebraic degree and significant bias over
its complement space, leading to the failure of Assumption 1 on Grain-128AEAD in
the method based on the minimal split set. For the full version of Grain-128, we also
observed similar algebraic properties for superpolis under the wrong key guesses, which
fails Assumption 1 on Grain-128.

7 Conclusion
In this paper, we explain that the dynamic cube attack proposed by Hao et al. against
Grain-128 is invalid. Furthermore, we present a reliable implementation of dynamic cube
attacks against the Grain family of ciphers, including wrong key-guess analysis and a
more accurate MILP modeling method based on 3SDP/u. Additionally, we introduce a

218 Dynamic Cube Attacks against Grain-128AEAD

new technique called Polynomial Approximation with respect to Bias (PAB), which can
provide a more accurate bias evaluation. As an application, we implement a dynamic
cube attack against the Grain family of ciphers. As a result, we present a key-recovery
attack on 190-round Grain-128AEAD and discuss the feasibility of dynamic cube attacks
on full-version Grain-128. Furthermore, through experiments, we demonstrate that the
bias estimation method based on the minimal split set is unsuitable for the Grain family
of ciphers. Simultaneously, we show the effectiveness and accuracy of our new method for
evaluating bias. We believe this new method can play an important role in dynamic cube
attacks on more rounds.

References
[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube

testers and key recovery attacks on reduced-round MD6 and Trivium. In
Orr Dunkelman, editor, Fast Software Encryption, 16th International Work-
shop, FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected
Papers, volume 5665 of Lecture Notes in Computer Science, pages 1–22, Berlin,
Heidelberg, 2009. Springer.

[ÅHJM11] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a:
a new version of grain-128 with optional authentication. Int. J. Wirel. Mob.
Comput., 5(1):48–59, 2011.

[DGP+11] Itai Dinur, Tim Güneysu, Christof Paar, Adi Shamir, and Ralf Zimmermann.
An experimentally verified attack on full Grain-128 using dedicated reconfig-
urable hardware. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory
and Application of Cryptology and Information Security, Seoul, South Korea,
December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes in Computer
Science, pages 327–343, Berlin, Heidelberg, 2011. Springer.

[DS09] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials.
In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, 28th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, volume
5479 of Lecture Notes in Computer Science, pages 278–299, Berlin, Heidelberg,
2009. Springer.

[DS11] Itai Dinur and Adi Shamir. Breaking grain-128 with dynamic cube attacks. In
Antoine Joux, editor, Fast Software Encryption - 18th International Workshop,
FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers,
volume 6733 of Lecture Notes in Computer Science, pages 167–187. Springer,
2011.

[HHPW22] Jiahui He, Kai Hu, Bart Preneel, and Meiqin Wang. Stretching cube attacks:
Improved methods to recover massive superpolies. In Shweta Agrawal and
Dongdai Lin, editors, Advances in Cryptology - ASIACRYPT 2022 - 28th
International Conference on the Theory and Application of Cryptology and
Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part
IV, volume 13794 of Lecture Notes in Computer Science, pages 537–566, Cham,
2022. Springer.

[HIJ+19] Yonglin Hao, Takanori Isobe, Lin Jiao, Chaoyun Li, Willi Meier, Yosuke Todo,
and Qingju Wang. Improved division property based cube attacks exploiting

Chen Liu and Tian Tian 219

algebraic properties of superpoly. IEEE Trans. Computers, 68(10):1470–1486,
2019.

[HJL+20] Yonglin Hao, Lin Jiao, Chaoyun Li, Willi Meier, Yosuke Todo, and Qingju
Wang. Links between division property and other cube attack variants. IACR
Trans. Symmetric Cryptol., 2020(1):363–395, 2020.

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
Modeling for three-subset division property without unknown subset - im-
proved cube attacks against Trivium and Grain-128AEAD. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I,
volume 12105 of Lecture Notes in Computer Science, pages 466–495, Cham,
2020. Springer.

[HLM+21] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
Modeling for three-subset division property without unknown subset. J.
Cryptol., 34(3):22, 2021.

[HST+21] Kai Hu, Siwei Sun, Yosuke Todo, Meiqin Wang, and Qingju Wang. Massive
superpoly recovery with nested monomial predictions. In Mehdi Tibouchi and
Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2021 - 27th
International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 6-10, 2021, Proceedings, Part I,
volume 13090 of Lecture Notes in Computer Science, pages 392–421, Cham,
2021. Springer.

[HTZ13] Robert V. Hogg, Elliot A. Tanis, and Dale L. Zimmerm. Probability and
statistical inference (ninth Edition). Pearson Education, Inc., 2013.

[RBMA16] Majid Rahimi, Mostafa Barmshory, Mohammad Hadi Mansouri, and Mo-
hammad Reza Aref. Dynamic cube attack on grain-v1. IET Inf. Secur.,
10(4):165–172, 2016.

[Sun21] Yao Sun. Automatic search of cubes for attacking stream ciphers. IACR Trans.
Symmetric Cryptol., 2021(4):100–123, 2021.

220 Dynamic Cube Attacks against Grain-128AEAD

A The MILP models of the 3SDP/u for three basic func-
tions

We introduce the MILP models for the three basic functions COPY, AND, and XOR. Note
that these models are first proposed in [HLM+20, HLM+21], and describe the generalized
forms of their propagation rules, which are easily deduced from their original forms. When
constructing the MILP model, we usually initialize an empty modelM, then generate some
MILP variables v1, . . . , vm by M.var ← v1, . . . , vm, which are used in the inequalities.
Next, the inequality is added to the model M.con ← v2 + · · · + vm ≥ v1. Finally, we
can call an off-the-shelf MILP solver to solve the model and obtain the results, including
feasible or infeasible. In this paper, the MILP tool we used is the Gurobi optimizer.

Proposition 4 (MILP model for COPY). Let a
COP Y−−−−→ (b0, b1, . . . , bm−1) be a three-subset

division trail of COPY. The following inequalities are sufficient to describe the propagation
of the modified three-subset division property for COPY.{

M.var ← a, b0, . . . , bm−1 as binary;
M.con← a = b0 ∨ b1 ∨ · · · ∨ bm−1.

Note that the Gurobi optimizer supports the Or (∨) operation.

Proposition 5 (MILP model for AND). Let (a0, a1, . . . , am−1) AND−−−→ b be a three-subset
division trail of AND. The following inequalities are sufficient to describe the propagation
of the modified three-subset division property for AND.{

M.var ← a0, . . . , am−1, b as binary;
M.con← b = ai,∀i ∈ {0, 1, . . . , m− 1}.

Proposition 6 (MILP model for XOR). Let (a0, a1, . . . , am−1) XOR−−−→ b be a three-subset
division trail of XOR. The following inequalities are sufficient to describe the propagation
of the modified three-subset division property for XOR.{

M.var ← a0, . . . , am−1, b as binary;
M.con← b = a0 + a1 + · · ·+ am−1.

Chen Liu and Tian Tian 221

B The cubes used in Section 6.2

Table 11: The cubes used in Section 6.2
I0 {0, . . . , 95}\{8, 25, 27, 28, 29, 30, 33, 35, 40, 41, 43, 44, 45, 49, 59, 66, 67, 69, 75, 76, 84, 87}
I1 {0, . . . , 95}\{8, 25, 27, 29, 30, 33, 35, 40, 41, 43, 44, 45, 49, 59, 66, 69, 70, 73, 74, 75, 76, 84}
I2 {0, . . . , 95}\{8, 25, 27, 29, 30, 33, 35, 40, 41, 43, 44, 45, 49, 59, 66, 69, 73, 74, 75, 76, 84, 89}
I3 {0, . . . , 95}\{8, 25, 27, 29, 30, 33, 35, 40, 41, 43, 44, 45, 59, 66, 67, 69, 73, 74, 75, 76, 84, 87}
I4 {0, . . . , 95}\{8, 25, 27, 29, 30, 33, 35, 40, 41, 43, 44, 45, 59, 66, 67, 69, 74, 75, 76, 84, 87, 92}
I5 {0, . . . , 95}\{8, 25, 27, 29, 30, 33, 35, 40, 41, 43, 44, 45, 59, 66, 67, 69, 74, 75, 76, 84, 91, 92}
I6 {0, . . . , 95}\{8, 25, 27, 29, 30, 33, 35, 40, 41, 43, 44, 45, 59, 66, 69, 70, 73, 74, 75, 76, 84, 86}
I7 {0, . . . , 95}\{8, 25, 27, 29, 30, 33, 35, 40, 41, 43, 44, 45, 59, 66, 69, 70, 74, 75, 76, 84, 87, 92}
I8 {0, . . . , 95}\{8, 25, 27, 29, 30, 33, 35, 40, 41, 43, 44, 45, 59, 66, 69, 73, 74, 75, 76, 84, 86, 87}
I9 {0, . . . , 95}\{8, 25, 27, 29, 30, 35, 39, 40, 41, 43, 44, 45, 49, 59, 66, 67, 69, 74, 75, 76, 84, 89}
I10 {0, . . . , 95}\{8, 25, 27, 29, 30, 35, 39, 40, 41, 43, 44, 45, 54, 59, 66, 67, 69, 74, 75, 76, 84, 89}
I11 {0, . . . , 95}\{8, 25, 27, 29, 30, 35, 39, 40, 41, 43, 44, 45, 55, 59, 66, 67, 69, 74, 75, 76, 84, 87}
I12 {0, . . . , 95}\{8, 25, 27, 29, 30, 35, 39, 40, 41, 43, 44, 45, 59, 66, 67, 69, 73, 74, 75, 76, 84, 89}
I13 {0, . . . , 95}\{8, 25, 27, 29, 30, 35, 39, 40, 41, 43, 44, 45, 59, 66, 67, 69, 74, 75, 76, 84, 89, 91}
I14 {0, . . . , 95}\{8, 25, 27, 29, 30, 35, 40, 41, 43, 44, 45, 49, 55, 57, 59, 66, 67, 69, 74, 75, 76, 84}
I15 {0, . . . , 95}\{8, 25, 27, 29, 30, 35, 40, 41, 43, 44, 45, 49, 55, 59, 66, 67, 69, 74, 75, 76, 84, 89}
I16 {0, . . . , 95}\{8, 25, 27, 29, 30, 35, 40, 41, 43, 44, 45, 49, 57, 59, 66, 67, 69, 74, 75, 76, 84, 91}
I17 {0, . . . , 95}\{26, 27, 28, 29, 30, 35, 37, 39, 40, 41, 43, 44, 45, 49, 61, 69, 70, 74, 84, 86, 92, 94}
I18 {0, . . . , 95}\{26, 27, 28, 29, 30, 35, 37, 39, 40, 43, 44, 45, 49, 61, 69, 70, 74, 76, 84, 86, 92, 94}
I19 {0, . . . , 95}\{26, 27, 28, 30, 35, 37, 39, 40, 41, 43, 44, 45, 49, 61, 69, 70, 74, 76, 84, 86, 92, 94}
I20 {0, . . . , 95}\{26, 27, 28, 30, 35, 37, 39, 40, 43, 44, 45, 49, 60, 61, 69, 70, 74, 76, 84, 86, 92, 94}
I21 {0, . . . , 95}\{26, 28, 30, 31, 32, 35, 36, 37, 40, 45, 46, 49, 50, 51, 54, 57, 62, 68, 74, 76, 92, 94}
I22 {0, . . . , 95}\{26, 28, 30, 31, 32, 35, 36, 37, 40, 46, 49, 50, 51, 54, 57, 62, 68, 70, 74, 76, 92, 94}
I23 {0, . . . , 95}\{26, 28, 30, 31, 35, 36, 37, 40, 45, 46, 49, 50, 51, 54, 57, 62, 68, 70, 74, 76, 92, 94}
I24 {0, . . . , 95}\{21, 26, 30, 31, 35, 36, 37, 40, 45, 46, 49, 50, 51, 54, 57, 62, 68, 70, 74, 76, 92, 94}
I25 {0, . . . , 95}\{26, 27, 28, 29, 30, 35, 37, 39, 40, 43, 44, 49, 61, 66, 69, 70, 74, 76, 84, 86, 92, 94}
I26 {0, . . . , 95}\{26, 27, 28, 30, 35, 37, 39, 40, 41, 43, 44, 49, 61, 66, 69, 70, 74, 76, 84, 86, 92, 94}
I27 {0, . . . , 95}\{26, 27, 28, 29, 30, 35, 37, 39, 40, 41, 43, 44, 49, 61, 66, 69, 70, 74, 84, 86, 92, 94}
I28 {0, . . . , 95}\{21, 27, 28, 30, 33, 41, 42, 44, 45, 47, 50, 53, 55, 56, 61, 67, 70, 74, 75, 77, 82, 87}
I29 {0, . . . , 95}\{27, 29, 33, 35, 39, 41, 43, 44, 47, 49, 53, 57, 61, 67, 70, 71, 74, 77, 83, 87, 94, 95}
I30 {0, . . . , 95}\{27, 29, 30, 35, 39, 41, 43, 44, 47, 49, 53, 55, 57, 61, 70, 71, 74, 75, 77, 83, 87, 95}
I31 {0, . . . , 95}\{27, 29, 30, 35, 39, 41, 43, 44, 47, 49, 53, 57, 61, 67, 70, 71, 74, 75, 77, 83, 87, 95}
I32 {0, . . . , 95}\{27, 29, 35, 39, 41, 43, 44, 47, 49, 53, 55, 57, 61, 67, 70, 71, 74, 75, 77, 83, 87, 95}
I33 {0, . . . , 95}\{27, 29, 33, 35, 39, 41, 43, 44, 47, 49, 53, 57, 61, 67, 70, 71, 74, 75, 77, 83, 87, 95}
I34 {0, . . . , 95}\{27, 28, 29, 30, 35, 39, 41, 43, 44, 47, 49, 53, 57, 61, 67, 70, 71, 74, 77, 83, 87, 95}
I35 {0, . . . , 95}\{27, 29, 30, 33, 35, 39, 41, 43, 44, 47, 49, 53, 57, 61, 67, 70, 71, 74, 77, 83, 87, 95}
I36 {0, . . . , 95}\{27, 29, 30, 35, 39, 41, 43, 44, 45, 47, 49, 53, 57, 61, 67, 70, 71, 74, 77, 83, 87, 95}
I37 {0, . . . , 95}\{27, 28, 29, 30, 35, 39, 41, 43, 44, 45, 47, 49, 53, 57, 61, 70, 71, 74, 77, 83, 87, 95}
I38 {0, . . . , 95}\{23, 27, 28, 31, 35, 37, 39, 40, 41, 43, 45, 49, 50, 51, 57, 61, 62, 67, 71, 73, 74, 87}
I39 {0, . . . , 95}\{21, 27, 29, 30, 33, 35, 39, 41, 43, 44, 47, 49, 53, 57, 61, 70, 71, 74, 77, 83, 87, 95}
I40 {0, . . . , 95}\{21, 27, 29, 30, 31, 35, 39, 40, 41, 43, 44, 49, 53, 57, 61, 70, 71, 74, 77, 83, 87, 95}
I41 {0, . . . , 95}\{21, 27, 29, 30, 35, 39, 40, 41, 43, 44, 45, 49, 53, 57, 61, 70, 71, 74, 77, 83, 87, 95}
I42 {0, . . . , 95}\{21, 27, 29, 30, 35, 39, 40, 41, 43, 44, 49, 53, 57, 61, 66, 70, 71, 74, 77, 83, 87, 95}
I43 {0, . . . , 95}\{21, 27, 29, 30, 35, 39, 40, 41, 43, 44, 49, 53, 57, 61, 67, 70, 71, 74, 77, 83, 87, 95}
I44 {0, . . . , 95}\{21, 27, 29, 30, 35, 39, 40, 41, 43, 44, 49, 53, 57, 61, 69, 70, 71, 74, 77, 83, 87, 95}
I45 {0, . . . , 95}\{21, 27, 29, 30, 35, 39, 40, 41, 43, 44, 49, 53, 57, 61, 70, 71, 74, 77, 83, 87, 94, 95}
I46 {0, . . . , 95}\{21, 27, 29, 30, 35, 39, 40, 41, 43, 45, 49, 53, 57, 61, 67, 70, 71, 74, 77, 83, 87, 95}
I47 {0, . . . , 95}\{21, 27, 29, 30, 35, 39, 40, 41, 43, 49, 53, 57, 61, 67, 69, 70, 71, 74, 77, 83, 87, 95}
I48 {0, . . . , 95}\{21, 27, 29, 35, 39, 40, 41, 43, 44, 49, 53, 57, 61, 67, 70, 71, 74, 75, 77, 83, 87, 95}
I49 {0, . . . , 95}\{21, 27, 29, 35, 39, 40, 41, 43, 44, 49, 53, 57, 61, 67, 70, 71, 74, 77, 83, 87, 94, 95}

	Introduction
	Preliminaries
	Notations
	Frequency test to Boolean functions
	Three-subset division property without unknown subset
	A divide-and-conquer algorithm for superpoly recovery

	Revisiting Hao et al.'s dynamic cube attack
	Brief introduction to the dynamic cube attack
	Inaccuracy in the MILP models for dynamic cube attacks
	Empirical analysis of the impact caused by wrong key guesses

	More accurate bias evaluation for high-dimension cubes
	A trivial method for calculating practical bias
	Polynomial Approximation with regard to Bias

	A reliable implementation of dynamic cube attacks
	Algebraic analysis of the impact caused by wrong key guesses
	A new MILP model for dynamic cube attacks

	Applications to Grain-128AEAD and Grain-128
	Dynamic cube attack on Grain-128AEAD
	Zero-sum distinguisher for Full Grain-128
	Comparison of two different bias evaluation methods

	Conclusion
	The MILP models of the 3SDP/u for three basic functions
	The cubes used in Section 6.2

