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Abstract. ChaCha is a well-known stream cipher that has been used in many network
protocols and software. In this paper, we study the security of reduced round ChaCha.
First, by considering the differential-linear hull effect, we improve the correlation
of a four-round differential-linear distinguisher proposed at FSE 2023 by providing
other intermediate linear masks. Then, based on the four-round differential-linear
distinguisher and the PNB method, by using the assignment 100 · · · 00 for consecutive
PNBs, higher backward correlation is obtained and improved key recovery attacks of
7-round and 7.25-round ChaCha are obtained with time complexity 2189.7 and 2223.9,
which improve the previously best-known attacks by 217.1 and 214.44, respectively.
Finally, we consider the equivalence of the security between (R + 0.25)-round and
(R + 0.5)⊕-round ChaCha, and show that (R + 0.25)-round and (R + 0.5)⊕-round
ChaCha provide the same security against chosen(known) plaintext attacks. As a
result, improved differential-linear cryptanalysis of 7.5⊕-round ChaCha can also be
obtained similarly to that of 7.25-round ChaCha, which improves the previously
best-known attack by 219.
Keywords: ChaCha · Differential-linear cryptanalysis · Probabilistic Neutral
Bits(PNBs)

1 Introduction
ARX ciphers are cryptographic primitives composed of modulo addition, bitwise rotation
and bitwise XOR only. Due to the excellent performance in software, many symmetric
primitives are designed based on ARX structure, including ChaCha [Ber08], Salsa [Ber05],
Chaskey [MMH+14], SPECK [BSS+15], SPARX [DPU+16], HIGHT [HSH+06] and so on.

Both Salsa [Ber05] and ChaCha [Ber08] are well-known symmetric stream ciphers,
where ChaCha has been implemented by many protocols and software [Cha], such as SSH,
Noise, WireGard, and so on. ChaCha is in one of the cipher suites of TLS, which has
been supported by Google. Salsa was introduced by Bernstein in 2005 as a candidate for
the eSTREAM project and was selected as a finalist of the competition in April 2007.
Bernstein later in 2008 introduced ChaCha as a Salsa variant, which can provide better
diffusion without slowing down encryption. The total number of rounds is 20. These
ciphers also have reduced round variants, such as the 12-round version. Both these ciphers
have the 256-bit key version and the 128-bit key version, and the 256-bit key version of
ChaCha is studied in this paper.

Differential cryptanalysis [BS90] and linear cryptanalysis [Mat93] are two fundamen-
tal methods for block ciphers. Differential-linear cryptanalysis was proposed based on
differential cryptanalysis and linear cryptanalysis by Langford and Hellman [LH94], and
has been widely used to attack many ciphers such as DES, Serpent and ICEPOLE
[BDK02, Lu12, HTW15, BODKW19].
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For differential-linear attacks on ARX ciphers, at EUROCRYPT 2016, Leurent [Leu16]
used the partitioning technique [BC14] to improve the differential cryptanalysis and linear
cryptanalysis of addition operations, and proposed an improved differential-linear attack
on 7-round Chaskey. At CRYPTO 2020, Beierle et al. [BLT20] improved the partitioning
technique and presented improved differential-linear attacks on 7-round Chaskey. In the
extended version [BBC+22], they further improved the methods of [BLT20], and presented
a differential-linear attack on 7.5-round Chaskey.

At EUROCRYPT 2021, Liu et al. [LSL21, LNS+23] proposed the rotational differential-
linear attacks by replacing the differential part of the differential-linear attacks with
rotational differentials. They applied the technique to FRIET, Xoodoo, Alzette, and
SipHash when the output linear masks are unit vectors, and obtained improved (rotational)
differential-linear distinguishers. At CRYPTO 2022, Niu et al. [NSLL22] improved the
technique to evaluate the correlations of ARX ciphers when the output linear masks are
arbitrary vectors, and presented improved differential-linear distinguishers for Alzette,
SipHash, ChaCha, and SPECK.

The concept of Probabilistic Neutral Bits(PNBs) was first introduced by Aumasson et
al. in 2008 [AFK+08], which was used to present the first attack on 8-round Salsa and
7-round ChaCha. In 2012, Shi et al. [SZFW13] introduced the idea of column chaining
distinguisher(CCD) based on PNBs. In 2015, Maitra [Mai16] provided the idea of chosen IV
based on key guessing and improved the attack on 7-round ChaCha with time complexity
2238.9.

In 2016, Choudhuri et al. [CM16] extended single-bit distinguisher to multi-bit distin-
guisher by using linear relation, and provided the first 6-round distinguisher for Salsa and
five-round distinguisher for ChaCha. In 2017, Dey et al. [DS17] improved the attacks with
better PNBs and then provided a proof of these distinguishers in [DS20].

At CRYPTO 2020, Beierle et al. [BLT20] provided the first 3.5-round single-bit distin-
guisher for ChaCha, and improved the attack on 7-round ChaCha with time complexity
2230.86. This distinguisher was also observed by Coutinho et al. [CN20] independently.
Some other 3.5-round distinguishers were presented by Coutinho et al. [CN21] at EURO-
CRYPT 2021, and a further improvement was provided by using one of the distinguishers.
However, Dey et al. [DDSM22] proved the improvement is invalid because the used
distinguisher for key recovery is incorrect.

At EUROCRYPT 2022, Dey et al. [DGSS22] partition the key bits into memory
key bits and non-memory key bits, and the right pairs can be constructed by guessing
the memory key bits. They improved the key recovery attacks of 7-round ChaCha with
time complexity 2221.95 by the approach. In the extended version [DGSS23], they further
present an improved key recovery attack of 7-round ChaCha with time complexity 2218.92

by choosing a particular assignment 100 · · · 00 for consecutive PNBs.
At FSE 2023, Dey et al. [DGM23] applied a divide-and-conquer approach on 6-round

ChaCha, and obtained an improved attack with time complexity 299.48. For ChaCha with
longer round, Miyashita et al. [MIM22] presented the first differential-linear attack on
7.25-round ChaCha with time complexity 2255.62 and success probability 0.5.

At CRYPTO 2023, Wang et al. [WLHL23] introduced the syncopation technique,
and presented a differential-linear attack on 7-round ChaCha with time complexity 2210.3.
Towards a closer analysis of 8-round ChaCha, they analyzed 7.5⊕-round ChaCha where four
additions are added to 7.25-round ChaCha, and presented a differential-linear attack with
time complexity 2242.9. At FSE 2023, Bellini et al. [BGG+23] found a differential-linear
distinguisher for four-round ChaCha with correlation 2−34.15, and presented differential-
linear attacks for 7-round and 7.25-round ChaCha with time complexity 2206.8 and 2238.34,
respectively. They also presented a differential-linear attack on 7.5⊕-round ChaCha, and
the time complexity is similar to that of 7.25-round ChaCha.

Our Contribution. In this paper, we study the security of reduced round ChaCha.
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Table 1: Summary of cryptanalysis for reduced round ChaCha

Rounds Time Data Source

7

2248

2246.5

2238.9

2237.7

2235.22

2230.86

2221.95

2218.92

2216.9

2210.3

2206.8

2189.7

227

227

296

296

-
248.83

290.20

287.18

268.9

2103.3

2110.81

2102.63

[AFK+08]
[SZFW13]

[Mai16]
[CM16]
[DS17]

[BLT20]
[DGSS22]
[DGSS23]
[WLHL23]
[WLHL23]
[BGG+23]
this paper

7.25

2255.62

2244.85

2238.34

2223.9

248.36

293.24

2122.34

2100.8

[MIM22]
[DGSS23]
[BGG+23]
this paper

7.5⊕
2244.9

2242.9

2223.9

2104.9

2125.8

2100.8

[WLHL23]
[WLHL23]
this paper

Our results are summarized as follows, and a comparison of cryptanalysis for reduced
round ChaCha is shown in Table 1.

First, by considering the differential-linear hull effect, we improve the correlation of a
four-round differential-linear distinguisher proposed at FSE 2023. When more intermediate
linear masks are used, the correlation is improved from 2−34.15 to 2−32.2.

Then, based on the four-round differential-linear distinguisher and the PNB method,
by using the assignment 100 · · · 00 for consecutive PNBs, higher backward correlation is
obtained. For 7-round ChaCha, backward correlation is improved from 2−14.18 to 2−11.855,
and the number of PNBs increases from 160 to 169. For 7.25-round ChaCha, backward
correlation is improved from 2−16.85 to 2−11.25. As a result, improved key recovery attacks
of 7-round and 7.25-round ChaCha are obtained with time complexity 2189.7 and 2223.9,
which improve the previously best-known attacks by 217.1 and 214.44, respectively.

Finally, we consider the equivalence of the security between (R + 0.25)-round and
(R + 0.5)⊕-round ChaCha, and we show that (R + 0.25)-round and (R + 0.5)⊕-round
ChaCha provide the same security against chosen(known) plaintext attacks. As a result,
improved differential-linear attack of 7.5⊕-round ChaCha can also be obtained similarly to
that of 7.25-round ChaCha, which improves the previously best-known attack by 219.

Organization of the Paper. In Section 2, some notations, a brief review of ChaCha
and differential-linear cryptanalysis are presented. In Section 3, the correlation of a four-
round differential-linear distinguisher is improved. In Section 4, improved differential-linear
attacks on 7-round and 7.25-round ChaCha are presented. In Section 5, the equivalence
between (R + 0.25)-round and (R + 0.5)⊕-round ChaCha is presented, and the improved
differential-linear attack on 7.5⊕-round ChaCha is presented. Finally, we conclude in
Section 6.

2 Preliminaries
2.1 Notations
In this subsection, some notations used in this paper are introduced, which are shown in
Table 2.
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Table 2: Notations
Symbol Description

X the state matrix of the input of the cipher ChaCha consisting of 16 words
Xi the i-th word of the state matrix X
Xr the state matrix of the output of the r-round ChaCha
Xr

i the i-th word of the state matrix Xr

Xi[j] the state matrix where the j-th bit of the i-th word is 1 and the other bits are 0
∆r the matrix of the output difference of the r-round ChaCha
Γr the matrix of the output linear mask of the r-round ChaCha
⊞ addition modulo 232

⊟ subtraction modulo 232

x ≪ l left rotation of x by l bits
x ≫ l right rotation of x by l bits

⊕ XOR operation
xi the i-th bit of the n-bit vector x

x · y the inner product of two n-bit vectors x and y, i.e. x · y = ⊕n−1
i=0 xiyi

#S number of elements in set S

Prx∈F n
2

(f(x) = g(x)) #{x∈F n
2 |f(x)=g(x)}

2n

CE(Γ1, Γ2) 2−n
∑

x∈F n
2

(−1)Γ1·x⊕Γ2·E(x)

AutE(∆, Γ) 2−n
∑

x∈F n
2

(−1)Γ·E(x)⊕Γ·E(x⊕∆)

For simplicity, for state matrices X and Y consisting of 16 words, X⊞Y and X⊟Y mean
the word-based addition and subtraction, i.e. (X ⊞Y )i = Xi ⊞Yi and (X ⊟Y )i = Xi ⊟Yi,
where i = {0, 1, · · · , 15}.

2.2 Structure of ChaCha with 256-Bit Key
The stream cipher ChaCha operates on 32-bit words, which takes as input a 256-bit key
k = (k0, k1, · · · , k7), a 128-bit constant c = (c0, c1, c2, c3) and a 128-bit initialization vector
(IV) v = (t0, v0, v1, v2). They are organised in a 4 × 4 matrix of the form X, where

X =


X0 X1 X2 X3
X4 X5 X6 X7
X8 X9 X10 X11
X12 X13 X14 X15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

 (1)

and c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574.
Each ChaCha round function Round consists of four QR function (a′′, b′′, c′′, d′′) =

QR(a, b, c, d) as shown in Figure 1. The QR function is given by the following equations:

a′ = a ⊞ b; d′ = ((d ⊕ a′) ≪ 16);
c′ = c ⊞ d′; b′ = ((b ⊕ c′) ≪ 12);

a′′ = a′ ⊞ b′; d′′ = ((d′ ⊕ a′′) ≪ 8);
c′′ = c′ ⊞ d′′; b′′ = ((b′ ⊕ c′′) ≪ 7);

(2)

For odd round, the QR function is applied to four column vectors (X0, X4, X8, X12),
(X1, X5, X9, X13), (X2, X6, X10, X14), and (X3, X7, X11, X15), respectively. On the other
hand, for even round, the QR function is applied to the diagonal vectors (X0, X5, X10, X15),
(X1, X6, X11, X12), (X2, X7, X8, X13), and (X3, X4, X9, X14), respectively.

The initial state X is also denoted by X0, and Xr denote the output of the r-round
ChaCha, i.e. Xr = Roundr(X0). The inverse of round function is denoted as Round−1,
then X0 = Round−r(Xr). After R iterations of the ChaCha round functions, the final
state XR is added word-wise (modulo 232) to the initial state X0 to form the key stream
Z, i.e. Z = X0 ⊞ XR.

For more details on ChaCha, please refer to [Ber08].
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Figure 1: QR function QR(a, b, c, d) of ChaCha

2.3 Differential-Linear Distinguisher
Differential-linear cryptanalysis [LH94] was introduced by Langford and Hellman. For
given input difference ∆in and output linear mask Γout of cipher E, the correlation c of
the differential-linear distinguisher ∆in

E−→ Γout is defined by

Prx∈F n
2

(Γout · (E(x) ⊕ E(x ⊕ ∆in)) = 0) = 1
2(1 + c). (3)

By preparing ϵc−2 input pairs (x, x ⊕ ∆in), where ϵ is a small constant, the cipher E can
be distinguished from a pseudorandom permutation.

Differential-linear distinguishers can be constructed with Differential-Linear Connectiv-
ity Table (DLCT) [BODKW19]. Assume cipher E can be divided into three sub-ciphers
E1, Em and E2, such that E = E2 ◦ Em ◦ E1. If there exists a differential characteristic
∆in

E1−−→ ∆m, a differential-linear distinguisher ∆m
Em−−→ Γm and a linear approximation

Γm
E2−−→ Γout for E1, Em and E2 with probability p, correlation r and correlation q,

respectively, i.e.

Prx∈F n
2

(E1(x) ⊕ E1(x ⊕ ∆in) = ∆m) = p,

Prx∈F n
2

(Γm · (Em(x) ⊕ Em(x ⊕ ∆m)) = 0) = 1
2(1 + r),

Prx∈F n
2

(Γm · x ⊕ Γout · E2(x) = 0) = 1
2(1 + q),

(4)

then there exists a differential-linear distinguisher ∆in
E−→ Γout for E with correlation prq2,

i.e.
Prx∈F n

2
(Γout · (E(x) ⊕ E(x ⊕ ∆in)) = 0) = 1

2(1 + prq2). (5)

By preparing ϵ(prq2)−2 = ϵp−2r−2q−4 input pairs (x, x ⊕ ∆in), where ϵ is a small constant,
the cipher E can be distinguished from a pseudorandom permutation.

In this paper, we use the symbols AutE1(∆m, Γm) and CE2(Γm, Γout) to represent the
correlations of the differential-linear distinguisher ∆m

Em−−→ Γm and the linear approximation
Γm

E2−−→ Γout. By adopting all intermediate linear masks, Blondeau et al. [BLN17] presented
the following proposition to compute the correlation of the differential-linear distinguisher
based on the differential-linear hull.
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Proposition 1. [BLN17] Assume cipher E can be divided into two sub-ciphers E1 : F n
2 →

F n
2 and E2 : F n

2 → F n
2 , such that E = E2 ◦ E1, where E1 and E2 are independent. For

any ∆m, Γout ∈ F n
2 , we have

AutE2◦E1(∆m, Γout) =
∑

Γm∈F n
2

AutE1(∆m, Γm)CE2(Γm, Γout)2, (6)

where
AutE1(∆m, Γm) = 2−n

∑
x∈F n

2

(−1)Γm·E1(x)⊕Γm·E1(x⊕∆m),

CE2(Γm, Γout) = 2−n
∑

x∈F n
2

(−1)Γm·x⊕Γout·E2(x).
(7)

For simplicity, in this paper, AutE1(∆m, Γm) and CE2(Γm, Γout) are also denoted by
Aut(∆m, Γm) and C(Γm, Γout) when E1 and E2 are known.

2.4 PNB-Based Key Recovery
At FSE 2008, Aumasson et al. [AFK+08] presented the first attack on ChaCha by the
probabilistic neutral bits (PNBs). The PNB-based key recovery of R-round ChaCha mainly
consists of the following steps.
Pre-processing Stage: Selecting PNBs and Evaluating the Backward Correla-
tion.

Step 1: Find an r-round differential-linear distinguisher ∆0 → Γr with
correlation ϵd, i.e.

Pr
X

(
Γr · (Xr ⊕ X ′r) = 0|X ⊕ X ′ = ∆0) = 1

2(1 + ϵd), (8)

where r < R, (X, X ′) is the input pair of ChaCha, and (Xr, X ′r) is the output pair of
r-round ChaCha.

Step 2: Select the PNBs by a threshold γ. Construct multiple input pairs
(X, X ′), where X ′ = X ⊕ ∆0, and generate corresponding output key streams (Z, Z ′),
i.e. Z = X ⊞ XR and Z ′ = X ′ ⊞ X ′R. Construct pairs (X, X ′) from (X, X ′) such that
the i-th key bit is complemented while the other bits take the same values. Compute
Y = Round−(R−r)(Z ⊟ X), Y ′ = Round−(R−r)(Z ′ ⊟ X ′). Then Γr · (Y ⊕ Y ′) is a
approximation of Γr · (Xr ⊕ X ′r) with correlation γi, i.e.

Pr
X

(Γr · (Xr ⊕ X ′r) = Γr · (Y ⊕ Y ′)) = 1
2(1 + γi). (9)

When γi > γ, the i-th key bit is selected as a PNB, otherwise the i-th key bit is a non-PNB.
Step 3: Evaluate the backward correlation. Construct multiple input pairs

(X, X ′), where X ′ = X ⊕ ∆0, and generate corresponding output key streams (Z, Z ′),
i.e. Z = X ⊞ XR and Z ′ = X ′ ⊞ X ′R. Construct pairs (X̂, X̂ ′) from (X, X ′) such that
all PNBs are assigned fixed value (or random value) while the other bits take the same
values as (X, X ′). Compute Ŷ = Round−(R−r)(Z ⊟ X̂), Ŷ ′ = Round−(R−r)(Z ′ ⊟ X̂ ′). The
backward correlation ϵa is computed by

Pr
X

(
Γr · (Xr ⊕ X ′r) = Γr · (Ŷ ⊕ Ŷ ′)

)
= 1

2(1 + ϵa). (10)

Then by equations (8) and (10), and the Piling-up lemma, we have

Pr
X

(
Γr · (Ŷ ⊕ Ŷ ′) = 0|X ⊕ X ′ = ∆0

)
= 1

2(1 + ϵaϵd). (11)
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Online Stage: Recovering the Correct Key.
In the actual attack, all PNBs are assigned the same fixed value as in Step 3 (or random

values). We guess partial key bits, i.e. the non-PNBs in X, and compute the probability
PrX

(
Γr · (Ŷ ⊕ Ŷ ′) = 0|X ⊕ X ′ = ∆0

)
. When the key bits are correctly guessed, the

equation (11) holds. Otherwise, a random event will be observed, i.e.

Pr
X

(
Γr · (Ŷ ⊕ Ŷ ′) = 0|X ⊕ X ′ = ∆0

)
= 1

2 . (12)

We set a predetermined threshold, and count the number that Γr · (Ŷ ⊕ Ŷ ′) = 0 occurs
when multiple input pairs are used. If the number is larger than the threshold, the guess
for the non-PNBs is selected as a candidate key. The unique correct key can be further
recovered from the remaining candidate keys by exhaustive search.
New Assignment for PNBs.

In Step 3 of the pre-processing stage or the online stage, the assignments for PNBs are
usually all zeros or random values. In [DGSS23], Dey et al. proposed a new assignment
for the PNBs. For a set of consecutive PNBs {a, a − 1, a − 2, · · · }, the assignment for
the a-th PNB is 1 and the assignments for the remaining PNBs are 0. Dey et al. find
this assignment 100 · · · 00 can provide a better backward correlation than the all zero
assignment and the random assignment.

2.5 Complexity of PNB-Based Key Recovery
Assume cipher E can be divided into three sub-ciphers E1, Em and E2, such that E =
E2 ◦Em ◦E1. There exists a differential characteristic and a differential-linear distinguisher
for E1 and Em with probability p and forward correlation ϵd, respectively. For E2, backward
correlation ϵa is obtained with n PNBs.

The total correlation for E2 ◦ Em is ϵdϵa. Using the Neyman-Pearson lemma, for
advantage α, required number of input pairs N for E2 ◦ Em is

N =
(√

α log(4) + 3
√

1 − (ϵdϵa)2

ϵdϵa

)2

. (13)

By [AFK+08], the time complexity for E2 ◦ Em is

2256−nN + 2256−α. (14)

By using the technique in [BLT20], the attack needs to be repeated for p−1 times. Thus
the total data complexity is p−1N , and the total time complexity is

p−12256−nN + p−12256−α. (15)

3 More Accurate Correlation of the Differential-Linear Dis-
tinguisher for Four-Round ChaCha

At FSE 2023, Bellini et al. [BGG+23] found a two-round differential-linear distinguisher
∆1 −→ Γ3

0 with the correlation 2−30.15 from the second round to the third round and a
two-round linear approximation Γ3

0 −→ Γ5 with the correlation 2−2 from the fourth round
to the fifth round, and obtained a four-round differential-linear distinguisher ∆1 −→ Γ5

with the correlation 2−30.15 · (2−2)2 = 2−34.15 by splicing the two-round differential-linear
distinguisher and the two-round linear approximation, where

∆1 = X3[25] ⊕ X3[5] ⊕ X7[28] ⊕ X7[12] ⊕ X11[25] ⊕ X11[21] ⊕ X15[21] ⊕ X15[13],
Γ3

0 = X2[4, 3, 0] ⊕ X7[20, 4, 0] ⊕ X8[20, 19] ⊕ X13[4],
Γ5 = X2[0] ⊕ X6[7] ⊕ X6[19] ⊕ X10[12] ⊕ X14[0].

(16)
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In this paper, we find that the intermediate linear mask Γ3
0 can be replaced by other

linear masks. From Proposition 1 we know that the correlation of ∆1 −→ Γ5 can be
improved with the differential-linear hull as follows.

Aut(∆1, Γ5) =
∑
Γ3

Aut(∆1, Γ3)C(Γ3, Γ5)2. (17)

We use the automatic tool SAT to search for the linear approximation Γ3 −→ Γ5 from
the fourth round to the fifth round when the output linear mask is fixed as Γ5 in the
equation (16). Using a similar method as in [LWR16, SWW21], the propagation of a
linear approximation can be transformed into the SAT instance. Then the SAT solver
CryptoMiniSat [SNC09] is used to solve the SAT instance. If the SAT instance is satisfiable,
then the SAT solver will return a solution related to the linear approximation Γ3 −→ Γ5.
The detailed search process for the linear approximation is presented in Appendix A.
Multiple linear masks Γ3

i are obtained when the correlations C(Γ3
i , Γ5) in the SAT instance

are restricted as ±2−2 and ±2−3. The detailed linear masks Γ3
i are shown in Table 3 and

Table 4.

Table 3: Linear masks Γ3
i when C(Γ3

i , Γ5) = ±2−2

Linear mask
Γ3

0 X2[4, 3, 0] ⊕ X7[20, 4, 0] ⊕ X8[20, 19] ⊕ X13[4]
Γ3

1 X2[4, 0] ⊕ X7[20, 4, 3, 0] ⊕ X8[20, 19] ⊕ X13[4]
Γ3

2 X2[4, 0] ⊕ X7[20, 4, 0] ⊕ X8[20] ⊕ X13[4, 3]
Γ3

3 X2[4, 3, 0] ⊕ X7[20, 4, 3, 0] ⊕ X8[20] ⊕ X13[4, 3]

Table 4: Linear masks Γ3
i when C(Γ3

i , Γ5) = ±2−3

Linear mask
Γ3

4 X2[4, 2, 0] ⊕ X7[20, 4, 0] ⊕ X8[20, 19] ⊕ X13[4]
Γ3

5 X2[4, 3, 2, 0] ⊕ X7[20, 4, 3, 0] ⊕ X8[20, 19] ⊕ X13[4]
Γ3

6 X2[4, 0] ⊕ X7[20, 4, 2, 0] ⊕ X8[20, 19] ⊕ X13[4]
Γ3

7 X2[4, 3, 0] ⊕ X7[20, 4, 3, 2, 0] ⊕ X8[20, 19] ⊕ X13[4]
Γ3

8 X2[4, 3, 2, 0] ⊕ X7[20, 4, 0] ⊕ X8[20] ⊕ X13[4, 3]
Γ3

9 X2[4, 3, 0] ⊕ X7[20, 4, 2, 0] ⊕ X8[20] ⊕ X13[4, 3]
Γ3

10 X2[4, 0] ⊕ X7[20, 4, 3, 2, 0] ⊕ X8[20] ⊕ X13[4, 3]
Γ3

11 X2[4, 2, 0] ⊕ X7[20, 4, 3, 0] ⊕ X8[20] ⊕ X13[4, 3]
Γ3

12 X2[4, 3, 0] ⊕ X7[20, 4, 0] ⊕ X8[20, 18] ⊕ X13[4]
Γ3

13 X2[4, 0] ⊕ X7[20, 4, 3, 0] ⊕ X8[20, 18] ⊕ X13[4]
Γ3

14 X2[4, 0] ⊕ X7[20, 4, 0] ⊕ X8[20, 19, 18] ⊕ X13[4, 3]
Γ3

15 X2[4, 3, 0] ⊕ X7[20, 4, 3, 0] ⊕ X8[20, 19, 18] ⊕ X13[4, 3]

To use the differential-linear hull as in equation (17), we need to compute the correlation
Aut(∆1, Γ3

i ) by experiments. However, it’s difficult to directly evaluate the correlation
Aut(∆1, Γ3

i ) by experiments because the correlation is too small. To overcome this, Bellini
et al. [BGG+23] partitioned the masks Γ3

0 into several partitions, and used the Piling-up
Lemma to evaluate the correlation Aut(∆1, Γ3). The same method is also used to evaluate
the correlation Aut(∆1, Γ3

i ) in this paper.
Γ3

i is partitioned into two partitions Γ3
i,0 and Γ3

i,1, such that Γ3
i = Γ3

i,0 ⊕ Γ3
i,1, where Γ3

i,0
represents the linear mask for the seventh word X3

7 , and Γ3
i,1 represents the linear mask for

the other word. For example, Γ3
0,0 = X7[20, 4, 0], and Γ3

0,1 = X2[4, 3, 0]⊕X8[20, 19]⊕X13[4].
The correlations Aut(∆1, Γ3

i,0) and Aut(∆1, Γ3
i,1) are evaluated by experiments with 248

samples, and the correlation Aut(∆1, Γ3
i ) is computed as Aut(∆1, Γ3

i ) = Aut(∆1, Γ3
i,0) ·

Aut(∆1, Γ3
i,1) by the Piling-up Lemma. The detailed correlations are shown in Table 5.
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Table 5: Correlation with different intermediate linear masks

i Aut(∆1, Γ3
i,0) Aut(∆1, Γ3

i,1) Aut(∆1, Γ3
i )

1 −2−17.7 −2−12.8 2−30.5

2 −2−17.7 −2−12.8 2−30.5

3 −2−17.7 −2−12.8 2−30.5

4 −2−17.7 −2−14.0 2−31.7

5 −2−17.7 −2−14.0 2−31.7

6 −2−21.3 −2−12.8 2−34.1

7 −2−21.1 −2−12.8 2−33.9

8 −2−17.7 −2−14.0 2−31.7

9 −2−21.3 −2−12.8 2−34.1

10 −2−21.1 −2−12.8 2−33.9

11 −2−17.7 −2−14.0 2−31.7

12 −2−17.7 −2−14.8 2−32.5

13 −2−17.7 −2−14.8 2−32.5

14 −2−17.7 −2−14.8 2−32.5

15 −2−17.7 −2−14.8 2−32.5

Therefore, the correlation Aut(∆1, Γ5) can be evaluated as

Aut(∆1, Γ5) ≈
∑

i∈{0,1,2,...,15}

Aut(∆1, Γ3
i )C(Γ3

i , Γ5)2 ≈ 2−32.2
(18)

by the differential-linear hull.
To verify the effect of the differential-linear hull, we estimate the correlations Aut(∆1, Γ5)

with 232 samples when the differences ∆1 are X3[25] ⊕ X3[5], X7[28] ⊕ X7[12], X11[25] ⊕
X11[21] and X15[21] ⊕ X15[13], respectively. The detailed correlations are shown in Table
6, where DL means that the correlation Aut(∆1, Γ5) is evaluated by the single differential-
linear distinguisher as

Aut(∆1, Γ5) = Aut(∆1, Γ3
0)C(Γ3

0, Γ5)2,

and DLH1 and DLH2 mean that the correlation Aut(∆1, Γ5) is evaluated by the differential-
linear hull as follows,

DLH1 : Aut(∆1, Γ5) =
∑

0≤i≤3
Aut(∆1, Γ3

i )C(Γ3
i , Γ5)2,

DLH2 : Aut(∆1, Γ5) =
∑

0≤i≤15
Aut(∆1, Γ3

i )C(Γ3
i , Γ5)2.

(19)

From Table 6 we know that the differential-linear hull provides closer correlations to the
experimental correlations than a single differential-linear distinguisher. Particularly, the
more intermediate linear masks Γ3

i are used, the closer the evaluated correlations are to the
experimental correlations. Also, there exists a gap between the experimental method and
the differential-linear hull method. We conjecture this happens because some intermediate
linear masks are not used in our differential-linear hull.

4 Differential-Linear Attacks on Reduced Round ChaCha
In this section, we present the differential-linear attacks on reduced round ChaCha.
The source codes for the evaluation of backward correlations are publicly available at
https://github.com/newstudent2018/Differential-Linear-Cryptanalysis-of-R
educed-Round-ChaCha.

https://github.com/newstudent2018/Differential-Linear-Cryptanalysis-of-Reduced-Round-ChaCha
https://github.com/newstudent2018/Differential-Linear-Cryptanalysis-of-Reduced-Round-ChaCha


Zhichao Xu, Hong Xu, Lin Tan and Wenfeng Qi 175

Table 6: Comparison of the correlation Aut(∆1, Γ5)

∆1 Experimental
correlation DL DLH1 DLH2

X3[25] ⊕ X3[5] 2−11.0 2−14.0 2−12.0 2−11.6

X7[28] ⊕ X7[12] 2−13.2 2−17.0 2−15.1 2−14.4

X11[25] ⊕ X11[21] 2−7.9 2−11.5 2−9.5 2−9.2

X15[21] ⊕ X15[13] 2−6.3 2−10.3 2−8.3 2−7.6

The reduced round ChaCha E is divided into three parts E = E2 ◦ Em ◦ E1, where E1
covers one round, Em covers four rounds, and E2 covers the remaining rounds. At FSE
2023, Bellini et al. [BGG+23] found a one-round differential distinguisher ∆0 E1−−→ ∆1 with
probability 2−7 for E1 and a four-round differential-linear distinguisher ∆1 Em−−→ Γ5 with
correlation 2−34.15 for Em, where

∆0 = X15[29] ⊕ X15[9],
∆1 = X3[25] ⊕ X3[5] ⊕ X7[28] ⊕ X7[12] ⊕ X11[25] ⊕ X11[21] ⊕ X15[21] ⊕ X15[13],
Γ5 = X2[0] ⊕ X6[7] ⊕ X6[19] ⊕ X10[12] ⊕ X14[0].

(20)

By splicing the one-round differential distinguisher and the four-round differential-linear
distinguisher, they obtained a five-round differential-linear distinguisher ∆0 Em◦E1−−−−−→ Γ5 for
Em ◦ E1.

Based on the distinguisher, Bellini et al. evaluated the backward correlation of E2
when all PNBs are assigned with 0, and presented differential-linear attacks for reduced
round ChaCha with the PNB approach.

In this section, we use the five-round differential-linear distinguisher ∆0 Em◦E1−−−−−→ Γ5 to
attack reduced round ChaCha with the PNB approach. By using the differential-linear
hull as in Section 3, the correlation of the four-round differential-linear distinguisher
∆1 Em−−→ Γ5 is improved from 2−34.15 to 2−32.2. The PNB approach is also used when
100 · · · 00 is assigned to consecutive PNBs as in [DGSS23], and 0 is assigned to PNBs that
are not consecutive, the backward correlation of E2 is improved. The time complexity
is significantly reduced because of the differential-linear hull and the new assignment for
PNBs.

To search for a better PNB set, the search process is divided into two steps, and two
thresholds γ0 and γ1 are used, where γ0 > γ1 > 0. γ0 is used to directly select PNBs, and
γ1 is used to select candidate PNBs that need further evaluation. In the first step, the
key bit is selected in the PNB set PNB when it provides higher backward correlation
than γ0, and the key bit is selected in the candidate PNB set PNBpre when the backward
correlation is lower than γ0 and higher than γ1. In the second step, a greedy algorithm is
used by selecting the PNBs one by one. In the i-th iteration of the second step, a temporary
PNB set PNBtemp is constructed by adding a key bit from PNBpre into the PNB set
PNB, and the backward correlation is tested with the temporary PNB set PNBtemp. The
key bit with the maximal backward correlation will be selected as the i-th PNB of the
second step. The iteration is repeated until all PNBs are selected. The detailed search
process is shown in Algorithm 1.

4.1 Discussion of Algorithm 1
In this subsection, we will analyze the efficiency of Algorithm 1 by presenting an instance.
From equation (10) of Subsection 2.4 we know that the backward correlation ϵa is evaluated
by

Pr
X

(
Γr · (Xr ⊕ X ′r) = Γr · (Ŷ ⊕ Ŷ ′)

)
= 1

2(1 + ϵa). (21)
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Algorithm 1 The algorithm for searching a PNB set
Input: Two threshold correlations γ0 and γ1, a size n of a PNB set;
Output: The PNB set and its backward correlation;

1: Initialize the PNB set PNB = ∅;
2: Initialize the candidate set PNBpre = ∅;
3: for i ∈ {0, 1, · · · , 255} do
4: Test the backward correlation ϵi when the i-th key bit is selected as a PNB;
5: if γ0 ≤ ϵi then
6: PNB = PNB ∪ {i};
7: else if γ1 ≤ ϵi < γ0 then
8: PNBpre = PNBpre ∪ {i};
9: end if

10: end for
11: while #PNB < n do
12: for i ∈ PNBpre do
13: PNBtemp = PNB ∪ {i};
14: Test the backward correlation ϵi with the PNB set PNBtemp;
15: end for
16: Choose the index i with the maximal backward correlation ϵi, PNB = PNB ∪ {i};
17: end while
18: return the PNB set PNB and the corresponding backward correlation;

Similar as in [WLHL23], under the assumption of independence, the backward correlation
ϵa can be computed by

ϵa = (ϵ′
a)2, (22)

where ϵ′
a is evaluated by

Pr
X

(
Γr · Xr = Γr · Ŷ

)
= 1

2(1 + ϵ′
a). (23)

To show the efficiency of Algorithm 1, we construct a toy cipher as shown in Figure 2
by splicing the 1.5-round QR function, 0.5-round QR function and the last key addition
operations. For the toy cipher, there exists a 1.5-round differential-linear distinguisher
∆0 → Γ1.5, where ∆0 = X2[31] and Γ1.5 = X0[13] ⊕ X0[18] ⊕ X2[23]. We use the equation
(24) to evaluate the backward correlation ϵ′

a of the last 0.5-round toy cipher when the
PNBs are selected from the keys k1 and k2.

Pr
X

(
Γ1.5 · X1.5 = Γ1.5 · Ŷ

)
= 1

2(1 + ϵ′
a). (24)

Now we consider three candidate PNBs k1,17, k2,20 and k2,21, i.e. the 17th bit of k1, and
the 20th and 21st bits of k2. We select one bit or two bits from the set {k1,17, k2,20, k2,21}
as PNBs, and evaluate the backward correlation ϵ′

a experimentally. The corresponding
backward correlations are shown in Table 7. If we use a fixed threshold 0.5 to select two
PNBs, the two bits k1,17 and k2,20 with higher backward correlations will be selected, and
the backward correlation for the PNB set {k1,17, k2,20} is experimentally evaluated as 0.66
when the PNBs are assigned random value. If we use Algorithm 1 to select two PNBs with
thresholds γ0 = 0.6 and γ1 = 0.2, the key bit k2,20 with the highest backward correlation
will be selected first. Then we evaluate the backward correlations for the temporary PNB
sets {k1,17, k2,20} and {k2,20, k2,21} experimentally when the PNBs are assigned random
value, and obtain backward correlations 0.66 and 0.688 respectively. Thus from Algorithm
1 we obtain a better PNB set {k2,20, k2,21} with a higher backward correlation 0.688.
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<<<7 

<<<8 

1.5-round QR function

Figure 2: A toy cipher

This improvement is related to the mutual influence of PNBs. When we compute Ŷ
as in Subsection 2.4, random differences are introduced to PNBs, and propagate to the
middle data pair (X1.5, Ŷ ). For the middle linear mask Γ1.5, the backward difference
propagations of PNBs k1,17 and k2,20 have little mutual influence on each other. However,
the backward difference propagations of k2,20 and k2,21 have much mutual influence on
each other. Thus, when k2,20 has been selected as a PNB, selecting k2,21 as a PNB will be
better than selecting k1,17 although k2,21 performs worse as a single PNB than k1,17.

Similarly, when more PNBs are used for ChaCha, many PNBs may have mutual
influences. Some candidate bits may have better performance when certain PNBs have
been selected. When this happens, Algorithm 1 may help to find a better PNB set.

Table 7: Comparison of the backward correlations for the toy cipher

single PNB fixed threshold Algorithm 1
PNB location k1,17 k2,20 k2,21 k1,17, k2,20 k2,20, k2,21

backward correlation 0.51 0.75 0.50 0.66 0.688

4.2 Differential-Linear Attack on 7-Round ChaCha
For 7-round ChaCha, E2 covers two rounds. We use Algorithm 1 to search PNBs with
two thresholds γ0 = 0.5 and γ1 = 0.2. In the first step, 147 PNBs are selected. In the
second step, the other 22 PNBs are selected. The 169 PNBs are listed below. To improve
the backward correlation, we assign 100 · · · 00 to consecutive PNBs and assign 0 to PNBs
that are not consecutive. When 236 samples are used, we can get a backward correlation
0.00027 = 2−11.855.

0, 1, 2, 3, 4, 5, 6, 7, 8, 19, 20, 31, 32, 33, 34, 35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 77,
78, 79, 80, 83, 84, 85, 86, 89, 90, 95, 99, 100, 103, 104, 105, 106, 107, 108, 109, 123, 124,
125, 126, 127, 128, 129, 140, 141, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 198, 199, 200, 204, 205, 206, 207,



178 Differential-Linear Cryptanalysis of Reduced Round ChaCha

210, 211, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 244, 245, 246, 247, 255, 248, 9,
130, 142, 21, 91, 212, 110, 231, 22, 143, 232, 111, 228, 10, 201, 249, 115, 147, 14, 81, 26.

To compare the effect of different methods, we also evaluate the backward correlation
with other PNB set and assignment method. The detailed backward correlations are listed
in Table 8. In Table 8, Experiment 1 is the method used in [BGG+23] with 160 PNBs.
When the assignment for consecutive PNBs is 10 · · · 00 as shown in Experiment 2, the
backward correlation is improved from 2−14.18 to 2−9.29. In this paper, we use the method
in Experiment 3. Algorithm 1 is used to search PNBs with the two thresholds γ0 = 0.5
and γ1 = 0.2 in Experiment 3, and 169 PNBs are obtained with the backward correlation
2−11.855. Because the number of PNBs is improved in Experiment 3, the time complexity
is further reduced.

Table 8: Comparison of the PNBs and the backward correlation for 7-round ChaCha

assignment threshold PNBs backward correlation
Experiment 1 00 · · · 00 γ = 0.34 160 2−14.18

Experiment 2 10 · · · 00 γ = 0.34 160 2−9.29

Experiment 3 10 · · · 00 γ0 = 0.5, γ1 = 0.2 169 2−11.855

Complexity analysis. The correlation of four-round differential-linear distinguisher
for Em is ϵd = 2−32.2 and the backward correlation is ϵa = 2−11.855 for 169 PNBs. When
α = 80, from formula (13) in Subsection 2.5 we know that required number of input pairs
is

N =
(√

α log(4) + 3
√

1 − ϵ2
aϵ2

d

ϵaϵd

)2

= 295.63. (25)

Since the differential probability for E1 is 2−7, the attacks need to be repeated for 27 times.
Then the total data complexity is 295.63 × 27 = 2102.63. From formula (15) in Subsection
2.5 we know that the total time complexity is 27 · 2256−169 · N + 27 · 2256−α = 2189.7.

4.3 Differential-Linear Attack on 7.25-Round ChaCha
The 7.25-round ChaCha is an extension of 7-round ChaCha by adding the 7.25-th functions
as shown in Figure 3. For 7.25-round ChaCha, E2 covers 2.25 rounds. We use Algorithm 1
to search PNBs with two thresholds γ0 = 0.5 and γ1 = 0.2. In the first step, 111 PNBs are
selected. In the second step, the other 22 PNBs are selected. The 133 PNBs are listed
below. When 100 · · · 00 is assigned to consecutive PNBs, and 0 is assigned to PNBs that
are not consecutive, we can get backward correlations 2−11.25 when 236 samples are used.

20, 31, 44, 45, 46, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 77, 80,
83, 84, 85, 86, 89, 90, 95, 99, 108, 109, 123, 124, 125, 126, 127, 128, 129, 140, 141, 152,
153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 198, 199, 200, 204, 205, 206, 207, 210, 211, 218, 219, 220, 221, 222, 223,
224, 225, 226, 227, 244, 245, 246, 247, 255, 142, 47, 21, 248, 110, 7, 8, 130, 91, 212, 100,
231, 111, 232, 143, 22, 48, 249, 51, 35, 81, 0.

To compare the effect of different methods, we also evaluate the backward correlation
with other PNB set and assignment method for 7.25-round ChaCha. The detailed backward
correlations are listed in Table 9. In Table 9, Experiment 4 is the method used in [BGG+23]
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with 133 PNBs. When the assignment for consecutive PNBs is 10 · · · 00 as shown in
Experiment 5, the backward correlation is improved from 2−16.85 to 2−11.8. In this paper,
we use the method in Experiment 6. Algorithm 1 is used to search PNBs with the two
thresholds γ0 = 0.5 and γ1 = 0.2 in Experiment 6, and 133 PNBs are obtained with
backward correlation 2−11.25.

Table 9: Comparison of the PNBs and the backward correlation for 7.25-round ChaCha

assignment threshold PNBs backward correlation
Experiment 4 00 · · · 00 γ = 0.28 133 2−16.85

Experiment 5 10 · · · 00 γ = 0.28 133 2−11.8

Experiment 6 10 · · · 00 γ0 = 0.5, γ1 = 0.2 133 2−11.25

Complexity analysis. The correlation of four-round differential-linear distinguisher
for Em is ϵd = 2−32.2 and the backward correlation is ϵa = 2−11.25 for 133 PNBs. When
α = 45, from formula (13) in Subsection 2.5 we know that required number of input pairs
is

N =
(√

α log(4) + 3
√

1 − ϵ2
aϵ2

d

ϵaϵd

)2

= 293.8. (26)

Since the differential probability for E1 is 2−7, the attacks need to be repeated for 27 times.
Then the total data complexity is 293.8 × 27 = 2100.8. From formula (15) in Subsection 2.5
we know that the total time complexity is 27 · 2256−133 · N + 27 · 2256−α = 2223.9.

5 Equivalence of Reduced Round ChaCha
In this paper, we will present the equivalence between (R + 0.25)-round and (R + 0.5)⊕-
round ChaCha, where R ∈ {1, 2, 3, · · · }. For simplicity, we directly consider the case of
R = 7, and prove the equivalence between 7.25-round and 7.5⊕-round ChaCha. For the
other case with different R, the equivalence between (R+0.25)-round and (R+0.5)⊕-round
ChaCha can be proved similarly.

The 7.25-round ChaCha presented in [MIM22, BGG+23, DGSS23] and the 7.5⊕-round
ChaCha presented in [BGG+23, WLHL23] are both reduced round versions of 8-round
ChaCha, which can also be seen as the extensions of 7-round ChaCha by adding the 7.25-th
and 7.5⊕-th round functions as shown in Figure 3 and Figure 4. Denote by X7.25 the
output of 7.25-round ChaCha, and Z7.25 the key stream produced by 7.25-round ChaCha,
that is, Z7.25 = X7.25 ⊞ X. Similarly, denote by X7.5⊕ the output of 7.5⊕-round ChaCha,
and Z7.5⊕ the key stream produced by 7.5⊕-round ChaCha, that is, Z7.5⊕ = X7.5⊕

⊞ X.

<<<16 <<<16 <<<16 <<<16 

Figure 3: The 7.25-th round function of ChaCha

Compared to 7.25-round ChaCha, 7.5⊕-round ChaCha adopts four more additions. It
seems that 7.5⊕-round ChaCha provides more security than 7.25-round ChaCha. However,
in this section, we will show that 7.5⊕-round ChaCha and 7.25-round ChaCha provide
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<<<16 <<<16 <<<16 <<<16 

Figure 4: The 7.5⊕-th round function of ChaCha

the same security against chosen(known) plaintext attacks. In other words, if we can
find a chosen(known) plaintext attack on 7.25-round ChaCha, then we can also attack
7.5⊕-round ChaCha, and vice versa.

Because of the commutativity of modular additions, i.e. a ⊞ b ⊞ c = a ⊞ c ⊞ b, we
exchange the order of the last two layers of modular addition in Figure 4, and present the
equivalent 7.5⊕-th round functions of ChaCha with the structure as shown in Figure 5.

<<<16 <<<16 <<<16 <<<16 

Figure 5: Equivalent 7.5⊕-th round function of ChaCha with commutative modular
additions

Denote by XIV the IV value (X12, X13, X14, X15). From Figure 5 we know that the key
streams Z7.25 and Z7.5⊕ can be converted to each other when the four words (X7.25

12 , X7.25
13 ,

X7.25
14 , X7.25

15 ) are obtained from (XIV, Z7.25) or (XIV,Z7.5⊕). Thus when the IV value XIV
is known, the key streams Z7.25 and Z7.5⊕ can be converted to each other. For simplicity,
we use a function G to represent the conversion from (XIV, Z7.5⊕) to (XIV, Z7.25), i.e.
(XIV, Z7.25) = G(XIV, Z7.5⊕).

Denote by XIV, Z7.25 and Z7.5⊕ the IV set and the key stream sets of 7.25-round and
7.5⊕-round ChaCha, respectively. Assume 7.25-round ChaCha can be attacked by certain
chosen(known) plaintext method F , and the key k can be recovered from (XIV, Z7.25) as
follows.

(XIV,Z7.25) F−→ k. (27)

Then 7.5⊕-round ChaCha can also be attacked based on F , and the key k can be recovered
from (XIV, Z7.5⊕) as follows.

(XIV,Z7.5⊕
) G−→ (XIV,Z7.25) F−→ k, (28)
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Thus, when 7.25-round ChaCha can be attacked by certain chosen(known) plaintext
method, 7.5⊕-round ChaCha can also be attacked. On the other hand, when 7.5⊕-round
ChaCha can be attacked by certain chosen(known) plaintext method, 7.25-round ChaCha
can also be attacked. Thus, 7.25-round ChaCha and 7.5⊕-round ChaCha provide the same
security against chosen(known) plaintext attacks.

This property can be extended to general (R + 0.25)-round and (R + 0.5)⊕-round
ChaCha, where R ∈ {1, 2, 3, · · · }, i.e. (R + 0.25)-round ChaCha and (R + 0.5)⊕-round
ChaCha provide the same security against chosen(known) plaintext attacks.

The PNB-based differential-linear attack is one of the chosen plaintext attacks. Thus,
(R + 0.25)-round ChaCha and (R + 0.5)⊕-round ChaCha provide the same security against
the PNB-based differential-linear attack. On the other hand, we can also directly prove the
equivalent security against the PNB-based differential-linear attack between 7.25-round
ChaCha and 7.5⊕-round ChaCha, and the detailed proof is presented in Appendix B. By
the equivalent security, improved differential-linear attack of 7.5⊕-round ChaCha can also
be obtained based on the differential-linear attack of 7.25-round ChaCha as in Subsection
4.3. The time complexity is 2223.9, which improves the previously best-known attack by
219.

6 Conclusion
In this paper, we study the security of reduced round ChaCha. First, based on the
differential-linear hull, we improve the correlation of a four-round differential-linear dis-
tinguisher proposed at FSE 2023 by finding the other intermediate linear masks. Then,
we present the differential-linear cryptanalysis of 7-round and 7.25-round ChaCha based
on the PNB approach. By using the assignment 100 · · · 00 for consecutive PNBs, the
backward correlation is significantly increased. Because of the improved correlation of
the four-round differential-linear distinguisher and the improved backward correlation,
improved key recovery attacks of 7-round and 7.25-round ChaCha are obtained. Finally, we
show that (R+0.25)-round and (R+0.5)⊕-round ChaCha provide the same security against
chosen(known) plaintext attacks. As a result, improved key recovery attack of 7.5⊕-round
ChaCha is obtained based on the key recovery attack of 7.25-round ChaCha. How to
present better differential-linear distinguishers and how to present longer differential-linear
cryptanalysis for reduced round ChaCha will be our future work.
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A SAT Model of Linear Approximations for ChaCha
There are four basic operations in ChaCha, including XOR, branching, rotation, and
modular addition. For rotation operation x ≪ r, the output linear mask β can be directly
obtained from input linear mask α by β = α ≪ r. Suppose a = (an−1, an−2, ..., a0), b =
(bn−1, bn−2, ..., b0) and c = (cn−1, cn−2, ..., c0) are n-bit variables, and u = (un−1, un−2, ..., u0),
v = (vn−1, vn−2, ..., v0), w = (wn−1, wn−2, ..., w0) are the corresponding n-bit linear masks
of a, b and c. For the remaining three operations as shown in Figure 6, the propagation of
linear masks can be transformed into a system of logical equations in CNF as follows.

a

b

c

a a

b b

c c

(a) XOR (b) Branching (c) Modular addition

u u u

v v v

w w w

Figure 6: Basic operations of ChaCha

A.1 SAT Model for XOR Operation
For the n-bit XOR operation a ⊕ b = c as shown in Figure 6 (a), the correlation for the
linear approximation (u, v) → w of the XOR operation is nonzero if and only if u = v = w,
so a valid linear approximation (u, v) → w of the XOR operation can be described by the
following clauses.

ui ∨ vi =1
ui ∨ vi =1
ui ∨ wi =1
ui ∨ wi =1

 0 ≤ i ≤ n − 1 (29)

A.2 SAT Model for Branching Operation
For the n-bit branching operation a = b = c as shown in Figure 6 (b), the correlation for
the linear approximation u → (v, w) of the branching operation is nonzero if and only
if u = v ⊕ w for i ∈ {0, 1, ..., n − 1}, so a valid linear approximation u → (v, w) of the
branching operation can be described by the following clauses.

ui ∨ vi ∨ wi =1
ui ∨ vi ∨ wi =1
ui ∨ vi ∨ wi =1
ui ∨ vi ∨ wi =1

 0 ≤ i ≤ n − 1 (30)

A.3 SAT Model for Modular Addition
For the n-bit modular addition operation a⊞ b = c as shown in Figure 6 (c), Schulte-Geers
[Sch13] proposed a method to calculate the correlations of linear approximations, and Liu
et al. [LWR16] presented the SAT model for the linear approximation of modular addition.

Proposition 2. [Sch13] Let z = (zn−1, zn−2, ..., z0) be an n-bit vector satisfying z ⊕ (z ≫
1) ⊕ ((u ⊕ v ⊕ w) ≫ 1) = 0, zn−1 = 0, where u and v are the input linear masks, w is the
output linear mask in a linear approximation for addition modulo 2n. Then the correlation
for the linear approximation (u, v) → w of the modular addition can be given by

C((u, v), w) = 1w⊕v⪯z1w⊕u⪯z(−1)(w⊕v)·(w⊕u)2−wt(z) (31)
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where x ⪯ y means xi ≤ yi for i ∈ {0, 1, ..., n − 1} and

1x⪯y =
{

1, if x ⪯ y,
0, otherwise.

Based on Proposition 2, the following constraints can be used to describe the relation
between the linear masks (u, v) and w with the auxiliary variable z.

zn−1 = 0
zn−2 = un−1 ⊕ vn−1 ⊕ wn−1
zj = zj+1 ⊕ uj+1 ⊕ vj+1 ⊕ wj+1
zi ≥ wi ⊕ ui

zi ≥ wi ⊕ vi

(32)

where 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 3.
The XOR operation in equation (32) can be described by the method of Subsection

A.1, and the inequality zi ≥ wi ⊕ ui in equation (32) can be translated into the following
two clauses in an SAT instance. {

wi ∨ ui ∨ zi =1
wi ∨ ui ∨ zi =1 (33)

A.4 SAT Model for Objective Function
We need to calculate the product of the correlations for all modular additions as the total
correlation of a linear approximation. Let zj = (zj

n−1, zj
n−2, ..., zj

0) be the n-bit vector
related to the linear approximation for the j-th modular addition as shown in Proposition
2. In order to find linear approximations with high correlations, the total Hamming weight
of zj , i.e.

∑
j wt(zj) =

∑
i,j zj

i , need to be limited. Particularly, we can set an objective
function

∑
i,j zj

i ≤ k for some positive integer k, and search for linear approximations with

the correlation 2−
∑

j
wt(zj) ≥ 2−k.

Following the approaches in [LWR16, SWW21], we can use the sequential encoding
method [Sin05] to describe the objective function like

∑n−1
j=0 xj ≤ k by the following clauses

in an SAT instance,

x0 ∨ s0,0 = 1
s0,j = 1, 1 ≤ j ≤ k − 1
xi ∨ si,0 = 1
si−1,0 ∨ si,0 = 1

xi ∨ si−1,j−1 ∨ si,j = 1
xi−1,j ∨ si,j = 1

}
1 ≤ j ≤ k − 1

xi ∨ si−1,k−1 = 1


1 ≤ i ≤ n − 2

xn−1 ∨ sn−2,k−1 = 1

(34)

where si,j (1 ≤ i ≤ n − 2, 1 ≤ j ≤ k − 1) are binary auxiliary variables.

A.5 Algorithm to Search for Linear Approximations
Algorithm 2 illustrates the process to search for the linear approximation Γ3 −→ Γ5 with
prescribed bound 2−k on the correlation when the output linear mask is fixed as Γ5 in the
equation (16).
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Once a linear approximation is obtained, we can add a clause into the SAT model
as in Line 11 of Algorithm 2 to remove the linear approximation, and search for other
linear approximations. For example, if an assignment [1, 0, 0, 1, 1] is obtained for variables
x0, x1, x2, x3 and x4, we can remove the assignment by add a clause x0∨x1∨x2∨x3∨x4 = 1.
Finally, all the linear approximations with correlations higher than 2−k will be obtained.

Algorithm 2 Automatic search of the linear approximation Γ3 −→ Γ5 for two-round
ChaCha with prescribed bound 2−k on the correlation
Input: output linear mask Γ5, bound 2−k on the correlation;
Output: input linear mask Γ3;

1: for 4 ≤ i ≤ 5 do
2: Construct the SAT model for the linear approximations of the operations in the

i-th round function of ChaCha as in Subsections A.1, A.2 and A.3;
3: end for
4: Construct the SAT model for the constraint

∑
i,j zj

i ≤ k as in Subsection A.4;
5: Set the output linear mask as Γ5;
6: Flag=1;
7: while Flag==1 do
8: Use the SAT solver to solve the SAT model;
9: if the SAT solver returns a solution then

10: output the corresponding linear approximation;
11: Add a clause into the SAT model to remove the linear approximation;
12: else
13: break
14: end if
15: end while
16: if no linear approximation is outputted then
17: There exists no linear approximation such that the correlation C(Γ3, Γ5) ≥ 2−k;
18: end if

B Equivalent Security against PNB-Based Differential-
Linear Attack between (R+0.25)-Round and (R+0.5)⊕-
Round ChaCha

The equivalent security against chosen(known) plaintext attack in Section 5 is obtained
based on the conversion between (R + 0.25)-round and (R + 0.5)⊕-round ChaCha. In
this section, we directly present the equivalent security against PNB-based differential-
linear attack between (R + 0.25)-round and (R + 0.5)⊕-round ChaCha, i.e. the backward
correlations are the same for (R + 0.25)-round and(R + 0.5)⊕-round ChaCha when the
same PNBs are used.

For simplicity, we first consider the case of R = 7, and present the equivalent security
against PNB-based differential-linear attack between 7.25-round and 7.5⊕-round ChaCha.
Without loss of generality, assume the differential-linear distinguisher ∆0 −→ Γ5 covers
five rounds. Let Round−2.25 be the decryption function of ChaCha from X7.25 to X5,
i.e. X5 = Round−2.25(X7.25), let Round−2.5⊕ be the decryption function of ChaCha from
X7.5⊕ to X5, i.e. X5 = Round−2.5⊕(X7.5⊕), and let g be the encryption function from
X7.25 to X7.5⊕ as shown in Figure 7. Then we have

Round−2.25 = Round−2.5⊕
◦ g. (35)
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Figure 7: The encryption function X7.5⊕ = g(X7.25)

Theorem 1. Let (X, X ′) be the input difference pair of ChaCha, where X ′ = X ⊕ ∆0.
(X, X ′) are constructed from (X, X ′) such that all PNBs are assigned fixed value (or
random value) while the other bits take the same values as (X, X ′). Then Xi = Xi and
X ′

i = X ′
i for i ∈ {0, 1, 2, 3, 12, 13, 14, 15}. Let the backward correlation ϵa for 7.25-round

ChaCha be computed by

Pr
X

(
Γ5 ·

(
Round−2.25(X7.25 ⊞ X ⊟ X) ⊕ Round−2.25(X ′7.25 ⊞ X ′ ⊟ X ′) ⊕ X5 ⊕ X ′5) = 0

)
=1

2(1 + ϵa),
(36)

and let the backward correlation ϵ′
a for 7.5⊕-round ChaCha be computed by

Pr
X

(
Γ5 ·

(
Round−2.5⊕

(X7.5⊕
⊞ X ⊟ X) ⊕ Round−2.5⊕

(X ′7.5⊕
⊞ X ′ ⊟ X ′) ⊕ X5 ⊕ X ′5

)
= 0
)

=1
2(1 + ϵ′

a),
(37)

then we have ϵa = ϵ′
a.

Proof. We only need to show that Round−2.25(X7.25 ⊞ X ⊟ X) and Round−2.5⊕(X7.5⊕
⊞

X ⊟ X) are the same functions, i.e.

Round−2.25(X7.25 ⊞ X ⊟ X) = Round−2.5⊕
(X7.5⊕

⊞ X ⊟ X). (38)

From equation (35), we only need to prove that the equivalent equation (39) holds.

g(X7.25 ⊞ X ⊟ X) = X7.5⊕
⊞ X ⊟ X, (39)

where g is the encryption function from X7.25 to X7.5⊕ as shown in Figure 7.
From Figure 7 we have

g(X7.25 ⊞ X ⊟ X) = g(X7.25) ⊞ g(X ⊟ X) = X7.5⊕
⊞ g(X ⊟ X). (40)

Because (X ⊟ X)i = 0 for i ∈ {12, 13, 14, 15}, from Figure 7 we have

g(X ⊟ X) = X ⊟ X. (41)

By equations (40) and (41), we know that equation (38) and equation (39) hold.
Then by equations (36),(37) and (38), we have ϵa = ϵ′

a.

From Theorem 1 we know that the backward correlations are the same for 7.25-round
and 7.5⊕-round ChaCha when the same PNBs are used. Then by equations (13) and (15)
in Subsection 2.5 we know that the PNB-based differential-linear attacks for 7.25-round
and 7.5⊕-round ChaCha have the same time complexity.

This property can be extended to general (R + 0.25)-round and (R + 0.5)⊕-round
ChaCha, where R ∈ {1, 2, 3, · · · }. The PNB-based differential-linear attack has the same
effect on (R + 0.25)-round and (R + 0.5)⊕-round ChaCha.
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