
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 2, pp. 141–165. DOI:10.46586/tosc.v2024.i2.141-165

Theoretical Linear Cryptanalysis of the
5G Standard Candidate SNOW 5G

Yinuo Liu, Jing Yang and Tian Tian

Information Engineering University, Zhengzhou, China
liuyinuo_terry@163.com,yangjingfi@163.com,tiantian_d@126.com

Abstract. In this paper, we perform linear cryptanalysis of the stream cipher SNOW
5G, which is recommended by the international standardization group (SAGE) as one
standard algorithm for 5G confidentiality and integrity protection over the wireless
channel. SNOW 5G can be regarded as one member of the SNOW-V family, as
it is modified from SNOW-Vi by SAGE with a slight improvement. As an overall
contribution, we provide a comprehensive and elaborate theoretical analysis of linear
approximations of SNOW 5G and provide the best public cryptanalysis result by far.
Specifically, we first theoretically analyze the formats of linear masks of SNOW 5G that
can introduce high correlations, and then search for high-quality linear masks using
a divide-and-conquer method based on the different cases of a critical intermediate
linear mask. We find a linear approximation of SNOW 5G with correlation −2−67.67

and further launch a correlation attack against it with complexity 2279.8, improving
the existing best correlation attack by a factor of 232.4. Our results are mainly from
theoretical analysis, which involve little computation overhead and help to better
understand the security of SNOW 5G.
Keywords: SNOW 5G · linear cryptanalysis · linear approximations · divide-and-
conquer

1 Introduction
The SNOW series of stream ciphers have played an essential part in the confidentiality and
integrity protection in various generations of mobile communication systems. SNOW 3G is
standardized in 3G and 4G, providing 128-bit security levels, and is usually implemented
in hardware to provide high speeds. When it comes to 5G, the fundamental changes
in the system architecture and new demands in security pose new requirements for the
cryptographic algorithms [3rd]. Basically, these ciphers need to provide a speed of at least
20 Gbps (the peak data rate of downlink transmission in 5G) in virtualized environments
and a security level of 256 bits. SNOW 3G is inadequate for 5G as current benchmarks
give approximately 9 Gbps in software [YJ20], and more importantly, it is shown to be
susceptible to linear cryptanalysis [YJM19]. In 2018, the international mobile broadband
standard organization 3GPP asked SAGE (Security Algorithms Group of Experts) to
select and evaluate new cryptographic primitives for 5G.

As a response, the SNOW-V cipher was proposed in 2019 by researchers from Lund
University and Ericsson [EJMY19] targeted to be used in 5G, which achieves rates up
to 58 Gbps and provides 256 bits of security. The designers published an extreme
performance variant called SNOW-Vi the next year to further increase the speeds in
software environments. The ciphers were submitted to SAGE and received wide attention.
Driven by the linear cryptanalysis results [SJZ+22] of SNOW-V and SNOW-Vi in 2022,
SAGE proposed to replace the 32-bit modular additions in SNOW-Vi with 16-bit ones,
and the new variant is called SNOW 5G [lia11, Tea, 3GP03]. SNOW 5G is recommended

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-03-01 Accepted: 2024-05-01 Published: 2024-06-18

https://doi.org/10.46586/tosc.v2024.i2.141-165
mailto:liuyinuo_terry@163.com, yangjingfi@163.com, tiantian_d@126.com
http://creativecommons.org/licenses/by/4.0/


142 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

by SAGE as one standard algorithm for 5G confidentiality and integrity protection over
the air, but we note that the desired specifications are not ready because they are still
under construction [3GP03].

Till now, the SNOW-V series have received much public evaluation, including guess-and-
determine attacks [JLH20, YJM21, JHL23], linear cryptanalysis [GZ21, YJM21, ZFZ22,
SJZ+22], integral attack [HII+22], and differential attack [HII+22], etc. Below, we give a
more detailed introduction to those guess-and-determine attacks and linear cryptanalysis.

In [JLH20], Jiao et al. proposed a guess-and-determine attack against SNOW-V with
a time complexity of 2406, using only seven keystream words. The guess-and-determine
attack was improved in [YJM21] with a complexity of 2378 by carefully designing the
order of guessing and truncating as many invalid guessing paths as possible. Jiao et al.
further analyzed that the techniques in [YJM21] do not apply to SNOW-Vi, and proposed
a guess-and-determine attack against it with complexity 2408 in [JHL23].

For linear cryptanalysis, Gong and Zhang investigated the linear approximations of
SNOW-V in [GZ21] and proposed correlation attacks against its three simplified variants.
For the closest variant SNOW-V⊞32,⊞8 in which one 32-bit modular addition is replaced
with four byte-based additions, they mounted a fast correlation attack with time, memory,
and data complexities of 2377.01, 2363, and 2253, respectively. Yang et al. in [YJM21] also
considered a reduced variant SNOW-V⊕ where modular additions are replaced with XOR
operations, and demonstrated a distinguishing attack with complexity 2303. All of the
attacks above have complexities higher than that of exhaustive key search.

The outstanding cryptanalysis of SNOW-V/Vi is from the work [SJZ+22] presented at
Eurocrypt 2022, in which correlation attacks with complexities less than exhaustive key
search were proposed when ignoring the constraint of the length of the keystream under
one pair of key and IV. Inspired by the linear cryptanalysis techniques in block ciphers, the
authors converted the linear approximation involving three consecutive keystream words
into an equivalent composite function. By modeling the correlation propagation between
sub-functions and using automatic search tools based on SAT/SMT, they searched out a
series of linear trails with high correlations. They derived a binary linear approximation
with correlation −2−47.76. When ignoring the constraint of the keystream length, they can
launch a correlation attack with time, memory, and data complexities of 2246.53, 2238.77,
and 2237.5, respectively. They later extended the techniques to other word-based stream
ciphers and proposed a general correlation evaluation model for them [SJZ+23].

Zhou et al. [ZFZ22] also proposed two algorithms to efficiently evaluate linear ap-
proximations of SNOW-V with linear hull effect taken into consideration. They built
multiple pre-computed linear approximation tables (LATs) corresponding to different
input-output linear masks for the main components used in the finite state machine (FSM)
in SNOW-V/Vi, and used them to choose high-quality linear masks during the online
phase. The best linear approximation they derived gave an absolute correlation 2−47.567,
which led to a fast correlation attack against SNOW-V with time, memory, and data
complexities 2240.86, 2240.37, and 2236.87, respectively.

Till now, there have been very few public cryptanalysis results of SNOW 5G. As far as
we know, the only cryptanalysis is from [MJS+23] which applies the techniques in [SJZ+22]
to search for linear trails using automatic searching tools. A linear approximation with
correlation 2−75.82 is found and used to launch a correlation attack with complexity 2312.24.

As a candidate standard for 5G confidentiality and integrity protection, SNOW 5G
still needs more comprehensive cryptanalysis to increase our confidence in its security. In
this paper, we aim to investigate the linear cryptanalysis of SNOW 5G.
Contributions. The fundamental novelty and contribution of this paper is the theoretical
analysis of the linear approximations of SNOW 5G. The linear masks for SNOW 5G, as well
as the other SNOW-V variants, derived in [SJZ+22, YJM21, ZFZ22, SJZ+23, MJS+23]
were mainly obtained from automatic searching tools or multiple linear approximation



Yinuo Liu, Jing Yang and Tian Tian 143

Table 1: Attacks against the SNOW-V series (T/D/M denote the time, data, and memory
complexities, respectively)

Attacks Target Complexities T/D/M Techniques References
GnD Attacks SNOW-V 2406 / 896 / N/A auto-searching [JLH20]

SNOW-V 2384 / 896 / N/A truncating [YJM21]
SNOW-V 2378 / 1024 / 2128 truncating [YJM21]
SNOW-Vi 2408 / 896 / N/A auto-searching [JHL23]

Linear Attacks SNOW-V 2377 / 2254 / 2363 LAT [GZ21]
SNOW-V⊕ 2303 / 2303 / 2303 LAT [YJM21]

SNOW-V/Vi 2246.5 / 2237.5 / 2238.8 SAT/SMT [SJZ+22]
SNOW-V 2240.9 / 2236.9 / 2240.4 LAT [ZFZ22]
SNOW 5G 2312.2 / 2297.1 / 2297.1 MILP [MJS+23]
SNOW 5G 2279.8 / 2265.4 / 2265.5 theoretical analysis This paper

Integral Attack SNOW-V 248 / 248 / N/A * MILP*** [HII+22]
Differential Attack SNOW-V 2154 / 227 / N/A ** MILP [HII+22]
* Five initialization rounds attacked. ** Four initialization rounds attacked.
*** MILP: mixed-integer linear programming.

tables while the theoretical analysis is still needed to help understand the security of the
ciphers in depth. In our method, we theoretically analyze the linear approximations of
small components and then derive connections and constraints between different linear
masks. After that, we use a divide-and-conquer method to search for high-quality linear
masks according to the different cases of a critical intermediate linear mask. Such a search
process relies heavily on theoretical analysis and requires little computation overhead. We
find a linear trail with correlation −2−67.67 and experimentally verify that it is a dominant
trail under the outer linear masks we find. Specifically, we fix the outer linear masks
and compute the correlations under other possible intermediate linear masks. The liner
trail exhibits a significantly higher correlation than the others, which can represent the
total correlation of the linear approximation with a negligible error. Therefore, the linear
approximation has a correlation of −2−67.67, improving the existing benchmark 2−75.82

in [MJS+23] by 28.15. We further launch a correlation attack against SNOW 5G with
complexity 2279.8, improving the existing best attack in [MJS+23] by a factor of 232.4.
The complexity is still higher than exhaustive key search, but the results demonstrate the
effectiveness of the method. The theoretical analysis provides much help in understanding
the structures of linear approximations of SNOW 5G and its resistance against linear
cryptanalysis. Table 1 lists the main cryptanalysis results against the SNOW-V series and
the comparison with the new results in this paper.
Organization. The paper is organized as follows. We first present some basic notations,
definitions, and a brief introduction to SNOW 5G in Section 2. In Section 3, we first
present a theoretical analysis of the linear approximations and then apply it to search for
high-quality linear masks of SNOW 5G. After that, we present the results and propose
a correlation attack against SNOW 5G in this section as well. We draw a conclusion in
Section 4.

2 Preliminaries
2.1 Notations and Definitions
We below present some notations and definitions.

F2 the binary field



144 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

Fn
2 the n-dimension vector space over F2

F2n the finite field with 2n elements
⊕ the bitwise XOR operation
⊞n the addition modulo 2n

E(·) the encryption round function of AES, with roundkey = 0
E−1(·) the decryption round function of AES, with roundkey = 0
Pr(A) the probability of the event A
wH(x) the Hamming weight of a Boolean vector x

By referring to the AES state representation, we express all the 128-bit internal states
and linear masks in the form of 4×4 byte matrices. As an example, S = (w15, w14, . . . , w0),
where wi(15 ≥ i ≥ 0) are bytes, can be denoted as

w0 w4 w8 w12
w1 w5 w9 w13
w2 w6 w10 w14
w3 w7 w11 w15

 .

Throughout the paper, we use rows and columns in the matrix representation to index the
byte positions of the states and linear masks. The index range for both rows and columns
is from 0 to 3. For example, column 1 of S involves bytes 4 to 7 (w4, w5, w6, w7), which
also indicates the second 32-bit word of S; while row 2 of S involve bytes w2, w6, w10, and
w14.

Definition 1. Given two n-bit binary vectors a = (an−1, an−2, . . . , a0) and b = (bn−1,
bn−2, . . . , b0), the inner product is computed as a · b = ⊕n−1

i=0 ai · bi.

Definition 2. Given a binary random variable x, the correlation of x is defined as
c(x) = Pr(x = 0) − Pr(x = 1). Given a Boolean expression in n binary variables
f(x0, x1, . . . , xn−1), the correlation of f is defined as c(f) = Pr(f = 0)− Pr(f = 1).

Definition 3. Given an n-bit binary vector a and a factor m of n, when applying parallel
⊞m operations to the vector a, a can be divided into n/m blocks and each block is
composed of m bits called one ⊞m-block.

In our analysis, we have n = 128, m = 16. We also use ⊞16 to denote 8 parallel 16-bit
modular additions without ambiguity.

Definition 4. A variable is called isolated if it only appears in the linear part of the
algebraic normal form (ANF) of a Boolean expression.

For example, x0 is an isolated variable in f(x0, x1, . . . , xn−1) = f1(x1, x2, . . . , xn−1)⊕x0.

Definition 5. Given two n-bit vectors a = (an−1, an−2, . . . , a0) and b = (bn−1, bn−2, . . . , b0),
we say that a and b have the same (n − i)-bit zero suffix if an−1 = an−2 = · · · = ai =
bn−1 = bn−2 = · · · = bi = 0 and ai−1 = bi−1 = 1.

Assuming that x1, x2, . . . , xk are k independent binary random variables with correla-
tions c1, c2, . . . , ck, respectively, the correlation of x1 ⊕ x2 ⊕ · · · ⊕ xk can be computed by
c =

∏k
j=1 cj according to the well-known Piling-up Lemma [Mat93].

2.2 Brief Introduction to SNOW 5G
The SNOW-V series of ciphers inherit from the predecessor SNOW 3G that adopt LFSRs
as the source of pseudorandomness and FSMs to disrupt the linearity. However, the
registers are increased to larger sizes and better aligned to accommodate the advanced



Yinuo Liu, Jing Yang and Tian Tian 145

intrinsic instructions to achieve high speeds when implemented in software environments.
For more design details about SNOW-V, SNOW-Vi, and SNOW 5G, we refer to [EJMY19,
EMJY21, lia11]. Below, we give an introduction to SNOW 5G.

C1

 
 

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 

 
 

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 

T2 128 bits

T1 128 bits

R1 AES Enc 
Round R2 R3

128 bit keystream output 
z

FSM

C2

AES Enc 
Round 

σ

LFSR-A

LFSR-B

16

16

Figure 1: The schematic of SNOW 5G

Figure 1 illustrates the schematic of SNOW 5G, which consists of a circular construction
of two LFSRs and one FSM accommodating three 128-bit registers. The LFSR part is
built over two LFSRs, called LFSR-A and LFSR-B, each with 16 stages denoted as
(a15, . . . , a1, a0) and (b15, . . . , b1, b0), respectively. Each stage of LFSR-A and LFSR-B
holds 16 bits, which are generated by polynomials gA(x) and gB(x), respectively, defined
as

gA(x) = x16 + x14 + x11 + x9 + x6 + x5 + x3 + x2 + 1 ∈ F2[x],
gB(x) = x16 + x15 + x14 + x11 + x10 + x7 + x2 + x + 1 ∈ F2[x].

We denote α ∈ FA
216 and β ∈ FB

216 to represent the roots of gA(x) and gB(x), respectively.
In each clock, a0, b0 are removed from the LFSRs, ai and bi (1 ≤ i ≤ 15) are shifted to
ai−1 and bi−1, respectively, and the values in a15 and b15 are newly updated by

a
(t+1)
15 = b

(t)
0 + αa

(t)
0 + a

(t)
7 mod gA(α),

b
(t+1)
15 = a

(t)
0 + βb

(t)
0 + b

(t)
8 mod gB(β).

Each time the LFSRs update, they will update eight times, meaning that the high eight
stages (256 bits in total) of LFSR-A and LFSR-B are updated. After that, two 128-bit
taps T1 and T2, represented below, are extracted and fed to the FSM:

T
(t)
1 = (b(8t)

15 , b
(8t)
14 , . . . , b

(8t)
8 ),

T
(t)
2 = (a(8t)

15 , a
(8t)
14 , . . . , a

(8t)
8 ).



146 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

The FSM part includes three 128-bit registers R1, R2, R3 and takes T1 and T2 from the
LFSRs to produce one 128-bit keystream word and update the registers. The keystream
word is generated by

z(t) = (R(t)
1 ⊞16 T

(t)
1 )⊕R

(t)
2 , (1)

where ⊞16 denotes eight parallel 16-bit modular additions. It is the operation modified
from the 32-bit modular addition in SNOW-V/Vi.

The registers are then updated by

R
(t+1)
1 = σ(R(t)

2 ⊞16 (R(t)
3 ⊕ T

(t)
2 )),

R
(t+1)
2 = E(R(t)

1 ),

R
(t+1)
3 = E(R(t)

2 ),

where σ is a byte-oriented permutation defined as

σ = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15],

which means that byte 0 is moved to position 0, byte 4 is moved to position 1, byte 8 is
moved to position 2, and so on. If we use the matrix representation, then applying the σ
operation to a 128-bit variable S leads to

σ(S) =


w0 w1 w2 w3
w4 w5 w6 w7
w8 w9 w10 w11
w12 w13 w14 w15

 .

During the initialization phase, a 256-bit key and a 128-bit IV are loaded into the
LFSRs, and the registers in the FSM are initialized to zero. The initialization consists of
16 steps, during which the cipher is updated in the same way as that in the running-key
mode, but with the output from the FSM feeding back to the LFSRs instead of producing
a keystream word. Additionally, at the last two steps of the initialization phase, we XOR
the key to the R1 register. Since the attack in this paper only involves the keystream
mode, we do not give more details about the initialization mode but refer to [EJMY19].

3 Linear Cryptanalysis of SNOW 5G
In this section, we first give the linear approximation of SNOW 5G and divide the approxi-
mation noises into several parts in Section 3.1. We then analyze the linear approximations
of the underlying non-linear operations and derive the patterns of high-quality linear masks
in Section 3.2. After that, we use a divide-and-conquer method to search for linear masks
based on the different cases of a critical intermediate linear mask in Section 3.3. We
present the results in Section 3.4 and propose a correlation attack against SNOW 5G in
Section 3.5.

3.1 Linear Approximations and Division of Noises
We denote R

(t)
1 , R

(t)
2 , and R

(t)
3 as R1, R2, and R3, respectively, for ease of notation. The

keystream words produced in three consecutive clocks can be expressed as

z(t−1) = (E−1(R2) ⊞16 T
(t−1)
1 )⊕ E−1(R3),

z(t) = (R1 ⊞16 T
(t)
1 )⊕R2,

z(t+1) = (σ(R2 ⊞16 (R3 ⊕ T
(t)
2 )) ⊞16 T

(t+1)
1 )⊕ E(R1).



Yinuo Liu, Jing Yang and Tian Tian 147

We apply three 128-bit linear masks α, β, and γ to z(t−1), z(t), and z(t+1), respectively,
and get

α · z(t−1) = α · (E−1(R2) ⊞16 T
(t−1)
1 )⊕ α · E−1(R3),

β · z(t) = β · (R1 ⊞16 T
(t)
1 )⊕ β ·R2, (2)

γ · z(t+1) = γ · (σ(R2 ⊞16 (R3 ⊕ T
(t)
2 )) ⊞16 T

(t+1)
1 )⊕ γ · E(R1).

If we XOR the three masked expressions in Equation (2), then we get

α · z(t−1) ⊕ β · z(t) ⊕ γ · z(t+1) = β · (R1 ⊞16 T
(t)
1 )⊕ γ · E(R1)

⊕ α · (E−1(R2) ⊞16 T
(t−1)
1 )⊕ β ·R2 ⊕ α · E−1(R3)

⊕ γ · (σ(R2 ⊞16 (R3 ⊕ T
(t)
2 )) ⊞16 T

(t+1)
1 ). (3)

We approximate the non-linear operations in Equation (3) as

β · (R1 ⊞16 T
(t)
1 )⊕ γ · E(R1) p1= m · T (t)

1 ,

α · (E−1(R2) ⊞16 T
(t−1)
1 )⊕ α · E−1(R3)⊕ γ · (σ(R2 ⊞16 (R3 ⊕ T

(t)
2 )) ⊞16 T

(t+1)
1 )

p2= n · T (t+1)
1 ⊕ β ·R2 ⊕ h · T (t)

2 ⊕ l · T (t−1)
1 ,

where l, m, n, and h are the 128-bit linear masks applied to T
(t−1)
1 , T

(t)
1 , T

(t+1)
1 , and T

(t)
2 ,

respectively. We then get the noise of the overall linear approximation as below,

N = β · (R1 ⊞16 T
(t)
1 )⊕ γ · E(R1)⊕m · T (t)

1

⊕ α · (E−1(R2) ⊞16 T
(t−1)
1 )⊕ l · T (t−1)

1 ⊕ β ·R2

⊕ α · E−1(R3)⊕ γ · (σ(R2 ⊞16 (R3 ⊕ T
(t)
2 )) ⊞16 T

(t+1)
1 )⊕ n · T (t+1)

1 ⊕ h · T (t)
2 (4)

c(N)= 0.

We introduce an intermediate linear mask ξ to R2 and further divide the noise N into
three parts, N1, N2, and N3, defined as below as done in [ZFZ22]:

N1 = β · (R1 ⊞16 T
(t)
1 )⊕ γ · E(R1)⊕m · T (t)

1 ,

N2 = α · (E−1(R2) ⊞16 T
(t−1)
1 )⊕ ξ ·R2 ⊕ l · T (t−1)

1 ⊕ α · E−1(R3)⊕ h ·R3, (5)

N3 = γ · (σ(R2 ⊞16 (R3 ⊕ T
(t)
2 )) ⊞16 T

(t+1)
1 )⊕ n · T (t+1)

1 ⊕ (β ⊕ ξ) ·R2 ⊕ h · (R3 ⊕ T
(t)
2 ).

As N1 only involves variables R1 and T
(t)
1 that do not appear in N2 and N3, thereby

establishing the independence of N1 from N2 and N3. Noises N2 and N3 are not independent
as they both involve variables R2 and R3. However, as R3 in N3 is XOR-ed with a random
variable T

(t)
2 , it can be regarded as a new random variable. Therefore, we only need to

exhaust the intermediate mask ξ to compute the correlation of the linear approximation
noise by c(N) =

∑
ξ c(N1)c(N2)c(N3) according to the correlation theorem.

It has been observed in [ZFZ22] that, for SNOW-V, one of the intermediate masks has
a linear trail that dominates the linear hull, and therefore, cF SM ≈ c(N1)c(N2)c(N3) for
this specific ξ. This conclusion was drawn from experimental results derived in [ZFZ22].
We have similar observations for the linear approximation derived for SNOW 5G, and we
experimentally verified the dominance of the specific linear trail.



148 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

3.2 The Patterns of High-quality Linear Masks
We now analyze the general patterns of linear masks of high quality in SNOW 5G. We
further split N2 in Equation (5) into two parts, denoted as P1 and P2, as below,

P1 = α · E−1(R3)⊕ h ·R3,

P2 = α · (E−1(R2) ⊞16 T
(t−1)
1 )⊕ ξ ·R2 ⊕ l · T (t−1)

1 .

One can see that P1 and P2 are independent as they involve different variables; therefore,
we have c(N2) = c(P1)c(P2). We can rewrite P1 and P2 by replacing E−1(R3) and E−1(R2)
with R

(t−1)
2 and R

(t−1)
1 , respectively, and then we get

P1 = α ·R(t−1)
2 ⊕ h · E(R(t−1)

2 ),

P2 = α · (R(t−1)
1 ⊞16 T

(t−1)
1 )⊕ ξ · E(R(t−1)

1 )⊕ l · T (t−1)
1 .

One can see that N1 and P2 have similar forms of linear approximations. We introduce
128-bit intermediate masks ζ1 and ζ2 for N1 and P2, respectively, and get

M1,ζ1 = β · (R1 ⊞16 T
(t)
1 )⊕ ζ1 ·R1 ⊕m · T (t)

1 ,

M2,ζ1 = ζ1 ·R1 ⊕ γ · E(R1),

M3,ζ2 = α · (R(t−1)
1 ⊞16 T

(t−1)
1 )⊕ ζ2 ·R(t−1)

1 ⊕ l · T (t−1)
1 ,

M4,ζ2 = ζ2 ·R(t−1)
1 ⊕ ξ · E(R(t−1)

1 ).

We have c(N1) =
∑

ζ1
c(M1,ζ1)c(M2,ζ1) and c(P2) =

∑
ζ2

c(M3,ζ2)c(M4,ζ2). We further
divide N3 as done in [ZFZ22] as below

P3 = γ · (σ(R2 ⊞16 (R3 ⊕ T
(t)
2 )) ⊞16 T

(t+1)
1 )⊕ n · T (t+1)

1 ⊕Θ · σ(R2 ⊞16 (R3 ⊕ T
(t)
2 )),

P4 = σ(Θ) · (R2 ⊞16 (R3 ⊕ T
(t)
2 ))⊕ (β ⊕ ξ) ·R2 ⊕ h · (R3 ⊕ T

(t)
2 ),

where Θ is a 128-bit intermediate mask, and then c(N3) =
∑

Θ c(P3)c(P4).

3.2.1 Three Types of Linear Approximations

We now classify the linear approximations into three types and investigate the constraints
and formats of the linear masks. Variables X and Y are 128-bit, and U, V , and W denote
128-bit linear masks.

Type-I UI ·X ⊕ VI · E(X)

Type-II UII · (X ⊞16 Y )⊕ VII ·X ⊕WII · Y

Type-III UIII · (X ⊞16 Y )⊕ VIII · E(X)⊕WIII · Y

Type-I Linear Approximation

We now investigate how the AES round function affects the formats of related linear
masks in Type-I linear approximations. We denote Xi as the i-th byte of X and analyze
the linear masks corresponding to the AES encryption round function in detail. The AES
encryption round function can be expressed as E(X) = MixColumn ◦ ShiftRow ◦ S(X),
where S denotes the substitution layer consisting of 16 parallel 8-bit S-boxes. The step
for adding a round key is not considered as it does not affect the linear approximation.
Therefore, a Type-I linear approximation is indeed the XOR-sum of 16 independent linear
approximations of S-boxes, and if one byte of X is activated by UI , the S-box of this byte
should be activated by VI as well, vice versa.



Yinuo Liu, Jing Yang and Tian Tian 149

If we use the matrix representation to denote X, we get the following expression:

E(X) = MixColumn ◦ ShiftRow ◦ S(X)

= MixColumn ◦ ShiftRow


S(X0) S(X4) S(X8) S(X12)
S(X1) S(X5) S(X9) S(X13)
S(X2) S(X6) S(X10) S(X14)
S(X3) S(X7) S(X11) S(X15)



= MixColumn


S(X0) S(X4) S(X8) S(X12)
S(X5) S(X9) S(X13) S(X1)
S(X10) S(X14) S(X2) S(X6)
S(X15) S(X3) S(X7) S(X11)



=


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




S(X0) S(X4) S(X8) S(X12)
S(X5) S(X9) S(X13) S(X1)
S(X10) S(X14) S(X2) S(X6)
S(X15) S(X3) S(X7) S(X11)

 .

If UI only introduces one active byte Xi of X, then the column of VI that involves this
byte of ShiftRow ◦S(X) should be activated as well. For example, if X3 is active, column
1 of VI should be active as well to activate S(X3). We represent the corresponding active
columns of VI and ShiftRow ◦ S(X) as (t0, t1, t2, t3)T and (w0, w1, w2, w3)T , respectively,
and consider the expression y as below:

y = (t0, t1, t2, t3) · (


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




w0
w1
w2
w3

)T . (6)

We would like the linear masks (t0, t1, t2, t3) to introduce as few active S-boxes as possible,
which means that y involves the fewest variables of S(Xj). When we target to have only
one active S-box for Equation (6), it is equivalent to solving a system of linear equations
to cancel out three variables and keep only one variable, e.g., w3, as

t0 · 02w0 + t1 · 01w0 + t2 · 01w0 + t3 · 03w0 = 0,

t0 · 03w1 + t1 · 02w1 + t2 · 01w1 + t3 · 01w1 = 0,

t0 · 01w2 + t1 · 03w2 + t2 · 02w2 + t3 · 01w2 = 0,

t0 · 01w3 + t1 · 01w3 + t2 · 03w3 + t3 · 02w3 = random.

(7)

Such an equation system has four byte variables (i.e., linear masks) t0, t1, t2, and t3, to
nullify w0, w1, and w2 with three exact equation constraints. Therefore, Equation (7)
yields 255 possible solutions for the value of one column of VI if only one S-box is active
per column. These 255 values are precisely the same as those derived in [GZ21], and so we
fill the gap for the theoretical analysis of the observation.

We also note that when one column (say, column j) of VI activates only one S-box,
i.e., this column of VI takes one of the 255 possible solutions, the active byte of UI can
be located in any column. For example, if j = 1, the active byte of X can be one of
X4, X9, X14, and X3, which are located in different columns of X.

As the linear branch number of the MixColumn operation in the AES round function
is five, we can get the following proposition.

Proposition 1. For a Type-I linear approximation, if i(1 ≤ i ≤ 4) bytes of VI in one
column are equal to zero, which means that 4− i bytes are non-zero, then UI must introduce
at least i + 1 active bytes.



150 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

Type-II Linear Approximation

For a Type-II linear approximation UII · (X ⊞16 Y )⊕VII ·X⊕WII ·Y , the correlation
can be computed as c(UII ; VII , WII) = LAz15 · · ·Az1Az0C, where L = (1, 0), C = (1, 1)T

and Azi(1 ≤ i ≤ 15) denotes the pre-computed connection matrix determined by zi which
is computed by zi = UII ·22 +VII ·2+WII [MJ05, NW06]. We present a brief introduction
to how the connection matrices and correlation are computed in Appendix A, and for more
details, we refer to [MJ05, NW06]. Furthermore, the correlation can be computed through
an automaton illustrated in Figure 2 as proposed in [NW06]. The automaton has two
states e0 and e1 representing (1, 0) and (0, 1), which are the possible intermediate states
when computing c(UII ; VII , WII) = LAz15 · · ·Az1Az0C and multiplying the matrices from
the left to right. The numbers in Figure 2 are decimal digits computed as the concatenation
of the three bits of UII , VII , WII located at the same bit position, which is exactly zi.
The automaton starts from the highest bit to the lowest, and the absolute correlation is
computed as 2−k, where k is the number of transitions marked by a solid arrow in Figure 2.
If the automaton enters state “0”, the correlation would stay zero. One can see that to
have a non-zero correlation, the automaton must enter e1 state through a number “7”,
and this indicates the well-known constraint of linear masks in a linear approximation
of a modular addition in Constraint 1. Appendix A briefly shows how the automaton is
constructed and we also refer to [NW06] for more details.

Constraint 1. In a Type-II linear approximation, it is essential that the highest active
bits in every ⊞16-block of UII , VII , and WII are identical for the correlation to be non-zero.
It implies that the position of the highest active bytes in each ⊞16-block of UII , VII , and
WII should also be the same.

start

Figure 2: The automaton for the modular addition with two inputs

Besides, one can easily derive the absolute correlation by counting the number of
solid arrows in the automaton of a specific linear approximation without consuming much
computation overhead. Generally, the more active ⊞16-blocks are, the lower the correlation
could be. Such a statement is not strictly correct. However, the number of ⊞16-blocks, like
the number of active S-boxes, can be used to get some information about the correlation
heuristically. Besides, when the high bytes of the linear masks of a ⊞16-block are fixed,
the correlation will become smaller when any lower byte is also active as the solid lines in
Figure 2 will become more. We use the maximum number of active bytes in each linear
mask as one indicator for roughly evaluating the linear approximation of a 16-bit modular
addition.

Type-III Linear Approximation

A Type-III linear approximation can be split into Type-I linear approximations
and Type-II linear approximations by introducing an intermediate mask MIII , i.e.,



Yinuo Liu, Jing Yang and Tian Tian 151

MIII ·X ⊕ VIII · E(X) and UIII · (X ⊞16 Y )⊕MIII ·X ⊕WIII · Y . The correlation of
the linear approximation can be calculated precisely by exhausting the intermediate mask
MIII .

We have analyzed the possible numbers of active bytes and columns of MIII and the
possible numbers of introduced modular additions when VIII has different active columns,
as presented in Appendix B. We note that these numbers can also be helpful for Type-I
linear approximations.

3.2.2 Constraints of Linear Masks to Have Potentially High Correlation

In this section, we analyze the constraints of linear masks in Equation (3) that can introduce
high correlations. Some constraints are derived strictly following the analysis of the three
basic linear approximations in Section 3.2.1, while some are obtained heuristically.

Constraint 2. The positions of the active ⊞16-blocks in γ, n, and Θ should be consistent,
and the highest active byte positions should be the same.

Constraint 3. The positions of the active ⊞16-blocks in σ(Θ), β ⊕ ξ, and h should be
consistent, and the highest active byte positions should be the same.

Constraint 4. The positions of the active ⊞16-blocks in β, ζ1, and m should be consistent,
and the highest active byte positions should be the same.

Constraint 5. The positions of the active ⊞16-blocks in α, ζ2, and l should be consistent,
and the highest active byte positions should be the same.

Constraint 6. The active byte positions of β and ξ are within the active ⊞16-blocks of
σ(Θ).

Constraint 6 is not derived from a strict proof but from theoretical analysis and
empirical knowledge for obtaining relatively high correlations. When β or ξ have active
bytes of which the positions are outside the active ⊞16-blocks of σ(Θ), the other linear
mask of β and ξ also needs active bytes at these positions to cancel out the activeness,
otherwise, c(P4) = 0 according to Constraint 3. However, when β and ξ have additional
active bytes, N1 will introduce more ⊞16-blocks and N2 will introduce more ⊞16-blocks as
well as S-boxes. Therefore, it is reasonable to restrict the positions of active bytes of β
and ξ within the active ⊞16-blocks of σ(Θ).

Actually, we can further have a heuristic constraint that h and ξ have similar formats.
This is because h determines α in P1 and ξ determines ζ2 in M4,ζ2 both through Type-I
linear approximations in the same way. Besides, α and ζ2 are involved in the same ⊞16-
blocks in M3,ζ2 ; naturally, they have similar active byte positions. Therefore, ξ and h have
similar formats. Our experiments also verified this.

With the abovementioned constraints, we propose indicators to evaluate and filter
linear approximations. We define num(x) as the number of active bytes in a 128-bit linear
mask x, num(i, x) as the number of active bytes in the i-th ⊞16-block of x, and nac(x) as
the number of active columns in x.

For a Type-I linear approximation F = a ·X⊕b ·E(X), we use numS(a, b) or numS(F )
to represent the number of active S-boxes of the linear approximation and use it to evaluate
the quality of F roughly. The linear approximation is opted to be better when the value is
smaller.

For a Type-II linear approximation F = a · (X ⊞16 Y )⊕ b ·X ⊕ c ·Y , we use num⊞(F )
or num⊞(a, b, c) to denote the sum of the maximum numbers of active bytes in every
⊞16-block as an indicator of the quality of F , i.e.,

num⊞(a, b, c) =
7∑

i=0
(max{num(i, a), num(i, b), num(i, c)}).



152 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

The linear approximation can have a higher correlation when the value is smaller. This is
because when a ⊞16 operation has more active bytes, it is likely to have a lower correlation
according to the automaton in Figure 2.

Now we re-categorize the linear approximation into two parts, say N1⊕P3 and N2⊕P4.
Such re-categorization is because the correlations of N1 and P3 are greatly influenced by
γ, while N2 and P4 are influenced by ξ and h. Then we get

numS(N1 ⊕ P3) = numS(ζ1, γ) = num(ζ1),
numS(N2 ⊕ P4) = numS(ζ2, ξ) + numS(α, h) = num(ζ2) + num(α).

Constraint 7. The positions of active bytes of β and m are within the active byte positions
of ζ1.

We make such constraint because β and m should have the same active ⊞16-blocks as
ζ1 according to Constraint 1, and if ζ1 has only one active byte in an active ⊞16-block, β
and m do not need to have two bytes as that will absolutely make the correlation lower
according to Figure 2. Then we get max{num(i, β), num(i, ζ1), num(i, m)} = num(i, ζ1)
for 0 ≤ i ≤ 7.

We restrict max{num(i, γ), num(i, Θ), num(i, n)} = num(i, γ) for 0 ≤ i ≤ 7 in P3,
where Θ is the intermediate mask, as it is likely to cancel out more S-boxes when γ has
more active bytes in one column. Besides, α and ζ2 have the same active byte positions as
analyzed before. According to the linear branch number of the MixColumn operation in
the AES round function, we have

num⊞(N1 ⊕ P3) =
7∑

i=0
(num(i, γ) + num(i, ζ1)) = 5× nac(γ),

num⊞(N2 ⊕ P4) =
7∑

i=0
(num(i, α) + max{num(i, σ(Θ)), num(i, β ⊕ ξ), num(i, h)})

≥
7∑

i=0
(num(i, α) + num(i, h)) = 5× nac(h).

Here we use the best case 5× nac(h) to represent num⊞(N2 ⊕ P4).

3.3 Divide-and-Conquer Method to Search for High-quality Linear
Masks

With the constraints of linear masks analyzed in Section 3.2.2, we now search for high-
quality masks through deep theoretical analysis and little computation overhead. We
divide the linear approximations into several cases according to the number of active bytes
of the critical intermediate linear mask Θ and analyze the correlation in each case. The
critical intermediate linear mask could originally be ξ as we need to compute c(N) by
exhausting ξ, but ξ has too many possibilities that are not easy to classify. Instead, we
consider the different cases of Θ due to two main reasons: (1) the number of active bytes
of Θ greatly influences the correlation so we only need to consider few different cases of Θ;
(2) once the active bytes of Θ are determined, the active modular additions in P3, P4 and
formats of other linear masks, e.g., γ, n, h, ξ, β, can be roughly determined.

1. Θ has one active byte.

When Θ has one active byte, the number of active bytes of γ is limited to one or two
according to Constraint 2 and P3. Correspondingly, ζ1 can have three to four bytes. These
bytes are located in different columns; thus, three to four ⊞16-blocks of β at different



Yinuo Liu, Jing Yang and Tian Tian 153

columns are activated, which contradicts Constraint 6. Therefore, we do not dig into this
case.

Figure 3: One example when Θ has one active byte.

As an illustration in Figure 3, assuming that Θ is active only at byte 1, σ(Θ) is active
at byte 4. As a consequence, γ is only active at byte 1 or bytes 1 and 0 according to P3,
while at least three of bytes 0, 5, 10, and 15 of ζ1 and β are active according to M1,ζ1 and
M2,ζ1 . It implies that at least two bytes outside the active ⊞16-block of σ(Θ) are active,
which contradicts Constraint 6.

2. Θ has two active bytes.

This case can be further classified into three small cases.
Case 2.1 The active bytes of Θ are in the same row

When the two active bytes of Θ are in the same row, γ will activate two ⊞16-blocks
located in different columns, and there are one or two active bytes in each column according
to P3. As a result, ζ1 has 2× 3 to 2× 4 active bytes, and these bytes will be distributed in
three or four different columns according to Table 4. This indicates that the active bytes
of β are spread over at least three active columns based on M1,ζ1 . However, the two active
bytes of σ(Θ) are located in one active column, which contradicts Constraint 6. Therefore,
this case will not happen.

Figure 4 presents an example of this case when Θ is active at bytes 1 and 5, then σ(Θ)
will be active at bytes 4 and 5. γ has 2 ∼ 4 active bytes according to P3 and ζ1 should
have at least three active bytes in bytes 0, 5, 10, and 15 and three active bytes in bytes 3,
4, 9, and 14. As a consequence, at least two active bytes are outside the active ⊞16-block
of σ(Θ), which contradicts Constraint 6.

Figure 4: An example when Θ has two active bytes located in the same row

Case 2.2 The two active bytes of Θ are in the same column
In this case, the active bytes of Θ can be located within one single ⊞16-block or two

⊞16-blocks in the same column, i.e., nac(γ) = 1. Meanwhile, the two active bytes of
σ(Θ) are in two ⊞16-blocks in the same row. According to P3, γ has only one active
column, then ζ1 and β have active bytes in different columns. Then we get that ζ1 and
β have the same active byte positions, and each active column contains one active byte
according to M1,ζ1 . As σ(Θ) are active at two columns, β can have one or two active
bytes according to Constraint 6, then the two active bytes of Θ are in different ⊞16-blocks.
Otherwise, γ will only have two active bytes, and ζ1, β will have active bytes in at least
three columns. Therefore, the number of active bytes in γ is three or four, and we get that
num⊞(N1 ⊕ P3) = 5 × nac(γ) = 5 × 1 = 5, num⊞(N2 ⊕ P4) = 5 × nac(h) = 5 × 2 = 10.
Then

num⊞(N1 ⊕ P3) + num⊞(N2 ⊕ P4) = 15.



154 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

As σ(Θ) has two active ⊞16-blocks located in two columns, h and ξ each will have
1 ∼ 2 active bytes at these two columns, then α and ζ2 will each have six active bytes in
the best case. Therefore, numS(N2 ⊕ P4) = 2× 6 = 12.

When γ has three active bytes, M2,ζ1 can introduce two S-boxes, in this case numS(N1⊕
P3) + numS(N2 ⊕ P4) = 2 + 12 = 14. Figure 5 presents the possible cases when the two
active bytes of Θ are in the lower and higher positions of two ⊞16-blocks, respectively. We
have numS(N1 ⊕ P3) = 2.

When γ has four active bytes, the active bytes of Θ should be in the high positions
of the two ⊞16-blocks, and M2,ζ1 can introduce only one S-box. In this case numS(N1 ⊕
P3) + numS(N2 ⊕ P4) = 1 + 12 = 13. The column 1 of β ⊕ ξ contains two active bytes
according to Figure 6. We have numS(N1 ⊕ P3) = 2.

Figure 5: Different cases when the two active bytes of Θ are at the low and high byte
positions of two ⊞16-blocks

Figure 6: Different cases when the two active bytes of Θ are at the higher byte positions
of two ⊞16-blocks

Case 2.3 The two active bytes of Θ are in the different columns and rows
If the two active bytes of Θ are located in different rows and columns, the active bytes

of γ are distributed across two ⊞16-blocks, each with one or two active bytes. ζ1 and β
have 2× (3 ∼ 4) active bytes located in least three columns according to Table 4. However,
the active bytes of β are distributed in at most two columns as σ(Θ) are located in two
columns. Therefore, this case will not happen.

Figure 7 illustrates one example of this case. When bytes 4 and 13 of Θ are active,
γ contains two active ⊞16-blocks. Thus, the active bytes of β are distributed in at least
three columns. However, bytes 1 and 7 of σ(Θ) are active, and β is only active in columns
0 and 1, which results in a contradiction.



Yinuo Liu, Jing Yang and Tian Tian 155

Figure 7: An example when the two active bytes of Θ are in different rows and columns

3. Θ has three active bytes.

Case 3.1 The active bytes of Θ are in the same column
If the three active bytes of Θ are in the same column, three active bytes of σ(Θ) would

be in the same row. Therefore, γ has one active column with 3 ∼ 4 active bytes and at
least two ⊞16-blocks are activated in P3. We note that we always assume γ has more
active bytes than Θ in one ⊞16-block based on the analysis in Section 3.2.2. Besides, three
⊞16-blocks will be activated in P4, and h will have three active columns with one or two
active bytes in each column. As a consequence, ζ1 would have at least one active byte
based on M2,ζ1 , and α and ζ2 can each have 3× 3 = 9 S-boxes.

We can then compute that num⊞(N1⊕P3) + num⊞(N2⊕P4) = 5×1 + 5×3 = 20, and
numS(N1 ⊕ P3) + numS(N2 ⊕ P4) = 1 + 9 + 9 = 19. As the two numbers are both much
higher than those in Case 2.2, respectively, we conjecture that the correlation would be
lower than that derived there, and we do not dig deep into this case.

Case 3.2 The active bytes of Θ are located in at least two columns
If the three active bytes of Θ are located in at least two columns, γ would have at

least one active ⊞16-block in each column. Besides, at least one column has 1 ∼ 2 active
bytes. Then β has at least three bytes spread over at least three columns according to
N1. As a result, the three active bytes of σ(Θ) are distributed across three columns.
Otherwise, it contradicts Constraint 6. Then h and ξ both have three active columns
each with 1 ∼ 2 active bytes, and introduce at least 3× 3× 2 = 18 S-boxes in total. In
a better case, γ can have only two columns, one with 1 ∼ 2 active bytes and the other
with 2 ∼ 4 active bytes. Then ζ1 can introduce at least 3 + 1 = 4 active S-boxes. We have
num⊞(N1⊕P3)+num⊞(N2⊕P4) = 5×2+5×3 = 25, numS(N1⊕P3)+numS(N2⊕P4) =
4 + 18 = 22. We refuse it because the numbers are much higher than those in Case 2.2.

4. Θ has four active bytes.

Case 4.1 The active bytes of Θ are in the same column
When the four active bytes of Θ are in the same column, γ has one active column with

2 ∼ 4 active bytes according to P3. σ(Θ) has four active bytes located in four different
columns. Thus, h has four active columns, and each column has 1 ∼ 2 active bytes
according to P4. Therefore, α and ζ2 each has at least 3× 4 active bytes, and ζ1 has at
least one active byte according to M2,ζ1 .

Then we can compute that num⊞(N1 ⊕ P3) + num⊞(N2 ⊕ P4) = 5× 1 + 5× 4 = 25,
and numS(N1 ⊕ P3) + numS(N2 ⊕ P4) = 1 + num(α) + num(ζ2) = 1 + 12 + 12 = 25. We
do not dig into this case as these numbers are much higher than those in Case 2.2, and
the correlation is expected to be lower.

Case 4.2 The active bytes of Θ are located in two columns
If the four active bytes of Θ are located in two columns, γ would have two active

columns. The optimal case is that each column of γ has four active bytes and introduces
only one S-box in M2,ζ1 ; therefore, the theoretical minimum value of num(ζ1) is two, as
illustrated in Figure 8. Linear mask h can also have only two active columns; each column



156 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

has 2 ∼ 4 active bytes. Therefore, the minimums of num(ζ1), num(α), and num(ζ2) are
all two.

Figure 8: An example when the four active bytes of Θ are located in two columns

We have num⊞(N1⊕P3) +num⊞(N2⊕P4) = 5×2 +5×2 = 20, and numS(N1⊕P3) +
numS(N2 ⊕ P4) = 2 + num(α) + num(ζ2) = 2 + 2 + 2 = 6. The value num⊞(N1 ⊕ P3) +
num⊞(N2⊕P4) is larger than that in Case 2.2, however, numS(N1⊕P3)+numS(N2⊕P4)
is smaller than that in Case 2.2, so we also take it into account for further exploration.

Case 4.3 The active bytes of Θ are located in three or more active columns
When the active bytes of Θ are located in three or more active columns, γ will have at

least three active columns, and at least one column has only one ⊞16-block. As a result,
the active bytes of β will be spread over at least three columns. Therefore, σ(Θ) and h will
have three active columns. Then num⊞(N1 ⊕ P3) + num⊞(N2 ⊕ P4) ≥ 5× 3 + 5× 3 = 30.
As γ, h, and ξ all have three active columns, even if each column only introduces one active
S-box, the total number of S-boxes would be 9. The numbers are already higher than
those in Case 4.2; therefore, we do not dig into this case.

5. Θ has five or more active bytes.

When Θ has five or more active bytes, these bytes will be located in two or more columns,
and the sum of nac(γ) and nac(h) cannot be less than five. If we calculate num⊞(N1⊕P3)
and num⊞(N2 ⊕ P4), their sum would be not less than 5× 2 + 5× 3 = 25. The minimum
value of num(ζ1) is two as γ has at least two active columns, while num(α) and num(ζ2)
are both larger than two as h and ξ also have at least two active columns. Therefore,
numS(N1⊕P3)+numS(N2⊕P4) > 6. We do not dig into this case because these numbers
are higher than those in Case 4.2.

In summary, we can mainly focus on digging into Case 2.2 and Case 4.2, and other
cases can be sifted out as they are likely to have lower correlations.

3.4 Experimental Results
3.4.1 Case 2.2

We take the first case in Figure 6 as an example to describe the process for searching
high-quality linear masks for Case 2.2. We first note that the correlations of linear
approximations of different 16-bit modular additions or S-boxes can be computed in
parallel.
Step 1. Determine the initial range of active columns of γ according to the
analysis in Section 3.3.

In Figure 6, when Θ has two active bytes located in column 1, γ has one active column
and 2 ∼ 4 active bytes among bytes 4, 5, 6, 7. Therefore, γ can take one of the 255
candidates according to Equation (7) to only activate one S-box in M2,ζ1 , i.e., ζ1 and β
have only one active byte.
Step 2. Choose γ and n according to |c(P3)|

For every 255 possible choices of γ determined in Step 1, we introduce Algorithm 1
to choose good candidates of γ and n according to |c(P3)|. For example, when we choose



Yinuo Liu, Jing Yang and Tian Tian 157

γ = 0x81ec5a80, the two active bytes of Θ are limited to the 5-th and 7-th positions;
otherwise, c(P3) becomes zero. Algorithm 1 computes the correlation of a ⊞16-block based
on Figure 2 under given input and output linear masks. We note that the high ⊞16-block
and the low ⊞16-block in one column can be computed in parallel. We store the pairs of
γ and n that introduce the 1490 highest values of c(P3). The complexity of this step is
255× 216 × 28 ≈ 232.
Step 3. Select γ, n, h and β ⊕ ξ according to |c(N3)|

As σ(Θ) has two active bytes located in two columns, h contains two active bytes
in one column, and each column introduces three active bytes in α. Every such three
active bytes of α can have four possibilities of locations, and each possibility can have 255
values (three byte positions are fixed, and the remaining position can have any non-zero
value). We obtain the initial candidates of h and ξ through Equation (6) according to
the possible active positions of α. There are 4 × 2552 possibilities as h and ξ have the
same active positions. For every combination of h, ξ and γ, n, we exhaust Θ to compute
c(N3) =

∑
Θ c(P3)c(P4). We then select and store the candidates γ, n, h, β and ξ that give

decent |c(N3)|. We note that here we make the constraint that the active byte of β has
the same value as the corresponding byte of ξ to restrict the searching space. This is also
conformed to the heuristic observation that the correlation would be higher when the
active bytes are fewer in P4. The complexity of this step is 4× 2552 × 1490× 28 ≈ 236.5.
Step 4. Select candidates of m based on |c(N1)|

Given β and γ values selected in Step 3, we use Algorithm 1 to select m that gives
decent |c(N1)|.
Step 5. Select candidates of α and l based on |c(N2)|

For each pair of h and ξ (columns 1 and 3 of h have 1 and 2 possibilities, and columns
1 and 3 of ξ have 24 and 2 possibilities, respectively, in the stored table derived in Step
3), we select good candidates of α and l according to |c(N2)|. Given the values of h, we
exhaust the active byte of α and compute c(P1). After that we exhaust the same active
byte of l and ζ2 to compute c(N2) using c(N2) = c(P1)c(P2) = c(P1)

∑
ζ2

c(M3,ζ2)c(M4,ζ2).
We select high-quality α and l based on |c(N2)|. The active 16-bit modular additions
in M3,ζ2 typically only have one active byte each, and P1 and M4,ζ2 can be divided into
byte linear approximations as well. Therefore, we can search the linear masks in bytes in
parallel, and the complexity is around 3× 26× 224 ≈ 230.3.
Step 6. Determine γ, n, h, ξ, β, m, α, and l based on |c(N)|

Compute c(N) = c(N1)c(N2)c(N3) and choose decent γ, n, h, ξ, β, m, α, and l.

Through the steps above, the optimal result derived for this case is as below:

γ = 0, 0, 0x81ec5a80, 0
n = 0, 0, 0x81e85a00, 0
h = 0xe1a0, 0, 0x7f40, 0
ξ = 0x8180, 0, 0x7f40, 0
β = 0, 0, 0x40, 0
m = 0, 0, 0x40, 0
α = 0x2, 0xc0006000, 0x20041, 0xb0000000
l = 0x2, 0x80006000, 0x20061, 0xf0000000

c(N1) = −2−4.11126, c(N2) = −2−42.0545, c(N3) = −2−21.50815,

and
c(N) = −2−67.67.

Comments about the dominant trail. We find that the linear trail we derive has a
dominant role in contributing to the correlation. Actually, the total correlation should



158 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

be computed by c(N) = c(N1)
∑

ξ c(N2)
∑

Θ c(P3)c(P4), i.e., we have two internal linear
masks, Θ and ξ. We can handle the two linear masks differently. Now we assume that the
outer masks α, β, γ, n, h, l, and m are fixed, and check the correlations of the other linear
trails under the same outer linear masks. If Θ only has active bytes 5 and 7, then we
have c(N3) ̸= 0; otherwise, c(N3) = 0. When computing the correlation of c(N3), we have
actually already exhausted Θ, so we only need to consider the other linear trails introduced
by ξ. Since h = 0xe1a0, 0, 0x7f40, 0, the active bytes of α and ζ2 are bytes 3, 4, 6, 9, 11,
and 12. Therefore, the range of all possible values of ξ in one column would shrink to 255
values. We compute |c(N2)c(N3)| for all the 255× 255 ξ values, and observe that there
exists one trail of which the correlation is much higher than others, which is exactly the
one we derived. The suboptimal linear trail is obtained when ξ = 0xe1a0, 0, 0x7f40, 0, and

c(N2) = 2−43.17286, c(N3) = −2−27.09346, c(N) = 2−74.38.

One can see that the suboptimal linear trail has a much lower correlation than the one we
derived.

3.4.2 Case 4.2

When Θ has four active bytes, Figure 8 is likely to be the best case. In this case, the active
byte positions of Θ and σ(Θ) are the same, and thus, γ and h can have two full columns
(columns 1 and 3) to introduce as few S-boxes as possible. We now focus on one part of
the linear masks as below:

γ47 · · · γ40, γ39 · · · γ32,

n47 · · ·n40, n39 · · ·n32,

Θ47 · · ·Θ40, 00000000
σ(Θ)47 · · ·σ(Θ)40, 00000000,

h47 · · ·h40, h39 · · ·h32,

(β ⊕ ξ)47 · · · (β ⊕ ξ)40, (β ⊕ ξ)39 · · · (β ⊕ ξ)32.

Formats of bytes 4 of γ and h, n and β ⊕ ξ should be similar according to the automaton
in Figure 2 since Θ47 · · ·Θ40 = σ(Θ)47 · · ·σ(Θ)40. Byte 4 of γ is equivalent to byte 4 of h
for optimizing c(N3). As a result, the first columns of h and γ are identical if they target
to activate as few S-boxes as possible, as if one byte is fixed, only one of the 255 values
derived from Equation (7) is satisfied.

Similarly, bytes 14 of γ and h act the same in the automaton, then the third columns
of γ and n are identical. Therefore, we have γ = h, and furthermore, α and ζ1 have the
similar active byte positions. Besides, α and ζ2 have the similar active byte positions in
every active ⊞16-block. Therefore, we conjecture that ξ also has the similar format as h
and γ. Our experiments also verified this, and this case introduces a dominant correlation.

The procedure for searching linear masks is similar to those in Section 3.4.1, with the
constraint γ = h = ξ. We derive the optimal result of this case as below.

γ = 0x2161a1e0, 0, 0x81ec5a80, 0
n = 0x2161c1c0, 0, 0x81e85a00, 0
h = 0x2161a1e0, 0, 0x81ec5a80, 0
ξ = 0x2161a1e0, 0, 0x81ec5a80, 0
β = 0x20, 0, 0x40, 0
m = 0x30, 0, 0x40, 0
α = 0x1, 0, 0xc, 0
l = 0x1, 0, 0x8, 0



Yinuo Liu, Jing Yang and Tian Tian 159

We have
c(N1) = −2−9.0238, c(N2) = 2−13.7008, c(N3) = −2−52.205903,

and
c(N) = 2−74.93.

Comparison. The linear approximations in Case 2.2 and Case 4.2 actually represent
two different tradeoffs between the numbers of active S-boxes and 16-bit modular additions,
as listed in Table 3.

Table 3: Numbers of active S-boxes and 16-bit modular additions

N1 N2 P3 P4 total
Case 2.2 1 S-box, 1 ⊞16 12 S-boxes, 6 ⊞16 2 ⊞16 2 ⊞16 13 S-boxes, 11 ⊞16
Case 4.2 2 S-box, 2 ⊞16 4 S-boxes, 2 ⊞16 4 ⊞16 4 ⊞16 6 S-boxes, 12 ⊞16

In Case 2.2, Θ has only two active bytes located at the higher byte positions of the
two ⊞16-blocks in column 1, as illustrated in Figure 6. Therefore, P3 and P4 both have two
full active ⊞16-blocks. Linear mask γ is chosen to be one of the 255 values and full active
in the specific column to only active one S-box in N1. ξ and h both have two active bytes
in columns 1 and 3, and each introduces six S-boxes in P1 and P2, respectively. Therefore,
this case is more likely to make the correlation of the ⊞16-blocks higher.

While in Case 4.2, Θ has four active bytes located at the higher byte positions of all
the ⊞16-blocks in columns 1 and 3, as illustrated in Figure 8. γ, h and ξ are full active
in these two columns and taking values among the specific 255 choices to minimize the
numbers of S-boxes. Therefore, N1, P1, and P2 each has only two active S-boxes. In total,
there are only six active S-boxes in this case. On the other hand, P3 and P4 both have
four full active ⊞16-blocks. Therefore, this case is more likely to minimize the number of
active S-boxes instead.

3.4.3 Comparison with the results in [MJS+23]

The best linear trail found in [MJS+23] has a correlation of 2−75.82, and our results improve
it by a factor of 28.15. The main fact allowing for this improvement is attributed to the
larger space of linear masks we have considered. The linear trail derived in [MJS+23] is
from automatic searching, while the searching space is too large to be exhausted. Therefore,
the results in [MJS+23] are derived from a restricted searching space. Our analysis mainly
relies on theoretical analysis and traverses the different cases of a critical linear mask (and
correspondingly, the overall linear masks), which is the main reason that introduces better
trails.

3.5 Correlation Attack against SNOW 5G
We now use the linear approximation of correlation c(N) = −2−67.67 derived in Section 3.4
to launch a correlation attack against SNOW 5G. The linear approximation can be
expressed as α · z(t−1)⊕β · z(t)⊕ γ · z(t+1)⊕ l ·T (t−1)

1 ⊕m ·T (t)
1 ⊕n ·T (t+1)

1 ⊕h ·T (t)
2

c(N)= 0.
A correlation attack tries to recover the key (the initial state after the initialization in
the SNOW 5G case) by exploring such a correlation between the keystream and the
output of the LFSR states. It is usually modeled as a decoding problem over Fn

2 with the
observed and reconstructed keystream symbols as a noisy version of the LFSR symbols
through a discrete memoryless channel with a non-uniform noise which is related to the
approximation noise.

Denote the initial state after the initialization as u = (u511, u510, . . . , u0) and a guessed
value of it as û = (û511, û510, . . . , û0). Let L be the number of keystream words generated



160 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

under a pair of key and IV. Each state bit of the LFSRs at any clock can be expressed as
a linear combination of the initial state u according to the feedback polynomials of the
LFSRs. Therefore, one can always find Γ(t) ∈ F512

2 such that Γ(t) · u = l · T (t−1)
1 ⊕m ·

T
(t)
1 ⊕ n · T (t+1)

1 ⊕ h · T (t)
2 for 1 ≤ t ≤ L− 1, where l, m, n, h are the linear masks that we

found. We can then construct a sample using the guessed initial state û at clock t as

Φt(û) = α · z(t−1) ⊕ β · z(t) ⊕ γ · z(t+1) ⊕ Γ(t) · û
= α · z(t−1) ⊕ β · z(t) ⊕ γ · z(t+1)

⊕ l · T (t−1)
1 ⊕m · T (t)

1 ⊕ n · T (t+1)
1 ⊕ h · T (t)

2 ⊕ Γ(t) · (u⊕ û).

We collect a sufficient number of such samples at different clocks and derive the empirical
distribution of the sample sequence. The distribution would behave biased with correlation
around c(N) = −2−67.67 if the guessed value of the initial state û is correct, otherwise, it
will be random-like.

The correlation attack is typically divided into two stages: a preprocessing stage to
explore and generate as many parity check equations as possible; and an online processing
stage during which the decoding is performed using the collected parity checks. We follow
the process of the correlation attack in [SJZ+22] to recover the initial state after the
initialization. As the procedure of the correlation attack is not our main contribution, we
refer to [SJZ+22] for more details.

Preprocessing Stage

Solving the decoding problem over Fn
2 involves high complexity when n is large, and the

classical solution to it is to transform the decoding problem to a much smaller finite field
FB

2 , where B < n. Let the most significant B bits of the binary vectors u and Γ(t) be uh

and Γ(t)
h , respectively. Similarly, the corresponding lower 512 − B bits are respectively

denoted by ul and Γ(t)
l . For the expression (Γ(t1) ⊕ Γ(t2)) · u, 1 ≤ t1 < t2 ≤ L− 1, we can

express it as the XOR of the higher and lower parts

(Γ(t1) ⊕ Γ(t2)) · u = (Γ(t1)
h ⊕ Γ(t2)

h ) · uh ⊕ (Γ(t1)
l ⊕ Γ(t2)

l ) · ul. (8)

During the preprocessing stage, we target to find 2-tuple clocks t1 and t2 such that
Γ(t1)

l = Γ(t2)
l , and then (Γ(t1)⊕Γ(t2)) ·u = (Γ(t1)

h ⊕Γ(t2)
h ) ·uh. In this case, the lower 512−B

bits of u are canceled. We can compute and store each Γ(t) ∈ F512
2 for 1 ≤ t ≤ L − 1,

and the time and memory complexities of this process are both O(L). After that, we
apply the fast sorting algorithm to sort Γ(t) satisfying Γt1

l = Γt2
l with time complexity

O(L + L log2 L). We can then collect new samples involving only the highest B bits of the
initial state as below:

T (ûh) = α · (z(t1−1) ⊕ z(t2−1))⊕ β · (z(t1) ⊕ z(t2))⊕ γ · (z(t1+1) ⊕ z(t2+1))

⊕ (Γ(t1)
h ⊕ Γ(t2)

h ) · ûh.

The expression on the right side denotes a parity check that would be correlated to 0
with correlation c2(N) if the most significant B bits are guessed correctly. If one can
collect enough parity checks, it is possible to recover the highest B bits, and the remaining
512−B bits can be recovered either from guessing or using the same decoding techniques.

We can first get the number of required parity checks M for successful decoding
using existing results [ZXM15], and further get the length of the keystream L required to
generate the parity checks. Since the probability of Γ(t1)

l = Γ(t2)
l is 2−(512−B), the expected

number of parity checks with Γ(t1)
l = Γ(t2)

l among C2
L pairs of Γ(t) is M = C2

L2−(512−B) ≈
2−(513−B)L2.



Yinuo Liu, Jing Yang and Tian Tian 161

We compute and store each Γ(t) ∈ F512
2 for 1 ≤ t ≤ L− 1, and the time and memory

complexities of this process are both O(L). After that, we apply the fast sorting algorithm
to sort Γ(t) satisfying Γt1

l = Γt2
l with time complexity O(L + L log2 L). We can then build

a number of parity checks by combining any two items having the same low 512−B bits
in the table. The total time complexity of the preprocessing stage is O(L + L log2 L), and
the data and memory complexities are both O(L).

Processing Stage

With enough parity checks collected, this stage targets to recover the most highest B bits
of the initial state. The basic idea is to check the balancedness of the empirical distribution
of the constructed sample sequence T (ûh) for each guess ûh.

Among the M parity check equations, we denote the j-th one as T (ûh)j , for 1 ≤ j ≤M .
For each guessed value ûh ∈ FB

2 ,we construct the statistic

I(ûh) =
M∑

j=1
(−1)T (ûh)j

and predict ûh that maximizes I(ûh) as the correct one.
We can compute I(ûh) through Fast Walsh Transform (FWT) for each guessed value

ûh ∈ FB
2 as done in [SJZ+22] with time complexity O(B2B + M). When B > log2 M , the

processing phase can be further accelerated by classifying M parity check equations and
exhausting the least significant (B − ⌈log2 M⌉)-bit initial state [SJZ+22]. In this case, the
time complexity is 2B(⌈log2 M⌉+ 1). The memory complexity of this stage is O(2B).

The total time complexity of the attack is O(L + L log2 L + 2B(⌈log2 M⌉ + 1)), the
data complexity is O(L), and the memory complexity is O(max(L, 2B)). The success
probability of the decoding under different numbers of parity checks can be derived using
the results in [Sel08].

Under the success probability ps = 0.999992, we tried different choices of B and derived
that when B = 262, L = 2265.4, M = 2279.8, the total complexity is the lowest. In this case,
the total time, memory, and data complexities are 2279.8, 2265.5, and 2265.4, respectively.

4 Conclusion and Future Work
This paper presents theoretical linear cryptanalysis of SNOW 5G, the candidate of in-
ternational standard for confidentiality and integrity protection in 5G. Different from
existing linear cryptanalysis techniques that typically rely on automatic searching tools or
linear approximation tables, we perform the analysis from the theoretical point of view.
Specifically, we divide the linear approximation into small components and investigate the
connections and constraints between the linear masks. With the analysis, we derive the
formats of high-quality linear masks and further employ a divide-and-conquer method to
search for them. We find a linear approximation that gives a correlation of −2−67.67 and
further use it to launch a correlation attack against SNOW 5G with complexity 2279.8.

Our results are the best cryptanalysis results of SNOW 5G till now, and more im-
portantly, the results provide more insights into the security of SNOW 5G through the
theoretical analysis. Our next step is to apply the methods to other SNOW-family ciphers.

Acknowledgments
This work was supported by the National Natural Science Foundation of China under
grant numbers 62202492 and 62372464.



162 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

References
[3GP03] 3GPP. Specification of the SNOW 5G based 256-bits algorithm set: specifica-

tion of the 256-NEA4 encryption, the 256-NIA4 integrity, and the 256-NCA4
authenticated encryption algorithm for 5G; document 1: algorithm specification
(release 18). 2024-03.

[3rd] 3rd generation partnership project; technical specification group services and
system aspects; security aspects for inter-access mobility between non 3GPP
and 3GPP access network (release 8).

[EJMY19] Patrik Ekdahl, Thomas Johansson, Alexander Maximov, and J. Yang. A new
SNOW stream cipher called SNOW-V. IACR Trans. Symmetric Cryptol.,
2019:1–42, 2019.

[EMJY21] Patrik Ekdahl, Alexander Maximov, Thomas Johansson, and Jing Yang. Snow-
vi: an extreme performance variant of snow-v for lower grade cpus. In Pro-
ceedings of the 14th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, pages 261–272, 2021.

[GZ21] Xinxin Gong and Bin Zhang. Resistance of SNOW-V against fast correlation
attacks. IACR Trans. Symmetric Cryptol., 2021:378–410, 2021.

[HII+22] Jin Hoki, Takanori Isobe, Ryoma Ito, Fukang Liu, and Kosei Sakamoto. Dis-
tinguishing and key recovery attacks on the reduced-round SNOW-V and
SNOW-Vi. Journal of Information Security and Applications, 65:103100, 2022.

[JHL23] Lin Jiao, Yonglin Hao, and Yongqiang Li. Guess-and-determine attacks on
SNOW-Vi stream cipher. Designs, Codes and Cryptography, 91(5):2021–2055,
2023.

[JLH20] Lin Jiao, Yongqiang Li, and Yonglin Hao. A guess-and-determine attack on
SNOW-V stream cipher. Comput. J., 63:1789–1812, 2020.

[lia11] ETSI SAGE liaison. S3-183756: specification of the 256-bit air interface
algorithms. 2022-11.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Workshop
on the Theory and Application of of Cryptographic Techniques, pages 386–397.
Springer, 1993.

[MJ05] Alexander Maximov and Thomas Johansson. Fast computation of large dis-
tributions and its cryptographic applications. In Advances in Cryptology-
ASIACRYPT 2005: 11th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Chennai, India, December 4-8,
2005. Proceedings 11, pages 313–332. Springer, 2005.

[MJS+23] Sudong Ma, Chenhui Jin, Zhen Shi, Ting Cui, and Jie Guan. Correlation
attacks on SNOW-V-like stream ciphers based on a heuristic MILP model.
IEEE Transactions on Information Theory, 2023.

[NW06] Kaisa Nyberg and Johan Wallen. Improved linear distinguishers for SNOW 2.0.
In Fast Software Encryption Lecture Notes in Computer Science 4047, 2006.

[Sel08] Ali Aydin Selçuk. On probability of success in linear and differential cryptanal-
ysis. Journal of Cryptology, 21:131–147, 2008.



Yinuo Liu, Jing Yang and Tian Tian 163

[SJZ+22] Zhen Shi, Chenhui Jin, Jiyan Zhang, Ting Cui, Lin Ding, and Yu Jin. A
correlation attack on full SNOW-V and SNOW-Vi. In Advances in Cryptology–
EUROCRYPT 2022: 41st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Trondheim, Norway, May 30–June
3, 2022, Proceedings, Part III, pages 34–56. Springer, 2022.

[SJZ+23] Zhen Shi, Chenhui Jin, Jiyan Zhang, Ting Cui, Lin Ding, and Yu Jin. A
general correlation evaluation model on LFSR-based stream ciphers. IEEE
Transactions on Information Theory, 2023.

[Tea] ZUC Design Team. A new initialization scheme of the ZUC-256 stream cipher.

[YJ20] Jing Yang and Thomas Johansson. An overview of cryptographic primitives
for possible use in 5G and beyond. Sci China Inf Sci, 63(12):1–22, 2020.

[YJM19] Jing Yang, Thomas Johansson, and Alexander Maximov. Vectorized linear
approximations for attacks on SNOW 3G. IACR Transactions on Symmetric
Cryptology, pages 249–271, 2019.

[YJM21] Jing Yang, Thomas Johansson, and Alexander Maximov. Improved guess-and-
determine and distinguishing attacks on SNOW-V. IACR Trans. Symmetric
Cryptol., 2021:54–83, 2021.

[ZFZ22] Zhaocun Zhou, Dengguo Feng, and Bin Zhang. Efficient and extensive search for
precise linear approximations with high correlations of full SNOW-V. Designs,
Codes and Cryptography, 90(10):2449–2479, 2022.

[ZXM15] Bin Zhang, Chao Xu, and Willi Meier. Fast correlation attacks over extension
fields, large-unit linear approximation and cryptanalysis of SNOW 2.0. In
Advances in Cryptology–CRYPTO 2015: 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I 35, pages
643–662. Springer, 2015.

A Linear approximations of modular additions [NW06]
Denote the input linear masks of a modular addition with k inputs as w(1), w(2), . . . , w(k)

and output linear mask as u. The correlation can be computed through the following
process. Let k > 1 be a fixed integer, and L and C are two constant vectors of dimension k,
where L = (1, 1, . . . , 1) and C = (1, 0, 0, . . . , 0). Let A0, A1, . . . , A2k+1−1 be 2k+1 matrices
of dimension k × k computed as below

(Ar)d,c = 2−k|x ∈ Fk
2 : u · g(x, c) = x · v, f(x, c) = d|

− 2−k|x ∈ Fk
2 : u · g(x, c) ̸= x · v, f(x, c) = d|,

where

r = u2k +
k∑

h=1
vh2h−1, v = (v1, . . . , vk), x = (x1, . . . , xk),

c, d ∈ {0, . . . , k − 1},

f : {0, . . . , k − 1}2 → {0, . . . , k − 1}, f(x, c) = ⌊(wH(x) + c)/2⌋,

g : {0, . . . , k − 1}2 → {0, 1}, g(x, c) = (wH(x) + c) mod 2.

The functions f and g are the carry and sum functions for the basic schoolbook method
for adding k integers in binary.



164 Theoretical Linear Cryptanalysis of the 5G Standard Candidate SNOW 5G

Theorem 1. [NW06] Let n ≥ 1 be an integer and let (u; w(1), . . . , w(k)) be a linear
approximation of addition modulo 2n with k inputs. Let z = zn−1 · · · z1z0 be the word
associated with the approximation. We then have

cor(u; w(1), . . . , w(k)) = LAzn−1 · · ·Az1Az0C.

When the modular addition has only two inputs (the SNOW 5G case), the correlation
can be computed using a much simpler way using the automaton proposed in [NW06]. In
this case, the correlation cor(u; w(1), w(2)) = L′A′

z15
· · ·A′

z1
A′

z0
C ′, L′ = (1, 1), C ′ = (1, 0)T .

Let Azi
= H2A′

zi
H−1

2 , 0 ≤ i ≤ 15, where H2 =
[

1 1
1 −1

]
is the 2 × 2 Hadamard

matrix. Additionally, the matrices L and C are transformed as L = L′H−1
2 and C = H2C ′,

respectively. The correlation of u, w(1), and w(2)) is obtained through cor(u; w(1), w(2)) =
LAz15 · · ·Az1Az0C, where L = (1, 0) and C = (1, 1)T , and

A0 = 1
2

[
2 0
0 1

]
, A1 = A2 = −A4 = 1

2

[
0 0
1 0

]
,

A7 = 1
2

[
0 2
1 0

]
, −A3 = A5 = A6 = 1

2

[
0 0
0 1

]
.

Let e0 = (1, 0) and e1 = (0, 1). We have

e0A0 = e0, e0A7 = e1,

e0Ai = 0, i ̸= 0, 7,

e1A0 = e1A5 = e1A6 = 1
2 e1,

e1A1 = e1A2 = e1A7 = 1
2 e0,

e1A3 = − 1
2 e1,

e1A4 = − 1
2 e0.

Therefore, the correlation LAz15 · · ·Az1Az0C computed by multiplying the matrices from
left to right can be described by the automaton in Figure 2.

B Different cases of active columns of VIII

When VIII has only one active column, MIII can have 1 ∼ 4 active bytes that are located
in different columns, and correspondingly, 1 ∼ 4 16-bit modular additions can be activated.

Table 4, Table 5, and Table 6 present the possible numbers of active bytes of MIII

(#MIII), located columns of these active bytes (#columns), and involved ⊞16 blocks
(#⊞16), when VIII have two, three, and four active columns, respectively.

Table 4: The possible numbers of active bytes and ⊞16 blocks when VIII have two active
columns

#MIII 2 3 4 5 6 7 8
#columns 1 ∼ 2 2 ∼ 3 3 ∼ 4 3 ∼ 4 3 ∼ 4 4 4

#⊞16 1 ∼ 2 2 ∼ 3 2 ∼ 4 3 ∼ 5 4 ∼ 6 5 ∼ 6 6

Table 5: The possible numbers of active bytes and ⊞16 blocks when VIII have three active
columns

#MIII 3 4 5 6 7 8 9 10 11 12
#columns 1 ∼ 3 2 ∼ 4 2 ∼ 4 2 ∼ 4 3 ∼ 4 3 ∼ 4 3 ∼ 4 4 4 4

#⊞16 2 ∼ 3 2 ∼ 4 3 ∼ 5 3 ∼ 6 4 ∼ 7 4 ∼ 8 5 ∼ 8 6 ∼ 8 7 ∼ 8 8



Yinuo Liu, Jing Yang and Tian Tian 165

Table 6: The possible numbers of active bytes and ⊞16 blocks when VIII have four active
columns

#MIII 4 5 6 7 8 9 ∼ 10 11 ∼ 12 13 ∼ 14 15 ∼ 16
#columns 1 ∼ 4 2 ∼ 4 2 ∼ 4 2 ∼ 4 2 ∼ 4 3 ∼ 4 3 ∼ 4 4 4

#⊞16 2 ∼ 4 3 ∼ 5 3 ∼ 6 4 ∼ 7 4 ∼ 8 5 ∼ 8 6 ∼ 8 7 ∼ 8 8

C Algorithm for computing the correlation of a linear ap-
proximation of the 16-bit modular addition

Algorithm 1 computes the correlation of a specific linear approximation of the 16-bit
modular addition under given linear masks. We can consider it as an implementation
of using the automation. The value of e is 0 or 1, corresponding to states e0 and e1,
respectively, in Figure 2. The variable flag corresponds to zi(0 ≤ i ≤ 15) in Figure 2, with
a range of values from 0 to 7.

Algorithm 1 The algorithm for computing the correlation of a linear approximation of
the 16-bit modular addition

1: Input: 16-bit linear masks a′, b′, and c′

2: Output: the correlation of a′ · (X ⊞16 Y )⊕ b′ ·X ⊕ c′ · Y
3: Initialize k ← 0, e← 0, sign← 0
4: for i from 15 to 0 do
5: compute flag = ai × 22 + bi × 2 + ci

6: if e = 0 then
7: if flag = 7 then
8: e = 1
9: else if flag = 0 then

10: e = 0
11: else
12: exit(0)
13: else
14: if flag = 3 or flag = 4 then
15: sign = sign + 1
16: if flag = 0 or flag = 3 or flag = 5 or flag = 6 then
17: e = 1
18: k = k + 1
19: else
20: e = 0
21: k = k + 1
22: return (−1)sign mod 2 × 2−k


	Introduction
	Preliminaries
	Notations and Definitions
	Brief Introduction to SNOW 5G

	Linear Cryptanalysis of SNOW 5G
	Linear Approximations and Division of Noises
	The Patterns of High-quality Linear Masks
	Divide-and-Conquer Method to Search for High-quality Linear Masks
	Experimental Results
	Correlation Attack against SNOW 5G

	Conclusion and Future Work
	Linear approximations of modular additions 2006Improved
	Different cases of active columns of VIII
	Algorithm for computing the correlation of a linear approximation of the 16-bit modular addition

