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Abstract. This paper examines the security of Rocca, an authenticated encryption
algorithm designed for Beyond 5G/6G contexts. Rocca has been revised multiple
times in the initialization and finalization for security reasons. In this paper, we study
how the choice of the finalization affects the overall security of Rocca, covering key
recovery, universal forgery, and committing attacks. We show a key-recovery attack
faster than the exhaustive key search if a linear key mixing is used in the finalization.
We also consider the ideally secure keyed finalization, which prevents key-recovery
attacks. We show that, in the nonce-misuse setting, this does not prevent universal
forgery with a practical data complexity, although the time complexity is high. Our
result on committing attacks shows that none of the versions of Rocca considered in
this paper is secure. We complete our analysis by presenting a concrete example of
colliding inputs against the designers’ latest version of Rocca in the FROB setting, a
strong notion of the committing security. Our analysis significantly improves the key
committing attack against Rocca shown in ToSC 2024(1)/FSE 2024.
Keywords: Rocca · key recovery · universal forgery · committing attacks

1 Introduction
Background. In the era of digitalization, with the rapid exchange of vast data volumes,
the advent of Beyond 5G/6G necessitates an encryption scheme that is both efficient
and secure. To realize such schemes, leveraging the AES [AES01] round function is a
promising approach since modern CPUs have AES-NI [Gue10] instruction set to accelerate
the encryption with the block cipher AES. Ciphers like AEGIS [WP13] and Tiaoxin-
346 [Nik14] are examples employing SIMD instructions and the AES round function.
Further efficiency improvement is observed in the round function identified by Jean and
Nikolić [JN16], outperforming AEGIS and Tiaoxin-346. Rocca [SLN+21], as introduced
by Sakamoto et al. in ToSC 2021(2)/FSE 2022, stands out as an authenticated encryption
designed for Beyond 5G/6G contexts. It also leverages the AES round function and
achieves promising speed and security.

Rocca is a nonce-based authenticated encryption with associated data (AEAD) scheme,
i.e., it provides both privacy and authenticity of messages, and authenticity of associated
data, with the use of a nonce. A nonce is a non-repeating value that is used to securely
encrypt multiple messages, and the use of a nonce has critical importance in its security.
Yet, its implementation, as evidenced in systems like WPA [VP17] and VoLTE [RKHP20],
reveals challenges, with instances of nonce repetition documented, highlighting a significant
security concern.
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Table 1: Comparison with several versions of Rocca

Version Key absorption ReferenceEnd of init. Beginning of fin.
Rocca-v1 ✗ ✗ [SLN+21]
Rocca-v2 ✓ ✓ [HII+22]
Rocca-v3 ✓ ✓ [SLN+22a]
Rocca-v4 ✓ ✗ [SLN+22b]

In ToSC 2022(3)/FSE 2023, Hosoyamada et al. showed vulnerabilities in Rocca [HII+22].
They first showed a state-recovery attack that recovers the internal state of Rocca and
works practically in the nonce-misuse setting, in which the attacker can repeat using the
same nonce multiple times. In the nonce-respecting setting, the state-recovery attack works
by making 2128 decryption queries. Once the internal state is recovered, the structure
of Rocca allows the attacker to recover the secret key. Rocca has a key of 256 bits,
and this breaks the designers’ security claim regarding key recovery. Hosoyamada et
al. also suggested countermeasures, and one of them is to XOR the key at the end of
the initialization and at the beginning of the finalization. To make it distinct from the
original Rocca, we call the original version Rocca-v1, and the version by Hosoyamada et
al. Rocca-v2. The countermeasure of Rocca-v2 cannot prevent the state-recovery attack
itself. However, XORing the key at the end of the initialization counters the trivial
key-recovery attack after the state-recovery attack. XORing the key at the beginning
of the finalization counters the practical universal forgery attack after the state-recovery
attack.

In response to Hosoyamada et al.’s attack, the designers of Rocca updated the ePrint
version [SLN+22a] and adopted XORing the key at the end of the initialization and at the
beginning of the finalization. However, the subsequent ePrint version [SLN+22b] saw the
removal of XORing the key at the beginning of the finalization, raising security concerns.
We call the version in [SLN+22a] Rocca-v3, and the one in [SLN+22b] Rocca-v4. See
Table 1 for the versions of Rocca. This alteration made in Rocca-v4 maintains security
against the trivial key-recovery attack. However, under the nonce-misuse setting, it allows
a practical universal forgery attack.

It turns out that the choice of the finalization affects the overall security of Rocca. This
paper delves into the security implications of various versions of Rocca, focusing on the
risks associated with omitting XORing the key in the finalization phase, or more generally,
we study how the choice of the finalization function affects the overall security of Rocca
and clarify security trade-offs.

1.1 Our Contributions
We consider various versions of Rocca and present the security analysis in terms of key
recovery, universal forgery, and committing security. Rocca-v1, -v2, -v3, and -v4 all claim
256-bit security against key-recovery attacks and 128-bit security against forgery attacks
in the nonce-respecting setting, where the key length of these scheme are all 256 bits.
No security claim is made in the nonce-misuse setting, in the related-key setting, and
in the known-key setting. We consider not only four existing versions of Rocca but also
ones using an arbitrary linear key expansion in the finalization or an ideally secure keyed
finalization.

Key Recovery Attacks on Rocca-v2 and Rocca-v3. We start by analyzing the security of
versions of Rocca in [SLN+22a] and in [HII+22] with respect to key-recovery attacks. The
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state-recovery attack from [HII+22] still works on Rocca-v2 and Rocca-v3, and XORing
the key at the end of the initialization prevents a trivial key-recovery attack. The key
XORed at the beginning of the finalization is supposed to prevent forgery attacks. However,
we fully exploit the key XORed at the finalization to mount a key-recovery attack on both
Rocca-v2 and Rocca-v3. Our attack needs to run the state-recovery attack from [HII+22]
whose complexity is 220 in the nonce-misuse setting, and 2128 in the nonce-respecting
setting.

As a result, we show a key-recovery attack against Rocca-v2 and Rocca-v3 with a
complexity of 2128 in the nonce-misuse setting, and 2192 in the nonce-respecting setting.

Key Recovery and Universal Forgery Attacks on Rocca with Stronger Finalization. In
light of the key-recovery attacks against Rocca-v2 and Rocca-v3, a plausible countermeasure
would be to strengthen the finalization by applying a linear mapping over the key before
XORing it into the state. We call it “Rocca + any linear key mixing.” We show that
this still allows a key-recovery attack faster than the exhaustive key search. In order to
substantiate the attack, we design an algorithm to derive a message that interpolates two
internal states, i.e., given two internal states S and S′, our state-interpolation algorithm
returns a message M such that starting from S, after absorption of M , the internal state
becomes S′. The state-interpolation algorithm works with an offline complexity of 2160,
and our key-recovery attack uses the state-interpolation algorithm as a subroutine. The
overall complexity of our key-recovery attack is 2208 in the nonce-respecting setting.

It turns out that none of the linear key expansion prevents key-recovery attacks, and
then using the ideally secure keyed finalization is an option to avoid key-recovery attacks.
We call it “Rocca + ideal keyed finalization.” The key recovery is no longer trivial, and
we continue analyzing its security in terms of universal forgery, which is the strongest
notion of authenticity. We analyse this in the nonce-misuse setting. This setting has its
significance, as GCM [MV04] allows universal forgery attacks if a nonce is repeated [Jou06],
which is a practical concern [BZD+16]. In fact, its vulnerability in the nonce-misuse
setting is one of the reasons of the initiation of CAESAR [CAE], and is the starting point
of the efforts to build various robust AEAD schemes in the nonce-misuse setting, see
e.g., [GL15, PS16, ADL17].

We show that, even with the ideally secure keyed finalization, this still allows a universal
forgery attack in the nonce-misuse setting with a practical data complexity by making use
of the state-interpolation algorithm, while the time complexity is impractically high for
the use of the state-interpolation algorithm.

Committing Attacks. We next consider the security of Rocca with respect to committing
security, which is the notion formalized for AEAD by Farshim et al. [FOR17] under the
name of robust AE. The notion requires the infeasibility of an attacker to find two distinct
inputs that result in the same output. It has been observed that various real world
applications require this property, e.g., in end-to-end encrypted message systems [GLR17,
DGRW18], key rotation in key management services, envelope encryption, and Subscribe
with Google (SwG) [ADG+22], and Shadowsocks proxy servers and password-authenticated
key exchange (PAKE) [LGR21].

There are various security notions on the committing security [FOR17, CR22, BH22].
Let (K, N, A, M) be the input of AEAD, which is the key, nonce, associated data, and
the message, respectively, and let (C, T ) = EncK(N, A, M) be the output, where C is the
ciphertext and T is the tag. We write DecK(N, A, C, T ) = M or DecK(N, A, C, T ) = ⊥ for
its decryption. Following [BH22], the goal of an attacker is to find distinct (K, N, A, M)
and (K ′, N ′, A′, M ′) such that EncK(N, A, M) = EncK′(N ′, A′, M ′). In more detail,
the distinctness condition requires (K, N, A, M) ̸= (K ′, N ′, A′, M ′) in CMT-4 notion,
(K, N, A) ̸= (K ′, N ′, A′) in CMT-3 notion, and K ̸= K ′ in CMT-1 notion. We also
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Table 2: Complexity of key recovery and committing attacks against different versions of
Rocca. The key length is 256 bits for all the versions. O(1) denotes computation of a few
encryption.

key recovery committing attack
Version nonce-misuse nonce-respect FROB CMT-2 CMT-3

Rocca-v1 [SLN+21] 220 [HII+22] 2128 [HII+22] 216 216 O(1)
Rocca-v2 [HII+22] 2128 2192 - 216 O(1)
Rocca-v3 [SLN+22a] 2128 2192 - 216 O(1)
Rocca-v4 [SLN+22b] - - 216 216 O(1)
Rocca + any linear key mixing 2208 2208 - 216 O(1)
Rocca + ideal keyed finalization - - - 216 O(1)

consider the strong notion called FROB notion (full robustness notion) [FOR17]. The
notion is adapted to AEAD in [GLR17], and following [GLR17, MLGR23], the goal of the
adversary is to output (K, N, A), (K ′, N ′, A′), and (C, T ) such that DecK(N, A, C, T ) ̸= ⊥,
DecK′(N ′, A′, C, T ) ̸= ⊥, K ̸= K ′, and N = N ′. CMT-4 and CMT-3 notions are
equivalent, CMT-3 security implies CMT-1 security, and CMT-1 security implies FROB
security [BH22].

The committing security is studied in [DFI+24], covering AEGIS [WP13], Rocca-
S [ABC+23], Tiaoxin-346 [Nik14], and Rocca (Rocca-v1). The result on Rocca-v1 directly
applies to Rocca-v4, and is the FROB attack with a complexity of 2128. This exceeds
the generic complexity of 264, which is the birthday bound of the tag length, concluding
that Rocca-v1 has proven resistance to the attack presented in [DFI+24], and posing its
committing security as an open question.

We start by analysing CMT-3 security, focusing on the case K = K ′, N = N ′, and
A ≠ A′. By using the 7-round differential trail from zero to zero state difference shown
in [HII+22], we show a CMT-3 attack with a practical complexity. The attack works
regardless the choice of the finalization. In particular, we present a concrete example of
colliding inputs of Rocca-v3 [SLN+22a], practically breaking its committing security.

We next consider a CMT-2 attack, which is not formally defined in [BH22], but is
naturally defined as (K, N) ̸= (K ′, N ′) as the distinctness condition. We consider this
notion as the attack can be converted into CMT-1 and FROB attacks for schemes with
non-keyed finalization, i.e., Rocca-v1 and Rocca-v4. Starting from two distinct states,
we develop an algorithm to output distinct associate data such that after the absorption,
the resulting states collide. The complexity of the algorithm is 216. As a result, we have
a CMT-2 attack against all the versions of Rocca, and we also have FROB and CMT-1
attacks against Rocca-v1 and Rocca-v4. We experimentally verify the correctness of the
attack by presenting a concrete example of FROB attack against Rocca-v4. This result
significantly improves the FROB attack of 2128 complexity against Rocca-v1 in [DFI+24]
by a factor of 2112 into a practical one, and negatively solves the open question in [DFI+24].

See Tables 2 and 3 for the summary of our results.

1.2 Related Works
Rocca has already received various security analyses. Anand and Isobe evaluated the
security against differential fault attacks in the nonce-misuse setting [AI21]. This attack
results in a complete internal state recovery by injecting 4 × 48 faults. Bonnetain and
Schrottenloher analyzed quantum state-recovery attack in Q2 setting [BS23]. See [AI23] for
the implementation of the quantum circuit of Rocca. Shiraya et al. analyzed distinguishing
attacks on the initialization phase and keystream [STSI23]. Takeuchi et al. studied the
optimality of the round function of Rocca [TSI23a]. See [TSI23b] for the security evaluation
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Table 3: Complexity of universal forgery attacks against different versions of Rocca.
In the column of Version, “non-keyed finalization” refers to Rocca-v1 and Rocca-v4,
and “keyed finalization” refers to Rocca-v2, Rocca-v3, Rocca + any linear key mixing,
and Rocca + ideal keyed finalization. Results on “non-keyed finalization” directly follow
from [HII+22]. O(1) denotes a few encryption queries.

nonce-misuse nonce-respect
Version data time data time Ref.
non-keyed finalization 2 220 2128 2128 [HII+22]
keyed finalization 2128 2128 2128 2128 Generic complexity

O(1) 2160 Sect. 4.3.2

of the initialization of Rocca.

Organization of This Paper. In Sect. 2, we review the specification of Rocca. An overview
of the state-recovery in [HII+22] is given in Sect. 2.3. In Sect. 3, we present key-recovery
attacks against Rocca-v2 and Rocca-v3. In Sect. 4, we present the state-interpolation
algorithm and use the algorithm for key recovery against Rocca + any linear key mixing
and for nonce-misuse universal forgery against Rocca + ideal keyed finalization. We cover
committing attacks in Sect. 5, and conclude the paper in Sect. 6. Appendices A and B
show test cases of our committing attacks.

2 Preliminaries
In this section, we introduce the notation and present the specification of various versions of
Rocca. The original version was proposed at ToSC 2021(2)/FSE 2022 [SLN+21], and we call
it Rocca-v1 to make it distinct from other versions. At ToSC 2022(3)/FSE 2023 [HII+22],
Hosoyamada et al. presented attacks on Rocca-v1 and broke the security claim. In the same
paper, Hosoyamada et al. suggested tweaking the specification to XORing the secret key
at the end of the initialization and at the beginning of the finalization. We call the version
Rocca-v2. A similar tweak was adopted in the revised ePrint version of Rocca [SLN+22a].
We call the version Rocca-v3. Later, the ePrint version was again updated, where absorbing
the secret key at the beginning of the finalization was removed [SLN+22b]. We call the
version Rocca-v4. Table 1 summarizes the comparison of several versions of Rocca.

2.1 Specification of Rocca-v1 [SLN+21]
Notation. A block is defined as a 16-byte value. A block can be represented as a 4× 4
byte state matrix, expressed as

X =


X0,0 X0,1 X0,2 X0,3
X1,0 X1,1 X1,2 X1,3
X2,0 X2,1 X2,2 X2,3
X3,0 X3,1 X3,2 X3,3

 .

Each Xi,j represents one byte of data. The state of Rocca, denoted as S, is composed of 8
blocks as S = (S[0], S[1], . . . , S[7]), where for 0 ≤ i ≤ 7, S[i] is a 128-bit string. The state
at time t is written as St = (St[0], St[1], . . . , St[7]). Two 128-bit constant blocks Z0 and Z1
are defined as {

Z0 = 0x428A2F98D728AE227137449123EF65CD ,

Z1 = 0xB5C0FBCFEC4D3B2FE9B5DBA58189DBBC .
(1)
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A A A A

St [0] St [1] St [2] St [3] St [4] St [5] St [6] St [7]

St+1 [0] St+1 [1] St+1 [2] St+1 [3] St+1 [4] St+1 [5] St+1 [6] St+1 [7]

X1X0

Figure 1: The round function of Rocca

The function A(X) represents the AES round function without AddRoundKey, and is
defined as

A(X) = MixColumns ◦ ShiftRows ◦ SubBytes(X) ,

where MixColumns, ShiftRows, and SubBytes are the operations as defined in the specifi-
cation of the AES [AES01]. These operations are written as MC, SR, and SB, respectively.
For a byte X ∈ {0, 1}8, Sb(X) denotes the output of the AES S-box on X.

Additionally, |X| denotes the length of a bit string X in bits, 0l is the zero string of
length l bits, and X ∥ Y represents the concatenation of bit strings X and Y . Finally,
R(St, X0, X1) denotes the round function used to update the state St, where X0 and X1
are two input blocks.

The Round Update Function. The input of the round function R(St, X0, X1) of Rocca
consists of the state St and two blocks X0 and X1. The output St+1 ← R(St, X0, X1) is
computed as follows: 

St+1[0] = St[7]⊕X0

St+1[1] = A(St[0])⊕ St[7]
St+1[2] = St[1]⊕ St[6]
St+1[3] = A(St[2])⊕ St[1]
St+1[4] = St[3]⊕X1

St+1[5] = A(St[4])⊕ St[3]
St+1[6] = A(St[5])⊕ St[4]
St+1[7] = St[0]⊕ St[6]

See Fig. 1 for the corresponding illustration.

The Mode of Operation. Rocca is composed of four phases: initialization, processing
the associated data, encryption, and finalization. The encryption algorithm of Rocca takes
the following inputs: a 256-bit key K = K0 ∥K1 ∈ F128

2 × F128
2 , a 128-bit nonce N ∈ F128

2 ,
associated data A, and a message M . The output consists of the corresponding ciphertext
C and a 128-bit tag T ∈ F128

2 . We write EncK(N, A, M) = (C, T ). The decryption
of Rocca takes (K, N, A, C, T ) and returns M such that EncK(N, A, M) = (C, T ), or
⊥ indicating rejection. We write DecK(N, A, C, T ) = M or DecK(N, A, C, T ) = ⊥. If
M is irrelevant in DecK(N, A, C, T ) = M , we may write this as DecK(N, A, C, T ) = ⊤,
indicating acceptance.
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To process a string X of any bit length, we define X = X ∥ 0l, where l represents
the minimum non-negative integer required to make the length of X a multiple of 256.
Additionally, if a string X has a length that is already a multiple of 256, we express it as
X = X0 ∥X1 ∥ · · · ∥X |X|

128 −1, where each Xi has a length of 128 bits.

Initialization. A 128-bit nonce N and a 256-bit key K0 ∥K1 are loaded into the state S
in the following way:

(S[0], . . . , S[7])← (K1, N, Z0, Z1, N ⊕K1, 0128, K0, 0128)

Note that Z0 and Z1 are defined in Eq.(1). Then, 20 iterations of the round function
R(S, Z0, Z1) is applied to the state S. We call the internal state after the initialization an
initial state.

Processing Associated Data. Associated data A is padded to A and is parsed as
A = A0 ∥A1 ∥ · · · ∥Ad−1 for d = |A|/128. Note that |A| is a multiple of 256 and |Ai| = 128
for 0 ≤ i ≤ d− 1. Then the state is updated as follows:

for i = 0 to d/2− 1
R(S, A2i, A2i+1)

end for

Note that this phase is skipped if A is empty.

Processing Message. On encryption, we process a message as follows: The message M
is first padded to M and is parsed as M = M0 ∥M1 ∥ · · · ∥Mm−1 for m = |M |/128. Then,
M is absorbed with the round function, and the corresponding ciphertext C is generated.
A detailed procedure is shown as follows:

for i = 0 to m/2− 1
C2i = A(Si[1])⊕ Si[5]⊕M2i

C2i+1 = A(Si[0]⊕ Si[4])⊕ Si[2]⊕M2i+1

R(S, M2i, M2i+1)
end for

Then, we let C be the first |M | bits of C0 ∥C1 ∥ · · · ∥Cm−1. Note that this phase is skipped
if M is empty.

Processing Ciphertext. On decryption, the ciphertext C is first padded to C, and then
parsed as C = C0 ∥ C1 ∥ · · · ∥ Cm−1. Then, C is absorbed with the round function to
generate the corresponding message M . The procedure is as follows:

for i = 0 to m/2− 1
M2i = A(Si[1])⊕ Si[5]⊕ C2i

M2i+1 = A(Si[0]⊕ Si[4])⊕ Si[2]⊕ C2i+1

R(S, M2i, M2i+1)
end for

We let M be the first |C| bits of M0 ∥M1 ∥ · · · ∥Mm−1. Note that this phase is skipped if
C is empty.
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Cm−2

Cm−1
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Mm−2
|M |

TR20R R R R R

Ad−1A3A1

Ad−2A2A0

|A|

Figure 2: The encryption procedure of Rocca-v1

Finalization. After processing the message/ciphertext, the state S passes through 20
iterations of the round function R(S, |A|, |M |) and then the tag is computed in the following
way:

T =
⊕

0≤i≤7
S[i]

On decryption, the computed tag is compared with the tag given as input, and M is
returned if they are equal. Figure 2 shows the encryption procedure of Rocca.

2.2 Specification of Other Versions
Rocca-v2 [HII+22], Rocca-v3 [SLN+22a], and Rocca-v4 [SLN+22b] revise the specification
of the initialization and finalization to counter the attack by Hosoyamada et al. in [HII+22].

Initialization. Starting from K and N , after 20 iterations of the round function, two
128-bit keys are XORed into the state S. In Rocca-v2 [HII+22], the keys are XORed as

S[5]← S[5]⊕K0 and S[6]← S[6]⊕K1 ,

and in Rocca-v3 [SLN+22a] and in Rocca-v4 [SLN+22b], the keys are XORed as

S[0]← S[0]⊕K0 and S[4]← S[4]⊕K1 .

We write this process as Init(N, K0, K1) = S.

Finalization. Starting from the state S, before 20 iterations of the round function, two
128-bit keys are XORed into the state S in the following way:{

S[1]← S[1]⊕K0 and S[2]← S[2]⊕K1 in Rocca-v2 [HII+22] ,

S[0]← S[0]⊕K0 and S[4]← S[4]⊕K1 in Rocca-v3 [SLN+22a] .

Then, the round function is iterated 20 times to compute a tag T . We write this process
as Fin∗(S, K) = T . Note that Rocca-v4 does not have the key XORing at the beginning
of the finalization.

Figure 3 shows the encryption procedure of Rocca-v2 and Rocca-v3.
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Figure 3: The encryption procedure of Rocca-v2 and Rocca-v3.

2.3 State-Recovery Attack Shown in [HII+22]
Hosoyamada et al. showed a state-recovery attack against Rocca-v1 [HII+22].

The attack exploits two plaintexts/ciphertexts using the same nonce, where the two
texts have a specific difference. In the nonce-misuse setting, collecting such texts is easy
by using the encryption oracle. On the other hand, in the nonce-respecting setting, it is
prohibited to make two queries with the same nonce to the encryption oracle. Instead,
Hosoyamada et al. exploited the decryption oracle. Since the tag size of Rocca is 128
bits and the security level is 256 bits, it is possible to collect such texts by using 2128

decryption queries.
We now have two texts with a common internal state. The goal is to recover the

internal state. We absorb different messages whose relationship has a specific difference.
The difference is diffused to the whole internal state via several rounds, but their diffused
differences are known until several rounds. As a result, we have several active A functions
whose input and output differences are known. Since the function A is the AES round
function, we can reduce the candidate of input/output values of the active S-boxes into
two or four when the input/output differences are known. By exploiting the relationship
among five such active A functions and the meet-in-the-middle technique, Hosoyamada
et al. showed the procedure to recover the whole internal state with a complexity of 220.
Refer to [HII+22] for more details.

3 Key-Recovery Attacks against Rocca-v2 and Rocca-v3
In this section, we propose key-recovery attacks against Rocca-v2 [HII+22] and Rocca-v3
[SLN+22a]. We cover both nonce-misuse and nonce-respecting settings. The attacker is
given the encryption and/or decryption oracles, and the goal is to recover the 256-bit
secret key K = K0 ∥K1. In [SLN+22a] and [HII+22], the position to XOR the key in the
finalization phase differs. We show that both key positions allow key-recovery attacks.

We first consider Rocca-v3 [SLN+22a] in Sect. 3.1 since the attack is simpler, and Rocca-
v2 [HII+22] in Sect. 3.2. Our attacks use the state-recovery in [HII+22] by Hosoyamada et
al. as a subroutine, which is outlined in Sect. 2.3.

Notation. To describe our attacks, we introduce further notation. For state St =
(St[0], . . . , St[7]), we write St[a..b] to denote St[a], St[a + 1], . . . , St[b], and St[a, b..c] to
denote St[a], St[b], St[b+1], . . . , St[c]. FinEnc

K (St) denotes a tag T that is obtained by making
an encryption query (N, A, M) such that the internal state just before the finalization phase
is St. This corresponds to an online computation. Similarly, FinDec

K (St, T ) denotes ⊤ or ⊥
that is obtained by making a decryption query (N, A, C, T ) such that the internal state just
before the finalization phase is St. It returns ⊤ if the decryption is successful, or ⊥ if the
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Algorithm 1 Nonce-misuse key-recovery attack against Rocca-v3
Input: N ▷ choose arbitrary N
Output: K0, K1

1: S0 ← StateRecovery(N) ▷ run the state-recovery attack on N
2: for M0 in range {0, 1}128 do
3: S1 ← R(S0, M0, 0128) ▷ offline computation
4: T ← FinEnc

K (S1) ▷ encryption query
5: TagList[T ]←M0 ▷ store (T, M0) to TagList
6: end for
7: S1 ← R(S0, M0, 0128) for M0 = 0128 ▷ offline computation
8: for k1 in range {0, 1}128 do
9: T ← Fin∗(S1, K0, k1) for K0 = 0128 ▷ offline computation

10: if T in TagList then
11: M0 ← TagList[T ] ▷ retrieve the corresponding M0
12: if Init(N, M0, k1) = S0 then
13: return (K0, K1)← (M0, k1)
14: end if
15: end if
16: end for

decryption fails or is invalid. This corresponds to an online computation. Fin∗(St, K0, K1)
denotes the offline computation of a tag T that uses K0, K1, and the internal state St,
which is the state just before the finalization phase. Finally, Init(N, K0, K1) denotes offline
computation of the internal state after the initialization phase from K0, K1, and N .

3.1 Key-Recovery Attack against Rocca-v3
In the finalization phase of Rocca-v3 [SLN+22a], the key is XORed into the same positions
as the input blocks of the previous round. Our attack makes use of this fact.

3.1.1 Case of Nonce-Misuse Setting

We first consider the nonce-misuse setting, and our key-recovery attack is presented in
Algorithm 1. Following the notation in Sect. 2.1, we first establish the relationship between
the queries and offline computations. In this version, the key is XORed into St[0] and St[4]
as St[0]⊕K0 and St[4]⊕K1. Therefore, for any differential inputs X0, X1 ∈ {0, 1}128 to
the state of the input of the finalization St, the following relationship holds true:

FinEnc
K (St[0]⊕X0, St[1..3], St[4]⊕X1, St[5..7]) = Fin∗(St, K0 ⊕X0, K1 ⊕X1) (2)

To see this, on both sides of Eq.(2), the state after XORing the key in the finalization
phase becomes (St[0]⊕X0 ⊕K0, St[1..3], St[4]⊕X1 ⊕K1, St[5..7]), resulting in matching
output tags. Since the inputs are XORed at the same positions as the key, we use M0 as
X0 and M1 as X1. See Fig. 4 for a figure describing the case t = 1.

Now, consider the case |M | = 2n (i.e., t = 1), and let M1 be any fixed value. For
simplicity, let M1 = 0128. If K0 ⊕M0 = 0128 holds true (0128 can be other constant, but
we consider the case K0 ⊕M0 = 0128 for simplicity), then we have

FinEnc
K (S1[0]⊕M0, S1[1..3], S1[4], S1[5..7]) = Fin∗(S1, 0128, K1) . (3)

Observe that there exists M0 that satisfies K0⊕M0 = 0128, and we can recover K1 through
the exhaustive search over K1. Our attack searches for M0 and K1 separately. That is, we
first run the state-recovery attack on N to obtain S0 (line 1, Algorithm 1). Then, for each
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Figure 4: Illustration of the encryption process of Rocca-v3 for the case t = 1

M0 ∈ {0, 1}128, we make an encryption query such that the state before the finalization
is (S1[0]⊕M0, S1[1..3], S1[4], S1[5..7]). This corresponds to making an encryption query
(N, A, M0 ∥M1) with |A| = 0 and M1 = 0128. We then obtain T , and store (T, M0) in
TagList, sorted in T (line 2–5, Algorithm 1). Then, we compute Fin∗(S1, 0128, k1) in offline
for each k1 ∈ {0, 1}128 for the exhaustive search on K1 (line 8–16, Algorithm 1). If the
same tag exists in TagList, we compute the initial state with (K0, K1) = (M0, k1), and if
the state becomes S0 obtained in the state-recovery attack in line 1, (M0, k1) is returned
as the secret key.

The attack makes 2128 encryption queries and makes 2128 offline computation through
Fin∗ with a search over TagList, which is assumed to be run in constant time, and the
memory complexity of 2128, which is the size of TagList. Overall, the complexity of the
attack is 2128. The attack succeeds with an overwhelming probability, since we exhaustively
search over all M0 and k1, ensuring that there always exists a combination such that
M0 = K0 and k1 = K1. We also see that the state after initialization is different in most
cases for different keys, and hence the verification with Init ensures that the correct key is
returned.

3.1.2 Case of Nonce-Respecting Setting

In the nonce-respecting setting, extra complexity is needed for decryption queries. Algo-
rithm 2 is the key-recovery attack in the nonce-respecting setting.

In Eq.(3), we let M0 = m0 ∥m′
0 and K0 = k0 ∥k′

0, where |m0| = |m′
0| = |k0| = |k′

0| = 64.
Here, let m′

0 = 064, M1 = 0128, and if k0 ⊕m0 = 064 holds true, then we have

FinEnc
K (St[0]⊕ (x0 ∥ 064), S1[1..3], S1[4], S1[5..7]) = Fin∗(S1, 064 ∥ k′

0, K1) .

Our attack searches for m0 and (k′
0, K1) separately. Following the procedure shown in

Sect. 3.1.1, we utilize 2128 decryption queries instead of an encryption query. This is in
line 5 of Algorithm 2, and the decryption query is (N, A, C, T ) with |A| = 0 and C being
the ciphertext obtained from the state S0 and m0 ∥ 064 ∥ 0128 as the message, which can
be computed in offline. Then, there exists m0 that satisfies k0 ⊕m0 = 064, and we can
recover k′

0 and K1 through exhaustive search.
The attack makes 264+128 decryption queries and makes 2192 offline computation

through Fin∗ with a search over TagList, whose size is 264. Overall, the complexity of the
attack is 2192, and it succeeds with an overwhelming probability.
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Algorithm 2 Nonce-respecting key-recovery attack against Rocca-v3
Input: N ▷ choose arbitrary N
Output: K0, K1

1: S0 ← StateRecovery(N) ▷ run the state recovery attack on N
2: for m0 in range {0, 1}64 do
3: S1 ← R(S0, m0 ∥ 064, 0128) ▷ offline computation
4: for T in range {0, 1}128 do
5: if FinDec

K (S1, T ) = ⊤ then
6: TagList[T ]← m0 ▷ store (T, m0) to list
7: break
8: end if
9: end for

10: end for
11: S1 ← R(S0, m0 ∥ 064, 0128) for m0 = 064

12: for k1 in range {0, 1}128 do
13: for k′

0 in range {0, 1}64 do
14: T ← Fin∗(S1, k0 ∥ k′

0, k1) for k0 = 064 ▷ offline computation
15: if T in TagList then
16: m0 ← TagList[T ] ▷ retrieve the corresponding m0
17: if Init(N, m0 ∥ k′

0, k1) = S0 then
18: return (K0, K1)← (m0 ∥ k′

0, k1)
19: end if
20: end if
21: end for
22: end for

3.2 Key-Recovery Attack against Rocca-v2

In the finalization phase of Rocca-v2 [HII+22], the key is XORed as St[1]⊕K0, St[2]⊕K1.
For any X0, X1 ∈ {0, 1}128, we have

FinEnc
K (St[0], St[1]⊕X0, St[2]⊕X1, St[3..7]) = Fin∗(St, K0 ⊕X0, K1 ⊕X1) .

Now, let X be a variable over some set X , and let f, g : X → {0, 1}128 be functions.
Assume that we can express X0 and X1 as X0 = f(X) and X1 = g(X). If K0⊕X0 = 0128

and k1 = K1 ⊕ g(X) hold true, then we have

FinEnc
K (St[0], St[1]⊕ f(X), St[2]⊕ g(X), St[3..7]) = Fin∗(St, 0128, k1) .

Assuming that computing f(X) for 2128 different values of X covers most of the space
of {0, 1}128, performing an exhaustive search for both X and k1 guarantees the existence
of X and k1 such that K0 ⊕ f(X) = 0128 and k1 = K1 ⊕ g(X) with a high probability. By
obtaining X and k1, we succeed in the key-recovery attack by using the same procedure as
in Sect. 3.1.

We consider the case |M | = 8n (i.e., t = 4). The approach of the attack is to develop a
method to compute the inputs M = (M0, . . . , M7) for 4 rounds, where f(M) and g(M)
are XORed into S4[1] and S4[2], respectively, while keeping the values of other state blocks
S4[0, 3..7] unchanged, in order to make FinEnc

K queries.
The internal states of S1 to S4 for the last 3 rounds out of the 4 rounds are represented
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as follows:

S4[0] = S1[7]⊕M2 ⊕A(S1[5])⊕ S1[4]⊕M6

S4[1] = A(S1[0]⊕ S1[6]⊕M4)⊕ S1[7]⊕M2 ⊕A(S1[5])⊕ S1[4]
S4[2] = A(S1[7]⊕M2)⊕ S1[0]⊕ S1[6]⊕A(A(S1[4])⊕ S1[3])⊕ S1[3]⊕M3

S4[3] = A(A(S1[0])⊕ S1[7]⊕A(S1[5])⊕ S1[4])⊕A(S1[7]⊕M2)⊕ S1[0]⊕ S1[6]
S4[4] = A(S1[1]⊕ S1[6])⊕A(S1[0])⊕ S1[7]⊕M7

S4[5] = A(A(S1[2])⊕ S1[1]⊕M5)⊕A(S1[1]⊕ S1[6])⊕A(S1[0])⊕ S1[7]
S4[6] = A(A(S1[3]⊕M3)⊕A(S1[2])⊕ S1[1])⊕A(S1[2])⊕ S1[1]⊕M5

S4[7] = S1[0]⊕ S1[6]⊕M4 ⊕A(A(S1[4])⊕ S1[3])⊕ S1[3]⊕M3 (4)

The input message blocks are highlighted in red. From the above equations, for any S1,
we can find inputs M2, . . . , M7 that fix the values of S4[0, 3..7] to any desired value in
constant time. In more detail, we proceed as follows:

• We first fix M2 so that S4[3] becomes a desired value.

• We then fix M6 so that S4[0] becomes a desired value.

• We then fix M5 so that S4[5] becomes a desired value.

• We then fix M3 so that S4[6] becomes a desired value.

• We then fix M4 so that S4[7] becomes a desired value.

• Finally, we fix M7 so that S4[4] becomes a desired value.

Therefore, for any S0, when we modify the values of M0 and M1, the values of the
other 6 blocks except for S4[1] and S4[2] can be kept unchanged by choosing suitable
M2, . . . , M7, and the values of S4[1] and S4[2] depend on M0 and M1. The above steps
give us a way to find inputs M2, . . . , M7 that satisfy this condition.

From the above, we can express X0 = f(M0, M1) and X1 = g(M0, M1), and by
performing a search over M0 and M1 with a complexity of 2128, we can perform an
exhaustive search for f(M0, M1). Assuming that f behaves as a random function, the
probability that we have M satisfying K0⊕f(M0, M1) = 0128 by 2128 searches over M0 and
M1 is estimated as (1− e−1) from Poisson distribution. For this M , since we exhaustively
search over k1, there exists k1 that satisfies k1 = K1⊕g(M0, M1), allowing us to determine
K0 and K1.

We consider the case S4 = 01024, and our key-recovery attack in the nonce-misuse setting
is presented in Algorithm 3. We can perform a key-recovery attack with a complexity of
2128. Our key-recovery attack in the nonce-respecting setting is presented in Algorithm 4.
The time complexity of the attack is 2192.

We remark that [DFI+24] uses a similar approach to compute M2, . . . , M7 in their
committing attack, citing [TI23] as a reference.

4 Rocca with Stronger Finalization
The key-recovery attacks in the previous section exploit the key XORing of the finalization.
To counter the attack, one option is to remove the key XORing, as in Rocca-v4 [SLN+22b].
However, it means a practical threat of universal forgery in the nonce-misuse setting.
Therefore, a more robust countermeasure is to use a stronger finalization phase. In this
section, we consider a new version of Rocca, where an arbitrary linear expansion of the key
is XORed into the state before the last 20 iterations of the round function. Then, the above
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Algorithm 3 Nonce-misuse key-recovery attack against Rocca-v2
Input: N ▷ choose arbitrary N
Output: K0, K1

1: S0 ← StateRecovery(N) ▷ run the state-recovery attack on N
2: for M0 in range {0, 1}128 do
3: S1 ← R(S0, M0, M1) for M1 = 0128 ▷ offline computation
4: M2 ← S1[7]⊕A−1(A(A(S1[0])⊕ S1[7]⊕A(S1[5])⊕ S1[4])⊕ S1[0]⊕ S1[6])
5: M6 ← S1[7]⊕M2 ⊕A(S1[5])⊕ S1[4]
6: M5 ← A(S1[2])⊕ S1[1]⊕A−1(A(S1[1]⊕ S1[6])⊕A(S1[0])⊕ S1[7])
7: M3 ← S1[3]⊕A−1(A(S1[2])⊕ S1[1]⊕A−1(A(S1[2])⊕ S1[1]⊕M5))
8: M4 ← S1[0]⊕ S1[6]⊕A(A(S1[4])⊕ S1[3])⊕ S1[3]⊕M3
9: M7 ← A(S1[1]⊕ S1[6])⊕A(S1[0])⊕ S1[7]

10: S4 ← R(R(R(S1, M2, M3), M4, M5), M6, M7) ▷ S4[0, 3..7] = 0128·6

11: T ← FinEnc
K (S4) ▷ encryption query

12: TagList[T ]← S4[1], S4[2] ▷ store (T, S4[1], S4[2]) to TagList
13: end for
14: for k1 in range {0, 1}128 do
15: T ← Fin∗(S4, K0, k1) for S4 = 01024, K0 = 0128 ▷ offline computation
16: if T in TagList then
17: S4[1], S4[2]← TagList[T ] ▷ retrieve the corresponding S4[1], S4[2]
18: if Init(N, S4[1], S4[2]⊕ k1) = S0 then
19: return (K0, K1)← (S4[1], S4[2]⊕ k1)
20: end if
21: end if
22: end for

attack, which adjusts each block step-by-step, is no longer available. It turns out that this
still allows a key-recovery attack faster than the exhaustive key search. In order to show
this, we first establish an algorithm to derive a message that interpolates two internal
states. We then show the key-recovery attack using the state-interpolation algorithm. We
also discuss possible countermeasures to strengthen the finalization phase further. Using
the ideally secure keyed finalization is an option to avoid the key-recovery attack. Although
it still allows non-trivial universal forgery attacks, the required complexity is not practical.

We start by proposing our state-interpolation algorithm in Sect. 4.1, followed by a
key-recovery attack against Rocca with an arbitrary linear key expansion and possible
countermeasures in Sect. 4.2. We finally present a universal forgery attack against Rocca
with the ideal keyed finalization in Sect. 4.3.

4.1 Deriving Messages to Interpolate Internal States
In this section, we propose an algorithm to derive a message M = (M0, . . . , M7) of 8
blocks that interpolates two internal states (S0, S4). That is, for any given S0 and S4, the
state-interpolation algorithm returns M = (M0, . . . , M7) such that

S4 = R(R(R(R(S0, M0, M1), M2, M3), M4, M5), M6, M7) ,

where the time complexity of the algorithm is 2160.

Input Relationships. Figure 5 shows the internal state of Rocca for the state-interpolation
algorithm. In the figure, the colors have the following semantics:

• Red-colored blocks are given values.
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Algorithm 4 Nonce-respecting key-recovery attack against Rocca-v2
Input: N ▷ choose arbitrary N
Output: K0, K1

1: S0 ← StateRecovery(N) ▷ run the state recovery attack on N
2: for m0 in range {0, 1}128 do
3: S1 ← R(S0, m0 ∥m′

0, M1) for m′
0 = 064, M1 = 0128 ▷ offline computation

4: M2 ← S1[7]⊕A−1(A(A(S1[0])⊕ S1[7]⊕A(S1[5])⊕ S1[4])⊕ S1[0]⊕ S1[6])
5: M6 ← S1[7]⊕M2 ⊕A(S1[5])⊕ S1[4]
6: M5 ← A(S1[2])⊕ S1[1]⊕A−1(A(S1[1]⊕ S1[6])⊕A(S1[0])⊕ S1[7])
7: M3 ← S1[3]⊕A−1(A(S1[2])⊕ S1[1]⊕A−1(A(S1[2])⊕ S1[1]⊕M5))
8: M4 ← S1[0]⊕ S1[6]⊕A(A(S1[4])⊕ S1[3])⊕ S1[3]⊕M3
9: M7 ← A(S1[1]⊕ S1[6])⊕A(S1[0])⊕ S1[7]

10: S4 ← R(R(R(S1, M2, M3), M4, M5), M6, M7) ▷ S4[0, 3..7] = 0128·6

11: for T in range {0, 1}128 do
12: if FinDec

K (S4, T ) = ⊤ then
13: TagList[T ]← S4[1], S4[2] ▷ store (T, S4[1], S4[2]) to TagList
14: break
15: end if
16: end for
17: end for
18: for k1 in range {0, 1}128 do
19: for k′

0 in range {0, 1}64 do
20: T ← Fin∗(S4, k0 ∥ k′

0, k1) for S4 = 01024, k0 = 064 ▷ offline computation
21: if T in TagList then
22: S4[1], S4[2]← TagList[T ] ▷ retrieve the corresponding S4[1], S4[2]
23: if Init(N, S4[1]⊕ 064 ∥ k′

0, S4[2]⊕ k1) = S0 then
24: return (K0, K1)← (S4[1]⊕ 064 ∥ k′

0, S4[2]⊕ k1)
25: end if
26: end if
27: end for
28: end for

• Blue-colored blocks are computed by determining M0.

• Green-colored blocks are computed by determining M1.

• Yellow-colored blocks are computed by determining M0 and M1.

As shown in Fig. 5, considering M0 and M1 as variables, the internal states are calculated
in the order of the arrows. If the internal states determined by M0 and M1 do not cause a
contradiction, M2, . . . , M7 that interpolate between S0 and S4 can be found. S3[1] and
S2[0], the states enclosed by the red dashed line in Fig. 5, are the only states that can
cause a contradiction if we follow the arrows of Fig. 5. These states can be represented in
two ways using M0, M1. Since these values must match, we identify two equations, Eqs.(5)
and (6), as follows:

S3[1] = S4[3]⊕A(S2[1]⊕ S2[6]) = S4[2]⊕ S2[4]⊕A(S2[5]) (5)
S2[0] = S2[6]⊕ S3[7] = A−1(S2[7]⊕ S3[1]) (6)

State-Interpolation Algorithm. We show an algorithm that computes M0 and M1 such
that both Eqs.(5) and (6) are satisfied. Then, the remaining message blocks M2, . . . , M7
can be efficiently computed.
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Figure 5: The internal state of Rocca. S0 and S4 are given. The algorithm returns
M0, . . . , M7.
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1. Fix M0 arbitrarily. Then rewrite Eq.(5) as an expression of M1 with M0 being fixed.
In detail, first, we expand Eq.(5) with respect to M1 as follows:

S3[1] = S4[3]⊕A(S2[1]⊕A(S1[5])⊕ S0[3]⊕M1)
= S4[2]⊕ S2[4]⊕A(A(S0[3]⊕M1)⊕ S1[3]) (7)

Here, the blue-colored blocks in Fig. 5 are highlighted in blue in Eq.(7). From
red-colored blocks and blue-colored blocks, we define X and Y as follows:

X = S4[3]⊕ S4[2]⊕ S2[4]
Y = S2[1]⊕A(S1[5])

By using X and Y , Eq.(7) can be expressed as follows:

A(M ′
1 ⊕ Y ) = A(A(M ′

1)⊕ S1[3])⊕X (8)

Here, M ′
1 is defined as

M ′
1 = M1 ⊕ S0[3] =


x0,0 x0,1 x0,2 x0,3
x1,0 x1,1 x1,2 x1,3
x2,0 x2,1 x2,2 x2,3
x3,0 x3,1 x3,2 x3,3

 .

Now from the linearity of MixColumns and ShiftRows, by defining X ′ as X ′ =
SR−1 ◦MC−1(X), Eq.(8) can be written as

SB(M ′
1 ⊕ Y ) = SB(MC ◦ SR ◦ SB(M ′

1)⊕ S1[3])⊕X ′ . (9)

2. Solve Eq.(9) for M ′
1.

We show the process in this step in Figs. 6(a)–(d).

(a) We focus on the blue-colored bytes in Fig. 6(a). Then, Eq.(9) is expressed as

SB




x0,0
x1,0
x2,0
x3,0

⊕ Y

 = SB

MC


Sb(x0,0)
Sb(x1,1)
Sb(x2,2)
Sb(x3,3)

⊕ S1[3]

⊕X ′ . (10)

Here, we abuse the notation to apply MC and SB on a word of 32-bit state.
Now, we first fix x0,0, x1,1, x2,2 on the right hand side of Eq.(10). Then since
x0,0 is fixed, the corresponding first row value of the left hand side of Eq.(10) is
fixed, and from this, we obtain a unique value of x3,3 that is consistent with
the first row. Then, all the values in the left hand side have been fixed, and we
have x1,0, x2,0, x3,0, which are the bytes marked with a red circle in Fig. 6(a),
that satisfy the equality of Eq.(10).

(b) We focus on the blue-colored bytes in Fig. 6(b). Gray-colored bytes are fixed
bytes in Step (a). We obtain the following equation:

SB




x0,1
x1,1
x2,1
x3,1

⊕ Y

 = SB

MC


Sb(x0,1)
Sb(x1,2)
Sb(x2,3)
Sb(x3,0)

⊕ S1[3]

⊕X ′ (11)

We obtain the system of equations in x1,2 and x2,3 by trying x0,1 as indicated
by the first and the second rows of Eq.(11). For each of (x0,1, x1,2, x2,3), the
right hand side of Eq.(11) is fixed, implying that the values of x2,1 and x3,1 are
fixed as well.
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Figure 6: Illustration of Eq.(9). Our goal is to obtain M ′
1.

(c) We focus on the blue-colored bytes in Fig. 6(c). We obtain

SB




x0,2
x1,2
x2,2
x3,2

⊕ Y

 = SB

MC


Sb(x0,2)
Sb(x1,3)
Sb(x2,0)
Sb(x3,1)

⊕ S1[3]

⊕X ′ . (12)

We then have the system of equations in x0,2 and x1,3 that is obtained from
the first, second, and the third rows of Eq.(12). The right hand side of Eq.(12)
is fixed, implying that the value of x3,2 is fixed as well.

(d) We focus on the blue-colored byte in Fig. 6(d). We have

SB




x0,3
x1,3
x2,3
x3,3

⊕ Y

 = SB

MC


Sb(x0,3)
Sb(x1,0)
Sb(x2,1)
Sb(x3,2)

⊕ S1[3]

⊕X ′ . (13)

If there exists x0,3 that satisfies the equality of Eq.(13), we have solved Eq.(9),
and we obtain M ′

1 (and hence M1) for Eq.(8). Otherwise, repeat Step (a) by
changing x0,0, x1,1, x2,2, x0,1.

3. Check whether Eq.(6) holds with the obtained M0 and M1. If it does, proceed to
Step 5, otherwise proceed to Step 4.

4. Repeat Step 1 to Step 3 by changing M0.

5. Compute M2, . . . , M7 from M0 and M1.
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In Step 2, we try 4 bytes and thus the time complexity of this step is 232. The
probability that Eq.(6) holds with M0 and M1 derived in Step 2 is expected to be 2−128.
Therefore, the total time complexity of our interpolation algorithm is 2128+32 = 2160.

We remark that it is straightforward to generalize the algorithm to interpolate two
states S0 and St for any t ≥ 4. That is, we can run the above state-interpolation algorithm
on (St−4, St), where St−4 is the state after injecting any message on S0.

4.2 Key-Recovery Attack against Rocca with Arbitrary Linear Key
Expansion

In this section, we show that Rocca with an arbitrary linear key expansion still allows
a key-recovery attack in the nonce-respecting setting. This in particular shows that the
choice of the key position to XOR at the beginning of the finalization phase is irrelevant
to the security of Rocca. We consider the case that K0 and K1 are XORed into the state
with an arbitrary linear key expansion. That is, the state St is updated as St⊕L(K0 ∥K1),
where L : {0, 1}256 → {0, 1}1024 is a linear and injective mapping. We show that this
general case still allows key-recovery attacks.

We propose the attack in Algorithm 5. Let k0 and k1 be variables such that |k0| =
48, |k′

0| = 80 and |k1| = 128. If (K0, K1) = (k0 ∥ k′
0, k1), then we have

FinEnc
K (L(k0 ∥ 0208)) = Fin∗(L(k0 ∥ 0208), k0 ∥ k′

0, k1)
= Fin∗(L(k0 ∥ 0208)⊕ L(k0 ∥ 0208), 048 ∥ k′

0, k1)
= Fin∗(L(0256), 048 ∥ k′

0, k1) .

First, we run the state-recovery attack on N to obtain S0 (line 1, Algorithm 5). We can
create an arbitrary state with a complexity of 2160 by using the interpolation algorithm in
Sect. 4.1 (line 3, Algorithm 5). Then, we make a decryption query (N, A, C, T ) (line 6,
Algorithm 5), where |A| = 0 and C is the ciphertext of M = (M0, . . . , M7) obtained in
line 3. Note that the state before the finalization is S4 = L(k0 ∥ 0208) for each k0. We
obtain T , and store it in TagList.

Then, we compute Fin∗(L(0256), 048 ∥ k′
0, k1) for each k′

0 and k1 in offline (line 14,
Algorithm 5). If the same tag exists in TagList, we compute the initialization phase with
(K0, K1) = (k0 ∥ k′

0, k1), and when the state is the same as S0, (k0 ∥ k′
0, k1) is returned as

the key.
Since we search over k0 and (k′

0, k1) separately, the key-recovery in the nonce-respecting
setting works with a complexity of 2208.

In the nonce-misuse setting, 2128 decryption queries can be replaced with one encryption
query. However, the overall complexity remains 2208 as the 2160 complexity of the state-
interpolation algorithm in Sect. 4.1 dominates the complexity.

Possible Countermeasures. Our analyses have shown that XORing with linearly expanded
key in the finalization phase does not prevent key-recovery attacks. In response, we consider
several approaches of countermeasures.

First, using a non-linear key expansion is one potential countermeasure. However, it is
essential to carefully choose an appropriate non-linear function, as using an unsuitable one
may fail to meet the required security standards. Second, we might use keyed permutation
instead of the public permutation and key XORing. When the ideal keyed permutation
is used, the key-recovery attack is impossible, even if the attacker can access the keyed
permutation directly.
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Algorithm 5 Key-recovery attack against Rocca with arbitrary linear key expansion
Input: N ▷ choose arbitrary N
Output: K0, K1

1: S0 ← StateRecovery(N) ▷ run the state-recovery attack on N
2: for k0 in range {0, 1}48 do
3: (M0, . . . , M7)← Interpolate(S0, L(k0 ∥ 0208)) ▷ 2160 time complexity
4: S4 ← R4(S0, M0, . . . , M7) ▷ S4 = L(k0 ∥ 0208)
5: for T in range {0, 1}128 do
6: if FinDec

K (S4, T ) = ⊤ then
7: TagList[T ]← k0
8: break
9: end if

10: end for
11: end for
12: S4 ← L(0256)
13: for k1 in range {0, 1}128 do
14: for k′

0 in range {0, 1}80 do
15: T ← Fin∗(S4, k0 ∥ k′

0, k1) for k0 = 048

16: if T in TagList then
17: k0 ← TagList[T ] ▷ retrieve the corresponding k0
18: if Init(N, k0 ∥ k′

0, k1) = S0 then
19: return (K0, K1)← (k0 ∥ k′

0, k1)
20: end if
21: end if
22: end for
23: end for

4.3 Universal Forgery against Rocca with Ideal Keyed Finalization
Universal forgery is a type of forgery attacks where an attacker is given a challenge
(N∗, A∗, M∗) and outputs (C∗, T ∗) such that EncK(N∗, A∗, M∗) = (C∗, T ∗). The at-
tacker can use encryption and decryption oracles. However, the attacker cannot make an
encryption query (N∗, A∗, M∗).

4.3.1 Generic Universal Forgery and Results from [HII+22]

The generic complexity of the universal forgery against all the version of Rocca, or more
generally, against any online AEAD scheme, is 2|T |. In an online AEAD scheme, for a
fixed key, nonce, and associated data, the first i bits of the ciphertext depends only on
the first i bits of the message. The generic attack works as follows: Let M = M∗ ∥M ′

for some |M ′| ≥ 1. The attacker makes an encryption query (N∗, A∗, M) to receive C
and T , where C∗ is the first |M∗| bits of C. The attacker makes 2|T | decryption queries
to obtain the correct tag T ∗ for (N∗, A∗, C∗), and this works in the nonce-respecting or
nonce-misuse setting.

For Rocca, after a state-recovery attack of [HII+22], universal forgery can be executed
with constant complexity against non-keyed finalization version of Rocca (Rocca-v1 and
Rocca-v4). While the complexity of the state-recovery attack is 2128 in the nonce-respecting
setting, it is 220 in the nonce-misuse setting. Thus, the threat is practical in the nonce-
misuse setting, and it motivates us to use the keyed finalization. An ideally secure keyed
finalization can be an option, however, it is still unclear whether using it is promising
against universal forgery. We consider Rocca using the ideally secure keyed finalization
and show universal forgery in the nonce-misuse setting with a practical data complexity.
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Algorithm 6 Procedure of universal forgery for the case t > 4
Input: (N∗, A∗, M∗)
Output: (C∗, T ∗)

1: S∗
0 ← StateRecovery(N∗)

2: (C∗, S∗
t )← Encryption(S∗

0 , A∗, M∗)
3: (A′, M ′)← Interpolate(S∗

0 , S∗
t )

4: (C ′, T ∗)← EncK(N∗, A′, M ′)
5: return (C∗, T ∗)

Algorithm 7 Procedure of universal forgery for the case t = 4
Input: (N∗, A∗, M∗)
Output: (C∗, T ∗)

1: S∗
0 ← StateRecovery(N∗)

2: (C∗, S∗
t )← Encryption(S∗

0 , A∗, M∗)
3: fix N ′ ̸= N∗ arbitrarily
4: S′

0 ← StateRecovery(N ′)
5: (A′, M ′)← Interpolate(S′

0, S∗
t )

6: (C ′, T ∗)← EncK(N ′, A′, M ′)
7: return (C∗, T ∗)

We use the state-interpolation algorithm from Sect. 4.1, and hence the time complexity is
impractical. Note that the attack here applies to other versions with keyed finalization.

4.3.2 Nonce-Misuse Universal Forgery with Practical Query Complexity

In the nonce-misuse setting, the above-mentioned generic universal forgery requires 2128

online complexity. The state-interpolation algorithm shown in Sect. 4.1 enables us to
reduce the online complexity to a practical range in the nonce-misuse setting, although
the offline complexity increases instead. As a limitation, it requires at least 8 blocks of
associated data and message, i.e., t ≥ 4, where |A∗| + |M∗| = 256t. The procedure is
slightly different for t > 4 and t = 4. We first consider the case t > 4, followed by the case
t = 4.

Case t > 4. We present the universal forgery in Algorithm 6. We first run StateRecovery
in [HII+22] to recover the initial state S∗

0 for the challenge nonce N∗. We next run
Encryption(S∗

0 , A∗, M∗) to output the ciphertext C∗ and the state S∗
t as the offline

computation. Then, we run the state-interpolation algorithm from Sect. 4.1 on S∗
0 and

S∗
t to obtain A′ and M ′ that interpolate the states. Here, we use (A′, M ′) such that

(A′, M ′) ̸= (A∗, M∗), |A′| = |A∗|, and |M ′| = |M∗|. We finally make an encryption query
(N∗, A′, M ′) to receive (C ′, T ∗), where the tag becomes the one for the challenge.

Case t = 4. In this case, (A∗, M∗) may be the unique input blocks that interpolate S∗
0

and S∗
4 . We therefore use a different nonce than the nonce in the challenge.

We present the procedure in Algorithm 7. First, we run the state-recovery attack and
obtain S∗

0 for N∗. Second, we compute C∗ and S∗
t from (S∗

0 , A∗, M∗) in offline. Next, we
fix any nonce N ′ ̸= N∗, and run the state-recovery attack to obtain S′

0. Then, we compute
(A′, M ′) that interpolates S′

0 and S∗
t with the interpolation algorithm from Sect. 4.1, where

|A′| = |A∗| and |M ′| = |M∗|. Finally, we make an encryption query (N ′, A′, M ′) to the
encryption oracle and obtain (C ′, T ∗).

Attacks above require only three and five encryption queries for t > 4 and t =
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Figure 7: Two CMT attacks against several versions of Rocca. The left figure shows the
CMT-3 attack. The right figure shows the CMT-2 attack, which can be converted into
CMT-1 or FROB when the finalization does not involve the key.

4, respectively. On the other hand, the offline time complexity is 2160 for the state-
interpolation algorithm.

5 Committing Security
Committing security has recently been actively discussed as a new demanded security
feature for AEAD schemes. There are several kinds of committing security notions, and
we discuss CMT-3, CMT-2, CMT-1 [BH22], and FROB [FOR17] security in this paper.

CMT-ℓ security requires the infeasibility of an attacker to determine (K, N, A, M) and
(K ′, N ′, A′, M ′) such that EncK(N, A, M) = EncK′(N ′, A′, M ′) with the condition that
the tuple of the first ℓ inputs of the AEAD differs. In other words, it commits to the first ℓ
inputs. FROB security is a stronger security notion than CMT-1, which requires N = N ′

in addition to the condition for CMT-1.
We present two types of CMT attacks. The first attack breaks the CMT-3 security,

where identical key and nonce are used. Therefore, it has the identical output of the
initialization. We then show a pair of (distinct) associated data such that the internal
state collides after several rounds. The second attack breaks the CMT-2 security, where
the output of the initialization takes a different state because it uses a different key and
nonce. We then show a pair of associated data such that the internal state collides after
several rounds. This attack is trivially converted to the CMT-1/FROB attack when the
finalization does not involve the secret key like Rocca-v1 or Rocca-v4. Figure 7 shows the
high-level overview of these attacks.

5.1 CMT-3 Attack
Given the identical initial state after the initialization, the CMT-3 attack aims to find A
and A′ ( ̸= A) such that the internal state collides after absorbing each associated data.
Inheriting the 7-round differential trail from zero to zero difference shown in [HII+22]
for the existential forgery attack, we show a CMT-3 attack with a practical complexity.
Figure 8 shows the differential trail. The trail contains 25 active S-boxes. While the
differential characteristic probability is 2−150, an attacker knows the secret key and can
compute the internal state in our attack scenario. Therefore, we do not need to rely on the
probabilistic event to satisfy differential transition for 25 active S-boxes. We can choose A
and A′ step-by-step so that 25 active S-boxes satisfy the required differential transition.

For every active S-box out of 25 active S-boxes, only two pairs of values satisfy
differential transition, and each value is (almost) fixed before every active S-box. For
example, the active S-box in the 2nd round uses the differential transition, 0xF5→ 0x85,
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Figure 8: Differential trail for the CMT-3 attack.
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Algorithm 8 Algorithm to determine A4 and A5 from Fig. 8
Input: S2, S3[1..3, 5..7], S4[0]
Output: A4, A5

1: S3[4]0,0 ← SboxDDT(0xF5, 0x85)
2: S4[6]0,0 ← S3[4]0,0 ⊕A(S3[5])0,0
3: S4[1]0,0 ← SboxDDT(0xF5, 0x85)⊕ S4[6]0,0
4: (S3[0]0,0, S3[0]1,1, S3[0]2,2)← arbitrary
5: S3[0]3,3 ← Sb−1[2Sb[S3[0]0,0]⊕ 3Sb[S3[0]1,1]⊕ Sb[S3[0]2,2]⊕ S4[1]0,0 ⊕ S3[7]0,0]
6: (D1(S3[0]),D2(S3[0]),D3(S3[0]))← arbitrary
7: A4 ← S3[0]⊕ S2[7]
8: (S3[4]1,1, S3[4]2,2, S3[4]3,3)← arbitrary
9: C0(S4[5])← MC ◦ SB(D0(S3[4]))⊕ C0(S3[3])

10: (C1(S4[5]), C2(S4[5]))← arbitrary
11: D0(S6[2]) is determined by SboxDDT
12: D0(S5[6])← D0(S6[2])⊕D0(A(S4[0])⊕ S3[6]⊕ S3[0])
13: S4[5]3,3 ← Sb−1[2Sb[S4[5]0,0]⊕ 3Sb[S4[5]1,1]⊕ Sb[S4[5]2,2]⊕ S4[4]0,0 ⊕ S5[6]0,0]
14: S4[5]2,3 ← Sb−1[3−1(Sb[S4[5]0,1]⊕ 2Sb[S4[5]1,2]⊕ Sb[S4[5]3,0]⊕ S4[4]1,1 ⊕ S5[6]1,1)]
15: S4[5]1,3 ← Sb−1[Sb[S4[5]0,2]⊕ 2Sb[S4[5]2,0]⊕ 3Sb[S4[5]3,1]⊕ S4[4]2,2 ⊕ S5[6]2,2]
16: S4[5]0,3 ← Sb−1[3−1(Sb[S4[5]1,0]⊕ Sb[S4[5]2,1]⊕ 2Sb[S4[5]3,2]⊕ S4[4]3,3 ⊕ S5[6]3,3)]
17: A5 ← A−1(S4[5]⊕ S3[3])⊕ S2[3]

and only the following two pairs satisfy the transition.

(0x00, 0xF5) Sb−→ (0x63, 0xE6)

(0x42, 0xB7) Sb−→ (0x2C, 0xA9)

We must choose one of them and fix the S-box input, i.e., S1[0]0,0. For S1[0]0,0 to be the
chosen value, we choose A0,0,0.

We can control the value of Sr[0] by choosing A2r−2. Similarly, we can control the
value of Sr[4] by choosing A2r−1. Therefore, 15 out of 25 active S-boxes (colored in yellow
in Fig. 8) are controllable by choosing A0, A6, A8, A10, A5, A7, A9. We still have ten active
S-boxes, and these inputs are Sr[2]. We control S3[2] and S4[2] by choosing A1 and A3,
respectively. We also control S5[2] by choosing A4. Note that A1, A3, and A4 are not
used to control Sr[0] and Sr[4] in above. To control S6[2], we choose A5. Although it is
already used to control S3[4], only one active S-box needs to be controlled there, i.e., we
only choose A5,0,0 to control S3[4]. On the other hand, to control the diagonal of S6[2],
A5 except for A5,0,0 is enough.

We can find A and A′ satisfying this differential trail with a complexity of O(1).
Specifically, we first determine A0, A1, A2, and A3 such that their related active S-boxes
satisfy the differential transition. Then, we can determine S1, S2, and S3 except for S3[0]
and S3[4]. We can also determine A6 and A7 such that their related active S-boxes satisfy
the differential transitions. Then, we can determine S4[0] and S4[4]. To find A4 and A5,
we need to decompose each related block into bytes. Algorithm 8 shows the procedure,
where Ci and Di denote the ith column and ith diagonal of the input matrix, respectively.
It is not difficult to find A8, A9, A10, A11, A12, and A13. We focus on related active S-box
and choose each value such that related active S-boxes satisfy the differential transitions.

The attack complexity for the CMT-3 attack is O(1). We implemented the attack
algorithm and the test case is shown in Appendix A.



Ryunouchi Takeuchi, Yosuke Todo and Tetsu Iwata 109

A A A A

A A A A

S4

S5

S6

[0] [1] [2] [3] [4] [5] [6] [7]A8

A10 A11

A9

Figure 9: CMT-2, CMT-1, and FROB attacks.

5.2 CMT-2, CMT-1, and FROB Attacks
When either or both the key and nonce differ, the initialization outputs different initial
states. It is unlikely that each initial state is controllable even if the key is known,
considering the initialization has 20 rounds. Therefore, we show an algorithm to find
A and A′, where the internal state collides after absorbing each associated data from
two randomly chosen initial states. Once the internal state collides before processing the
message, it is trivial to demonstrate the CMT-2 attack. Note that when the finalization
is independent of the key like Rocca-v1 or Rocca-v4, it can be the CMT-1 and FROB
attacks.

Our attack is presented in Algorithm 9. We prepare two associated data such that 6
out of 8 blocks collide after absorbing each associated data. Specifically, S[0, 1, 4..7] collide.
We have several methods to find such associated data. As shown in Sect. 3.2, it is possible
to fix the value of S4[0, 3..7]. When the same associated data is absorbed in an additional
one round, S5[0, 1, 4..7] collide. It is also possible to directly fix S4[0, 1, 4..7]. Hereinafter,
we show our analysis using the state, where S4[0, 1, 4..7] collide.

Figure 9 shows the overview of the CMT-2, CMT-1, and FROB attacks. Now, S4[2]
and S4[3] have differences, and the other 6 blocks do not have differences. After one round,
S5[3], S5[4], and S5[5] have differences. It is easy to cancel out the difference in S6[4] by
using A11 such that ∆A11 = ∆S5[3]. We aim to cancel out the difference in S6[5] and
S6[6] at the same time by choosing A9.

The condition to succeed in the CMT-2 attack is

S6[5] = A(S5[4])⊕ S5[3] = A(S′
5[4])⊕ S′

5[3] ,

S6[6] = A(S5[6])⊕ S5[4] = A(S′
5[6])⊕ S′

5[4] .

From the equations above, we have

A−1(S6[5]⊕ S5[3])⊕A−1(S6[5]⊕ S′
5[3]) = S5[4]⊕ S′

5[4] = A(S5[6])⊕A(S′
5[6]) .

We cannot choose S5[6] and S′
5[6]. Therefore, S5[4]⊕ S′

5[4] is determined. For any S6[5],

SB(S5[4])⊕ SB(S′
5[4]) = SR−1 ◦MC−1(S5[3]⊕ S′

5[3]) ,
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Algorithm 9 Collision from two different states
Input: S0, S′

0
Output: A0, . . . , A11, A′

0, . . . , A′
11

1: Choose arbitrary A8, A10, and A11.
2: Set A′

8 ← A8 and A′
10 ← A10.

3: while S6 ̸= S′
6 do

4: Choose (A0, A1), (A′
0, A′

1) randomly
5: S1 ← R(S0, A0, A1)
6: S′

1 ← R(S′
0, A′

0, A′
1)

7: Obtain A2, . . . , A7 and A′
2, . . . , A′

7 satisfying S4[0, 1, 4..7] = S′
4[0, 1, 4..7]

8: Compute S5[3, 5] and S′
5[3, 5]

9: ∆I = A(S5[5])⊕A(S′
5[5])

10: ∆O = SR−1 ◦MC−1(S5[3]⊕ S′
5[3])

11: for (i, j) ∈ {0, 1, 2, 3} × {0, 1, 2, 3} do
12: if ∆Ii,j

Sb−→ ∆Oi,j is possible then
13: Pick an input x s.t. Sb(x)⊕ Sb(x⊕∆Ii,j) = ∆Oi,j

14: A9,i,j = S4[3]i,j ⊕ x
15: A′

9,i,j = S′
4[3]i,j ⊕ x⊕∆Ii,j

16: end if
17: end for
18: A′

11 = A11 ⊕ S5[3]⊕ S′
5[3]

19: Compute S6 and S′
6

20: end while

and S5[3] ⊕ S′
5[3] is determined. In summary, the input and output difference of the

S-box is determined, but we can freely choose S5[4] and S′
5[4] by controlling A9 and A′

9.
Therefore, when the differential transition from ∆I = S5[4]⊕ S′

5[4] = A(S5[5])⊕A(S′
5[5])

to ∆O = SR−1 ◦MC−1(S5[3]⊕ S′
5[3]) is possible, we can choose such S5[4] and S′

5[4].
The input and output differences of the S-box are determined once we construct a

pair such that S4[0, 1, 4..7] collide. The probability that randomly chosen input/output
differences are possible is about 1/2. Since there are 16 S-boxes, the probability that we
can construct such A9 and A′

9 is 2−16. In our CMT-2 attack, we construct such (S4, S′
4),

and if it does not lead to a possible differential transition, we reconstruct different (S4, S′
4)

until we have a pair having a possible transition. Therefore, the attack complexity is 216.
We emphasize that the complexity is practical.

CMT-1 and FROB Attacks. The CMT-2 attack above can be applied regardless of the
keyed/non-keyed finalization. When the finalization does not involve the key, the internal
state collision leads to the same ciphertext and tag, even for the CMT-1 and FROB attacks.
Therefore, our CMT-2 attack is converted to the CMT-1 and FROB attacks against Rocca
with non-keyed finalization like Rocca-v1 or Rocca-v4. To the best of our knowledge, there
is no existing FROB attack against Rocca that is faster than the generic complexity, 264.
In a recently published attack in ToSC 2024(1)/FSE 2024 [DFI+24], the attack complexity
is 2128, which is worse than the generic attack. We emphasize that our FROB attack is
practical and significantly improves the existing attack. We implemented our algorithm
and the test case of the FROB attack against Rocca-v4 is shown in Appendix B.

6 Conclusions
In this paper, we analysed revised versions of Rocca with various finalization, and clarified
security trade-offs. For committing attacks, none of the versions of Rocca is secure, while
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Rocca-v1 and Rocca-v4 allow a practical attack in FROB notion, one of the strongest
notions of committing attacks. Our result significantly improves the result in [DFI+24]
on Rocca-v1. These schemes cannot be used in applications where committing security
is expected. XORing the key at the beginning of finalization in Rocca-v2 and Rocca-v3
is supposed to add resistance against universal forgery, while this is the crucial reason
why these schemes allow key recovery that is faster than the exhaustive key search. With
respect to universal forgery in the nonce-misuse setting, Rocca-v1 is worse than GCM in
that it allows key recovery, and Rocca-v4 inherits the weakness of GCM allowing practical
universal forgery. For Rocca-v2 and Rocca-v3, they admit universal forgery with a practical
data complexity, while this not a concern for the high time complexity.

In the security notions in the secret key setting, i.e., key recovery and universal forgery,
whether a nonce is reused or respected, Rocca-v2 and Rocca-v3 do not reach the level of
their expected security, while none of the attacks we presented is a practical concern. The
design of Rocca-v4 can be interpreted to introduce a risk of practical universal forgery in
the nonce-misuse setting to avoid the impractical attacks on Rocca-v2 and Rocca-v3.

Rocca-S [ABC+23] is another revised version of Rocca to address the attacks presented
in [HII+22]. The design follows Rocca-v4 in that XORing the key in the finalization is
omitted, and it would be interesting to study its security in light of our results of this
paper.

Acknowledgments
We would like to thank the anonymous reviewers for their valuable comments and sugges-
tions, especially for pointing out the generic universal forgery discussed in Sect. 4.3.1. We
also would like to thank the designers of Rocca for their feedback on the preliminary draft
of the paper, and the authors of [DFI+24] for comments. This work was supported in part
by JSPS KAKENHI Grant Number JP24K07489.

References
[ABC+23] Ravi Anand, Subhadeep Banik, Andrea Caforio, Kazuhide Fukushima,

Takanori Isobe, Shinsaku Kiyomoto, Fukang Liu, Yuto Nakano, Kosei
Sakamoto, and Nobuyuki Takeuchi. An ultra-high throughput AES-based
authenticated encryption scheme for 6G: Design and implementation. In
Gene Tsudik, Mauro Conti, Kaitai Liang, and Georgios Smaragdakis, editors,
Computer Security - ESORICS 2023 - 28th European Symposium on Research
in Computer Security, The Hague, The Netherlands, September 25-29, 2023,
Proceedings, Part I, volume 14344 of Lecture Notes in Computer Science, pages
229–248. Springer, 2023.

[ADG+22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and
Sophie Schmieg. How to abuse and fix authenticated encryption without key
commitment. In Kevin R. B. Butler and Kurt Thomas, editors, 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12,
2022, pages 3291–3308. USENIX Association, 2022.

[ADL17] Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting authenticated
encryption robustness with minimal modifications. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part III, volume 10403 of Lecture Notes in Computer
Science, pages 3–33. Springer, 2017.



112 Key Recovery, Universal Forgery, and Committing Attacks against Revised Rocca

[AES01] Advanced Encryption Standard (AES). National Institute of Standards and
Technology, NIST FIPS PUB 197, U.S. Department of Commerce, November
2001.

[AI21] Ravi Anand and Takanori Isobe. Differential fault attack on Rocca. In
Jong Hwan Park and Seung-Hyun Seo, editors, Information Security and
Cryptology - ICISC 2021 - 24th International Conference, Seoul, South Korea,
December 1-3, 2021, Revised Selected Papers, volume 13218 of Lecture Notes
in Computer Science, pages 283–295. Springer, 2021.

[AI23] Ravi Anand and Takanori Isobe. Quantum security analysis of Rocca. Quantum
Inf. Process., 22(4):164, 2023.

[BH22] Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing au-
thenticated encryption. In Orr Dunkelman and Stefan Dziembowski, editors,
Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Trond-
heim, Norway, May 30 - June 3, 2022, Proceedings, Part II, volume 13276 of
Lecture Notes in Computer Science, pages 845–875. Springer, 2022.

[BS23] Xavier Bonnetain and André Schrottenloher. Single-query quantum hidden
shift attacks. IACR Cryptol. ePrint Arch., 2023/1306, 2023.

[BZD+16] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp
Jovanovic. Nonce-disrespecting adversaries: Practical forgery attacks on GCM
in TLS. In Natalie Silvanovich and Patrick Traynor, editors, 10th USENIX
Workshop on Offensive Technologies, WOOT 16, Austin, TX, USA, August
8-9, 2016. USENIX Association, 2016.

[CAE] CAESAR. Competition for authenticated encryption: Security, applicability,
and robustness.

[CR22] John Chan and Phillip Rogaway. On committing authenticated-encryption.
In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard Jensen,
and Weizhi Meng, editors, Computer Security - ESORICS 2022 - 27th Euro-
pean Symposium on Research in Computer Security, Copenhagen, Denmark,
September 26-30, 2022, Proceedings, Part II, volume 13555 of Lecture Notes
in Computer Science, pages 275–294. Springer, 2022.

[DFI+24] Patrick Derbez, Pierre-Alain Fouque, Takanori Isobe, Mostafizar Rahman,
and André Schrottenloher. Key committing attacks against AES-based AEAD
schemes. IACR Trans. Symmetric Cryptol., 2024(1):135–157, 2024.

[DGRW18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage.
Fast message franking: From invisible salamanders to encryptment. In Ho-
vav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of
Lecture Notes in Computer Science, pages 155–186. Springer, 2018.

[FOR17] Pooya Farshim, Claudio Orlandi, and Razvan Rosie. Security of symmetric
primitives under incorrect usage of keys. IACR Trans. Symmetric Cryptol.,
2017(1):449–473, 2017.

[GL15] Shay Gueron and Yehuda Lindell. GCM-SIV: full nonce misuse-resistant
authenticated encryption at under one cycle per byte. In Indrajit Ray, Ninghui
Li, and Christopher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC



Ryunouchi Takeuchi, Yosuke Todo and Tetsu Iwata 113

Conference on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015, pages 109–119. ACM, 2015.

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via com-
mitting authenticated encryption. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Pro-
ceedings, Part III, volume 10403 of Lecture Notes in Computer Science, pages
66–97. Springer, 2017.

[Gue10] Shay Gueron. Intel Advanced Encryption Standard (AES) New Instructions
Set. 2010.

[HII+22] Akinori Hosoyamada, Akiko Inoue, Ryoma Ito, Tetsu Iwata, Kazuhiko
Mimematsu, Ferdinand Sibleyras, and Yosuke Todo. Cryptanalysis of Rocca
and feasibility of its security claim. IACR Trans. Symmetric Cryptol.,
2022(3):123–151, 2022.

[JN16] Jérémy Jean and Ivica Nikolic. Efficient design strategies based on the AES
round function. In Thomas Peyrin, editor, Fast Software Encryption - 23rd
International Conference, FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, volume 9783 of Lecture Notes in Computer Science,
pages 334–353. Springer, 2016.

[Jou06] Antoine Joux. Authentication failures in NIST version of GCM. Public
comment to NIST, 2006.

[LGR21] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning oracle attacks.
In Michael D. Bailey and Rachel Greenstadt, editors, 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021, pages 195–212.
USENIX Association, 2021.

[MLGR23] Sanketh Menda, Julia Len, Paul Grubbs, and Thomas Ristenpart. Context
discovery and commitment attacks - how to break CCM, EAX, SIV, and
more. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology -
EUROCRYPT 2023 - 42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023,
Proceedings, Part IV, volume 14007 of Lecture Notes in Computer Science,
pages 379–407. Springer, 2023.

[MV04] David A. McGrew and John Viega. The security and performance of the
Galois/Counter mode (GCM) of operation. In Anne Canteaut and Kapalee
Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, 5th Inter-
national Conference on Cryptology in India, Chennai, India, December 20-22,
2004, Proceedings, volume 3348 of Lecture Notes in Computer Science, pages
343–355. Springer, 2004.

[Nik14] Ivica Nikolic. Tiaoxin-346: Version 2.0. CAESAR Competition, 2014.

[PS16] Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authenticated encryp-
tion modes for tweakable block ciphers. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part I, volume 9814 of Lecture Notes in Computer Science, pages
33–63. Springer, 2016.



114 Key Recovery, Universal Forgery, and Committing Attacks against Revised Rocca

[RKHP20] David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Pöpper.
Call me maybe: Eavesdropping encrypted LTE calls with ReVoLTE. In Srdjan
Capkun and Franziska Roesner, editors, 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, pages 73–88. USENIX Association,
2020.

[SLN+21] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori
Isobe. Rocca: An efficient AES-based encryption scheme for beyond 5G. IACR
Trans. Symmetric Cryptol., 2021(2):1–30, 2021.

[SLN+22a] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori
Isobe. Rocca: An efficient AES-based encryption scheme for beyond 5G (full
version). IACR Cryptol. ePrint Arch., 2022/116, 2022. Version 20220914.

[SLN+22b] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori
Isobe. Rocca: An efficient AES-based encryption scheme for beyond 5G (full
version). IACR Cryptol. ePrint Arch., 2022/116, 2022. Version 20230316.

[STSI23] Takuro Shiraya, Nobuyuki Takeuchi, Kosei Sakamoto, and Takanori Isobe.
MILP-based security evaluation for AEGIS/Tiaoxin-346/Rocca. IET Inf.
Secur., 17(3):458–467, 2023.

[TI23] Ryunosuke Takeuchi and Tetsu Iwata. Key recovery attack against modified
version of Rocca. Private Communication, 2023.

[TSI23a] Nobuyuki Takeuchi, Kosei Sakamoto, and Takanori Isobe. On optimality
of the round function of Rocca. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci., 106(1):45–53, 2023.

[TSI23b] Nobuyuki Takeuchi, Kosei Sakamoto, and Takanori Isobe. Security evaluation
of initialization phases and round functions of Rocca and AEGIS. IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., 106(3):253–262, 2023.

[VP17] Mathy Vanhoef and Frank Piessens. Key reinstallation attacks: Forcing nonce
reuse in WPA2. In Bhavani Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 1313–1328. ACM, 2017.

[WP13] Hongjun Wu and Bart Preneel. AEGIS: A fast authenticated encryption
algorithm. In Tanja Lange, Kristin E. Lauter, and Petr Lisonek, editors,
Selected Areas in Cryptography - SAC 2013 - 20th International Conference,
Burnaby, BC, Canada, August 14-16, 2013, Revised Selected Papers, volume
8282 of Lecture Notes in Computer Science, pages 185–201. Springer, 2013.

A Test Case for the CMT-3 Attack
We present a test case for the committing attack. We consider Rocca-v3 [SLN+22a]. We
present a concrete example of (K, N, A, M), (K ′, N ′, A′, M ′), and (C, T ) such that (C, T ) =
EncK(N, A, M) = EncK′(N ′, A′, M ′), with the constraint that (K, N, A) ̸= (K ′, N ′, A′).

We define K, K ′, N , and N ′ as follows (written in hex in an array):

K0 = K ′
0 = {01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01}

K1 = K ′
1 = {01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01}

N = N ′ = {02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02}
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The state after the initialization of Rocca-v3 becomes S0 as follows:

S0[0] = {7C, D6, 06, 78, 19, 67, FA, D3, F0, 85, 36, 0D, 45, 6A, 48, E7}
S0[1] = {1E, 17, 6A, 84, 76, 94, 30, B0, 99, 33, A3, 79, 11, AC, A3, 0C}
S0[2] = {49, 57, E3, DD, CE, 65, 99, D0, D0, C5, C0, E2, 0A, E2, 17, FB}
S0[3] = {4E, D8, 09, 31, 7D, 12, 56, CC, 11, 48, F8, EB, F8, 50, 56, CD}
S0[4] = {80, A1, C7, 5D, CC, 33, 55, 39, B0, 16, D9, 1C, 72, F2, 0A, 72}
S0[5] = {43, 9A, AE, 0C, 20, B9, 8D, 3A, 54, ED, 7E, BA, FC, 20, 9C, 88}
S0[6] = {8D, 70, CF, 5B, 7E, CA, BB, 60, 35, 76, 18, 8D, 61, 3C, 82, E2}
S0[7] = {14, E8, 6D, 10, B3, 2A, 4E, B3, 86, 99, D8, B6, 09, 56, DF, 5B}

Then, the associated data A and A′ obtained by the method shown in Sect. 5.1 are as
follows:

A0 = {14, 89, C0, 47, EB, CB, 90, ED, 8C, 85, 81, FC, 48, 4F, CC, 86}
A1 = {AC, 0A, D3, C6, B2, 92, EA, 32, 14, D4, 9C, 44, FE, 8B, 9D, D7}
A2 = {D7, DE, E9, 3D, E9, 60, 89, 16, F1, 56, 07, 39, F7, 8D, 3F, 01}
A3 = {63, D8, EA, 47, 3C, 8D, 79, 83, D1, 73, C8, C6, 08, AF, 1E, 95}
A4 = {31, 18, 1A, 73, 39, F1, 34, 29, 03, 2B, 50, D2, C4, 4C, 6D, ED}
A5 = {B8, 4E, F9, 2A, 39, D7, 3C, 61, 44, B1, 16, D2, 92, 2E, 61, 17}
A6 = {08, 39, 20, 8F, 64, 53, A2, EF, 9B, A6, 0A, 57, A5, 88, 17, 19}
A7 = {C7, FD, D1, B0, F3, B8, B7, 03, 5C, A0, 71, 80, 4A, D8, 71, 98}
A8 = {4F, D5, DB, 4D, CD, 63, 95, C8, 06, 02, 59, 4B, 34, 4C, 07, 9B}
A9 = {31, 67, 39, 60, 14, 07, F0, 0D, 1E, 2D, FC, 0A, 24, C4, D2, 17}

A10 = {FB, 98, A0, 3C, 51, CA, 8C, E9, 87, DC, C1, 98, 79, 94, 5E, 52}
A11 = {73, DC, B6, D6, 61, 67, 60, C6, 82, 62, E9, C2, EC, 0A, 52, 47}
A12 = {E7, 85, 76, 8D, B0, 91, B0, F1, 36, AA, 16, 72, 0F, 14, E5, 61}
A13 = {B5, B7, 95, D3, 54, 3D, E7, 19, 0A, 38, 60, F1, 60, D9, F9, 8E}

A′
0 = {E1, 89, C0, 47, EB, CB, 90, ED, 8C, 85, 81, FC, 48, 4F, CC, 86}

A′
1 = {AC, 0A, D3, C6, B2, 92, EA, 32, 14, D4, 9C, 44, FE, 8B, 9D, D7}

A′
2 = {D7, DE, E9, 3D, E9, 60, 89, 16, F1, 56, 07, 39, F7, 8D, 3F, 01}

A′
3 = {63, D8, EA, 47, 3C, 8D, 79, 83, D1, 73, C8, C6, 08, AF, 1E, 95}

A′
4 = {C4, 18, 1A, 73, 39, F1, 34, 29, 03, 2B, 50, D2, C4, 4C, 6D, ED}

A′
5 = {4D, 4E, F9, 2A, 39, D7, 3C, 61, 44, B1, 16, D2, 92, 2E, 61, 17}

A′
6 = {FD, 39, 20, 8F, 64, 53, A2, EF, 9B, A6, 0A, 57, A5, 88, 17, 19}

A′
7 = {D6, FD, D1, B0, F3, D3, B7, 03, 5C, A0, AD, 80, 4A, D8, 71, 7E}

A′
8 = {5E, D5, DB, 4D, CD, 08, 95, C8, 06, 02, 85, 4B, 34, 4C, 07, 7D}

A′
9 = {E8, 86, D8, 58, 55, 46, 33, 8F, EA, 2A, 0F, FE, 23, 37, 26, E3}

A′
10 = {0E, 98, A0, 3C, 51, CA, 8C, E9, 87, DC, C1, 98, 79, 94, 5E, 52}

A′
11 = {62, 59, 33, 42, 61, 67, 60, C6, 82, 62, E9, C2, EC, 0A, 52, 47}

A′
12 = {F6, 00, F3, 19, B0, 91, B0, F1, 36, AA, 16, 72, 0F, 14, E5, 61}

A′
13 = {B5, B7, 95, D3, 54, 3D, E7, 19, 0A, 38, 60, F1, 60, D9, F9, 8E}
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We also let the messages M = (M0, M1) and M ′ = (M ′
0, M ′

1) be the following values:

M0 = M ′
0 = {FF, FF, EE, EE, DD, DD, CC, CC, BB, BB, AA, AA, 99, 99, 88, 88}

M1 = M ′
1 = {77, 77, 66, 66, 55, 55, 44, 44, 33, 33, 22, 22, 11, 11, 00, 00}

Then, the outputs of EncK(N, A, M) and EncK′(N ′, A′, M ′) are identical, i.e., we have
(C, T ) = EncK(N, A, M) = EncK′(N ′, A′, M ′), where C = (C0, C1) and

C0 = {9B, 2E, 73, 39, 8E, 37, D2, 80, 50, EF, C1, 72, 1F, 7F, E7, 99} ,

C1 = {8B, 6D, C1, 2C, 85, D6, 9D, 70, 2F, 15, EB, C2, 46, 82, 2E, DA} ,

T = {1B, 0C, 98, 98, 8B, 01, AC, 5C, 88, 94, EF, 77, 95, D3, 81, CB} .

As a result, we obtain (K, N, A, M), (K ′, N ′, A′, M ′), and (C, T ) such that (C, T ) =
EncK(N, A, M) = EncK′(N ′, A′, M ′), A ̸= A′, and (K, N, M) = (K ′, N ′, M ′), practically
breaking the CMT-3 security of Rocca-v3 in [SLN+22a].

B Test Case for the FROB Attack
We present a test case for the FROB attack. We consider Rocca-v4 in [SLN+22b].
We present an example of (K, N, A, M), (K ′, N ′, A′, M ′), and (C, T ) such that (C, T ) =
EncK(N, A, M) = EncK′(N ′, A′, M ′), with the constraint that K ̸= K ′, N = N ′.

We define K, K ′, N , and N ′ as follows (written in hex in an array):

K0 = {01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01}
K1 = {01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01}
K ′

0 = {01, 23, 45, 67, 89, AB, CD, EF, 01, 23, 45, 67, 89, AB, CD, EF}
K ′

1 = {01, 23, 45, 67, 89, AB, CD, EF, 01, 23, 45, 67, 89, AB, CD, EF}
N = N ′ = {02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02}

The state after the initialization of Rocca-v4 becomes S0, S′
0 as follows:

S0[0] = {7C, D6, 06, 78, 19, 67, FA, D3, F0, 85, 36, 0D, 45, 6A, 48, E7}
S0[1] = {1E, 17, 6A, 84, 76, 94, 30, B0, 99, 33, A3, 79, 11, AC, A3, 0C}
S0[2] = {49, 57, E3, DD, CE, 65, 99, D0, D0, C5, C0, E2, 0A, E2, 17, FB}
S0[3] = {4E, D8, 09, 31, 7D, 12, 56, CC, 11, 48, F8, EB, F8, 50, 56, CD}
S0[4] = {80, A1, C7, 5D, CC, 33, 55, 39, B0, 16, D9, 1C, 72, F2, 0A, 72}
S0[5] = {43, 9A, AE, 0C, 20, B9, 8D, 3A, 54, ED, 7E, BA, FC, 20, 9C, 88}
S0[6] = {8D, 70, CF, 5B, 7E, CA, BB, 60, 35, 76, 18, 8D, 61, 3C, 82, E2}
S0[7] = {14, E8, 6D, 10, B3, 2A, 4E, B3, 86, 99, D8, B6, 09, 56, DF, 5B}

S′
0[0] = {DB, BB, B6, E5, D3, 5C, 25, 1F, 4D, 05, 4A, F3, 60, EF, 25, 3D}

S′
0[1] = {D7, D4, 09, EB, 4E, 78, 98, E9, 0E, D7, 77, 03, 92, 19, 45, DC}

S′
0[2] = {73, 8E, E3, F2, F7, 82, 24, EA, 12, AA, 14, 1B, 2C, 1A, 72, 9F}

S′
0[3] = {C5, A4, 15, 04, 07, 1D, 7A, 00, 12, A1, 1B, 67, E0, 4E, C1, 82}

S′
0[4] = {7C, 54, 41, 0F, 47, A7, D2, 19, 70, 67, 0E, EA, 97, 3C, 91, 3A}

S′
0[5] = {44, 63, A1, 8D, 06, E0, 9D, C6, FA, A9, AE, 49, DA, C6, 92, 4B}

S′
0[6] = {69, AF, 6D, 4D, 1E, C6, F4, 8B, CC, EF, FC, 8C, 21, D5, 67, 3F}

S′
0[7] = {00, 70, 81, 33, 35, C6, 63, 0A, 6D, 6D, 0A, 24, 5B, 2A, 84, 04}
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The associated data A and A′ obtained by the method shown in Sect. 5.2 are as follows:
A0 = {AC, B4, 4A, E0, F6, 08, B2, FB, 01, 4D, C8, 54, 3A, D7, CB, 24}
A1 = {DC, AC, 0D, 0C, 71, 70, 46, D6, C7, C1, 8F, 50, CB, D9, 70, 5E}
A2 = {A3, 10, 1E, A0, F1, 46, A6, 30, C4, 9A, EA, B6, B2, 0A, B3, EC}
A3 = {7D, 05, A3, 98, 76, 59, 55, 74, 88, 78, 67, 56, 18, AC, 79, 93}
A4 = {5E, 03, 90, E8, 41, B2, CC, EF, 53, DD, 3C, 61, CC, A4, 91, CE}
A5 = {C9, 75, 77, EE, C9, 00, 47, 3D, D1, 32, 39, FF, 7B, 2F, 6C, 14}
A6 = {0C, B9, 8E, 65, 7F, D5, 31, A9, E9, 27, E4, 6D, 46, DD, B3, E4}
A7 = {65, 34, 82, ED, ED, 4A, AF, EA, 22, F0, 75, 8B, 1F, 10, A9, CC}
A8 = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}
A9 = {DE, 1D, 6C, 96, EE, CB, 59, B7, EB, 58, A0, DE, 48, C4, A5, B6}

A10 = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}
A11 = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}

A′
0 = {BA, 81, 0A, CE, 50, BE, 55, 3D, 2E, 71, C1, 9C, 58, 00, 43, C9}

A′
1 = {D7, 0A, 1E, B5, 64, F0, B8, EB, 55, 9B, 0B, 02, 61, D6, 89, 8B}

A′
2 = {AE, A8, 40, B0, 5C, 66, 35, C1, CB, 05, E3, 8C, 3C, 11, DD, E6}

A′
3 = {87, 35, B7, D1, 2D, D2, C9, B9, 16, AB, 43, 52, 28, DC, 4C, 81}

A′
4 = {51, 58, 60, C3, 37, D2, 8E, A8, 51, 21, 2A, FD, BE, F4, 31, B0}

A′
5 = {DA, BA, E4, 49, BB, 54, A2, 47, C2, DB, 38, 65, 9B, 65, B1, BD}

A′
6 = {1E, 73, 24, 10, 03, 76, F9, 68, 02, 12, FA, 31, 54, F4, 03, 80}

A′
7 = {9B, 09, 1F, F8, 42, EF, 97, 83, 0F, D3, 00, C5, 98, BB, 73, EA}

A′
8 = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}

A′
9 = {30, EA, F2, A0, 37, D3, 0C, 08, 88, 52, 13, DA, B6, CA, D1, 7F}

A′
10 = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}

A′
11 = {1A, D0, C3, 1C, E7, F1, 8C, EC, 0C, AE, E8, 4B, F5, 39, 3B, 8C}

Let the messages M = (M0, M1) and M ′ = (M ′
0, M ′

1) be the following values:
M0 = M ′

0 = {FE, DC, BA, 98, 76, 54, 32, 10, FE, DC, BA, 98, 76, 54, 32, 10}
M1 = M ′

1 = {FE, DC, BA, 98, 76, 54, 32, 10, FE, DC, BA, 98, 76, 54, 32, 10}

Then, the outputs of EncK(N, A, M) and EncK′(N ′, A′, M ′) are identical, i.e., we have
(C, T ) = EncK(N, A, M) = EncK′(N ′, A′, M ′), where C = (C0, C1) and

C0 = C ′
0 = {A2, C6, 1F, 69, 67, 3C, 95, 8A, 86, A1, 02, 0B, 8A, 6E, B3, BF} ,

C1 = C ′
1 = {B7, 2D, CD, 79, 3D, 6A, C2, 4D, 34, 0E, 33, 42, 31, B1, EA, BB} ,

T = T ′ = {F0, 55, 36, 27, C6, 63, BC, 4D, 99, B9, 5B, 54, FF, FF, 0E, D8} .

Note that, to make S4[0, 1, 4..7] = S′
4[0, 1, 4..7] constant, we compute A2, . . . , A7 as

follows:
A7 = A(S1[1]⊕ S1[6])⊕A(S1[0])⊕ S1[7]⊕ S4[4]
A5 = A(S1[2])⊕ S1[1]⊕A−1(S4[5]⊕A(S1[1]⊕ S1[6])⊕A(S1[0])⊕ S1[7])
A3 = S1[3]⊕A−1(A(S1[2])⊕ S1[1]⊕A−1(S4[6]⊕A(S1[2])⊕ S1[1]⊕A5))
A4 = S1[0]⊕ S1[6]⊕A(A(S1[4])⊕ S1[3])⊕ S1[3]⊕A3 ⊕ S4[7]
A2 = S4[1]⊕A(S1[0]⊕ S1[6]⊕A4)⊕ S1[7]⊕A(S1[5])⊕ S1[4]
A6 = S1[7]⊕A2 ⊕A(S1[5])⊕ S1[4]⊕ S4[0]
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