
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 2, pp. 68–84. DOI:10.46586/tosc.v2024.i2.68-84

Cryptanalysis of Full-Round BipBip
Jinliang Wang1,4, Christina Boura2, Patrick Derbez3, Kai Hu1,4, Muzhou Li1

and Meiqin Wang1,4,5

1 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong, China
jinliangwang@mail.sdu.edu.cn,kai.hu@sdu.edu.cn,muzhouli@mail.sdu.edu.cn,mqwang@

sdu.edu.cn
2 Université Paris-Saclay, Université de Versailles, Centre National de la Recherche Scientifique

(CNRS), Laboratoire de mathématiques de Versailles, 78000, Versailles, France
christina.boura@uvsq.fr

3 Univ Rennes, Inria, Centre National de la Recherche Scientifique (CNRS), Institut de
Recherche en Informatique et Systèmes Aléatoires (IRISA), Rennes, France

patrick.derbez@irisa.fr
4 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

Shandong University, Jinan, China
5 Quan Cheng Shandong Laboratory, Jinan, China

Abstract. BipBip is a low-latency tweakable block cipher proposed by Belkheyar
et al. in 2023. It was designed for pointer encryption inside a new memory safety
mechanism called Cryptographic Capability Computing (C3). BipBip encrypts blocks
of 24 bits using a 40-bit tweak and a 256-bit master key and is composed of 11 rounds.
In this article, we provide a Demirci-Selçuk Meet-in-the-Middle (DS-MITM) attack
against the 11-round (full) variant that breaks the security claim of the designers.
Keywords: BipBip · Demirci-Selçuk meet-in-the-middle cryptanalysis · low latency

1 Introduction
Memory safety vulnerabilities, such as access errors or memory leaks are considered to be
the most common security problems in computer systems. In 2021, a group of researchers
from Intel Labs proposed a new memory safety mechanism, called Cryptographic Capability
Computing (C3) [LRD+21]. This mechanism was particularly interesting as it was the
first one to be stateless, not requiring extra storage for metadata. In practice, C3 encrypts
64-bit pointers. However, only 24 bits of each pointer are encrypted and the remaining 40
bits serve as a tweak. While each pointer is only encrypted once upon memory allocation,
it needs to be decrypted within the processor core whenever it is dereferenced. Therefore,
to guarantee a good system performance it is crucial for the decryption to be low-latency.

In 2023, Belkheyar, Daemen, Dobraunig, Ghosh and Rasoolzadeh designed BipBip
[BDD+23], a low-latency tweakable block cipher, to be used inside the C3 mechanism.
BipBip uses 24-bit blocks and 40-bit tweaks while the master key is 256-bit long. It is
an 11-round iterative design that permits for ASIC implementations with a latency of 3
cycles at a 4.5 GHz clock frequency on a modern 10 nm CMOS technology. Because of
the special format and performance requirements, BipBip has several particular design
features. First, it has a very small block size of 24 bits only. Another particularity is that
it has a very long key compared to the block size that needs to be absorbed in very few
rounds only due to the low latency requirements. This is done with the help of a wide,
non-linear tweakey schedule.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-03-01 Accepted: 2024-05-01 Published: 2024-06-18

https://doi.org/10.46586/tosc.v2024.i2.68-84
mailto:jinliangwang@mail.sdu.edu.cn,kai.hu@sdu.edu.cn,muzhouli@mail.sdu.edu.cn,mqwang@sdu.edu.cn
mailto:jinliangwang@mail.sdu.edu.cn,kai.hu@sdu.edu.cn,muzhouli@mail.sdu.edu.cn,mqwang@sdu.edu.cn
mailto:christina.boura@uvsq.fr
mailto:patrick.derbez@irisa.fr
http://creativecommons.org/licenses/by/4.0/

Jinliang Wang, Christina Boura, Patrick Derbez, Kai Hu, Muzhou Li, Meiqin Wang 69

The designers of BipBip claimed a security of 96 bits against attackers and provided
a preliminary security analysis inside the design document. In particular, they gave an
extended and very complete analysis of the resistance of the cipher against differential and
linear attacks. This analysis shows that BipBip is not vulnerable to these two classical
cryptanalysis techniques. Among the other attacks, the one that showed to best apply
against BipBip was the Demirci-Selçuk Meet-in-the-Middle (DS-MITM) cryptanalysis
technique [DS08].

The Demirci-Selçuk Meet-in-the-Middle attack was introduced by Demirci and Selçuk
in 2008 and applied to reduced-round versions of the Advanced Encryption Standard (AES).
Subsequent enhancements by various researchers [DKS10, DFJ13, DF13, LJW14, LJ16]
refined this method, leading to the most effective known attacks on AES variants. The
versatility of the DS-MITM approach has been demonstrated through its application to
many different ciphers, including PRINCE [DP15], TWINE [BDP15], Camelia [LJWD15,
DLJW15], HALFLOOP [LRS23], and SKINNY [SSS+23], among others. In parallel,
quantum versions of the attack have been proposed recently [HS18, BNS19] demonstrating
the potential of this technique in the field of quantum cryptanalysis.

The application of the DS-MITM to BipBip permitted to its designers to break 9 out
of the 11 rounds with a data complexity of 26 ciphertexts and a time complexity of 290

encryptions and 290 memory look-ups. While they did not manage to successfully extend
this attack to 10 rounds, they wrote that such an extension could eventually be possible by
a more careful analysis of the cipher’s inner components. No third-party cryptanalysis has
been proposed until now against BipBip and the 9-round DS-MITM attack of [BDD+23]
remains for the moment the best attack against this cipher.

Determining the exact level of security that BipBip offers in practice is very important
as this cipher has very attractive features, offers competitive performances and will very
probably be implemented inside the C3 architecture. Analyzing this cipher is also very
challenging, as its structure significantly differs from the traditional tweakable block
ciphers, notably by its extremely small block size. This task is even more important
as we know today that many lightweight ciphers showed to be less secure than what
their designers initially claimed [LAAZ11, TLS16, BDHN23, WNL+23, LAW+23, LIM21,
ZCWW23, TI22, SCW23]. This sometimes wrong estimate of the security level lightweight
ciphers offer can be explained by the fact that the inner components of these ciphers have
most of the time a simpler algebraic expression and more aggressive parameters than
mainstream designs. For example, the number of rounds is often chosen in a much less
conservative way, leaving potentially a very thin security margin behind.

Our contributions In this article, we describe a Demirci-Selçuk Meet-in-the-Middle (DS-
MITM) attack against 11-round BipBip, the first attack against the full version for this
cipher. Our attack follows the framework proposed in [DKS10], where the differential
enumeration technique (DET) is used to reduce both the time and memory complexities
of the precomputation phase. The memory complexity of our attack is 292.25 24-bit blocks
while its time complexity and its probability of success depend on the data available to
the attacker. Given the full codebook for s different tweaks, corresponding to a data
complexity of s × 224, the time complexity is equivalent to 292.13 + s × 290.92 BipBip
encryptions, for a probability of success equal to 1− (1− 2−48)s×247 . A summary of our
attacks for s = 1, 2 and 3, as well as a comparison with the previous best cryptanalysis
results against BipBip is shown in Table 1. As shown, we are able to generate under a
secret key valid (plaintext/ciphertext/tweak) tuples with a probability twice as big as
expected. For this reason, our attacks can be considered to break the security claim made
by the designers of BipBip, but only under the assumption that the attacker has access to
a very fast memory. In any case, our results demonstrate that the security claim is very
tight and while they do not present a threat for the use of BipBip in practice, they permit

70 Cryptanalysis of Full-Round BipBip

to provide a better understanding of the security properties and the security margin of
this cipher.

Table 1: Summary of the best cryptanalysis results against BipBip. CC stands for Chosen
Ciphertexts. Time complexities are evaluated in decryption units, while the memory
complexity is given in number of blocks. The parameter s corresponds to the number of
tweaks, Pu is the upper bound on the success rate set by the designers (Eq. (2)), and
“Proba.” is the success rate of our attack.

Method Rounds s Data Time Memory Proba. Pu Ref.

DS-MITM 9 1 26 CC 291 290 63.21 % 3.12 % [BDD+23]

DS-MITM
with DET

11 1 224 CC 292.71 292.25 39.35 % 20.49 %
Sect. 311 2 225 CC 293.09 292.25 63.21 % 39.93 %

11 3 226 CC 293.39 292.25 77.69 % 65.54 %

The rest of the article is organised as follows. Section 2 describes the BipBip cipher
and provides a brief introduction to Demirci-Selçuk MITM attacks. Section 3 describes
our attack against full-round BipBip. Finally, Section 4 discusses the success probability
of the attack and how it is related to the security claim of the designers.

2 Preliminaries

2.1 Brief Introduction to BipBip and Notations

C P

T

*

EE EE E0 E0 E0 E0 E0 EE

κ

1
κ

2
κ

3
κ

4
κ

5
κ

6

κ

0

k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

10
k

11

Figure 1: High-level structure of BipBip. The key schedule is omitted.

BipBip is a tweakable block cipher designed to have low-latency decryption when
implemented on ASICs [BDD+23]. BipBip has a block size of 24 bits, a master key length
of 256 bits, and a tweak length of 40 bits. Figure 1 depicts the high-level structure of the
data flow in BipBip’s decryption. BipBip consists of three main parts: the datapath, the
tweak schedule, and the key schedule. The key schedule forms the tweak-round keys κi,
for 1 ≤ i ≤ 11 and the whitening key κ0 by selecting bits from the 256-bit master key
K. The tweak schedule processes the tweak T and the tweak-round keys κi to derive the
data-round keys ki. The datapath starts with the addition of the whitening key κ0 to the
ciphertext C, followed by the alternating application of the datapath rounds R and R′

and data-round key additions with ki to finally output the plaintext P . As the master
key is 256-bit long and there are 11 data-round keys ki of 24 bits each, these ones can be
considered to be (almost) independent.

The datapath uses two round functions, one called core round function R and the other
one shell round function R′. The shell round function has no mixing layer and therefore
has lower latency than the core round function. The core round function R consists of an

Jinliang Wang, Christina Boura, Patrick Derbez, Kai Hu, Muzhou Li, Meiqin Wang 71

S-box layer S, a linear mixing layer θd, and two bit-shuffles π1 and π2. The shell round
function R′ includes the same S-box layer S and a different bit-shuffle π3. We have:

R = π2 ◦ θd ◦ π1 ◦ S and R′ = π3 ◦ S.

We describe now these inner components in detail.

S-box Layer S The S-box layer of BipBip’s datapath is based on a 6-bit S-box, called
BipBipBox and given in Table 2. The state is divided into 4 words of 6 bits and
applies BipBipBox to each word in parallel:

S : (y6i+5, . . . , y6i)← BipBipBox(x6i+5, . . . , x6i), 0 ≤ i < 4.

Table 2: The S-box (BipBipBox) used in BipBip. All elements in this table are expressed
in hexadecimal. x0 is the least significant bit.

x5x4 x3x2x1x0

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 00 01 02 03 04 06 3e 3c 08 11 0e 17 2b 33 35 2d
1 19 1c 09 0c 15 13 3d 3b 31 2c 25 38 3a 26 36 2a
2 34 1d 37 1e 30 1a 0b 21 2e 1f 29 18 0f 3f 10 20
3 28 05 39 14 24 0a 0d 23 12 27 07 32 1b 2f 16 22

Mixing Layer θd The mixing layer multiplies the datapath state with a binary circulant
matrix:

θd : yi ← xi ⊕ xi+2 mod 24 ⊕ xi+12 mod 24, 0 ≤ i < 24.

Bit Shuffles π1, π2 and π3 The 24 bits of the datapath state are permuted by

π1 : yi ← xP1(i), π2 : yi ← xP2(i), π3 : yi ← xP3(i), 0 ≤ i < 24,

where P1, P2 and P3 are permutations of Z/24Z specified by the following tables:

P1 = [1, 7, 6, 0, 2, 8, 12, 18, 19, 13, 14, 20, 21, 15, 16, 22, 23, 17, 9, 3, 4, 10, 11, 5],
P2 = [0, 1, 4, 5, 8, 9, 2, 3, 6, 7, 10, 11, 16, 12, 13, 17, 20, 21, 15, 14, 18, 19, 22, 23],
P3 = [16, 22, 11, 5, 2, 8, 0, 6, 19, 13, 12, 18, 14, 15, 1, 7, 21, 20, 4, 3, 17, 23, 10, 9].

From now on and for the sake of convenience, π2 ◦ θd ◦ π1, the linear layer of the core
rounds, will be denoted by LC while π3, the linear layer of the the shell rounds, will be
denoted by LS .

Tweak Schedule The tweak schedule operates on a 53-bit tweak state. It consists of the
application of two types of round functions G and G′, and the addition of the tweak-round
keys κi. The tweak-round keys come from the key schedule that extracts them from the
master key.

The tweak schedule receives a 40-bit tweak T and extends it to a 53-bit value T ∗ with
T ∗ = T ||1||012. The tweak schedule round function is composed of five operations, which
are a non-linear layer χ, two linear mixing layers θ and θ′, and two bit permutations π4
and π5. The two types of round functions can be described as

G = χ ◦ π5 ◦ θ ◦ π4 and G′ = χ ◦ π5 ◦ θ′ ◦ π4,

72 Cryptanalysis of Full-Round BipBip

0

23

0

23

0

23

0

23

0

23

0

23

0

23

0

23κ0 ki+1 kR
C x0 xi yi zi xi+1 zR−1 P

· · · · · ·S L

Figure 2: The notations for R-round BipBip states and the indices of BipBip state bits,
where the linear layer L is LS inside shell rounds and LC inside core rounds.

where the five operations are

χ : ai ← ai ⊕ (ai+1 ⊕ 1)ai+2

π4 : ai ← a13i

θ : ai ← ai ⊕ ai+1 ⊕ ai+8

θ′ : ai ← ai ⊕ ai+1 if 0 ≤ i < 52 and a52 ← a52 if i = 52
π5 : ai ← a11i

where 0 ≤ i < 53 and the index is calculated modulo 53.
BipBip derives two 24-bit data-round keys ki and ki+1 from the 53-bit internal state

of xi by using two extractor functions E0 and E1:

ki = E0(xi) = (xi
0, xi

2, . . . , xi
46) and ki+1 = E1(xi) = (xi

1, xi
3, . . . , xi

47) (1)

Key Schedule The 24-bit whitening key κ0 and the six 53-bit tweak-round keys κ1, . . . , κ6

are computed from the master key K in the following way:

κ0 = (K3, K32 , . . . , K324),
κi = (K53i, K53i+1, . . . , K53i+52), i = 1, . . . , 6,

where the index is computed modulo 256.

Notations For the i-th round of BipBip where 0 ≤ i < 11, the states before the S-box,
linear layer and data-round key addition will be denoted by xi, yi and zi, respectively. The
ciphertext and plaintext are denoted by C and P . Thus, x0 = C ⊕ κ0 and P = z10 ⊕ k11.
For a state s (s can be xi, yi, zi, P or C), ∆s represents its difference; sj is the j-th bit of
s and naturally sj0,...,jm−1 are m bits of s. If j0, . . . , jm−1 are consecutive, we also write
them as sj0−jm−1 . Finally, s0 is the least significant bit (LSB) whereas s23 is the most
significant bit (MSB). An illustration of the above notations is given in Figure 2.

Security Claim The BipBip security claim is provided in [BDD+23] in reference to the
probability of correctly guessing that a ciphertext Ci maps to a plaintext Pi under a certain
tweak Ti for an instance of BipBip denoted by EK , where the master key K has been
chosen randomly and the pair (Pi, Ci) has not been queried before. The bound on the
probability of a correct guess is

p ≤ 1
max(224−µ − qTi

, 1) + q

296 + t

296 + qt

2120 , (2)

where µ = 0.5, q is the total number of queries to both encryption and decryption of EK ,
qTi

is the number of queries to both encryption and decryption of EK with the tweak of
value Ti and t is the computation time with the unit amount of computation equivalent to
evaluating EK .

Jinliang Wang, Christina Boura, Patrick Derbez, Kai Hu, Muzhou Li, Meiqin Wang 73

2.2 Demirci-Selçuk MITM Cryptanalysis
Demirci-Selçuk Meet-in-the-Middle (DS-MITM) cryptanalysis [DS08] is a powerful crypt-
analysis technique against block ciphers. In order to automatically and efficiently search
for DS-MITM characteristics, Derbez and Fouque [DF13, DF16] introduced a specialized
framework, implemented in C/C++. This development is part of a broader trend towards
automation in the field, with other notable contributions including an integer programming-
based approach [LWWZ13] and a constraint programming-based one [SSD+18].

In the DS-MITM attack, a cipher is divided into three consecutive parts E0, E1, and
E2 and we denote by s0, s1, s2, s3 the following internal states:

s0 E0

−−→ s1 E1

−−→ s2 E2

−−→ s3.

In the rest of this section, we first provide the definition of the δ-set (and more precisely
of the b-δ-set) a central notion in DS-MITM attacks. Then, we describe the basic MITM
attack. Finally, we recall the differential enumeration technique, an enhanced method for
this cryptanalysis, proposed by Dunkelman, Keller and Shamir in [DKS10] at ASIACRYPT
2010.

Definition 1 (b-δ-set and δ-set [DF16]). A b-δ-set is a set of 2b states in s1 which are all
different in the b active bits and constant in the remaining ones. Whenever the value of b
can be easily determined from the context, we will simply write δ-set to refer to this same
collection of states.

The basic MITM attack, as described in the seminal paper of [DS08], consists of two
phases, the offline phase and the online one. The main idea is to compute the sequence of
differences in some bo bits of the state s2 from a δ-set, through E1 during the offline phase
and through (E2)−1 ◦ E ◦ (E0)−1 during the online phase, assuming an access to E. In
other words, we want to build the sequence [∆1s2

b1,...,bbo
, . . . , ∆2b−1s2

b1,...bbo
] for an ordered

collection of 2b messages forming a δ-set on the state s1, and where ∆ix stands for the
difference on the state x between the message labeled 0 and and the i-th message of the
δ-set. Note that in both phases, the sequence of differences is computed by first guessing
the value of each involved S-box for one message of the δ-set and then by propagating the
differences.

Offline Phase

1. Consider the encryption of a b-δ-set through E1 by guessing the necessary internal
parameters. Deduce the differences in the bo chosen bits of s2 and construct a
sequence of 2b − 1 bo-bit values.

2. Store the sequences in a table H.

Online Phase

3. Pick a plaintext P and guess the necessary parameters to propagate differences from
the b-δ-set to the plaintext through the inverse of E0. Identify a collection of 2b

plaintexts, containing P and forming a b-δ-set on state s1.

4. Query the oracle for the corresponding 2b ciphertexts (s3).

5. On the ciphertext side, guess the internal parameters, decrypt the above 2b ciphertexts
through (E2)−1, compute the ((2b−1)×bo)-bit difference sequence and check whether
it belongs to H. If not, the guess can be discarded.

74 Cryptanalysis of Full-Round BipBip

Note that during the offline phase it is possible to associate to each sequence the value
of the internal parameters that led to it in order to recover them during the online phase.
We also emphasize that the procedure only involves guessing state cells but these are
related to each other by the data-round keys and thus the internal parameters contain key
material as well.

Differential Enumeration Technique. First proposed by Dunkelman et al. in ASI-
ACRYPT 2010 [DKS10], the differential enumeration technique uses a truncated differential
characteristic of probability p. The idea is that for a pair following the characteristic, the
number of possible values for the internal parameters might be much lower than for a
random message. Thus, during the offline phase, we only construct the possible sequences
for δ-sets such that at least one message belongs to a pair following the characteristic. This
is what we call the differential enumeration phase (DEP). However, in return, around 1/p
pairs are needed to ensure that at least one follows the differential characteristic. Hence,
in the online phase, the adversary first detects a right pair and chooses one of the elements
of the right pair to play the role of P in the construction of the δ-set.

Several differential properties of the S-box are usually used to measure the number of
deduced values in the differential enumeration technique.

Property 1 (Differential Property of the S-box). Assume that ∆in and ∆out are respectively
the random input and output differences of a bijective S-box S. Then, the equation

S(x)⊕ S(x⊕∆in) = ∆out

has one solution on average.

Property 2 (Differential Property of the S-box with a concrete output difference). Let S
be a bijective n-bit S-box and let ∆out be a specific output difference. Further denote by
S∆in the set of all possible input differences leading to ∆out through S. Then, for a specific
∆in ∈ S∆in , the equation S(x)⊕ S(x⊕∆in) = ∆out has 2n

|S∆in | solutions on average.

3 MITM Attack on Full-Round BipBip

In this section, we describe our attack against 11-round, i.e., full BipBip. This DS-MITM
attack was found by the automatic tool of Derbez and Fouque [DF16] and its outline is
depicted in Figure 3. Details on how to apply this tool to BipBip are given in Appendix A.
For the distinguisher part (from x3 to y8), the δ-set should be chosen such that the active
bits lie in the middle two words of x3 and the active bits of ∆y2 are in the second and
fourth words (from the bottom). More precisely, the δ-set we use for the attack is given as
follows.

δ-set for the attack on 11-round BipBip We define the δ-set for our attack as a set
containing 26 BipBip states that are all different on the bits 7, 8, 11, 15, 16 and 17 (active
bits) and are constant on the remaining (inactive) bits.

The match will be performed on the difference on the bits y8
12 and y8

13. There are
theoretically 22×63 = 2126 possible sequences of differences in those bits and we will show
that, for the δ-set described above, there are much less such sequences, allowing us to
distinguish 6 rounds of the cipher.

Let f be a part of the BipBip decryption that sends x3
7,8,11,15,16,17 to y8

12,13, i.e.,

f : F6
2 → F2

2, x3
7,8,11,15,16,17 7→ y8

12,13.

We obtain the following observation if we apply f to one δ-set.

Jinliang Wang, Christina Boura, Patrick Derbez, Kai Hu, Muzhou Li, Meiqin Wang 75

k8 k9 k10 k11
z7 x8 y8 z8 x9 y9 z9 x10 y10 z10

S S SLS LS LS

P

k4 k5 k6 k7
z3 x4 y4 z4 x5 y5 z5 x6 y6 z6 x7 y7 z7

S S S SLC LC LC LC

κ0 k1 k2 k3
C x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3

S S S SLS LS LS LC

Figure 3: The DS-MITM attack on 11-round BipBip. The online phase is from C to z2

and from z8 to P . The offline phase is from x3 to y8. Blue words correspond to the active
words in the online phase while red words correspond to the active words in the offline
phase. Finally, white words are inactive while the patterned ones are those not involved in
the attack procedure.

Observation 1. Let Xi, 0 ≤ i < 64 be the 64 different elements in a δ-set. Then, the
ordered sequence

f(X0)⊕ f(X1), f(X0)⊕ f(X2), . . . , f(X0)⊕ f(X63)

is fully determined by the following 114-bit parameters,

x3
6−17, x4, x5, x6, x7, x8

6−11,

where x3, x4, x5, x6, x7 and x8 are intermediate states corresponding to one message of
the δ-set.

We can restrict the number of possible values for these parameters from 2114 to 290

by applying the differential enumeration technique. To decrease as much as possible the
memory complexity, we fully specify the input and output of the truncated differential
characteristic used within the technique. We thus set ∆x3 = (0x00, 0x26, 0x38, 0x00) and
∆y8 = (0x00, 0x00, 0x03, 0x00).

Observation 2. If ∆x3 = (0x00, 0x26, 0x38, 0x00) and ∆y8 = (0x00, 0x00, 0x03, 0x00),
then the 114-bit parameters x3

6−17, x4, x5, x6, x7, x8
6−11 are fully determined by the differ-

ences
∆x4, ∆x5, ∆x6, ∆x7, ∆x8,

which can take 212, 224, 224, 224 and 26 different values respectively.

The proof of this observation comes directly from Property 1 which states that each input
and output difference of an S-box will lead to one solution in average. Consequently, there
are at most 290 possible sequences when we consider all the possible choices of parameters
in Observation 2 whereas theoretically there are 2126 possibilities. This property can then
be used as a distinguisher to mount an attack against full-round BipBip.

3.1 Process of the 11-round Attack
Offline Phase We first compute all the 290 126-bit sequences according to Observations 1
and 2, and store them into a hash table H.

76 Cryptanalysis of Full-Round BipBip

Online Phase

1. By extending ∆x3
6−17 backwards to ∆C, we see that ∆C is fully active. Thus, we use

a structure that contains 224 ciphertexts, i.e., the whole codebook. If we use s tweaks
we will need s× 224 ciphertexts. For each tweak, we decrypt the 224 ciphertexts, get
the corresponding plaintexts and by pairing them, we obtain 247 pairs. In total, we
will have s× 247 pairs.

2. On the ciphertext side, for each ciphertext pair with difference ∆C, by enumerating
each value of ∆y0 and ∆z1, we can deduce on average one κ0, k1 and k2

6−11,18−23
such that ∆x3 has the desired value. On the plaintext side, by enumerating each
value of ∆y9, we can deduce on average one value for L−1

S (k10)6−11 and k11 such
that ∆y8 has the desired value.

3. Once κ0, k1, k2
6−11,18−23, L−1

S (k10)6−11 and k11 have been deduced, we partially
decrypt one ciphertext from the ciphertexts pair to z2. Then, we partially encrypt
the values of the δ-set to the ciphertexts again. Next, we partially encrypt the
corresponding plaintexts of the δ-set using (L−1

S (k10))6−11 and k11, and construct
the sequence given in Observation 1.

4. If the above sequence belongs to H, then the corresponding values of κ0, k1,
k2

6−11,18−23, L−1
S (k10)6−11 and k11 are suggested as a candidate. Otherwise, we

discard this key.

Recovering All Data-Round Keys The 126-bit difference sequence has a 2−124 sieving
ability since we fix 2 bits of them in the process of checking right pairs. After performing
our attack, for a fixed tweak, there will remain 290+89−124 = 255 values containing 114-
bit parameters from the hash table H, 90-bit secret keys in the online phase and the
corresponding plaintext-ciphertext pair. Therefore, we can know the values of the 26 δ-set
elements in y7 by the 114-bit parameters while their values in z9 can be obtained by the
90-bit keys. Then, we can guess more keys and use another match point to further sieve
the keys. For example, after guessing k8

0−5 and L−1
S (k10

0−5), we can check whether the two
δ-sets match in y8

2,5. After this step, and since k3
6−17 and L−1

S (k9)2,5,12,13 are deduced from
state bits after each valid match, we recover the right value for 90 + 90 + 12 + 12 + 4 = 208
bits of the data-round keys as no wrong key should survive (we expect 255+12−126 = 2−59

wrong keys to remain). We finally brute-force the missing 80 bits of the data-round keys.

Time Complexity Analysis Denote by Td the complexity of deducing the input values to
the S-box from the input and output differences, by TH a memory access to H, and by Ts

an S-box operation. As computing the difference sequences in the offline phase requires
going through 18 S-boxes, for each guessed difference, we need 18Td to determine the
114 parameters in Observation 1, (26 × 18)Ts to encrypt the δ-set and one TH to store
the parameters in the hash table. Considering that one BipBip encryption has 44 S-box
operations, the time complexity of the offline phase is(

290 × 18× (Td + 26 × Ts) + 290 × TH

44× Ts

)
BipBip encryptions.

With a similar analysis, the time complexity of the online phase is(
s× 289 × 15× (Td + 26 × Ts) + 289 × TH

44× Ts

)
BipBip encryptions.

Jinliang Wang, Christina Boura, Patrick Derbez, Kai Hu, Muzhou Li, Meiqin Wang 77

3.2 Further Reducing the Time and Memory Complexities
The time complexity can be reduced further by cleverly organizing the computations and
investigating the BipBip S-box. First, as shown in both Algorithms 1 and 2, we can handle
the 26 elements of the δ-set round by round, improving the time complexity related to
building the sequences. Second, we notice that the differential used in the differential
enumeration technique limits the possible differences of both ∆x8 and ∆y9. This can be
used to amortize the cost of propagating the δ-set.

For the offline phase, ∆y8
12−17 = 0x03, so ∆x8 can only take 22 among the 64 possibili-

ties, reducing the number of possible values for x7. Furthermore, ∆y7
6−11 can assume only

12 different values and we can thus start by guessing it before ∆x8 to reduce a bit more
the complexity of the offline phase.

Algorithm 1: Efficient Algorithm for the Offline Phase against Full-Round
BipBip.

Input: ∆x3 = (0x00, 0x26, 0x38, 0x00), ∆y8
12−17 = (0x00, 0x00, 0x03, 0x00)

Output: Hash table H indexed by the 126-bit difference sequence.
1 H ← ∅
2 for ∆y3 (212) do
3 Deduce x3

6−17 and propagate the δ-set to z3

4 for ∆y4 (224) do
5 Deduce x4 and propagate the δ-set to z4

6 for ∆y5 (224) do
7 Deduce x5 and propagate the δ-set to z5

8 for ∆y6 (224) do
9 Deduce x6 and propagate the δ-set to z6

10 for ∆y7
6−11 (12) do

11 Deduce x7
6−11 and partially propagate the δ-set to y7

6−11
12 for ∆y7

0−5,12−23 (22/12) do
13 Deduce x7 and propagate the δ-set to x8

14 for x8
12−17 (64/22) do

15 Propagate the δ-set to y8
12−17 and store the sequence in H.

16 return H

The complexity of Algorithm 1, computed in terms of S-box evaluations, is straightfor-
ward and dominated by the four last nested loops. After guessing the possible differences,
for each active S-box, we need one Td to deduce the internal state and 26×Ts to encrypt the
whole 26 elements in the δ-set through this S-box. Finally, 290 hash table write operations
are required to store all the parameters into H.

Thus the total time complexity of Algorithm 1 is

284 × (Td + 26 × Ts)× (4 + 12 + 22× 3 + 64)
44× Ts

+ 290 × TH

≈
(

291.19 × Td + 26 × Ts

44× Ts
+ 290 × TH

)
BipBip encryptions.

For the online phase, ∆y9 can only assume 24 different values. But more importantly,
the difference at the input of each S-box of state x10 can take only 4, 2, 2 and 4 different
values respectively.

78 Cryptanalysis of Full-Round BipBip

Algorithm 2: Efficient Algorithm of Online Phase against Full-Round BipBip..
Input: ∆z2 = (0x00, 0x26, 0x38, 0x00), ∆z8 = (0x00, 0x18, 0x00, 0x00)

1 for s× 247 pairs (c, c′) do
2 for ∆y0, ∆y1 (236) do
3 Deduce x0, x1 and x2 and identify a δ-set containing c.
4 Select the corresponding 26 plaintexts.
5 for ∆x10

6−11 (2) do
6 Deduce x10

6−11 and partially propagate the δ-set
7 for ∆x10

12−17 (2) do
8 Deduce x10

12−17 and partially propagate the δ-set
9 for ∆x10

0−5 (4) do
10 Deduce x10

0−5 and partially propagate the δ-set
11 for ∆x10 (24/16) do
12 Deduce x10

18−23 and partially propagate the δ-set
13 for x9

6−11 (64/24) do
14 Propagate the δ-set and check whether the sequence

belongs to H

As for the offline phase, we count the number of S-boxes computed at each step of the
algorithm and we obtain:

s×
(

247 × 236 × (Td + 26 × Ts)× (10 + 2 + 4 + 16 + 24 + 64)
44× Ts

+ 289 × TH

)
≈ s×

(
288.95 × Td + 26 × Ts

44× Ts
+ 289 × TH

)
BipBip encryptions.

Complexity Analysis We deduce the S-box input from the input and output differences
by an extended DDT whose index is the input and output differences and the value is the
corresponding values. We experimentally evaluated the ratio of the time complexity of a
lookup of the extended DDT and a BipBipBox and found it to be around 5:1. Therefore,
we measure Td as 5Ts. Besides, we assume this attack runs on a machine that has a fast
memory access and we can measure each TH as one BipBip encryption.

In the differential enumeration phase, we use a distinguisher of probability 2−48

consisting of 2−24 from the input difference and 2−24 from the output difference. Using
the whole codebook for a fixed tweak, we can generate 247 pairs and thus we expect that
asking for the full codebook for s = 2 tweaks should allow to generate enough pairs to get
one that follows the differential.

From the above analysis, the data complexity of the attack is 2 × 224 = 225, the
time complexity is 292.19 + 2 × 290.98 ≈ 293.09 BipBip encryptions and the memory
complexity is given by the size of the hash table H constructed in the offline phase, that is
114× 290/24 ≈ 292.25, which is measured by the block size of BipBip.

4 Impact of our Attack on the Security Claim of BipBip

As shown in the last part of Section 2, the designers provided a security claim for BipBip
based on Eq. (2). In this section, we show that our key recovery attack against BipBip
breaks this security claim. To this end, we first introduce a procedure for recovering the

Jinliang Wang, Christina Boura, Patrick Derbez, Kai Hu, Muzhou Li, Meiqin Wang 79

T

*

κ

1

t

1

E

κ

2

t

2

E

k

3
,
 k

4

κ

3

t

3

E0

k

5

κ

4

t

4

E0

k

6

t

5

E0

k

7

κ

5

t

6

E0

k

8

t

7

E0

k

9

κ

6

E

k
10

, k
11

t

8

k

1
,

k

2

Figure 4: Tweak schedule of BipBip. ti denotes the i-th internal tweak state which
generates the data-round keys.

Table 3: The number of known and unknown bits of ti.
t1 t2 t3 t4 t5 t6 t7 t8

known 48 48 24 24 24 24 24 48
unknown 5 5 29 29 29 29 29 5

master key from the data-round keys. Then, we analyze the success rate and compare it
in Section 4.2 to the security claim of BipBip.

4.1 Recovering the Master Key from the Data-Round Keys
In this section, we present our method for recovering the master key from the data-round
keys. According to Eq. (1), the data-round keys are directly extracted from the internal
state of the tweak schedule, thus we already know some bits of each state ti from the
recovered data-round keys. Table 3 summarizes the number of bits obtained from ki

directly (known) and those that still need to be guessed (unknown) for each state ti.
Besides, since κ0 is the first data-round key and is directly extracted from the master

key K, we know 4, 4, 5, 8, 3 and 5 bits of the tweak-round keys κ1, κ2, κ3, κ4, κ5 and κ6

respectively.

The main idea of our attack is to guess the unknown bits of each tweak state ti, deduce
the value of κi, and sieve by the known bits in κi obtained from the knowledge of κ0.
Finally, we check if the 62-bit sequence κ1||κ2

0−8 is the same as κ5
44−52||κ6, since these two

sequences are both extracted from K53−114, where K is the master key.

The process of this attack is as follows:

1. For the 40-bit tweak T used in the attack, compute the 53-bit T ∗ as T ∗ = T ||1||012.

2. For each of the 25 possible values for t1, deduce κ1 from both T ∗ and t1 and check
whether it is compatible with the 4 bits of κ1 we already know. We expect 25−4 = 2
candidates to remain for (κ1, t1).

3. For each of the 25 possible values for t2, deduce κ2 from t1 and t2 and check the
extra 4-bit constraint we have on κ2. We expect 2 × 25 × 2−4 = 4 candidates to
remain for (κ1, t1, κ2, t2)

4. Again, we guess t3, deduce κ3 from both t2 and t3 and we keep only the candidates
with the right value on the 5 bits we previously obtained on κ3. At this point, we
have around 4× 229−5 = 226 possibilities for (κ1, t1, κ2, t2, κ3, t3).

5. Since there is no key addition between t4 and t5, this step is a bit different. We first
guess t4, compute t5 from it and then check t5 against the value of the 24 bits we
already know. We then use both t3 and t4 to obtain κ4 and we finally check the
8-bit constraint on it. Hence, we constructed 226 × 229−24 × 2−8 = 223 candidates
for (κ1, t1, κ2, t2, κ3, t3, κ4, t4, t5).

80 Cryptanalysis of Full-Round BipBip

6. Similarly, we construct 223×229−24×2−3 = 225 candidates for (κ1, t1, κ2, t2, κ3, t3, κ4,
t4, t5, κ5, t6, t7).

7. Finally, obtain 225 × 25 × 2−5 = 225 candidates for the tweak-round keys. For each
of them, we check whether the value of the 62-bit sequence κ1||κ2

0−8 is the same as
κ5

44:52||κ6. Since the probability for a wrong key to pass this test is 2−62, only the
right one should remain.

8. Recover the master key K by κ1, . . . , κ5.

The complexity of this procedure is around 231 basic operations, which is negligible
compared to the complexity of our attack.

4.2 Success Rate Analysis
Assuming that we have recovered the master key, we can randomly select a tweak (except
the ones which were used to recover the master key) to conduct the following challenge
shown in the security claim of BipBip: for a plaintext P (resp. ciphertext C), map it to
the corresponding ciphertext (resp. plaintext).

The designers of BipBip claim that the probability p to win this challenge satisfies the
following constraint:

p ≤ 1
max(224−µ − qTi

, 1) + q

296 + t

296 + qt

2120 ,

where µ = 0.5, q is the total number of queries to both encryption and decryption of EK ,
qTi

is the number of queries to both encryption and decryption of EK with the tweak of
value Ti and t is the computation time with the unit amount of computation equivalent to
evaluating EK .

With the knowledge of the master key, this challenge can be solved with probability
1. Hence, the success rate of our attack corresponds to the probability of recovering the
master key, which is itself equal to the success probability of the 11-round DS-MITM
attack described in Section 3.

The success probability of our attack is exactly the probability to obtain a pair satisfying
the differential used with the differential enumeration technique. Since our attack involves
a differential of probability 2−48, using the whole codebook for s tweaks allows to generate
s× 247 pairs and thus the probability that at least one follows the differential is

1− (1− 2−48)247s ≈ 1− e− s
2 .

In our attack, the data complexity is q = s× 224, the time complexity is t = 292.13 +
s × 290.92 and qTi

is zero since we do not query anything under this tweak. Thus, the
success upper bound in the BipBip design document is

pu = 1
max(223.5 − qTi , 1) + q

296 + t

296 + qt

2120

= 1
223.5 + s× 224

296 + 292.19 + s× 290.98

296 + (s× 224)× (292.19 + s× 290.98)
2120

≈ 1 + s

23.81 + s + s2

25.02 .

To achieve a valid attack, we need to make sure our success rate is higher than the
upper bound of probability in the BipBip design document, which means

1− e− s
2 >

1 + s

23.87 + s + s2

25.08 ,

Jinliang Wang, Christina Boura, Patrick Derbez, Kai Hu, Muzhou Li, Meiqin Wang 81

It can be verified that when the number of tweaks s is 1, 2 or 3, the above inequality
holds.

1. When s = 1, our success rate is 39.35% and the upper bound in the BipBip design
document is 20.46%;

2. When s = 2, our success rate is 63.21% and the upper bound in the BipBip design
document is 39.93%;

3. When s = 3, our success rate is 77.69% and the upper bound in the BipBip design
document is 65.54%;

5 Conclusion
In this paper we presented the first attack against 11-round BipBip, the full version of
this cipher. While the core of our attack was automatically found by an existing tool,
turning it into a valid attack was a complex task, involving clever procedures to compute
the sequence of differences through the cipher, looking inside the S-box to restrict the
number of possible values of several parameters and inverting the robust key schedule of
BipBip. Our results show that the security claim made by the designers of BipBip was
too tight and that there is no security margin left behind. Our results also highlight the
importance of optimally organizing computations inside algorithms, in particular to avoid
redundant ones. Indeed, such procedures permitted us to decrease the complexity of our
basic attack by more than a factor 10.

Acknowledgments
We would like to thank Tyge Tiessen and the other anonymous reviewers for their valuable
comments and suggestions to improve the quality of the paper. We also thank the organizers
of ASK 2023 (the 10th Asian Workshop on Symmetric Key Cryptography), where the
collaboration was initiated. Danping Shi checked some initial results; Liu Zhang and
Yiran Yao prepared the first version of the figures in this paper, we are grateful for their
help. Jinliang Wang, Kai Hu, Muzhou Li and Meiqin Wang are supported by the National
Key Research and Development Program of China (Grant No. 2018YFA0704702), the
National Natural Science Foundation of China (Grant No. 62032014, U2336207), the
Major Basic Research Project of Natural Science Foundation of Shandong Province, China
(Grant No. ZR202010220025), Department of Science Technology of Shandong Province
(No.SYS202201), Quan Cheng Laboratory (Grant No. QCLZD202301, QCLZD202306).
Kai Hu is also supported by the Program of Qilu Young Scholars of Shandong University.
Finally, the research of Christina Boura and Patrick Derbez is partially supported through
the France 2030 program under grant agreement No. ANR-22-PECY-0010, by the French
Agence Nationale de la Recherche through the OREO project under Contract ANR-22-
CE39-0015 and the SWAP project under Contract ANR-21-CE39-0012.

References
[BDD+23] Yanis Belkheyar, Joan Daemen, Christoph Dobraunig, Santosh Ghosh, and

Shahram Rasoolzadeh. BipBip: A low-latency tweakable block cipher with
small dimensions. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(1):326–
368, 2023.

82 Cryptanalysis of Full-Round BipBip

[BDHN23] Christina Boura, Nicolas David, Rachelle Heim Boissier, and María Naya-
Plasencia. Better steady than SPEEDY: Full break of SPEEDY-7-192. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part IV,
volume 14007 of Lecture Notes in Computer Science, pages 36–66. Springer,
2023.

[BDP15] Alex Biryukov, Patrick Derbez, and Léo Perrin. Differential analysis and
meet-in-the-middle attack against round-reduced TWINE. In Gregor Leander,
editor, FSE 2015, volume 9054 of Lecture Notes in Computer Science, pages
3–27. Springer, 2015.

[BNS19] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quantum
security analysis of AES. IACR Trans. Symmetric Cryptol., 2019(2):55–93,
2019.

[DF13] Patrick Derbez and Pierre-Alain Fouque. Exhausting Demirci-Selçuk meet-
in-the-middle attacks against reduced-round AES. In Shiho Moriai, editor,
FSE 2013, volume 8424 of Lecture Notes in Computer Science, pages 541–560.
Springer, 2013.

[DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic search of meet-in-the-
middle and impossible differential attacks. 9815:157–184, 2016.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round AES in the single-key setting. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 371–387. Springer, 2013.

[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks
on 8-round AES-192 and AES-256. In Masayuki Abe, editor, ASIACRYPT
2010, volume 6477 of Lecture Notes in Computer Science, pages 158–176.
Springer, 2010.

[DLJW15] Xiaoyang Dong, Leibo Li, Keting Jia, and Xiaoyun Wang. Improved attacks on
reduced-round Camellia-128/192/256. In Kaisa Nyberg, editor, CT-RSA 2015,
volume 9048 of Lecture Notes in Computer Science, pages 59–83. Springer,
2015.

[DP15] Patrick Derbez and Léo Perrin. Meet-in-the-middle attacks and structural
analysis of round-reduced PRINCE. In Gregor Leander, editor, FSE 2015,
volume 9054 of Lecture Notes in Computer Science, pages 190–216. Springer,
2015.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on 8-
round AES. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of Lecture Notes
in Computer Science, pages 116–126. Springer, 2008.

[HS18] Akinori Hosoyamada and Yu Sasaki. Quantum Demiric-Selçuk meet-in-the-
middle attacks: Applications to 6-round generic Feistel constructions. In
Dario Catalano and Roberto De Prisco, editors, SCN 2018, volume 11035 of
Lecture Notes in Computer Science, pages 386–403. Springer, 2018.

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. A cryptanalysis of PRINTcipher: The invariant subspace attack. In
Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of Lecture Notes in
Computer Science, pages 206–221. Springer, 2011.

Jinliang Wang, Christina Boura, Patrick Derbez, Kai Hu, Muzhou Li, Meiqin Wang 83

[LAW+23] Fukang Liu, Ravi Anand, Libo Wang, Willi Meier, and Takanori Isobe.
Coefficient grouping: Breaking Chaghri and more. In Carmit Hazay and
Martijn Stam, editors, EUROCRYPT 2023, Part IV, volume 14007 of Lecture
Notes in Computer Science, pages 287–317. Springer, 2023.

[LIM21] Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanalysis of full LowMC
and LowMC-M with algebraic techniques. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part III, volume 12827 of Lecture Notes in Computer
Science, pages 368–401. Springer, 2021.

[LJ16] Rongjia Li and Chenhui Jin. Meet-in-the-middle attacks on 10-round AES-256.
Des. Codes Cryptogr., 80(3):459–471, 2016.

[LJW14] Leibo Li, Keting Jia, and Xiaoyun Wang. Improved single-key attacks on
9-round AES-192/256. In Carlos Cid and Christian Rechberger, editors, FSE
2014, volume 8540 of Lecture Notes in Computer Science, pages 127–146.
Springer, 2014.

[LJWD15] Leibo Li, Keting Jia, Xiaoyun Wang, and Xiaoyang Dong. Meet-in-the-
middle technique for truncated differential and its applications to CLEFIA
and Camellia. In Gregor Leander, editor, FSE 2015, volume 9054 of Lecture
Notes in Computer Science, pages 48–70. Springer, 2015.

[LRD+21] Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M. Durham, Santosh
Ghosh, Anant Nori, Jayesh Gaur, Andrew Weiler, Salmin Sultana, Karanvir
Grewal, and Sreenivas Subramoney. Cryptographic capability computing. In
MICRO ’21, pages 253–267. ACM, 2021.

[LRS23] Gregor Leander, Shahram Rasoolzadeh, and Lukas Stennes. Cryptanalysis
of HALFLOOP block ciphers: Destroying HALFLOOP-24. IACR Trans.
Symmetric Cryptol., 2023(4):58–82, 2023.

[LWWZ13] Li Lin, Wenling Wu, Yanfeng Wang, and Lei Zhang. General model of the
single-key meet-in-the-middle distinguisher on the word-oriented block cipher.
In Hyang-Sook Lee and Dong-Guk Han, editors, ICISC 2013, volume 8565 of
Lecture Notes in Computer Science, pages 203–223. Springer, 2013.

[SCW23] Yimeng Sun, Jiamin Cui, and Meiqin Wang. Improved attacks on LowMC
with algebraic techniques. Cryptology ePrint Archive, 2023.

[SSD+18] Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and Lei Hu.
Programming the Demirci-Selçuk meet-in-the-middle attack with constraints.
In Thomas Peyrin and Steven D. Galbraith, editors, ASIACRYPT 2018, Part
II, volume 11273 of Lecture Notes in Computer Science, pages 3–34. Springer,
2018.

[SSS+23] Danping Shi, Siwei Sun, Ling Song, Lei Hu, and Qianqian Yang. Exploiting
non-full key additions: Full-fledged automatic Demirci-Selçuk meet-in-the-
middle cryptanalysis of SKINNY. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part IV, volume 14007 of Lecture Notes in Computer
Science, pages 67–97. Springer, 2023.

[TI22] Yosuke Todo and Takanori Isobe. Hybrid code lifting on space-hard block
ciphers application to Yoroi and SPNbox. IACR Trans. Symmetric Cryptol.,
2022(3):368–402, 2022.

84 Cryptanalysis of Full-Round BipBip

[TLS16] Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear invariant attack -
practical attack on full SCREAM, iSCREAM, and Midori64. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of Lecture Notes in Computer Science, pages 3–33, 2016.

[WNL+23] Jinliang Wang, Chao Niu, Qun Liu, Muzhou Li, Bart Preneel, and Meiqin
Wang. Cryptanalysis of SPEEDY. In Leonie Simpson and Mir Ali Rezazadeh
Baee, editors, ACISP 2023, volume 13915 of Lecture Notes in Computer
Science, pages 124–156. Springer, 2023.

[ZCWW23] Zhuolong Zhang, Shiyao Chen, Wei Wang, and Meiqin Wang. Full round
distinguishing and key-recovery attacks on SAND-2 (full version). IACR
Cryptol. ePrint Arch., page 1697, 2023.

A On the usage of the tool from [DF16]
We provide here the exact parameters we used when applying the tool of [DF16] to BipBip.
Let n and k be respectively the block and key sizes of a cipher. In the case where the cipher
is described at the bit-level, the tool with the default parameters searches for patterns
with a data complexity strictly below n, a time complexity strictly below k and a memory
complexity strictly below n + k. It also searches for patterns with a match on only 1 bit
and a δ-set of dimension 1. We first used the parameter -d 24 to allow for attacks requiring
the full codebook. We also allowed the time and the memory to be equal to the limit by
using the parameters -t 96 -m 120. And finally we forced the patterns to filter enough
wrong keys by trying the sets of parameters -i 5 -o 3, -i 6 -o 2 and -i 7 -o 1. The parameter
-i sets the minimal dimension of the δ-set while -o affects the number of bits on which the
match is performed.

	Introduction
	Preliminaries
	Brief Introduction to BipBip and Notations
	Demirci-Selçuk MITM Cryptanalysis

	MITM Attack on Full-Round BipBip
	Process of the 11-round Attack
	Further Reducing the Time and Memory Complexities

	Impact of our Attack on the Security Claim of BipBip
	Recovering the Master Key from the Data-Round Keys
	Success Rate Analysis

	Conclusion
	On the usage of the tool from FindDS2

