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Introduction



The Suffix Keyed Sponge (SuKS)
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• MAC function based on the sponge hash function [BDPV07]

• Used in NIST LWC finalist ISAP [DEM+21]

• Formal analysis by Dobraunig and Mennink [DM19]

• Security proof involves multicollisions
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Multicollision Limit Function

Idea

• Upper bound on size of the largest multicollision

• Formalised by Daemen et al. [DMV17] using a balls-and-bins experiment

Definition

• q balls, 2r bins

• µq
r,c is smallest x such that Pr (|fullest bin| > x) ≤ x

2c

Toy Example

• q = 4 balls

• 2r = 4 bins

1 2 3 4

1 2 3 4
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Security of the SuKS

Black Box Security Bound [DM19]

AdvprfF (A) ≤ 2N2

2c
+

µ
2(N−q)
b−s,s ·N
2min{δ,ε} +

µ2q
t,b−t ·N
2b−t

Leakage Resilience Security Bound [DM19]

Advnalr-prfF,L (A) ≤ 2N2

2c
+

µ
2(N−q)
b−s,s ·N

2min{δ,ε}−µ
2(N−q)
s,b−s λ

+
µ2q
t,b−t ·N
2b−t−λ

+
µ
2(N−q)
s,b−s

2b−s

This work: analyse tightness of leakage resilience security bound

This presentation: focus on third term in the bounds
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Non-adaptive Leakage Resilience

• Leakage incurred by every primitive evaluation

• Leakage modelled as function of primitive input and output
• Non-adaptive: leakage function does not change
• Bounded: at most λ bits of leakage per primitive evaluation
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• Applying leakage model to SuKS:

• Key blended into state at the end: no leakage in absorption phase
• Function G assumed to be strongly protected
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Tightness Analysis



Finding a Matching Attack

Black Box Matching Attack

• Recall: black box and leakage resilience bounds are very similar

µ2q
t,b−t ·N
2b−t

versus
µ2q
t,b−t ·N
2b−t−λ

• Tightness: there exists an attack matching the leakage resilience bound

• Try creating such an attack based on the tight black box attack

Attacker Capabilities

• Attacker can make q construction queries
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Black Box Attack Intuition
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AdvprfF (A) ≲
µ2q
t,b−t ·N
2b−t

• Attacker wants to recover the state W for one construction query

• With N guesses, success probability is N
2b−t

• With µ queries colliding in T , success probability is µ·N
2b−t

• µ is bounded by multicollision limit function µ2q
t,b−t

• Each of the 2t bins represents a tag value
• The two subscript parameters sum to state size b
• For ‘close to uniform’ distribution D, µq,D

r,c ≤ µ2q
r,c [DMV17]
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Augmenting the Black Box Attack with Leakage

• Attacker needs to guess truncated part of state W

• Choose leakage function that leaks a part of this state

• Leakage function leaking the first λ bits of W after the tag T :

LW
p : {0, 1}b × {0, 1}b → {0, 1}λ

LW
p (V,W ) = Wt+1∥Wt+2∥ · · · ∥Wt+λ

• Intuition: view leakage as longer tag

7 / 14



Augmenting the Black Box Attack with Leakage

• Attacker needs to guess truncated part of state W

• Choose leakage function that leaks a part of this state

• Leakage function leaking the first λ bits of W after the tag T :

LW
p : {0, 1}b × {0, 1}b → {0, 1}λ

LW
p (V,W ) = Wt+1∥Wt+2∥ · · · ∥Wt+λ

• Intuition: view leakage as longer tag

7 / 14



Augmenting the Black Box Attack with Leakage

• Attacker needs to guess truncated part of state W

• Choose leakage function that leaks a part of this state

• Leakage function leaking the first λ bits of W after the tag T :

LW
p : {0, 1}b × {0, 1}b → {0, 1}λ

LW
p (V,W ) = Wt+1∥Wt+2∥ · · · ∥Wt+λ

• Intuition: view leakage as longer tag

7 / 14



Tightness of the Leakage Resilience Security Bound
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\ t+ λ

Advnalr-prfF,L (A) ≲
µ2q
t,b−t ·N
2b−t−λ

• Attacker learns t+ λ bits of W , hence change in denominator

• Multicollision still only collides on t bits

• Therefore, leakage resilience security bound is not tight

• Bound is easily tightened for leakage function LW
p :

• Replace µ2q
t,b−t with µ2q

t+λ,b−t−λ
• Holds for all ‘fixed position’ leakage functions

• How can the bound be tightened for other types of leakage?
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Hamming Weight Leakage



Hamming Weight Leakage

Hamming Weight (HW)

The Hamming weight of a bitstring is the number of 1s, e.g. HW(101) = 2

Why Hamming Weight Leakage?

• More realistic leakage model [May00, MOP07, DMMS21]

• Entropy loss depends on leakage value

• Non-uniform distribution

Leakage and Multicollisions

• Due to non-uniformity, largest multicollision size depends on leakage value

• Multicollision limit function must take into account:

• Non-uniform nature of Hamming weight leakage
• The value of the Hamming weight leakage
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Multicollision Limit Function for HW Leakage

Attacker’s Goal

• To guess truncated part of W , attacker finds a multicollision in:

• The first t bits forming the tag T
• The Hamming weight w of n unknown bits of W

Balls-and-bins Experiment

• One bin for each (T,w)-pair

• Balls thrown according to DHW(w):

• Hamming weight distribution
• Only counts specific bins

• Results in µ
q,DHW(w)
t′,b−t′ :

• t′ = t+ log2(n+ 1)
• 2t

′
= 2t · (n+ 1)

Example: DHW()

(0t, 0) · · · (0t, n)

...
...

(1t, 0) · · · (1t, n)

n+ 1 HW values

2t tags
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Bounding the Multicollision Limit Function

• Problem: µ
q,DHW(w)
r,c is hard to compute

• Solution: bound by uniform distribution with more than q balls

• Recall result from [DMV17]:

• For ‘close to uniform’ distribution D, µq,D
r,c ≤ µ2q

r,c

• DHW(w) is too far from uniform
• Our result (proof inspired by [DMV17]):

• µ
q,DHW(w)
r,c ≤ µ

α(w)q
r,c

• More frequent Hamming weight w =⇒ larger α(w)
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Tightening the Bound for Hamming Weight Leakage

0

p p p p

G

P 1 P 2 P ℓ K T
U V W

· · ·

· · ·

\

r

\

r

\

r

\

r

\

c

\

c

\

c

\

s

\

s

\

b− s

\ k

\

t

Advnalr-prfF,LHW
(A) ≲ max
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µ
α(w)q
t′,b−t′ ·N(
n
w

)
2b−t−n

• Attacker knows tag T and Hamming weight of n truncated bits

• The n truncated bits have
(
n
w

)
possible values

• The b− t− n unknown bits have 2b−t−n possible values

• Due to multicollision, attacker can match µ
α(w)q
t′,b−t′ values with each guess

• Attacker exploits ‘worst-case’ leakage value w
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Improvements in the Bound



Comparing the Bounds with ISAP Parameters

• Ascon-p parameters: (b, c, r, k) = (320, 256, 64, 128) with s = t = k

• λ = 3, n = 7

• 7 bits =⇒ 8 Hamming weight values
• Can be encoded in 3 bits of leakage

Order: original, fixed position leakage, HW leakage

Security

Advnalr-prfF,L (A) ≤ 2N2

2c
+

µ
2(N−q)
b−s,s ·N

2min{δ,ε}−µ
2(N−q)
s,b−s λ

+
µ2q
t,b−t ·N
2b−t−λ

+
µ
2(N−q)
s,b−s

2b−s

110 bits

Advnalr-prfF,Lfixed
(A) ≤ 2N2

2c
+

µ
2(N−q)
b−s+λ,s−λ ·N
2min{δ,ε}−λ

+
µ2q
t+λ,b−t−λ ·N

2b−t−λ

122 bits

Advnalr-prfF,LHW
(A) ≤ 2N2

2c
+max

w

µ
α(w)(N−q)
b−s′,s′ ·N(
n
w

)
2min{δ,ε}−n

+max
w

µ
α(w)q
t′,b−t′ ·N(
n
w

)
2b−t−n

118 bits
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Second Subscript Parameter of the Multicollision Limit Function

Multicollision Limit Function Definition

µq
r,c is smallest x such that Pr (|fullest bin| > x) ≤ x

2c

• Attacker knows r bits of state, has to guess remaining c bits

• Attacker has a multicollision for r bits

• Attacker’s success probability with N guesses is at most
µ2q
r,c·N
2c

• Exception: size of largest multicollision is greater than µ2q
r,c

• Probability of this is at most
µ2q
r,c

2c by definition

• Accumulated probability bound of
µ2q
r,c·(N+1)

2c



Strongly Protected Function G

Definition 2−δ-uniformity

G is 2−δ-uniform if, for a randomly drawn K and any X,Y , δ is the largest
real number such that Pr (G(K,X) = Y ) ≤ 2−δ

Definition 2−ε-universality

G is 2−ε-universal if, for a randomly drawn K and any distinct X,X ′, ε is
the largest real number such that Pr (G(K,X) = G(K,X ′)) ≤ 2−ε

• We assume that G is ‘strongly protected’:

• G is 2−δ-uniform and 2−ε-universal even under internal leakage



Black Box Matching Attack
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AdvprfF (A) ≲
µ2q
t,b−t ·N
2b−t

(1) q construction queries on distinct plaintexts Pi give tags Ti

(2) Primitive queries on these Pi give the corresponding Ui

(3) Find a µ-fold collision T in the tags Ti

(4) For each Pi in the µ-fold collision, find a collision in the lefts(Ui)

(5) Make N primitive queries p−1(T∥Zj) for varying Zj

(6) For outcome Y ∥rightb−s(Ui), use collision of step (4) to mount a forgery



Matching Attack Fixed Position Leakage
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Advnalr-prfF,Lfixed
(A) ≲

µ2q
t+λ,b−t−λ ·N

2b−t−λ

(1) q construction queries on distinct plaintexts Pi give tags and leakages Ti∥Li

(2) Primitive queries on these Pi give the corresponding Ui

(3) Find a µ-fold collision T∥L in the tag-leakage pairs

(4) For each Pi in the µ-fold collision, find a collision in the leftr(Ui)

(5) Make N primitive queries p−1(T∥L∥Zj) for varying Zj

(6) For outcome Y ∥rightb−s(Ui), use collision of step (4) to mount a forgery



Matching Attack Hamming Weight Leakage
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(A) ≲ max

w

µ
α(w)q
t′,b−t′ ·N(
n
w

)
2b−t−n

(1) q construction queries on distinct plaintexts Pi give tag-leakage pairs Ti, wi

(2) Primitive queries on these Pi give the corresponding Ui

(3) For the optimal w, find a µ-fold collision T,w in the tag-leakage pairs

(4) For each Pi in the µ-fold collision, find a collision in the leftr(Ui)

(5) Make N primitive queries p−1(T∥Zj) for varying Zj , taking into account
the leaked Hamming weight w of n bits

(6) For outcome Y ∥rightb−s(Ui), use collision of step (4) to mount a forgery



Proof Strategy for Bounding the Multicollision Limit Function

(1) Consider two balls-and-bins experiments:

exp1. α(w)q balls, 2r bins (corresponds to µ
q,DHW(w)
r,c )

exp2. q balls thrown according to DHW, 2r bins (corresponds to µ
α(w)q
r,c )

(2) Find a lower bound t for µ
α(w)q
r,c

(3) Show that for all y ≥ t and every bin i,

Pr (|ith bin in exp1| = y) ≥ Pr (|ith bin in exp2| = y)

(4) From step (3) it follows that for all y ≥ t,

Pr (|fullest bin in exp1| > y) ≥ Pr (|fullest bin in exp2| > y)

(5) From step (4) it follows that µ
q,DHW(w)
r,c ≤ µ

α(w)q
r,c
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