
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 1, pp. 459–496. DOI:10.46586/tosc.v2024.i1.459-496

Tightening Leakage Resilience
of the Suffix Keyed Sponge

Henk Berendsen and Bart Mennink

Radboud University, Nijmegen, The Netherlands
henk.berendsen@ru.nl, b.mennink@cs.ru.nl

Abstract. Lightweight cryptographic constructions are often optimized on multiple
aspects that put the security bounds to the limit. In this respect, it is important to
obtain security bounds that are tight and give an accurate and exact indication of
the generic security. However, whereas for black-box security bounds it has become
common practice to argue tightness of security bounds, for leakage resilience security
bounds this is not the case. This is unfortunate, as for leakage resilience results,
tightness is even more important as there is already a lossiness incurred in capturing
the actual leakage by a theoretical model in the first place.
In this work, we consider the SuKS (Suffix Keyed Sponge) PRF construction and
investigate tightness of the leakage resilience bound of Dobraunig and Mennink (ToSC
2019). We observe that, although their black-box security result is tight, their leakage
resilience bound is not tight in their bounded leakage term λ. We observe that
this is caused by the fact that parts of the security bound contain a term covering
multicollisions and a term covering leakage, but an adversary is unable to combine
both. We next consider improved security of the SuKS for two types of leakage: fixed
position leakage, where the adversary directly learns the value of λ bits of a secret
state, and Hamming weight leakage, where the Hamming weight of a fixed part of the
state is leaked. For fixed position leakage, a very generous form of bounded leakage,
we improve the original bound by making wise use of the multicollision limit function
of Daemen et al. (ASIACRYPT 2017). For the more realistic setting of Hamming
weight leakage, we structurally revisit the multicollision limit function analysis by
including Hamming weight in the computation, a problem that is difficult on its
own due to the non-uniform character of this type of leakage. In both cases, we
improve and tighten the leakage resilience bound of Dobraunig and Mennink. The
improved bound for the SuKS has immediate consequences for the leakage resilience
of the NIST lightweight cryptography competition finalist ISAP v2, an authenticated
encryption scheme that uses the SuKS internally.
Keywords: SuKS · PRF · leakage resilience · tightness · Hamming weight

1 Introduction
Symmetric cryptographic schemes find their use over a whole spectrum of applications,
running from lightweight to high-end. However, when such a scheme is evaluated in a
potentially hostile environment, which is for example the case for lightweight applications
ran on smart cards and wearables, side-channel attacks are a serious threat. In such
an attack, the attacker has additional information about the evaluation of the crypto-
graphic scheme, such as runtime [Koc96], electromagnetic emanation [KA98], or power
consumption [KJJ99], and can use this information to gain additional information about
secret data processed in the algorithm. These attacks can be quite influential: even if the
cryptographic scheme has a high level of generic proven security, its black-box security can
be completely nullified due to side-channel attacks.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-11-23 Accepted: 2024-01-23 Published: 2024-03-01

https://doi.org/10.46586/tosc.v2024.i1.459-496
mailto:henk.berendsen@ru.nl
mailto:b.mennink@cs.ru.nl
http://creativecommons.org/licenses/by/4.0/

460 Tightening Leakage Resilience of the Suffix Keyed Sponge

One way to mitigate these side-channel attacks is at the implementation level by
employing strong countermeasures [GP99,CJRR99,NRR06,NRS11]. An alternative solution
is to use less efficient but stronger schemes that provably resist side-channel attacks,
a direction known as leakage resilience. The seemingly most relevant approach is a
combination of those two, where one designs a scheme such that it provably resists most
of the side-channel attacks and only protection against the weaker types is needed. This
approach is often referred to as a leveled implementation [PSV15].

One main problem with leakage resilient proofs, however, is that it is extremely hard
to accurately upper bound the actual leakage. Instead, one often resorts to the bounded
leakage model where one assumes that the amount of leakage (de facto, the entropy loss
due to leakage) per primitive evaluation is bounded by λ. It is then important to “select”
λ to closely match practical cases (see also Dobraunig et al. [DMP22]). Indeed, lightweight
cryptographic schemes are optimized in various different dimensions (size, latency, power,
etc.), and this optimization often has an impact on the security parameters that appear in
the bound. A too lossy security bound then gives a false sense of insecurity.

However, beyond the seemingly inevitable lossiness in the bound of the actual physical
leakage by λ,1 proven security may also expose lossiness in the actual security bound, i.e.,
in the bound that argues what the security parameters should satisfy for the scheme to be
secure. The necessity of tightness of security proofs, in particular for lightweight schemes,
has been widely understood and acknowledged in the black-box setting before [DM20,
LNS18,JN20,DDNT23,LMP17]. However, tightness analysis of a leakage resilience bound
is typically not thoroughly investigated. More concretely, there are (to the best of our
knowledge) no security analyses in the bounded leakage model that come with a tightness
analysis with respect to the leakage term λ. This is unfortunate, as tightness of the leakage
term is not less important than of the other terms, in particular as λ is already a bound
on the actual physical leakage in the first place.

1.1 Suffix Keyed Sponge
In this work we focus on the suffix keyed sponge (SuKS), a message authentication code
(MAC) function derived from the sponge hash function [BDPV07]. Just like the sponge
function, the SuKS operates using a b-bit permutation p and keeps a b-bit state split into
a c-bit inner part and an r-bit outer part. In its simplest form, the SuKS concatenates the
(padded) message with the key, partitions it into blocks of r bits, and absorbs them into
the state by adding the blocks into the outer part, interleaved with evaluations of p. Then,
a tag is squeezed r bits at a time from the outer part, again interleaved with evaluations
of p until a tag of required length is obtained.

The idea of this simple SuKS construction dates back to the original introduction of the
sponge function by Bertoni et al. [BDPV07,BDPV11]. Dobraunig and Mennink [DM19b]
considered the construction in generality, where the key may be blended into the state
using an arbitrary function G, which in turn may affect more than just the r outer bits of
the state, and where the tag squeezing rate t may likewise be larger than r so that the
tag could be squeezed in one evaluation of p. This general construction is also depicted
in Figure 1. Dobraunig and Mennink proved that this general construction is black-box
secure as well as leakage resilient, provided the permutation p is assumed to be perfectly
random, and provided p and G do not leak “too much” (refer to Section 2.4 for more
formalism regarding bounded leakage).

As correctly mentioned by Dobraunig and Mennink, the SuKS construction is particu-
larly interesting in the leakage setting: as the key is only processed “at the end”, there
is only a bounded amount of secret information processed in any full evaluation of the
SuKS: all intermediate states while processing the message are non-secret and need not be

1Alternative bounding approaches exist [KR19], but the issue remains the same.

Henk Berendsen and Bart Mennink 461

protected. The only secret values/states that require side-channel protection are the secret
key, the output of the function G, and the input and output of the final permutation p. In
addition, it turns out that by maintaining an inner part in parallel to processing G, the
state size of G that would need to be protected can be as low as 2k bits (including the
key input). This stands in sharp contrast with the typical hash-then-PRF approach where
the input to the keyed finalization function is of size 3k bits. In part inspired by these
factors, the SuKS was selected as MAC function in ISAP v2 [DEM+17,DEM+20,DEM+21],
a finalist authenticated encryption scheme in the NIST lightweight cryptography com-
petition [NIS19], that aimed at a design that is hard to break even with only simple
side-channel protection.

Soon after the formalization of the general SuKS construction, Dobraunig and Men-
nink [DM20] analyzed tightness of their black-box security result, and they demonstrated
that their bound is indeed tight by presenting attacks that matched the terms in the
security bound up to a constant. The sophistication in these attacks lay in exploiting
the multicollisions. For example, if µ evaluation of the SuKS lead to the same tag, the
distinguisher can make inverse permutation queries for that tag and a guessed inner part
and they succeed with probability µ/2b−t, instead of just 1/2b−t. If t is small enough
relative to the adversarial complexity, large multicollisions on the t-bit tag may become
plausible.

1.2 Tightening Leakage Resilience
However, despite the tightness analysis of Dobraunig and Mennink, tightness of the leakage
resilience bound, and in particular of the leakage term λ, is unclear. In our work, we perform
a detailed study of the leakage resilience bound of Dobraunig and Mennink [DM19b] and
conclude that, perhaps surprisingly, the term is non-tight in λ! In detail, the leakage
resilience security bound contains two terms involving leakage: one term which corresponds
to guessing the secret part after G (noting that the attacker learns the corresponding inner
part of the state), and one term which corresponds to guessing the secret part next to
the tag (noting that the attacker learns the tag but not the truncated part). For each of
these two terms, we were not able to find a tightness attack in λ. In a nutshell, the cause
of this gap is that both security terms involve a term covering multicollisions as well as
a term covering leakage, but leakages happen to annihilate potential multicollision gain.
Stated differently, we conclude that the adversary may accelerate its attack by exploiting
multicollisions, or by exploiting the additional leakage, but not both.

As second contribution, we improve the security bound of the SuKS under leakage.
However, depending on the type of leakage, this is much harder than it intuitively seems.
The reason is that the leakages must be taken into account in the analysis of multicollisions,
and this analysis is non-trivial if elements are drawn non-uniformly. Daemen et al. [DMV17]
already performed a technical analysis in case elements are drawn uniformly without
replacement (a result also used by Dobraunig and Mennink [DM19b] for the analysis of
the SuKS). Capturing other forms of non-uniform drawings is extremely involved.2 Thus,
we will restrict our focus to two types of (bounded and non-adaptive [FPS12]) leakage:

• Fixed position leakage (Section 5): in this case, the adversary learns λ bits of
predetermined positions of the secret part of the state. This is one of the most
generous settings for the adversary, as it results in actual secret bits being leaked. The
model is still somewhat restrictive in the sense that the positions that leak are fixed
before the start of the experiment, and thus only captures a certain type of attacks.
For example, it captures typical types of probing attacks, where an adversary gains

2We remark that the same issue occurs for the alternative multicollision bounding approach based
on the expected value, of Choi et al. [CLL19]. A naive multicollision bounding akin to Jovanovic et
al. [JLM14,JLM+19] and Chakraborty et al. [CJN20] may still work but gives a very loose upper bound.

462 Tightening Leakage Resilience of the Suffix Keyed Sponge

information about some (non-adaptively) selected computation variables [ISW03].
Here, we remark that the more general model of t-threshold probing security even
allows repositioning the probes in-between queries [DDF14,DDF19], and these are
not captured by our model.

In this leakage setting, the original multicollision limit function for distributions
without replacement of Daemen et al. does carry over with small adjustments;

• Hamming weight leakage (Section 6): in this case, the adversary learns the weight of
certain n bits of the secret part of the state. The positions of these n bits is assumed
to be fixed (see also Section 7 for a discussion on generalizing this assumption).
A logical choice would be n = 8, a typical processing unit, but we consider any
possible value in our work, and for simplicity we specifically take n = 7 in our
examples instead, as Hamming weight leakage of 7 bits can be encoded into 3
bits of leakage. This is a much more relevant case to study as Hamming weight
more realistically models leakage [May00,MOP07,DMMS21]. As a matter of fact,
experiments of Mayer-Sommer [May00] demonstrated a correlation between leakage
and Hamming weights, even for simple power analysis, and many side-channel
attacks in literature explicitly use the Hamming weight model to simulate leakage to
adversaries [KJJ99,Mes00,BBD+13,BFG14].

For this type of leakage, we derive a new bound on the multicollision limit function
of Daemen et al. to cover (i) distribution without replacement and (ii) non-uniform
Hamming weight leakage. Whereas Daemen et al. already showcased how to turn the
multicollision limit function analysis to distributions without replacement, dealing
with highly non-uniform outputs makes the analysis much more complex. This
multicollision limit function bounding is included in Section 6.1.

Having settled these two choices of leakage function and having obtained bounds on the
multicollision limit function for these leakages, we can finally apply our findings to the
SuKS to obtain improved security bounds under non-adaptive fixed position or Hamming
weight leakage. The obtained results are in the ideal permutation model and are stated in
Theorem 2 and Theorem 4. The improvements are discussed in Section 5.2 and Section 6.4,
where the bounds are mapped to the parameters of ISAP v2. In these sections, we
demonstrate for example that if we apply our results to ISAP v2 with the parameter set
corresponding to Ascon-p and with λ = 3 bits of leakage, the original bound guaranteed
up to around 110-bit security, whereas our bound for fixed position leakage guarantees
up to around 122-bit security and our bound for Hamming weight leakage up to around
118-bit security. Similar conclusions can be drawn for different values of λ. However, we
wish to stress again that these conclusions only hold in the ideal permutation model and
under the specific types of bounded non-adaptive leakage as analyzed in this work.

1.3 Outline

We start with discussing some preliminary material in Section 2. The SuKS construction
is presented in Section 3, with the state-of-the-art bound in Theorem 1. Non-tightness of
the leakage resilience bound is discussed in Section 4. We improve the bound under fixed
position leakage, and map it to the parameters of ISAP v2 in Section 5. We analyze how
Hamming weight leakage can be included in the computation of the multicollision limit
function, improve the bound under this type of leakage, and map it to the parameters of
ISAP v2 in Section 6. We conclude the work in Section 7.

Henk Berendsen and Bart Mennink 463

2 Preliminaries
Let m, n ∈ N such that m ≤ n. The set of n-bit permutations is denoted by perm(n).
The set of n-bit strings is denoted by {0, 1}n, and the set of strings of arbitrary length
by {0, 1}∗. For X ∈ {0, 1}n, leftm(X) and rightm(X) denote respectively the m left-
most and m right-most bits of the string X, and Xm denotes the mth bit of X. Let
log (·) be the binary logarithm. Let HW(X) be the ⌈log (n + 1)⌉-bit representation of the
Hamming weight of X, i.e., the number of bits in X equal to 1. For Y1, Y2 ∈ {0, 1}∗,
Y1∥Y2 denotes the concatenation of Y1 and Y2. The mth falling factorial of n is denoted
by (n)m = n(n − 1) · · · (n −m + 1). For some event E, Pr (E) denotes the probability
that E occurs. Let the random choice of an element s from a set S be denoted s

$←− S.

2.1 Uniformity and Universality
The notion of uniformity of a function describes how likely it is that a certain input maps
to a certain output; the notion of universality of a function describes how likely it is
that this function gives the same output for distinct inputs. We adopt the notation and
terminology of Dobraunig and Mennink [DM19b].

Definition 1 (2−δ-uniformity). A function G : {0, 1}k × {0, 1}s → {0, 1}s is 2−δ-uniform
if, for a randomly drawn K

$←− {0, 1}k and any X, Y ∈ {0, 1}s, δ is the largest real number
such that

Pr (G(K, X) = Y) ≤ 2−δ .

Definition 2 (2−ε-universality). A function G : {0, 1}k×{0, 1}s → {0, 1}s is 2−ε-universal
if, for a randomly drawn K

$←− {0, 1}k and any distinct X, X ′ ∈ {0, 1}s, ε is the largest
real number such that

Pr (G(K, X) = G(K, X ′)) ≤ 2−ε .

Dobraunig and Mennink used both 2−δ-uniformity and 2−ε-universality for the assumption
that a function G is strongly protected, meaning it is 2−δ-uniform and 2−ε-universal even
under internal leakage.

2.2 Distinguishing Advantage
We define an adversary A which has access to one of two oracles O and P . The adversary
outputs a decision bit b after interacting with the oracle. Let A output b = 1 when it
decides it interacted with O, and b = 0 otherwise. Let AO and AP denote respectively
that the adversary interacted with O and P. The distinguishing advantage of A is then
defined as

∆A (O ; P) = Pr
(
1← AO)−Pr

(
1← AP) .

2.3 PRF Security
Let b, k, t ∈ N and m ∈ N ∪ {∗}. Let F p : {0, 1}k × {0, 1}m → {0, 1}t be a function that
internally uses a permutation p ∈ perm (b) and let Rm,t : {0, 1}m → {0, 1}t be a uniformly
random function. The pseudorandom function (PRF) security of F against an adversary
A is defined as

Advprf
F (A) = ∆A (F p

K , p ; Rm,t, p) ,

with p
$←− perm (b) and K

$←− {0, 1}k. The adversary has query access to either F
instantiated with p and K, or to Rm,t. In both cases, the adversary can also query p itself
in both directions.

464 Tightening Leakage Resilience of the Suffix Keyed Sponge

The resource complexity of the adversary is measured by the number of queries q to
the construction (F p

K or Rm,t), and the number of primitive queries N to the permutation
p. The time complexity of the adversary, such as the time spent comparing the results of
the queries to find collisions, is not taken into account.

2.4 NALR-PRF Security
PRF security is not well suited to describe security in the case of leakage resilience. We
follow the adoption of PRF security in the ideal permutation model to non-adaptive
leakage by Dobraunig and Mennink [DM19b]. We reuse the definitions of Section 2.3. Let
λ ∈ N and let L be a class of leakage functions {0, 1}b × {0, 1}b → {0, 1}λ, that on input
of two b-bit strings output at most λ bits of leakage. For L ∈ L, ⌈F p

K⌉L is a leaky version
of F p

K which evaluates F p
K as usual, but additionally outputs the value L(X, Y) for each

permutation evaluation p(X) = Y incurred in the evaluation. The NALR-PRF security of
F with respect to L is defined as

Advnalr-prf
F,L (A) = max

L∈L
∆A

(
⌈F p

K⌉L , F p
K , p ; ⌈F p

K⌉L , Rm,t, p
)

.

Here, in addition to the queries the adversary can make in the case of PRF security, the
adversary can also make queries to ⌈F p

K⌉L regardless of whether they interact with F p
K or

Rm,t. In our case, F p
K will be the SuKS (see Section 3), and in this construction, only the

final call to p operates on secret information and all earlier calls occur before the key is
blended into the state. Therefore, in our case, we will consider that in each query to F p

K

only the final call to p leaks. The leakage function L is independent of p, meaning that it
does not internally evaluate p or p−1.

Note that we consider non-adaptive leakage: we define the advantage as the maximum
taken over all leakage functions L ∈ L and this leakage function stays the same throughout
the experiment. This also means that it always returns the same leakage for the same
input.

The set L can, a priori, be any set of functions of the form {0, 1}b × {0, 1}b → {0, 1}λ.
However, this set should closely match the type of leakage the adversary can obtain. Later,
we will restrict ourselves to two particular sets of leakage functions, namely functions
Lfixed that leak on fixed positions, and functions LHamming that leak the Hamming weight
of part of a state.

We finally remark that the SuKS internally also uses a function G next to the permu-
tation p. However, we do not consider leakage incurred in evaluations of the function G
because we assume that G is strongly protected (similar to [BKP+18,BPPS17,GPPS19]
but then for the case of universal hashing).

2.5 Multicollisions
The maximum size of a multicollision can be upper bounded by the multicollision limit
function formalized by Daemen et al. [DMV17]. Dobraunig and Mennink defined this
function as follows to reason about the security of the SuKS [DM19b]:

Definition 3. Let q, b, s ∈ N such that s ≤ b. Consider the experiment of throwing q
balls uniformly at random in 2b−s bins, and denote by µ the maximum number of balls in
any single bin. The multicollision limit function µq

b−s,s is defined as the smallest natural
number x that satisfies

Pr (µ > x) ≤ x

2s
.

The right hand side of the inequality is mostly inspired by the particular applications
where the multicollision limit function is used. In fact, in sponge-based schemes we are
often concerned with an attacker that can obtain a multicollision on a part of the b-bit

Henk Berendsen and Bart Mennink 465

state, say b − s bits. If it finds a µ-collision of this kind, it can speed-up the guessing
of the remaining s bits by a factor µ and we can argue that its success probability
is at most µN/2s, where N is the total number of attempts. By imposing that µ ≤
µq

b−s,s except with probability µq
b−s,s/2s, we obtain an accumulated probability bound of

(µq
b−s,sN + µq

b−s,s)/2s. A more detailed treatment of this definition and a comparison with
alternative approaches [JLM14,JLM+19,CLL19,CJN20] is given in [Men23, Section 4.2].

The multicollision limit function of Definition 3 can be bounded using probability
theory. In particular, Daemen et al. [DMV17, Section 6.5] demonstrated that the value x
satisfies the inequality

2be−γγx

(x− γ)x! ≤ 1 (1)

with γ = q/2b−s, from which x can be determined numerically (see also [Men23, Appendix
A]). This analysis, however, assumes that the balls are thrown with replacement.

In sponge-based constructions, however, we are not concerned with a random trans-
formation, but rather a random b-bit permutation: for each ball a b-bit value is selected
without replacement, and placed in one of the 2b−s bins depending on certain b− s bits
of the ball. Note that, in this case, balls are not thrown into the bins with replacement
(so above definition and reasoning does not carry over verbatim), neither are they thrown
without replacement, as still 2s balls can end in a certain bin. To capture this case, Daemen
et al. [DMV17, Section 6.6] have extended their analysis and showed that if balls are
thrown into bins according to a certain distribution that is “reasonably close” to random,
i.e., according to a distribution D such that any thrown ball ends up in any bin with a
probability p that satisfies

|p− 2−(b−s)| ≤ 0.1 · 2−(b−s) , (2)

then the corresponding multicollision limit function µD,q
b−s,s satisfies µD,q

b−s,s ≤ µ2q
b−s,s. The

proof of this considers two experiments, one corresponding to the first multicollision limit
function and the other one corresponding to the second multicollision function, and argues
that each bin in the former experiment is at most as full as in the latter experiment.

Looking ahead to Section 6.1, we will take inspiration from their analysis but will have
to deal with an additional difficulty, namely that we consider Hamming weight leakage
that gives a very biased distribution D that does not easily fit the above reasoning.

3 The Suffix Keyed Sponge

3.1 Construction

The suffix keyed sponge (SuKS), depicted in Figure 1, is a MAC function formalized by
Dobraunig and Mennink [DM19b]. Let b, c, k, r, s, t ∈ N such that b = r + c and k, s, t ≤ b.
Let p ∈ perm (b) be a permutation and let G : {0, 1}k × {0, 1}s → {0, 1}s be a function.
The SuKS takes as input an arbitrarily long plaintext P and a k-bit long secret key K,
and produces as output a t-bit long tag T .

466 Tightening Leakage Resilience of the Suffix Keyed Sponge200 Tightness of the Sux Keyed Sponge Bound

p

P 2

r

c

r

P 1

c
0

p

P `

r

c

. . .

. . .

p

K

s

b−s

G
s

k

p

T

t

U V W

Figure 1: The sux keyed sponge. The plaintext P is rst injectively padded into r-bit
blocks P 1 . . . P ¸.

Algorithm 1 Algorithmic description of the sux keyed sponge (SuKS)
Input: (P,K) ∈ {0, 1}∗ × {0, 1}k
Output: T ∈ {0, 1}t
1: P 1 . . . P ¸ ← P‖1‖0∗
2: S ← 0b
3: for i = 1, . . . , ¸ do
4: S ← S ⊕ P i‖0c
5: S ← p(S)
6: S ← G(K, lefts(S))‖rightb−s(S)
7: S ← p(S)
8: return leftt(S)

3.2 The Bound
Dobraunig and Mennink [DM20b] give a security proof for SuKS in the leakage-resilient
setting as well as in the black-box setting. Since we focus on generic attacks against this
construction, we will stick to the bound in the black-box setting [DM20b, Theorem 2],
which we restate in Theorem 1.

Theorem 1 (Dobraunig and Mennink [DM20b, Theorem 2]). Let k, b, c, r, s, t ∈ N with
c + r = b and k, s, t ≤ b. Consider the suffix keyed sponge shown in Figure 1. The
suffix keyed sponge invokes a random permutation p

$←− perm(b), and a function G :
{0, 1}k × {0, 1}s → {0, 1}s that is 2−δ-uniform and 2−ε-universal for some δ, ε ∈ [0,∞).
For any adversary A making q ≥ 2 queries to the construction oracle (SuKS based on p
and instantiated with secret key, or a random function $) and a total amount of N ≤ 2b−1

queries to the primitive p,

Advprf
F (A) ≤ 2N2

2c +
µ
2(N−q)
b−s,s ·N
2min{δ,ε} +

µq
t,b−t ·N
2b−t

. (5)

3.3 Interpretation of the Bound
The security bound of Theorem 1 consists of three terms.

The rst term 2N2

2c of (5) corresponds to inner collisions on the plaintext absorption.
This is a common term for keyless sponges (noting that, prior to the absorption of the
key, SuKS is a keyless sponge), and is inevitable. The term implies that security of SuKS
degenerates with the square of the number of calls N to the underlying primitive only in
the rst term, and that for a k-bit security level, the condition c & 2k must be fullled.

In the second and third term of (5), security degenerates with the product of the
multi-collision limit function (either µ

2(N−q)
b−s,s or µq

t,b−t) and N . As these multi-collision
terms are typically small, one might get away with inner parts b − s and b − t that are

Figure 1: The suffix keyed sponge

The state of the SuKS consists of an r-bit outer part and c-bit inner part. Just like
the sponge function, P is injectively padded, split into r-bit blocks P 1, P 2, . . . , P ℓ and
absorbed by XORing these blocks with the outer part of the state. The permutation p
is evaluated on the state each time a block has been absorbed. Then, the outer s bits of
the state are transformed by the function G with the secret key K as input. Finally, p is
evaluated on the state one more time, and the outer t bits of the resulting state form the
tag T .

The states V and W are secret because they occur after K has been absorbed into the
SuKS state. Therefore, only the function G and last evaluation of the permutation p are
vulnerable to leakage. However, we do not take leakage from G into account because it is
assumed to be strongly protected.

3.2 Security Bounds
Dobraunig and Mennink have given a PRF and a NALR-PRF bound on the security of
the SuKS, respectively in Section 5 and 6 of their article formalizing the SuKS [DM19b].
We repeat these bounds in Theorem 1. Note that we have amended the third term of the
PRF bound by removing an error present in the superscript parameter of the multicollision
limit function.3 Looking ahead, we have moved the second term of the NALR-PRF bound
to the end of the bound to highlight the similarities between the two security bounds.

Theorem 1. Let F be the suffix keyed sponge described in Section 3.1 based on a random
permutation p

$←− perm (b) and function G : {0, 1}k × {0, 1}s → {0, 1}s. Assuming that
G is 2−δ-uniform and 2−ε-universal, it holds for any adversary A with access to q ≥ 2
construction queries and N ≤ 2b−1 primitive queries that

Advprf
F (A) ≤ 2N2

2c
+

µ
2(N−q)
b−s,s ·N
2min{δ,ε} +

µ2q
t,b−t ·N
2b−t

. (3)

When additionally assuming that G is strongly protected, and that A receives the output of
a non-adaptive leakage function L ∈ L which leaks at most λ bits of information for each
evaluation of the permutation p, it holds that

Advnalr-prf
F,L (A) ≤ 2N2

2c
+

µ
2(N−q)
b−s,s ·N

2min{δ,ε}−µ
2(N−q)
s,b−s

λ
+

µ2q
t,b−t ·N
2b−t−λ

+
µ

2(N−q)
s,b−s

2b−s
. (4)

4 Non-Tightness Under Leakage
In [DM20], Dobraunig and Mennink argued tightness of the black-box security bound
of (3). However, it is yet unclear whether the leakage resilience bound is tight. In this

3To wit, the third term of the PRF bound had multicollision term µq
t,b−t

instead, thus not taking
into account the doubling of the number of balls to account for the non-uniform drawing as outlined in
Section 2.5.

Henk Berendsen and Bart Mennink 467

section, we show that the NALR-PRF security bound on the SuKS given in (4) is, as a
matter of fact, not tight. We focus on the second and third term of the bound of (4),
because they contain the leakage term λ. (The fourth term is collateral damage coming
from multicollisions on the leakage value.)

For both terms, we first describe how an attack without leakage (thus, in the black-box
setting) would be mounted, and subsequently discuss the difficulties in adding the λ into
the attack. For simplicity, the third term is discussed first, in Section 4.1, and the second
term in Section 4.2. We recap in Section 4.3.

4.1 Non-Tightness of Leakage in Third Term
We have combined elements from two attacks of [DM20, Sections 4.1, 5.1] to form an
attack which exploits multicollisions on the tag to mount a forgery. We first describe this
attack in the non-leaky setting.

(1) Make q construction queries with distinct plaintexts Pi to get the corresponding tags
Ti, and make primitive queries on these same plaintexts to get the corresponding
states before key absorption Ui.

(2) Find a multicollision of size µ for the tag T ; that is, µ values i such that Ti is equal
to some T ⋆. Let S be the set containing these µ plaintexts.

(3) Additionally, find a set S ′ such that for all elements Pi ∈ S, S ′ contains a different
element P ′

i with the same value for the outer part of the state U , i.e., lefts(Ui) =
lefts(U ′

i).

(4) For varying Zj ∈ {0, 1}b−t, make N inverse primitive queries p−1(T ⋆∥Zj). If the result
of one of these queries is of the form Y ∥rightb−s(Ui) for some i in the multicollision,
lefts(Vi) is likely equal to Y . Note that lefts(Vi) = lefts(V ′

i) because lefts(Ui) and
lefts(U ′

i) collide.

(5) If Vi has been found for some i in the multicollision, compute

T ′ = leftt(p(lefts(Vi)∥rightb−s(U ′
i))) .

Then, (P ′
i , T ′) is a valid forgery.

Note that this attack matches the third term of the PRF security bound on the SuKS given
in (3). For each inverse primitive query p−1(T ⋆∥Zj), the attacker has a probability of µ

2b−t

to correctly guess one of the values Wi in the multicollision and recover the corresponding
Vi. Because the attacker makes N such queries and the size of the largest multicollision is
bounded by µ2q

t,b−t, the attack matches the bound of (µ2q
t,b−t ·N)/2b−t.

We remark that it is possible that, in step (4), the result of a query is of the form
Y ∥rightb−s(Ui) such that Y ̸= lefts(Vi). However, the probability of this event occurring
is negligible, unless b− t > s, and in that case the second term of (3) would be dominant,
not the third term.

The attacker could exploit leakage to decrease the amount of bits of W (the state at
tag squeezing) which need to be guessed in step (4). Consider for example the following
leakage function which leaks the λ right-most bits of W :

Lright
p : {0, 1}b × {0, 1}b → {0, 1}λ ,

Lright
p (V, W) = rightλ(W) .

(5)

With this leakage function, the attacker only needs to guess b− t− λ bits of W instead of
b− t bits, which is reflected in the denominator of the third term of (4). However, this

468 Tightening Leakage Resilience of the Suffix Keyed Sponge

attack improvement does not work. The problem lies in the numerator of this term. The
attack without leakage exploits the multicollision for T by being able to match µ values
Wi with each guess. With the above leakage function, the leaked value does not have to
be the same for every Wi, meaning it may not be possible to match µ values with one
guess when exploiting leakage. However, the numerator of this term does not change with
respect to the numerator of its counterpart in the PRF bound to account for this problem.
Therefore, assuming that the attacker uses the leakage function defined in (5), the third
term of the NALR-PRF bound is not tight.

4.2 Non-Tightness of Leakage in Second Term
We first describe the attack of [DM20, Section 5.1] in the non-leaky setting, which exploits
multicollisions on the inner part of the state during key absorption to mount a forgery.

(1) Make primitive queries on distinct plaintexts Pi to get the corresponding states
before key absorption Ui.

(2) Find a multicollision of µ plaintexts Pi such that for all corresponding states Ui,
rightb−s(Ui) is equal to some value U⋆. Let S be the set containing these µ plaintexts.

(3) Make construction queries to compute the tags Ti corresponding to the plaintexts
Pi ∈ S.

(4) Additionally, find a set S ′ such that for all elements Pi ∈ S, S ′ contains a different
element P ′

i with the same value for the outer part of the state U , i.e., lefts(Ui) =
lefts(U ′

i).

(5) Find the state after key absorption Vi for some i by making N different guesses
Zj for the outer part of Vi. Verify each guess by checking whether leftt(p(Zj∥U⋆))
equals Ti for some i. Note that lefts(Vi) = lefts(V ′

i) because lefts(Ui) and lefts(U ′
i)

collide.

(6) If Vi has been found for some i in the multicollision, compute

T ′ = leftt(p(lefts(Vi)∥rightb−s(U ′
i))) .

Then (P ′
i , T ′) is a valid forgery.

Because G is assumed to be 2−δ-uniform, the attacker has a probability of µ
2δ to correctly

guess one of the values Vi for each primitive query p(Zj∥U⋆). Because the attacker makes
N such queries and the size of the largest multicollision is bounded by µ

2(N−q)
b−s,s , the attack

matches the bound of (µ2(N−q)
b−s,s ·N)/2δ.

This bound is almost the same as the second term of the PRF security bound on the
SuKS given in (3); the only difference is the denominator being 2δ instead of 2min{δ,ε}. We
were unable to find an equally powerful attack which exploits the 2−ε-universality of G,
meaning that (to the best of our knowledge) the bound is tight only if δ ≤ ε. However, for
usual instantiations this is the case (e.g., assuming k = s, we have δ = k and ε =∞ for
XORing and δ = ε = k for a random function). Therefore, we will not consider attacks
exploiting the 2−ε-universality of G.

We remark that it is possible that, in step (5), for some Zj , leftt(p(Zj∥U⋆)) equals Ti

for some i, but Zj is not equal to the outer part of Vi. However, the probability of this
event occurring is negligible, unless s > b− t, in which case the third term of (3) would be
dominant, not the second term.

The attacker could exploit the combination of multicollisions and leakage to learn a
large part of lefts(Vi) for all i. Suppose that in step (4) of the attack, the attacker finds

Henk Berendsen and Bart Mennink 469

for each element Pi ∈ S a multicollision of size µ′ instead of a single collision for lefts(Ui).
The attacker could use a leakage function which leaks different parts of lefts(Vi) depending
on the value of the inner part of U . Assuming that within each multicollision of size µ′,
each element has a distinct value for the inner part of U , the attacker would learn µ′λ bits
of lefts(Vi) for each Pi ∈ S. Because µ′ is bounded by the multicollision limit function
µ

2(N−q)
s,b−s and G is 2−δ-uniform, the probability of the attacker guessing one value Vi is

1/2δ−µ
2(N−q)
s,b−s

λ, which is reflected in the denominator of the second term.
The exploitation of both leakage and multicollisions leads to multiple problems, however.

Similarly to the problem described in Section 4.1, the attacker may not be able to match
all µ values Vi corresponding to the plaintexts Pi ∈ S with one guess because the µ′λ
leaked bits may not be equal for each Vi. Furthermore, because the leakage function leaks
different bits depending on the value of rightb−s(U), which is distinct for each plaintext
within the multicollisions of size µ′, the bit positions of lefts(Vi) which leak may be different
for each i.

Indeed, consider for the sake of example the following leakage function which leaks bits
in a fixed position, namely the λ left-most bits of V :

Lleft
p : {0, 1}b × {0, 1}b → {0, 1}λ ,

Lleft
p (V, W) = leftλ(V) .

(6)

With this leakage function, the first problem diminishes because there are only λ leaked
bits which may not be equal instead of µ′λ bits, and the second problem does not apply.

4.3 Recap
Neither the attack of Section 4.1 nor that of Section 4.2 reaches tightness with respect
to (4), and the main cause is that the attacker cannot exploit multicollisions and leakage
separately: they need to be analyzed jointly. In the upcoming sections, we consider a
tightened NALR-PRF bound for the SuKS for two specific types of leakage: fixed position
leakage in Section 5 and Hamming weight leakage in Section 6.

In these tightened bounds, we adapt the multicollision limit functions such that the
attacker can exploit multicollisions and leakage simultaneously. This does decrease the size
of the multicollisions the attacker can find, as seen in Section 5.2 and Section 6.4, where
we respectively apply the ISAP v2 parameters to the bound for fixed position leakage and
Hamming weight leakage.

5 Improved Bound for Leakage in Fixed Positions
We give a tightened NALR-PRF bound on the security of the SuKS when assuming leakage
functions which leak bits in fixed positions. Formally, we restrict ourselves to the following
leakage set Lfixed of functions of the form {0, 1}b × {0, 1}b → {0, 1}λ:

Lfixed := {(X, Y) 7→ Zi1∥Zi2∥ · · · ∥Ziλ
| Z ∈ {X, Y } ∧ i1 < i2 < · · · < iλ ∈ {1, 2, . . . , b}} .

We are now ready to state the NALR-PRF security bound of the SuKS in case of fixed
position leakage.

Theorem 2. Let F be the suffix keyed sponge described in Section 3.1 based on a random
permutation p

$←− perm (b) and function G : {0, 1}k × {0, 1}s → {0, 1}s. Assume that G is
2−δ-uniform, 2−ε-universal and strongly protected.

Let λ ∈ N such that λ ≤ b. Let A be an adversary who receives the output of a leakage
function L ∈ Lfixed which leaks λ fixed bits of a secret suffix keyed sponge state. It holds for

470 Tightening Leakage Resilience of the Suffix Keyed Sponge

any such adversary A with access to q ≥ 2 construction queries and N ≤ 2b−1 primitive
queries that:

Advnalr-prf
F,Lfixed

(A) ≤ 2N2

2c
+

µ
2(N−q)
b−s+λ,s−λ ·N
2min{δ,ε}−λ

+
µ2q

t+λ,b−t−λ ·N
2b−t−λ

. (7)

Note that there are two changes with respect to the original NALR-PRF bound of (4)
given in Theorem 1: the second and third term have changed, and the fourth term has
disappeared. Regarding the second and third term: the parameters in the subscript of the
multicollision limit function in the numerator have changed. Recall the problem described
in Section 4 which prohibited the attacker from matching all elements in the multicollision
with a single guess for a secret value, because these elements could have different leakage
values. By changing the parameters of the multicollision limit function, the λ leaked bits
are included in the multicollision, which eliminates this problem. For the second term,
additionally, the multicollision limit function in the exponent of the denominator has
disappeared because of the assumption that the leakage function always leaks bits in the
same position, instead of different positions dependent on its input. This also means that
the fourth term in Theorem 1, basically coming from bounding a multicollision on the
leakage (this term corresponds to the right hand side of the inequality of Definition 3),
disappears.

Note that the bound is tight in general, i.e., the leakage function (5) that makes the
third term tight is in Lfixed, and so is the leakage function (6) that makes the second term
tight. Attacks that match the terms in the bound are given in Section 5.1.

Proof (of Theorem 2). The proof follows from the simple observation that the security of
the SuKS under fixed position leakage of λ bits is equivalent to a black-box setting of the
SuKS, but where the adversary knows b− s + λ bits of the input to the last permutation
(instead of b− s bits) and t + λ bits of its output (instead of t bits). Thus, the black-box
bound of (3) of Theorem 1 carries over almost immediately: the only difference is in the
denominator of the second term. Here, it should be observed that min{δ, ε} regards the s
leftmost bits of the state and not the s−λ leftmost bits, and that by revealing λ more bits
the term δ gets decreased by λ. The bound is then marginally simplified by noting that

min{δ − λ, ε} ≥ min{δ, ε} − λ .

A more theoretical approach towards proving Theorem 2 would be to look at the proof of
Dobraunig and Mennink [DM19b, Section 6.3], and observe that only the analysis of the
bad events changes:

• mctag and collcp-out change by considering multicollisions at a state of t + λ bits. For
collcp-out, an additional change is in the observation that for each evaluation, the
entropy loss due to leakage is already taken into account by virtually considering
tags of size t + λ bits;

• mcright, collcc, and collcp-in change by considering multicollisions at a state of b− s + λ
bits. For collcp-in, an additional change is in the observation that for each evaluation
G(K, lefts(Ui)) exactly λ bits of leakage are known, instead of µ

2(N−q)
s,b−s pieces of

leakage, a value analyzed by mcleft;

• Due to the previous point, bad event mcleft has become redundant, and disappears.

5.1 Matching Attacks
We adapt the attacks given in Section 4.1 and Section 4.2 such that they exploit fixed
position leakage and match terms of the NALR-PRF bound given in (7).

Henk Berendsen and Bart Mennink 471

5.1.1 Attack Matching the Third Term

We use the leakage function Lright
p given in (5), which is repeated below:

Lright
p : {0, 1}b × {0, 1}b → {0, 1}λ ,

Lright
p (V, W) = rightλ(W) .

The attack is performed as follows. The attack is very similar to that in Section 4.1, the
only differences being in the explicit inclusion of the leakage values in steps (1), (2), and
(4).

(1) Make q construction queries with distinct plaintexts Pi to get the corresponding tags
Ti and leakage values Li, and make primitive queries on these same plaintexts to get
the corresponding states before key absorption Ui.

(2) Find a multicollision of size µ for the tag and leakage value; that is, µ values i such
that Ti is equal to some T ⋆ and Li is equal to some L⋆. Let S be the set containing
these µ plaintexts.

(3) Additionally, find a set S ′ such that for all elements Pi ∈ S, S ′ contains a different
element P ′

i with the same value for the outer part of the state U , i.e., lefts(Ui) =
lefts(U ′

i).

(4) For varying Zj ∈ {0, 1}b−t−λ, make N inverse primitive queries p−1(T ⋆∥Zj∥L⋆). If
the result of one of these queries is of the form Y ∥rightb−s(Ui) for some i in the
multicollision, lefts(Vi) is likely equal to Y . Note that lefts(Vi) = lefts(V ′

i) because
lefts(Ui) and lefts(U ′

i) collide.

(5) If Vi has been found for some i in the multicollision, compute

T ′ = leftt(p(lefts(Vi)∥rightb−s(U ′
i))) .

Then, (P ′
i , T ′) is a valid forgery.

For each inverse primitive query p−1(T ⋆∥Zj∥L⋆), the attacker has a probability of µ
2b−t−λ

to correctly guess one of the values Wi in the multicollision and recover the corresponding
Vi. Because the attacker makes N such queries and the size of the largest multicollision is
bounded by µ2q

t+λ,b−t−λ, where in comparison to the previous attack now also the leakage
is taken into account, the attack matches the bound of (µ2q

t+λ,b−t−λ ·N)/2b−t−λ.

5.1.2 Attack Matching the Second Term

We use the leakage function Lleft
p given in (6), which is repeated below:

Lleft
p : {0, 1}b × {0, 1}b → {0, 1}λ ,

Lleft
p (V, W) = leftλ(V) .

The attack is performed as follows. The attack differs from that in Section 4.2 in how the
attacker exploits multicollisions on the inner part of the state. In the attack in Section 4.2,
the attacker only has to find the largest multicollision on rightb−s(Ui). However, when
also exploiting leakage, the attacker must also find within the largest multicollision on
rightb−s(Ui) the largest set of plaintexts that collide on the leakage value, as described in
step (3).

(1) Make primitive queries on distinct plaintexts Pi to get the corresponding states
before key absorption Ui.

472 Tightening Leakage Resilience of the Suffix Keyed Sponge

(2) Find a multicollision of plaintexts Pi such that for all corresponding states Ui,
rightb−s(Ui) is equal to some value U⋆.

(3) Make construction queries to compute the tags Ti and leakage values Li corresponding
to the plaintexts Pi in the multicollision. Then, within this multicollision, find another
multicollision of µ plaintexts Pi such that the corresponding Li are all equal to some
L⋆. Let S be the set containing these µ plaintexts.

(4) Additionally, find a set S ′ such that for all elements Pi ∈ S, S ′ contains a different
element P ′

i with the same value for the outer part of the state U , i.e., lefts(Ui) =
lefts(U ′

i).

(5) Find the state after key absorption Vi for some i by making N different guesses Zj

for the outer part of Vi, with Zj ∈ {0, 1}s−λ. Verify each guess by checking whether
leftt(p(L⋆∥Zj∥U⋆)) equals Ti for some i. Note that lefts(Vi) = lefts(V ′

i) because
lefts(Ui) and lefts(U ′

i) collide.

(6) If Vi has been found for some i in the multicollision, compute

T ′ = leftt(p(lefts(Vi)∥rightb−s(U ′
i))) .

Then (P ′
i , T ′) is a valid forgery.

The attacker has a probability of µ
2δ−λ to correctly guess one of the values Vi for each

primitive query p(L⋆∥Zj∥U⋆). Because the attacker makes N such queries and the size of
the largest multicollision is bounded by µ

2(N−q)
b−s+λ,s−λ, where in comparison to the previous

attack now also the leakage is taken into account, the attack matches the bound of
(µ2(N−q)

b−s+λ,s−λ ·N)/2δ−λ. This bound differs slightly from the second term in its denominator.
However, as explained in Section 4.2, this does not make a difference for usual instantiations
of the SuKS.

5.2 Application to ISAP v2
The improvement in the bound becomes apparent when looking at the SuKS when
instantiated with the parameters of ISAP v2 [DEM+17, DEM+20, DEM+21]. It runs
on two different parameter sets, namely (b, c, r, k) = (400, 256, 144, 128) (corresponding
to instantiation with Keccak-f[400]) and (b, c, r, k) = (320, 256, 64, 128) (corresponding
to instantiation with Ascon-p), with in both cases s = t = k. We stress that in below
application, we only take these parameter sets and analyze the generic bound of Theorem 2
for these parameters, but that the bound still only holds in the ideal permutation model
and for the specific type of bounded non-adaptive leakage.

We stick to the instantiation using the Ascon-p-based parameters, and assume leakage
of λ = 3 for the sake of example. We assume that G is strong and that min{δ, ε} = k. The
original bound of Theorem 1 is of the simplified form

Advnalr-prf
F,L (A) ≤ 2N2

2256 +
µ

2(N−q)
192,128 ·N

2128−µ
2(N−q)
128,192 λ

+
µ2q

128,192 ·N
2189 +

µ
2(N−q)
128,192

2192 . (8)

If we set the number of balls in the multicollision limit functions to 2(N − q), 2q ≤ 2129, we
can use the script of Mennink [Men23, Appendix A] to estimate µ

2(N−q)
192,128 ≈ 5, µ

2(N−q)
128,192 ≈ 80,

and µ2q
128,192 ≈ 80, and conclude that the bound becomes meaningless. The reason is that

the multicollision limit function in the denominator of the second term of (8) grows quite
large for N approaching the maximum. Taking a perhaps more realistic bounding for the

Henk Berendsen and Bart Mennink 473

number of balls for this (and only this) multicollision function, 2(N − q) ≤ 265, we can
estimate that (and only that) multicollision function as µ

2(N−q)
128,192 ≈ 5 and obtain:

Advnalr-prf
F,Lfixed

(A) ≤ 2N2

2256 + 5N

2113 + 80N

2189 + 5
2192 . (9)

If we restrict our focus to fixed position leakage, the improved bound of Theorem 2 is of
the simplified form

Advnalr-prf
F,Lfixed

(A) ≤ 2N2

2256 +
µ

2(N−q)
195,125 ·N

2125 +
µ2q

131,189 ·N
2189 . (10)

Using the script of Mennink to estimate µ
2(N−q)
195,125 ≈ 5 and µ2q

131,189 ≈ 50, we obtain:

Advnalr-prf
F,Lfixed

(A) ≤ 2N2

2256 + 5N

2125 + 50N

2189 . (11)

Clearly, (11) improves over (9) in both its second and third term (the fourth term of (9)
is negligible in the first place). A comparable improvement is obtained for the Keccak-
f[400]-based parameter set. We do stress, however, that this instantiation is only done for
the parameter sets

6 Improved Bound for Hamming Weight Leakage
In this section, we analyze how leakage of the Hamming weight of a value can be incor-
porated into the multicollision limit function. We remark that the Hamming weight is a
logical type of leakage to consider. In particular, it is a reasonably realistic modeling of
leakage [DMMS21,MOP07,May00]. In addition, the amount of information the attacker
learns, as well as the size of the largest multicollision, depends on the leakage value. Con-
sider leaking the Hamming weight w of an n-bit value X, with n ∈ N and w ∈ {0, . . . , n}.
The amount of possible n-bit values with Hamming weight w is

(
n
w

)
. Therefore, the

difficulty of guessing X and the amount of n-bit values with the same Hamming weight
as X depends on the value of w. Unfortunately, due to the non-uniform character, the
analysis of leakage resilience in the Hamming weight setting becomes much more delicate.

We will consider n ∈ N such that n ≤ b, and assume that the Hamming weight of n
predetermined bits are leaked. Let λ = ⌈log (n + 1)⌉. We define the following leakage set
LHamming of functions of the form {0, 1}b × {0, 1}b → {0, 1}λ:

LHamming := {(X, Y) 7→ HW(Zi1∥ · · · ∥Zin) | Z ∈ {X, Y } ∧ i1 < · · · < in ∈ {1, . . . , b}} .

We first model the idea of multicollisions covering Hamming weight leakage in Section 6.1.
The section also includes a main theorem relating the novel multicollision limit function
to the original one of Definition 3: Theorem 3. The proof of this theorem is given in
Section 6.5. We derive an improved NALR-PRF security bound for the SuKS, and matching
attacks for this bound, in Section 6.2 and Section 6.3 respectively.

6.1 Modeling Hamming Weight Into Multicollisions
6.1.1 Balls-and-Bins Problem

To model the Hamming weight leakage in a balls-and-bins problem, the balls and bins
have to be redefined. We will consider a setting where the balls are b-bit values, and the
attacker is trying to find collisions for a part a secret SuKS state, i.e., V or W . Without
loss of generality, we consider it to learn the value of leftr(W) and HW(rightn(W)). Hence,

474 Tightening Leakage Resilience of the Suffix Keyed Sponge

we consider a bin for each possible combination of these values. Because the Hamming
weight leakage function’s codomain contains n + 1 different values, there are 2r · (n + 1)
bins.

In the original balls-and-bins problem of the multicollision limit function, the balls are
thrown with replacement according to a uniform distribution. In our redefined balls-and
bins problem, the balls are thrown according to a non-uniform distribution denoted by
DHW-nr. The distribution is non-uniform due to the balls being thrown without replacement,
and due to the non-uniform distribution of the Hamming weight itself, which was explained
at the start of Section 6.

Using the new balls-and-bins problem, we can now define a multicollision limit function
which incorporates the following leakage function (the selection of which is without loss of
generality):

LHW-right
p : {0, 1}b × {0, 1}b → {0, 1}λ,

LHW-right
p (V, W) = HW(rightn(W)) .

(12)

6.1.2 Multicollisions with Hamming Weight

In the Hamming weight leakage setting, the leakage value w which results in the largest
multicollision on leftr(W) and HW(rightn(W)) is likely to be a value which occurs fre-
quently, such as w =

⌊
n
2
⌋
. However, with such a value for w it is more difficult to guess

the actual value of rightn(W) than with a value which occurs less often, such as w = 0.
Therefore, the largest multicollision is not necessarily the multicollision which leads to the
optimal attack; to obtain a tight bound in the Hamming weight leakage setting, we must
analyze the size of the largest multicollision separately for each possible leakage value
w ∈ {0, . . . , n}.

In order to only analyze multicollisions on specific values for w, we define new distri-
butions derived from DHW-nr. For w ∈ {0, . . . , n}, let DHW-nr(w) be a distribution such
that balls are thrown in bins according to DHW-nr, but only the balls falling in the bins
corresponding to the leakage value w are counted; the bins which do not correspond to the
leakage value w can be considered bottomless, such that balls fall through them instead of
in them. The maximum amount of balls in a single bin µ for the balls-and-bins problem
where the balls are thrown according to DHW-nr(w) can be described by

µ
q,DHW-nr(w)
r′,c′ ,

with w ∈ {0, . . . , n}, r′ = r + log(n + 1) and c′ = c− log(n + 1).
According to the definition of the multicollision limit function in Section 2.5, we get

from the subscript parameter r′ that there are 2r′ = 2r+log(n+1) = 2r · (n + 1) bins, and
from the subscript parameter c′ that we define this multicollision limit function as the
smallest x satisfying:

Pr (µ > x) ≤ x

2c′ = x

2c−log(n+1) = x(n + 1)
2c

,

with µ the maximum amount of balls in any single bin.

6.1.3 Relation to (Uniform) Multicollision Limit Function

Due to the non-uniformity of the Hamming weight leakage function, the multicollision
limit function defined in Section 6.1.2 is hard to compute. Therefore, we will prove that it
is upper bounded by another multicollision limit function which uniformly distributes the
balls over the bins (cf., Section 2.5):

Henk Berendsen and Bart Mennink 475

Theorem 3. Let b, c, n, q, r ∈ N and w ∈ {0, . . . , n} such that b = r + c, 1 ≤ n ≤ c, r ≥ 1
and q ≤ 2b. Let r′ = r + log (n + 1) and c′ = c− log (n + 1). Then µ

q,DHW-nr(w)
r′,c′ ≤ µ

α(w)q
r′,c′

for α(w) = max
{

1,
⌈(

n
w

) e2(n+1)
2n

⌉}
.

The proof is postponed to Section 6.5.

6.2 Improved NALR-PRF Security Bound
We are now ready to state the NALR-PRF security bound of the SuKS in case of Hamming
weight leakage.

Theorem 4. Let F be the suffix keyed sponge described in Section 3.1 based on a random
permutation p

$←− perm (b) and function G : {0, 1}k × {0, 1}s → {0, 1}s, with parameters
b− s, t ≥ 1. Assume that G is 2−δ-uniform, 2−ε-universal and strongly protected.

Let n, λ ∈ N such that 1 ≤ n ≤ min{s, b− t} and λ = ⌈log (n + 1)⌉. For w ∈ {0, . . . , n},
let α(w) = max

{
1,
⌈(

n
w

) e2(n+1)
2n

⌉}
. Let A be an adversary who receives the output of a

leakage function L ∈ LHamming which leaks a λ-bit encoding of the Hamming weight of n
bits of a secret suffix keyed sponge state. It holds for any such adversary A with access to
q ≥ 2 construction queries and N ≤ 2b−1 primitive queries that:

Advnalr-prf
F,LHamming

(A) ≤ 2N2

2c
+ max

w

µ
α(w)(N−q)
b−s′,s′ ·N(
n
w

)
2min{δ,ε}−n

+ max
w

µ
α(w)q
t′,b−t′ ·N(
n
w

)
2b−t−n

, (13)

where s′ = s− log (n + 1) and t′ = t + log (n + 1).

Note that, just like Theorem 2, the second and third term have changed with respect to
the original NALR-PRF bound given in Theorem 1. In these two terms, Theorem 3 has
been applied so that the multicollision limit functions used in them take the non-uniform
character of Hamming weight leakage into account. Furthermore, the fourth term has
disappeared (the reason for its disappearance being the same as in Theorem 2). Also, this
bound is tight in general, i.e., one can select two leakage functions from LHamming similar
to (5) and (6) that make the terms tight. Attacks that match the terms in the bound are
given in Section 6.3.

Proof (of Theorem 4). The extension of the proof of Dobraunig and Mennink [DM19b,
Section 6.3] to the setting of Hamming weight leakage is less straightforward. In particular,
we cannot simply reduce security to the black-box setting as we did for Theorem 2. On
the upside, the proof is still an adaptation of [DM19b, Section 6.3] where the difference is
only in the bad event analysis.

In a nutshell, like in the proof of Theorem 2 we operate on multicollisions at a state of
t′ = t + log (n + 1) or b− s′ = b− s + log (n + 1) bits. Then, for any adversarial attempt
to set a bad event, the adversary has to judge based on the Hamming weight, and this
gives a bias. For example, for guessing the output of a permutation, the adversary has
to guess b− t− n bits (with probability 1/2b−t−n) and the correct string matching the
Hamming weight w (with probability 1/

(
n
w

)
). Each guess may be for a different w, and

the success probability is amplified by a multicollision limit function that depends on w in
the number of balls (due to Theorem 3), in our case µ

α(w)(N−q)
b−s′,s′ or µ

α(w)q
t′,b−t′ . In the worst

case, the adversary restricts to leakage values w for which this probability is optimal. This
observation results in the maxw in front of the second and third term.

In detail, consider any w. We can observe the following changes in the bad event
analysis of [DM19b, Section 6.3]:

476 Tightening Leakage Resilience of the Suffix Keyed Sponge

• cap considers inner part collisions before keying the construction. The event remains
unchanged and contributes the following to the bound:

2(N − q)2

2c
; (14)

• mctag and collcp-out both get indexed by w. Both events then consider multicollisions
at a state of t′ = t + log (n + 1) bits with α(w)q drawings.

– For mctag(w), for any w, this yields an updated probability bound of
µ

α(w)q

t′,b−t′

2b−t′ ;
– For collcp-out(w), the analysis of forward queries (+, Xj , Yj) in [DM19b, Section

6.3] remains and gives 2q
2b per query. For inverse queries (−, Xj , Yj), the value

Yj fixes the tag value as well as an n-bit string with Hamming weight w at
certain fixed positions (w.l.o.g., at the unknown part). By ¬mctag(w), there are
at most µ

α(w)q
t′,b−t′ earlier construction queries for the same tag and with the same

Hamming weight at those positions. The value Yj is then equal to Wi for any

of those construction queries with probability at most
µ

α(w)q

t′,b−t′

(n
w)2b−t−n

per query.

Any of the at most N − q attempts in collcp-out in fact fixes w, and this means we can
simply maximize over w, to get that these two bad events contribute the following
to the bound:

max
w

(
µ

α(w)q
t′,b−t′

2b−t′ +
µ

α(w)q
t′,b−t′ · (N − q)(

n
w

)
2b−t−n

)
+ 2q(N − q)

2b
; (15)

• mcright, collcc and collcp-in get indexed by w. These three events then consider
multicollisions at a state of b − s′ = b − s + log (n + 1) bits with α(w)(N − q)
drawings.

– For mcright(w), for any w, this yields an updated probability bound of
µ

α(w)(N−q)
b−s′,s′

2s′ ;
– For collcp-in(w), for forward queries (+, Xj , Yj), the value Xj fixes the inner

part rightb−s(Ui) as well as an n-bit string with Hamming weight w at certain
fixed positions (w.l.o.g., at the unknown part). By ¬mcright(w), there are at
most µ

α(w)(N−q)
b−s′,s′ earlier primitive queries for the same rightb−s(Ui) and with

the same Hamming weight at those positions. The value Xj is then equal to Ui

for any of those construction queries with probability at most
µ

α(w)(N−q)
b−s′,s′

(n
w)2δ−n

per
query.

Any of the at most N − q attempts in collcp-in in fact fixes w, and this means we can
simply maximize over w, to get that these two bad events contribute the following
to the bound:

max
w

(
µ

α(w)(N−q)
b−s′,s′

2s′ +
µ

α(w)(N−q)
b−s′,s′ · (N − q)(

n
w

)
2δ−n

)
; (16)

Finally, for collcc(w), we consider construction-construction collisions: the leakage
and also the indexing of w does not matter, and this bad event contributes the
following to the bound (as in [DM19b, Section 6.3]):

max
w

µ
α(w)(N−q)
b−s′,s′ · q/2

2ε
+ q2

2b
; (17)

Henk Berendsen and Bart Mennink 477

• For the same reason as in the proof of Theorem 2, bad event mcleft has become
redundant, and disappears.

If we sum (14), (15), (16) and (17), and simplify some terms, we obtain

2N2

2c
+ max

w

µ
α(w)(N−q)
b−s′,s′ ·N(
n
w

)
2min{δ,ε}−n

+ max
w

µ
α(w)q
t′,b−t′ ·N(
n
w

)
2b−t−n

as claimed.

6.3 Matching Attacks
We adapt the attacks given in Section 4.1 and Section 4.2 such that they exploit Hamming
weight leakage and match terms of the NALR-PRF bound given in (13).

6.3.1 Attack Matching the Third Term

We use the leakage function LHW-right
p given in (12), which is repeated below:

LHW-right
p : {0, 1}b × {0, 1}b → {0, 1}λ,

LHW-right
p (V, W) = HW(rightn(W)) .

The attack is performed as follows. Like the attack in Section 5.1.1, the only addition of
this attack with respect to the attack in Section 4.1 is the explicit inclusion of the leakage
values in steps (1), (2), and (4).

(1) Make q construction queries with distinct plaintexts Pi to get the corresponding tags
Ti and leakage values Li, and make primitive queries on these same plaintexts to get
the corresponding states before key absorption Ui.

(2) Find the optimal multicollision of size µ for the tag and leakage value; that is, µ
values i such that Ti is equal to some T ⋆, Li is equal to some L⋆ and µ/

(
n
w

)
is

maximal, where w is the decimal representation of L⋆. Let S be the set containing
these µ plaintexts.

(3) Additionally, find a set S ′ such that for all elements Pi ∈ S, S ′ contains a different
element P ′

i with the same value for the outer part of the state U , i.e., lefts(Ui) =
lefts(U ′

i).

(4) For varying Zj ∈ {0, 1}b−t such that HW(rightn(Zj)) = L⋆, make N inverse primitive
queries p−1(T ⋆∥Zj). If the result of one of these queries is of the form Y ∥rightb−s(Ui)
for some i in the multicollision, lefts(Vi) is likely equal to Y . Note that lefts(Vi) =
lefts(V ′

i) because lefts(Ui) and lefts(U ′
i) collide.

(5) If Vi has been found for some i in the multicollision, compute

T ′ = leftt(p(lefts(Vi)∥rightb−s(U ′
i))) .

Then, (P ′
i , T ′) is a valid forgery.

For each inverse primitive query p−1(T ⋆∥Zj), the attacker guesses one of the values Wi

in the multicollision and recovers the corresponding Vi with probability µ/
((

n
w

)
2b−t−n

)
.

Because the attacker makes N such queries and the size of the optimal multicollision
is bounded by µ

α(w)q
t′,b−t′ with t′ = t + log (n + 1), where in comparison to the previous

attack now also the leakage is taken into account, the attack matches the bound of
(µα(w)q

t′,b−t′ ·N)/
((

n
w

)
2b−t−n

)
for the value of w that maximizes the bound.

478 Tightening Leakage Resilience of the Suffix Keyed Sponge

6.3.2 Attack Matching the Second Term

We use the leakage function LHW-left
p defined below:

LHW-left
p : {0, 1}b × {0, 1}b → {0, 1}λ,

LHW-left
p (V, W) = HW(leftn(V)) .

(18)

The attack is performed as follows. The attack differs from that in Section 4.2 in how the
attacker exploits multicollisions on the inner part of the state, similarly to Section 5.1.2:
besides finding the largest multicollision rightb−s(Ui), the attacker must also find within
this multicollision the optimal set of plaintexts that collide on the leakage value, as
described in step (3).

(1) Make primitive queries on distinct plaintexts Pi to get the corresponding states
before key absorption Ui.

(2) Find a multicollision of plaintexts Pi such that for all corresponding states Ui,
rightb−s(Ui) is equal to some value U⋆.

(3) Make construction queries to compute the tags Ti and leakage values Li corresponding
to the plaintexts Pi in the multicollision. Then, within this multicollision, find another
multicollision of µ plaintexts Pi such that the corresponding Li are all equal to some
L⋆ and µ/

(
n
w

)
is maximal, where w is the decimal representation of L⋆. Let S be

the set containing these µ plaintexts.

(4) Additionally, find a set S ′ such that for all elements Pi ∈ S, S ′ contains a different
element P ′

i with the same value for the outer part of the state U , i.e., lefts(Ui) =
lefts(U ′

i).

(5) Find the state after key absorption Vi for some i by making N different guesses Zj

for the outer part of Vi, with Zj ∈ {0, 1}s such that HW(leftn(Zj)) = L⋆. Verify
each guess by checking whether leftt(p(Zj∥U⋆)) equals Ti for some i. Note that
lefts(Vi) = lefts(V ′

i) because lefts(Ui) and lefts(U ′
i) collide.

(6) If Vi has been found for some i in the multicollision, compute

T ′ = leftt(p(lefts(Vi)∥rightb−s(U ′
i))) .

Then (P ′
i , T ′) is a valid forgery.

The attacker has a probability of µ/
((

n
w

)
2δ−n

)
to correctly guess one of the values Vi for

each primitive query p(Zj∥U⋆). Because the attacker makes N such queries and the size
of the optimal multicollision is bounded by µ

α(w)(N−q)
b−s′,s′ with s′ = s− log (n + 1), where in

comparison to the previous attack now also the leakage is taken into account, the attack
matches the bound of (µα(w)(N−q)

b−s′,s′ ·N)/
((

n
w

)
2δ−n

)
. This bound differs slightly from the

second term in its denominator. However, as explained in Section 4.2, this does not make
a difference for usual instantiations of the SuKS.

6.4 Application to ISAP v2
Like in Section 5.2, we look at the SuKS instantiated with the Ascon-p-based ISAP v2
parameters (b, c, r, k) = (320, 256, 64, 128) with s = t = k to demonstrate the improvement
in the bound. Again, we stress that, even though we analyze the generic bound of Theorem 4
for specific parameter sets, the bound remains to hold only in the ideal permutation model
and for the specific type of bounded non-adaptive leakage.

Henk Berendsen and Bart Mennink 479

We use the same assumptions as in Section 5.2: we assume that the amount of leakage
is bounded by λ = 3, that G is strong and that min{δ, ε} = k. Furthermore, we again set
the number of balls in the multicollision limit function to 2(N − q), 2q ≤ 2129 to obtain
the same bound from Theorem 1 as given in (9). For convenience, we repeat that bound
below.

Advnalr-prf
F,L (A) ≤ 2N2

2256 + 5N

2113 + 80N

2189 + 5
2192 .

If we restrict our focus to Hamming weight leakage, the improved bound of Theorem 4 is
of the form

Advnalr-prf
F,LHamming

(A) ≤ 2N2

2256 + max
w

µ
α(w)(N−q)
b−s′,s′ ·N(

n
w

)
2121 + max

w

µ
α(w)q
t′,b−t′ ·N(

n
w

)
2185 . (19)

To further simplify the bound, we must specify the amount of bits n for which the adversary
learns the Hamming weight. We choose n = 7, which is the largest value n such that all
possible leakage values can be encoded in λ = 3 bits, and therefore the optimal value for
the adversary in this case.

Additionally, we must find for the second and third term separately the value w which
maximizes the term. We know that N−q, q ≤ 2128 and that α(w) = max

{
1,
⌈(

n
w

) e2(n+1)
2n

⌉}
.

We have extended the script of Mennink [Men23, Appendix A] such that it calculates the
value of µ

α(w)(N−q)
b−s′,s′ /

(
n
w

)
and µ

α(w)q
t′,b−t′/

(
n
w

)
for each w ∈ {0, . . . , n}. This script is given in

Appendix A. Using this script, we find that the value w = 0 maximizes both terms. For
w = 0, the bound is of the simplified form

Advnalr-prf
F,LHamming

(A) ≤ 2N2

2256 + 5N

2121 + 45N

2185 . (20)

We can observe that this bound also improves over (9) (repeated above), noting that the
second term is dominant and the third term is inferior to the other terms. A possible
explanation for this perhaps surprising behavior may be that the bounding of α(w) is a
bit loose for the general case, but for a typical use case as the SuKS, this does not appear
to be a problem.

6.5 Proof of Theorem 3
The proof is inspired by that of Daemen et al. [DMV17, Section 6.6], but the analysis is
significantly different due to the fact that Hamming weight leakage is non-uniform.

Consider two ball-and-bins experiments:

(1) We throw α(w)q balls into 2r′ bins according to a uniform distribution with replace-
ment.

(2) We throw q balls into 2r′ bins according to the distribution DHW-nr(w) without
replacement.

Note that the maximum number of balls in any single bin in Experiment 1 and Experiment
2 are bounded by µ

α(w)q
r′,c′ , and µ

q,DHW-nr(w)
r′,c′ respectively. Let Xexp1

i and Xexp2
i denote the

number of balls in bin i in the respective experiments, for 1 ≤ i ≤ 2r′ . Let µexp1 and µexp2

denote the highest number of balls in any single bin in the respective experiments.
To prove Theorem 3, we will apply the same strategy as used by Daemen et al. [DMV17,

Section 6.6]. First, we prove that µ
α(w)q
r′,c′ has some threshold t as lower bound. We can

assume that t > 0, because it can only be the case that µ
α(w)q
r′,c′ = 0 if q = 0, and then

480 Tightening Leakage Resilience of the Suffix Keyed Sponge

Theorem 3 trivially holds. By the pigeonhole principle, there must be a bin in Experiment
1 containing at least

⌈
α(w)q

2r′

⌉
balls. Hence, for t =

⌈
α(w)q

2r′

⌉
, µ

α(w)q
r′,c′ ≥ t holds.

Then, we will prove that, for all y ≥ t,

Pr
(
µexp1 > y

)
≥ Pr

(
µexp2 > y

)
. (21)

This is a useful result because of the following lemma:

Lemma 1. If Pr
(
µexp1 > y

)
≥ Pr

(
µexp2 > y

)
for all y ≥ t, then µ

q,DHW-nr(w)
r′,c′ ≤ µ

α(w)q
r′,c′ .

Proof.

(1) Assume that Pr
(
µexp1 > y

)
≥ Pr

(
µexp2 > y

)
for all y ≥ t.

(2) From (1) it follows that Pr
(
µexp1 > y

)
≥ Pr

(
µexp2 > y

)
holds for y = µ

α(w)q
r′,c′ .

(3) By definition (see Section 2.5), µ
α(w)q
r′,c′ is the smallest number x such that

Pr
(
µexp1 > x

)
< x

2c′ .

(4) From (2) and (3) it follows that Pr
(
µexp1 > x

)
≥ Pr

(
µexp2 > x

)
.

(5) From (3) and (4) it follows that Pr
(
µexp2 > x

)
< x

2c′ .

(6) By definition (see Section 6.1.2), µ
q,DHW-nr(w)
r′,c′ is the smallest number x′ such that

Pr
(
µexp2 > x′) < x′

2c′ .

(7) From (5) and (6) it follows that x′ ≤ x.

(8) From (3), (6) and (7) we can conclude that µ
q,DHW-nr(w)
r′,c′ ≤ µ

α(w)q
r′,c′ .

Because of Lemma 1, Theorem 3 follows if we prove that (21) holds for all y ≥ t. This in
turn can be proven by showing that

Pr
(

Xexp1
i > y

)
≥ Pr

(
Xexp2

i > y
)

(22)

holds for all y ≥ t and for all bins i; if each bin i in Experiment 1 is at least as likely to
contain more than y balls as each bin i in Experiment 2, then certainly the single bin with
the most balls in Experiment 1 is at least as likely to contain more than y balls as the
single bin with the most balls in Experiment 2.

In turn, (22) can be proven by demonstrating that

Pr
(

Xexp1
i = y

)
≥ Pr

(
Xexp2

i = y
)

(23)

holds for all y ≥ t and for all bins i; if each bin i in Experiment 1 is at least as likely to
contain y balls as each bin i in Experiment 2, for all y ≥ t, then each bin i in Experiment
2 is also at least as likely to contain more than y balls as each bin in Experiment 2.

Therefore, to show that Theorem 3 holds, it remains to be proven that (23) holds for
all y ≥ t and for all bins i. We first determine these two probabilities Pr

(
Xexp1

i = y
)

and

Pr
(

Xexp2
i = y

)
.

Henk Berendsen and Bart Mennink 481

6.5.1 Probability in Experiment 1

The probability of a single ball falling in bin i is 2−r′ , and y balls need to fall in this bin.
The probability of a single ball ending up in any bin except bin i is 1 − 2−r′ , and this
needs to occur for the remaining α(w)q− y balls. Finally, there are

(
α(w)q

y

)
ways to choose

the y balls which fall in bin i.
We thus have

Pr
(

Xexp1
i = y

)
=
(

α(w)q
y

)
(2−r′

)y(1− 2−r′
)α(w)q−y . (24)

6.5.2 Probability in Experiment 2

Since there are (n + 1) · 2r bins in total, there are 2r bins per Hamming weight value
0, . . . , n. To model this, we define the Hamming weight value of bin i as j := i mod (n + 1).

For each bin i, there are
(

n
j

)
n-bit values with the correct Hamming weight, the r

left-most bits are fixed to one value and there are 2b−r−n possible values for the remaining
b− r − n bits. Therefore, there are a total of

(
n
j

)
2b−r−n =

(
n
j

)
2c−n balls which belong to

bin i and 2b −
(

n
j

)
2c−n balls which do not belong to bin i.

By definition of DHW-nr(w) (see Section 6.1.2) and because y ≥ t > 0, we know that
Pr
(

Xexp2
i = y

)
= 0 for all i such that j ̸= w. For the remaining bins, we make a case

distinction on y:

(1) We consider the case that y is greater than
(

n
j

)
2c−n, i.e., the amount of balls that fit

in bin i. In this case, the probability of bin i containing y balls is zero.

(2) We consider the case that y is less than or equal to the amount of balls that fit in
bin i. In this case, y balls need to fall in bin i and q − y in the other bins, and there
are

(
q
y

)
ways to choose the y balls which fall in bin i.

Because the balls are sampled without replacement, the probabilities change with each
ball thrown, since the total amount of balls to sample from and the amount of space left
in one of the bins decrease with each ball thrown. The falling factorial is used in (25) to
account for this. We thus have

Pr
(

Xexp2
i = y

)
=

0 if j ̸= w or y >
(

n
j

)
2c−n ,(

q
y

) ((n
j)2c−n)

y
(2b−(n

j)2c−n)
q−y

(2b)q
if j = w and y ≤

(
n
j

)
2c−n .

(25)

6.5.3 Proving the Inequality (23)

Now, we will show that (23) holds, i.e., that Pr
(

Xexp1
i = y

)
≥ Pr

(
Xexp2

i = y
)

for all
bins i. Note that this inequality would trivially hold in the first case of (25); in this case
Pr
(

Xexp2
i = y

)
is equal to 0, while Pr

(
Xexp1

i = y
)

is always at least 0. Therefore, it
only remains to prove the inequality in the second case of (25). By substituting the values
of (24) and (25) into (23), we get the following inequality:

(
α(w)q

y

)
(2−r′

)y(1− 2−r′
)α(w)q−y

?
≥
(

q

y

)((n
j

)
2c−n

)
y

(
2b −

(
n
j

)
2c−n

)
q−y

(2b)q

. (26)

We prove that (26) holds by using the assumptions in Theorem 3, namely 1 ≤ n ≤ c and
r ≥ 1. In the remainder of the proof, we will use the following three lemmas:

482 Tightening Leakage Resilience of the Suffix Keyed Sponge

Lemma 2. Let A, B, n ∈ N. Assume that A ≥ B ≥ n. Then, it holds that

(A)n

(B)n

≥
(

A

B

)n

.

Lemma 3.
(
1− 1

x

)x ≥ e− x
x−1 for all x ∈ R+ \ {1}.

Lemma 4. e
2x

2x−1 ≤ e2 on the interval [1,∞).

The proofs of these lemmas are given in Appendix B.

6.5.4 Proving the Inequality (26)

Using that
(

n
r

)
= n!

r!(n−r)! = (n)r

r! , we get:

(α(w)q)y

y! (2−r′
)y(1− 2−r′

)α(w)q−y
?
≥

(q)y

y!

((
n
j

)
2c−n

)
y

(
2b −

(
n
j

)
2c−n

)
q−y

(2b)q

,

(α(w)q)y

(q)y

(2−r′
)y(1− 2−r′

)α(w)q−y
?
≥

((
n
j

)
2c−n

)
y

(
2b −

(
n
j

)
2c−n

)
q−y

(2b)q

.

Using that b = r′ + c′ =⇒ −r′ = c′ − b, we get:

(α(w)q)y

(q)y

(2c′−b)y(1 − 2c′−b)α(w)q−y
?
≥

((
n
j

)
2c−n

)
y

(
2b −

(
n
j

)
2c−n

)
q−y

(2b)q

,

(α(w)q)y

(q)y

(
2c′

2b

)y (
1 − 2c′

2b

)α(w)q−y
?
≥

((
n
j

)
2c−n

)
y

(
2b −

(
n
j

)
2c−n

)
q−y

(2b)y (2b − y)q−y

,

(α(w)q)y

(q)y

(
2c′

2b

)y (
2b

2b
− 2c′

2b

)α(w)q−y
?
≥

((
n
j

)
2c−n

)
y

(2b)y

(
2b −

(
n
j

)
2c−n

)
q−y

(2b − y)q−y

,

(α(w)q)y

(q)y

(
2c′

2b

)y (
2b − 2c′

2b

)α(w)q−y
?
≥

((
n
j

)
2c−n

)
y

(2b)y

(
2b −

(
n
j

)
2c−n

)
q−y

(2b − y)q−y

,

(α(w)q)y

(q)y

(
2c′

2b

)y (
2b − 2c′

2b

)α(w)q (
2b

2b − 2c′

)y ?
≥

((
n
j

)
2c−n

)
y

(2b)y

(
2b −

(
n
j

)
2c−n

)
q−y

(2b − y)q−y

,

(α(w)q)y

(q)y

(
2c′

2b − 2c′

)y
(
2b
)

y((
n
j

)
2c−n

)
y

(
2b − y

)
q−y(

2b −
(

n
j

)
2c−n

)
q−y

?
≥
(

2b

2b − 2c′

)α(w)q

.

The following properties hold:

• α(w)q ≥ q because α(w) = max
{

1,
⌈(

n
w

) e2(n+1)
2n

⌉}
.

• 2b ≥
(

n
j

)
2c−n since 2b > 2c = 2n · 2c−n =

(∑n
k=0

(
n
k

))
· 2c−n >

(
n
j

)
2c−n,

• 2b − y ≥ 2b −
(

n
j

)
2c−n because y ≤

(
n
j

)
2c−n.

Using these properties and the fact that (A)x

(B)x
≥
(

A
B

)x if A ≥ B ≥ x (see Lemma 2), we
get:

(
α(w)q

q

)y
(

2c′

2b − 2c′

)y
(

2b(
n
j

)
2c−n

)y(
2b − y

2b −
(

n
j

)
2c−n

)q−y

?
≥
(

2b

2b − 2c′

)α(w)q

,

Henk Berendsen and Bart Mennink 483

α(w)y

(
2c′

2b − 2c′

)y
(

2b(
n
j

)
2c−n

)y(
2b −

(
n
j

)
2c−n

2b − y

)y

?
≥
(

2b

2b − 2c′

)α(w)q

(
2b −

(
n
j

)
2c−n

2b − y

)q

,(
α(w)

2c′

2b − 2c′
2b(

n
j

)
2c−n

2b −
(

n
j

)
2c−n

2b − y

)y

?
≥
(

2b

2b − 2c′

)α(w)q

(
2b −

(
n
j

)
2c−n

2b − y

)q

.

Using that b = r′ + c′ and b = r + c, we get:(
α(w) 1

2r′ − 1
1(

n
j

)
2−r−n

1−
(

n
j

)
2−r−n

1− y
2b

)y
?
≥
(

1
1− 2−r′

)α(w)q
(

1−
(

n
j

)
2−r−n

1− y
2b

)q

,(
α(w)

2r′ − 1
1(

n
j

)
2−(r+n)

1−
(

n
j

)
2−r−n

1− y
2b

)y
?
≥
(

1α(w)

(1− 2−r′)α(w)

)q
(

1−
(

n
j

)
2−r−n

1− y
2b

)q

,(
α(w)

2r′ − 1
2r+n(

n
j

) 1−
(

n
j

)
2−r−n

1− y
2b

)y
?
≥

(
1−

(
n
j

)
2−r−n

(1− 2−r′)α(w)
(
1− y

2b

))q

. (27)

To further simplify the inequality (27), we first need to show that the base of the left hand
side is at least 1:

α(w)
2r′ − 1

2r+n(
n
j

) 1−
(

n
j

)
2−r−n

1− y
2b

?
≥ 1 . (28)

Recall that y is the amount of balls in bin i, so y ≥ 0. We know that the left hand side of
(28) is minimal when y = 0. Therefore, if we can prove that (28) holds for y = 0, we know
that it must hold for every possible value of y. We substitute y = 0 in (28):

α(w)
2r′ − 1

2r+n(
n
j

) 1−
(

n
j

)
2−r−n

1− 0
2b

?
≥ 1 ,

α(w)
2r′ − 1

2r+n(
n
j

) (1−
(

n

j

)
2−r−n

)
?
≥ 1 ,

α(w)
2r′ − 1

(
2r+n(

n
j

) − (n
j

)(
n
j

)) ?
≥ 1 ,

α(w)
2r′ − 1

2r+n −
(

n
j

)(
n
j

) ?
≥ 1 ,

α(w)
2r′ − 1

?
≥

(
n
j

)
2r+n −

(
n
j

) ,

α(w)
?
≥

2r′(n
j

)
−
(

n
j

)
2r+n −

(
n
j

) ,

α(w)
?
≥

2r+log(n+1)(n
j

)
−
(

n
j

)
2r+n −

(
n
j

) ,

α(w)
?
≥

2r(n + 1)
(

n
j

)
−
(

n
j

)
2r+n −

(
n
j

) .

Therefore, the base of the left hand side of (27) is at least 1 under the condition that:

α(w) ≥
2r(n + 1)

(
n
j

)
−
(

n
j

)
2r+n −

(
n
j

) . (29)

484 Tightening Leakage Resilience of the Suffix Keyed Sponge

We will show that this condition holds later in the proof.
Now, it suffices to show that (27) holds for y = t =

⌈
α(w)q

2r′

⌉
as left hand side exponent

instead of for all y ≥ t. This is because the left hand side of (27) is minimal for y = t if
the base of the left hand side is at least 1, and we have just shown that this is the case if
α(w) ≥ 2r(n+1)(n

j)−(n
j)

2r+n−(n
j)

.
This final demonstration of (27) is quite elaborate, and has been deferred to Appendix C

to improve the readability of this section. The result of this demonstration is that the
following condition on α(w) must be satisfied for (27) to hold:

α(w) ≥
(

n

j

)
e2(n + 1)

2n
. (30)

6.5.5 Proving Conditions (29) and (30)

Now, finally, to show that (26) holds, it remains to be proven that α(w), defined to be
α(w) = max

{
1,
⌈(

n
w

) e2(n+1)
2n

⌉}
in the statement of Theorem 3, satisfies the two conditions

given in (29) and (30). We will prove a slightly stronger claim, namely that the following
holds:

2r(n + 1)
(

n
j

)
−
(

n
j

)
2r+n −

(
n
j

) ⋆
≤
(

n

j

)
e2(n + 1)

2n

⋆⋆
≤ max

{
1,

⌈(
n

w

)
e2(n + 1)

2n

⌉}
.

Inequality
⋆

≤. The inequality can be simplified as follows:

2r(n + 1)
(

n
j

)
−
(

n
j

)
2r+n −

(
n
j

) ?
≤
(

n

j

)
e2(n + 1)

2n
,

2r(n + 1)− 1
2r+n −

(
n
j

) ?
≤ e2(n + 1)

2n
,

2r+n(n + 1)− 2n
?
≤ 2r+ne2(n + 1)−

(
n

j

)
e2(n + 1) ,

−2n
?
≤ 2r+ne2(n + 1)−

(
n

j

)
e2(n + 1)− 2r+n(n + 1) ,

2n
?
≥
(

n

j

)
e2(n + 1) + 2r+n(n + 1)− 2r+ne2(n + 1) ,

2n
?
≥ (n + 1)

((
n

j

)
e2 + 2r+n − 2r+ne2

)
,

2n

n + 1
?
≥
(

n

j

)
e2 + 2r+n(1− e2) . (31)

Recall the assumptions r ≥ 1 and n ≥ 1. We know that the term 2r+n(1− e2) is negative
since 2r+n is positive and 1− e2 is negative. Therefore, the right-hand side of the above
inequality (31) is largest when r = 1. It follows that we can substitute r = 1 in (31),
because if it holds for r = 1, then it must certainly hold for all r ≥ 1:

2n

n + 1
?
≥
(

n

j

)
e2 + 21+n(1− e2) ,

2n

n + 1
?
≥
(

n

j

)
e2 + 2n(2(1− e2)) ,

Henk Berendsen and Bart Mennink 485

2n

n + 1
?
≥
(

n

j

)
e2 + 2n(2− 2e2) .

We use that
(

n
j

)
<
∑n

k=0
(

n
k

)
= 2n to replace

(
n
j

)
with 2n:

2n

n + 1
?
≥ 2ne2 + 2n(2− 2e2) ,

2n

n + 1
?
≥ 2n(2− e2) .

Because n ≥ 1, the left hand side of this inequality is positive. Since 2 ≤ e2, the right-hand
side of this inequality is negative. Therefore, the inequality holds.

Inequality
⋆⋆

≤. Now, it only remains to be shown that the second inequality on α(w) is
satisfied. Hence, we must show that

(
n
j

) e2(n+1)
2n is less than or equal to α(w). Using that

j = w, we get: (
n

w

)
e2(n + 1)

2n

?
≤ max

{
1,

⌈(
n

w

)
e2(n + 1)

2n

⌉}
,(

n

w

)
e2(n + 1)

2n

?
≤ max

{
1,

(
n

w

)
e2(n + 1)

2n

}
.

Because the left-hand side of this inequality is one of the operands of the max operator on
the right-hand side, this inequality trivially holds.

7 Conclusion
To the best of our knowledge, there had not been any earlier demonstration of tightness
of a leakage resilience analysis. Our result tightens the leakage resilience bound for the
SuKS under non-adaptive fixed position leakage and under non-adaptive Hamming weight
leakage in the ideal permutation model. For the case of fixed position leakage, it would
be interesting (though non-trivial) to investigate the power that an adversary has if it
can adapt the leakage positions in-between queries. This would further close the gap
between our theoretical analysis and typical probing attack models [ISW03,DDF14,DDF19].
Likewise, despite its high level of technicality, the eventual tight security analysis of the
SuKS under Hamming weight leakage is still reasonably simplistic in the sense that we only
considered leakage for one part of the state. It may be possible, though highly non-trivial,
to extend the analysis to a setting where the Hamming weight of multiple parts of the state
leak, or where the adversary can change the positions of these parts in-between queries.

We remark that, despite our restricted focus to the SuKS, the analysis has many
more applications. First off, the SuKS is used in the NIST lightweight cryptography
competition [NIS19] finalist authenticated encryption scheme ISAP v2 [DEM+17,DEM+20,
DEM+21]. More broadly seen, the analysis of earlier analyses of sponge-/duplex-based
cryptographic schemes [DMV17,DM19a,Men23] highly depends on the multicollision limit
function, and our findings in case of Hamming weight leakage, and in particular Theorem 3,
directly apply to this setting.

Acknowledgments
We want to thank Vahid Jahandideh and Damian Vizár for their valuable help and feedback.
Bart Mennink is supported by the Netherlands Organisation for Scientific Research (NWO)
under grant VI.Vidi.203.099.

486 Tightening Leakage Resilience of the Suffix Keyed Sponge

References
[BBD+13] Sonia Belaïd, Luk Bettale, Emmanuelle Dottax, Laurie Genelle, and Franck

Rondepierre. Differential Power Analysis of HMAC SHA-2 in the Hamming
Weight Model. In Pierangela Samarati, editor, SECRYPT 2013 - Proceedings
of the 10th International Conference on Security and Cryptography, Reykjavík,
Iceland, 29-31 July, 2013, pages 230–241. SciTePress, 2013.

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. Ecrypt Hash Workshop 2007, May 2007.

[BDPV11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryp-
tographic sponge functions, January 2011.

[BFG14] Sonia Belaïd, Pierre-Alain Fouque, and Benoît Gérard. Side-Channel Analysis
of Multiplications in GF(2128) - Application to AES-GCM. In Palash Sarkar
and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 -
20th International Conference on the Theory and Application of Cryptology
and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014,
Proceedings, Part II, volume 8874 of Lecture Notes in Computer Science, pages
306–325. Springer, 2014.

[BKP+18] Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, and
François-Xavier Standaert. Ciphertext integrity with misuse and leakage:
Definition and efficient constructions with symmetric primitives. In Jong
Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo
Kim, editors, Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, AsiaCCS 2018, Incheon, Republic of Korea, June
04-08, 2018, pages 37–50. ACM, 2018.

[BPPS17] Francesco Berti, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
On leakage-resilient authenticated encryption with decryption leakages. IACR
Trans. Symmetric Cryptol., 2017(3):271–293, 2017.

[CJN20] Bishwajit Chakraborty, Ashwin Jha, and Mridul Nandi. On the Security
of Sponge-type Authenticated Encryption Modes. IACR Trans. Symmetric
Cryptol., 2020(2):93–119, 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

[CLL19] Wonseok Choi, ByeongHak Lee, and Jooyoung Lee. Indifferentiability of
Truncated Random Permutations. In Steven D. Galbraith and Shiho Moriai,
editors, Advances in Cryptology - ASIACRYPT 2019 - 25th International
Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, volume 11921
of Lecture Notes in Computer Science, pages 175–195. Springer, 2019.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 -

Henk Berendsen and Bart Mennink 487

33rd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 423–440. Springer,
2014.

[DDF19] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage. J. Cryptol., 32(1):151–177,
2019.

[DDNT23] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Tight
Multi-User Security Bound of DbHtS. IACR Trans. Symmetric Cryptol.,
2023(1):192–223, 2023.

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and
Thomas Unterluggauer. ISAP - towards side-channel secure authenticated
encryption. IACR Trans. Symmetric Cryptol., 2017(1):80–105, 2017.

[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart
Mennink, Robert Primas, and Thomas Unterluggauer. Isap v2.0. IACR Trans.
Symmetric Cryptol., 2020(S1):390–416, 2020.

[DEM+21] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, Bart
Mennink, Robert Primas, and Thomas Unterluggauer. ISAP v2. Final Round
Submission to NIST Lightweight Cryptography, 2021.

[DM19a] Christoph Dobraunig and Bart Mennink. Leakage Resilience of the Duplex
Construction. In Steven D. Galbraith and Shiho Moriai, editors, Advances
in Cryptology - ASIACRYPT 2019 - 25th International Conference on the
Theory and Application of Cryptology and Information Security, Kobe, Japan,
December 8-12, 2019, Proceedings, Part III, volume 11923 of Lecture Notes in
Computer Science, pages 225–255. Springer, 2019.

[DM19b] Christoph Dobraunig and Bart Mennink. Security of the Suffix Keyed Sponge.
IACR Trans. Symmetric Cryptol., 2019(4):223–248, 2019.

[DM20] Christoph Dobraunig and Bart Mennink. Tightness of the Suffix Keyed Sponge
Bound. IACR Trans. Symmetric Cryptol., 2020(4):195–212, 2020.

[DMMS21] Sébastien Duval, Pierrick Méaux, Charles Momin, and François-Xavier Stan-
daert. Exploring Crypto-Physical Dark Matter and Learning with Physical
Rounding Towards Secure and Efficient Fresh Re-Keying. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2021(1):373–401, 2021.

[DMP22] Christoph Dobraunig, Bart Mennink, and Robert Primas. Leakage and Tamper
Resilient Permutation-Based Cryptography. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022, pages 859–873. ACM, 2022.

[DMV17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-State Keyed Duplex
with Built-In Multi-user Support. In Tsuyoshi Takagi and Thomas Peyrin,
editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume
10625 of Lecture Notes in Computer Science, pages 606–637. Springer, 2017.

488 Tightening Leakage Resilience of the Suffix Keyed Sponge

[FPS12] Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical Leakage-
Resilient Symmetric Cryptography. In Emmanuel Prouff and Patrick Schau-
mont, editors, Cryptographic Hardware and Embedded Systems - CHES 2012 -
14th International Workshop, Leuven, Belgium, September 9-12, 2012. Pro-
ceedings, volume 7428 of Lecture Notes in Computer Science, pages 213–232.
Springer, 2012.

[GP99] Louis Goubin and Jacques Patarin. DES and Differential Power Analysis
(The “Duplication” Method). In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, First International Workshop,
CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717
of Lecture Notes in Computer Science, pages 158–172. Springer, 1999.

[GPPS19] Chun Guo, Olivier Pereira, Thomas Peters, and François-Xavier Standaert.
Towards lightweight side-channel security and the leakage-resilience of the
duplex sponge. IACR Cryptol. ePrint Arch., page 193, 2019.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In Dan Boneh, editor, Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2 Security
in Sponge-Based Authenticated Encryption Modes. In Palash Sarkar and
Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.
Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages
85–104. Springer, 2014.

[JLM+19] Philipp Jovanovic, Atul Luykx, Bart Mennink, Yu Sasaki, and Kan Yasuda.
Beyond Conventional Security in Sponge-Based Authenticated Encryption
Modes. J. Cryptol., 32(3):895–940, 2019.

[JN20] Ashwin Jha and Mridul Nandi. Tight Security of Cascaded LRW2. J. Cryptol.,
33(3):1272–1317, 2020.

[KA98] Markus G. Kuhn and Ross J. Anderson. Soft Tempest: Hidden Data Trans-
mission Using Electromagnetic Emanations. In David Aucsmith, editor, Infor-
mation Hiding, Second International Workshop, Portland, Oregon, USA, April
14-17, 1998, Proceedings, volume 1525 of Lecture Notes in Computer Science,
pages 124–142. Springer, 1998.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

Henk Berendsen and Bart Mennink 489

[KR19] Yael Tauman Kalai and Leonid Reyzin. A Survey of Leakage-Resilient
Cryptography. Cryptology ePrint Archive, Paper 2019/302, 2019. https:
//eprint.iacr.org/2019/302.

[LMP17] Atul Luykx, Bart Mennink, and Kenneth G. Paterson. Analyzing Multi-
key Security Degradation. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference
on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part II, volume 10625 of
Lecture Notes in Computer Science, pages 575–605. Springer, 2017.

[LNS18] Gaëtan Leurent, Mridul Nandi, and Ferdinand Sibleyras. Generic Attacks
Against Beyond-Birthday-Bound MACs. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part I, volume 10991 of Lecture Notes in Computer Science,
pages 306–336. Springer, 2018.

[May00] Rita Mayer-Sommer. Smartly Analyzing the Simplicity and the Power of
Simple Power Analysis on Smartcards. In Çetin Kaya Koç and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2000,
Second International Workshop, Worcester, MA, USA, August 17-18, 2000,
Proceedings, volume 1965 of Lecture Notes in Computer Science, pages 78–92.
Springer, 2000.

[Men23] Bart Mennink. Understanding the Duplex and Its Security. IACR Trans.
Symmetric Cryptol., 2023(2):1–46, 2023.

[Mes00] Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA
Resistant Software. In Çetin Kaya Koç and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2000, Second International
Workshop, Worcester, MA, USA, August 17-18, 2000, Proceedings, volume
1965 of Lecture Notes in Computer Science, pages 238–251. Springer, 2000.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007.

[NIS19] NIST. Lightweight Cryptography, February 2019. https://csrc.nist.gov/
Projects/Lightweight-Cryptography.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold Imple-
mentations Against Side-Channel Attacks and Glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, Information and Communications Security,
8th International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7,
2006, Proceedings, volume 4307 of Lecture Notes in Computer Science, pages
529–545. Springer, 2006.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Im-
plementation of Nonlinear Functions in the Presence of Glitches. J. Cryptol.,
24(2):292–321, 2011.

[PSV15] Olivier Pereira, François-Xavier Standaert, and Srinivas Vivek. Leakage-
Resilient Authentication and Encryption from Symmetric Cryptographic Prim-
itives. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, October 12-16, 2015, pages 96–108. ACM, 2015.

https://eprint.iacr.org/2019/302
https://eprint.iacr.org/2019/302
https://csrc.nist.gov/Projects/Lightweight-Cryptography
https://csrc.nist.gov/Projects/Lightweight-Cryptography

490 Tightening Leakage Resilience of the Suffix Keyed Sponge

A Python Script for Maximizing (19)

import sys
import math

Function from script of Mennink [Men23, Appendix A]
def FindMinX(b,L):

Stores the minimum
MinX = sys.maxsize;

Finds the minimum
x = 0;
while MinX == sys.maxsize:

x = x+1;
if x > 2**L:

if (b*math.log(2)-2**(L) + x*math.log(2**(L))
<= math.log(x-2**(L)) + math.log(math.factorial(x))):
MinX = x;

Returns the minimum
return MinX;

def AlphaW(n, w):
return max(1, math.ceil(math.comb(n, w) * (math.e**2 * (n+1)) / 2**n))

def FindMaxW(b, r, n):
Stores the maximum and corresponding value of w
max = 0
MaxW = 0

Finds the maximum and corresponding value of w
for w in range(0, n+1):

M = AlphaW(n, w) * 2**128
L = math.log(M / 2**r, 2)
if FindMinX(b, L) / math.comb(n, w) > max:

max = FindMinX(b, L) / math.comb(n, w)
MaxW = w

Returns maximum and corresponding value for w
return max, MaxW

if __name__ == "__main__":
n = 7
b = 320
s = t = 128
sp = s - math.log(n+1, 2)
tp = t + math.log(n+1, 2)
print("Second term: w={1} gives maximum value {0}".format(*FindMaxW(b, b-sp, n)))
print("Third term: w={1} gives maximum value {0}".format(*FindMaxW(b, tp, n)))

Henk Berendsen and Bart Mennink 491

B Proofs of Lemmas 2, 3, and 4
B.1 Proof of Lemma 2
In order to prove Lemma 2, we need the following lemma:
Lemma 5. Let A, B, n ∈ N. Assume that A ≥ B > n. Then, it holds that

A− n

B − n
≥ A

B
.

Proof. The inequality can be simplified as follows:
A− n

B − n
≥ A

B
,

AB − nB ≥ AB − nA ,

−nB ≥ −nA ,

B ≤ A .

Because we assumed that A ≥ B, the above inequality holds.

With Lemma 5 proven, we restate and prove Lemma 2:
Lemma 2. Let A, B, n ∈ N. Assume that A ≥ B ≥ n. Then, it holds that

(A)n

(B)n

≥
(

A

B

)n

.

Proof. We prove by induction on n that Lemma 2 holds for all n ∈ N with n ≤ B:

Base case.
(A)0
(B)0

≥
(

A
B

)0 because (A)0
(B)0

= 1
1 = 1 =

(
A
B

)0.

Inductive case.
For all k ∈ N such that k + 1 ≤ B, we have to prove that:

(A)k+1
(B)k+1

≥
(

A

B

)k+1
if A ≥ B .

We take as induction hypothesis (IH):

(A)k

(B)k

≥
(

A

B

)k

if A ≥ B .

Now, we can prove the inductive case as follows:
(A)k+1
(B)k+1

= A(A− 1) · · · (A− k)
B(B − 1) · · · (B − k)

= (A)k

(B)k

· A− k

B − k

IH
≥
(

A

B

)k

· A− k

B − k

Lemma 5
≥

(
A

B

)k

· A

B

=
(

A

B

)k+1
.

Therefore, we have proven by mathematical induction that Lemma 2 holds.

492 Tightening Leakage Resilience of the Suffix Keyed Sponge

B.2 Proof of Lemma 3
In order to prove Lemma 3, we need the following lemma:

Lemma 6. 1 + x ≤ ex for all x ∈ R.

Proof. Let f(x) = ex − (1 + x). If f(x) ≥ 0 for all x ∈ R, then Lemma 6 holds. First, we
find the first and second derivative of f(x):

f ′(x) = d
dx

[ex − (1 + x)] = d
dx

[ex]− d
dx

[1 + x] = ex − 1 ,

f ′′(x) = d
dx

[ex − 1] = d
dx

[ex]− d
dx

[1] = ex .

Then, we find the critical points of f(x), i.e., the values x where f ′(x) = 0. Since
f ′(x) = ex − 1, we know that f ′(x) = 0 if and only if x = 0. Using the second derivative
test, we find that f has a local minimum at x = 0 because f ′′(0) = e0 = 1 > 0. Since
x = 0 is the only critical point of f , it follows that x = 0 is the global minimum of f .

Since f(0) ≥ 0 and 0 is the value for x such that f(x) is minimal, it certainly holds
that f(x) ≥ 0 for all x ∈ R.

With Lemma 6 proven, we restate and prove Lemma 3:

Lemma 3.
(
1− 1

x

)x ≥ e− x
x−1 for all x ∈ R+ \ {1}.

Proof. We first prove that 1− 1
x ≥ e− 1

x−1 for all x ∈ R+ \ {1}. Let y = 1
x . We have for all

y ∈ R+ \ {1} that:

1− y = 1
1

1−y

= 1
1−y+y

1−y

= 1
1−y
1−y + y

1−y

= 1
1 + y

1−y

. (32)

Let z = y
1−y . Using that 1 + z ≤ ez for all z ∈ R (see Lemma 6), we get:

1
1 + y

1−y

= 1
1 + z

≥ 1
ez

= e−z = e− y
1−y . (33)

It follows from (32) and (33) that:

1− y ≥ e− y
1−y . (34)

Substituting 1
x for y in (34) gives:

1− 1
x
≥ e

−
1
x

1− 1
x = e

− 1
x(1− 1

x) = e− 1
x−1 . (35)

With (35), we have proven that 1− 1
x ≥ e− 1

x−1 holds for all x ∈ R+ \ {1}. Now, raising
both sides to the power of x gives:(

1− 1
x

)x

≥
(

e− 1
x−1

)x

= e− x
x−1 . (36)

It follows from (36) that Lemma 3 is proven.

Henk Berendsen and Bart Mennink 493

B.3 Proof of Lemma 4
We restate Lemma 4:

Lemma 4. e
2x

2x−1 ≤ e2 on the interval [1,∞).

Proof. Let f(x) = 2x

2x−1 . We show that the inequality holds by proving that f(x) ≤ 2 on
the interval [1,∞). We first show that f(x) is decreasing for all x ∈ [1,∞), which is the
case if the derivative of f(x) is less than 0 for all x ∈ [1,∞).

We start by finding the derivative of f(x). Using the quotient rule and that d
dx [2x] =

2x ln(2), we get:

f ′(x) =
(2x − 1) d

dx [2x]− 2x d
dx [2x − 1]

(2x − 1)2

=
(2x − 1) d

dx [2x]− 2x
(d

dx [2x]− d
dx [1]

)
(2x − 1)2

= (2x − 1)(2x ln(2))− 2x(2x ln(2))
(2x − 1)2

= (2x − 1− 2x)(2x ln(2))
(2x − 1)2

= − 2x ln(2)
(2x − 1)2 .

Because both 2x ln(2) and (2x − 1)2 are positive on the interval [1,∞), it follows that for
all x ∈ [1,∞), f ′(x) is negative and f(x) is decreasing. Therefore, on the interval [1,∞),
f(x) is maximal for x = 1. Thus, to prove that f(x) ≤ 2, it suffices to show that f(1) ≤ 2,
which holds because f(1) = 21

21−1 = 2. Therefore, we have proven that Lemma 4 holds.

C Proving the Inequality (27)

We show in detail that (27) holds for y =
⌈

α(w)q

2r′

⌉
as left-hand side exponent. In more

detail, we will show that for this value:(
α(w)

2r′ − 1
2r+n(

n
j

) 1−
(

n
j

)
2−r−n

1− y
2b

)⌈α(w)q

2r′

⌉
≥

(
1−

(
n
j

)
2−r−n

(1− 2−r′)α(w)
(
1− y

2b

))q

.

Note that the derivation holds under the condition that α(w) is greater than or equal to(
n
j

) e2(n+1)
2n . This condition is taken into account in the rest of the proof of Theorem 3.

494 Tightening Leakage Resilience of the Suffix Keyed Sponge

(α
(w

)
2r

′
−

1
2r

+
n (n j

)1
−
(n j

) 2−
r

−
n

1
−

y 2b

)⌈ α
(w

)q
2r

′

⌉ ? ≥

(
1
−
(n j

) 2−
r

−
n

(1
−

2−
r

′)α
(w

)
(1
−

y 2b
)) q ,

(α
(w

)
2r

′
−

1
2r

+
n (n j

)1
−
(n j

) 2−
r

−
n

1
−

y 2b

)α(w
)q

2r
′

? ≥

(
1
−
(n j

) 2−
r

−
n

(1
−

2−
r

′)α
(w

)
(1
−

y 2b
)) q ,

 (α
(w

)
2r

′
−

1
2r

+
n (n j

)1
−
(n j

) 2−
r

−
n

1
−

y 2b

)α(w
)q

2r
′
 2r

′

α
(w

)q

? ≥

((
1
−
(n j

) 2−
r

−
n

(1
−

2−
r

′)α
(w

)
(1
−

y 2b
)) q)

2r
′

α
(w

)q

,

α
(w

)
2r

′
−

1
2r

+
n (n j

)1
−
(n j

) 2−
r

−
n

1
−

y 2b

? ≥

(
1
−
(n j

) 2−
r

−
n

(1
−

2−
r

′)α
(w

)
(1
−

y 2b
))2r′ α

(w
)

,

lo
g(α

(w
)

2r
′
−

1
2r

+
n (n j

)1
−
(n j

) 2−
r

−
n

1
−

y 2b

) ? ≥
lo

g (
1
−
(n j

) 2−
r

−
n

(1
−

2−
r

′)α
(w

)
(1
−

y 2b
))2r′ α

(w
)

 ,
lo

g(α
(w

)
2r

′
−

1) +
lo

g(2r
+

n (n j

)) +
lo

g(1
−
(n j

) 2−
r

−
n

1
−

y 2b

) ? ≥
2r

′

α
(w

)lo
g(

1
−
(n j

) 2−
r

−
n

(1
−

2−
r

′)α
(w

)
(1
−

y 2b
)) ,

lo
g(α

(w
)

2r
′
−

1) +
lo

g(2r
+

n (n j

)) +
lo

g(1
−
(n j

) 2−
r

−
n

1
−

y 2b

) ? ≥
2r

′

α
(w

)lo
g(1

−
(n j

) 2−
r

−
n

) −
2r

′

α
(w

)lo
g((1

−
2−

r
′)α

(w
)
(1
−

y 2b
)) ,

lo
g(α

(w
)

2r
′
−

1) +
lo

g(2r
+

n (n j

)) +
lo

g(1
−
(n j

) 2−
r

−
n

1
−

y 2b

) ? ≥
2r

′

α
(w

)lo
g(1

−
(n j

) 2−
r

−
n

) −
2r

′
lo

g(1
−

2−
r

′) −
2r

′

α
(w

)lo
g(1
−

y 2b
) ,

lo
g(α

(w
)

2r
′
−

1) +
lo

g(2r
+

n (n j

)) +
2r

′
lo

g(1
−

2−
r

′) ? ≥
(2r

′

α
(w

)
−

1) lo
g(1

−
(n j

) 2−
r

−
n

) −
(2r

′

α
(w

)
−

1) lo
g(1
−

y 2b
) ,

Henk Berendsen and Bart Mennink 495

lo
g(α

(w
)

2r
′
−

1) +
lo

g(2r
+

n (n j

)) +
2r

′
lo

g(1
−

2−
r

′) ? ≥
(2r

′

α
(w

)
−

1) (lo
g(1

−
(n j

) 2−
r

−
n

) −
lo

g(1
−

y 2b
)) ,

lo
g(α

(w
)

2r
′
−

1) +
lo

g(2r
+

n (n j

)) +
2r

′
lo

g(1
−

2−
r

′) ? ≥
(2r

′

α
(w

)
−

1)(lo
g(1

−
(n j

) 2−
r

−
n

1
−

y 2b

))
.

W
e

kn
ow

th
at

y
≤
(n j

) 2c
−

n
,f

ro
m

wh
ich

it
fo

llo
ws

th
at

1−
y 2b
≥

1−
(n j

) 2−
r

−
n
.

Th
er

ef
or

e,
th

e
se

co
nd

te
rm

on
th

e
rig

ht
-h

an
d

sid
e

is
at

m
os

t
lo

g(
1)

:

lo
g(α

(w
)

2r
′
−

1) +
lo

g(2r
+

n (n j

)) +
2r

′
lo

g(1
−

2−
r

′) ? ≥
(2r

′

α
(w

)
−

1) lo
g(

1)
,

lo
g(α

(w
)

2r
′
−

1) +
lo

g(2r
+

n (n j

)) +
2r

′
lo

g(1
−

2−
r

′) ? ≥
0,

lo
g(α

(w
)

2r
′
−

1) +
r

+
n
−

lo
g((n j

)) +
2r

′
lo

g(1
−

2−
r

′) ? ≥
0,

lo
g(

α
(w

))
? ≥

lo
g(2r

′
−

1) +
lo

g((n j

)) −
2r

′
lo

g(1
−

2−
r

′) −
r
−

n
,

2lo
g(

α
(w

))
? ≥

2lo
g(2r

′ −
1) +

lo
g (

(n j
))

−
2r

′
lo

g(1−
2−

r
′) −

r
−

n
,

α
(w

)
? ≥

(2
r

′
−

1)
(n j

)
(1
−

2−
r

′)2
r

′
2r

+
n

.

U
sin

g
th

at
2r

′
−

1
<

2r
′ ,w

e
ca

n
re

pl
ac

e
2r

′
−

1
by

2r
′

on
th

e
rig

ht
-h

an
d

sid
e

of
th

e
in

eq
ua

lit
y:

α
(w

)
? ≥

2r
′(n j

)
(1
−

2−
r

′)2
r

′
2r

+
n

,

α
(w

)
? ≥

(n
+

1)
2r
(n j

)
(1
−

2−
r

′)2
r

′
2r

+
n

,

α
(w

)
? ≥
(n j

)
n

+
1

(1
−

1 2r
′

) 2r′
2n

.

496 Tightening Leakage Resilience of the Suffix Keyed Sponge

W
e

as
su

m
ed

th
at

r
≥

1.
Be

ca
us

e
r′

=
r

+
lo

g(
n

+
1)

>
r,

it
fo

llo
ws

th
at

r′
>

1
an

d
th

at
2r

′
>

2.
Th

er
ef

or
e,

we
ca

n
us

e
th

at
(1
−

1 x

) x ≥
e−

x
x

−
1

fo
r

al
lx
∈
R

+
\
{1
}

(s
ee

Le
m

m
a

3)
by

su
bs

tit
ut

in
g

x
=

2r
′

to
ge

t:

α
(w

)
? ≥
(n j

) n
+

1

e−
2r

′

2r
′ −

1
2n

,

α
(w

)
? ≥
(n j

) e
2r

′

2r
′ −

1
(n

+
1)

2n
.

U
sin

g
th

at
e

2x
2x

−
1
≤

e2
on

th
e

in
te

rv
al

[1
,∞

)
(s

ee
Le

m
m

a
4)

an
d

th
at

r′
>

1,
we

ca
n

su
bs

tit
ut

e
x

=
r′

to
ge

t:

α
(w

)
? ≥
(n j

) e2 (
n

+
1)

2n
.

	Introduction
	Suffix Keyed Sponge
	Tightening Leakage Resilience
	Outline

	Preliminaries
	Uniformity and Universality
	Distinguishing Advantage
	PRF Security
	NALR-PRF Security
	Multicollisions

	The Suffix Keyed Sponge
	Construction
	Security Bounds

	Non-Tightness Under Leakage
	Non-Tightness of Leakage in Third Term
	Non-Tightness of Leakage in Second Term
	Recap

	Improved Bound for Leakage in Fixed Positions
	Matching Attacks
	Application to ISAP v2

	Improved Bound for Hamming Weight Leakage
	Modeling Hamming Weight Into Multicollisions
	Improved NALR-PRF Security Bound
	Matching Attacks
	Application to ISAP v2
	Proof of Theorem 3

	Conclusion
	Python Script for Maximizing (19)
	Proofs of Lemmas 2, 3, and 4
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Proving the Inequality (27)

