# Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation

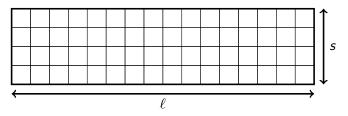
#### Gaëtan Leurent<sup>1</sup>, **Clara Pernot**<sup>1,2</sup> <sup>1</sup> Inria, Paris <sup>2</sup> Hensoldt France

#### Thursday, 28th March 2024

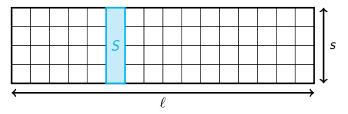




LS-designs: a family of ciphers optimized for **bitsliced implementation**. The state is considered as an  $s \times \ell$  matrix of bits:



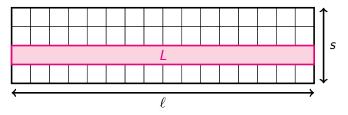
LS-designs: a family of ciphers optimized for **bitsliced implementation**. The state is considered as an  $s \times \ell$  matrix of bits:



Round function:

• SBox layer: S applied  $\ell$  times

LS-designs: a family of ciphers optimized for **bitsliced implementation**. The state is considered as an  $s \times \ell$  matrix of bits:



Round function:

- SBox layer: S applied  $\ell$  times
- Linear layer  $\Lambda$ : L applied s times

LS-designs: a family of ciphers optimized for **bitsliced implementation**. The state is considered as an  $s \times \ell$  matrix of bits:

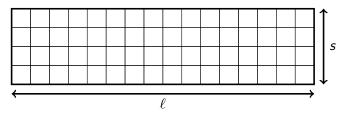


Round function:

- SBox layer: S applied  $\ell$  times
- Linear layer  $\Lambda$ : L applied s times

• Key addition

LS-designs: a family of ciphers optimized for **bitsliced implementation**. The state is considered as an  $s \times \ell$  matrix of bits:



Round function:

- SBox layer: S applied  $\ell$  times
- Linear layer  $\Lambda$ : L applied s times
- Key addition

Here: s = 4 and  $\ell = 32$ .

#### Wide-Trail Strategy [DR01]

It's a design strategy proposed by Daemen and Rijmen:

- select SBoxes with good cryptographic properties
- design a linear layer that guarantees a large number of active SBoxes

#### Wide-Trail Strategy [DR01]

It's a design strategy proposed by Daemen and Rijmen:

- select SBoxes with good cryptographic properties
- design a linear layer that guarantees a large number of active SBoxes

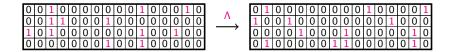
$$\mathcal{B}(\Lambda) = \min_{x \neq 0} (|x| + |\Lambda(x)|)$$

#### Wide-Trail Strategy [DR01]

It's a design strategy proposed by Daemen and Rijmen:

- select SBoxes with good cryptographic properties
- design a linear layer that guarantees a large number of active SBoxes

$$\mathcal{B}(\Lambda) = \min_{x \neq 0} (|x| + |\Lambda(x)|)$$

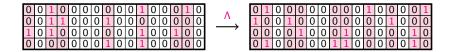


#### Wide-Trail Strategy [DR01]

It's a design strategy proposed by Daemen and Rijmen:

- select SBoxes with good cryptographic properties
- design a linear layer that guarantees a large number of active SBoxes

$$\mathcal{B}(\Lambda) = \min_{x \neq 0} (|x| + |\Lambda(x)|)$$

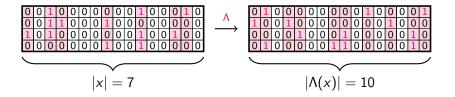


#### Wide-Trail Strategy [DR01]

It's a design strategy proposed by Daemen and Rijmen:

- select SBoxes with good cryptographic properties
- design a linear layer that guarantees a large number of active SBoxes

$$\mathcal{B}(\Lambda) = \min_{x \neq 0} (|x| + |\Lambda(x)|)$$



#### Wide-Trail Strategy [DR01]

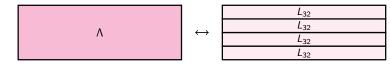
It's a design strategy proposed by Daemen and Rijmen:

- select SBoxes with good cryptographic properties
- design a linear layer that guarantees a large number of active SBoxes

$$\mathcal{B}(\Lambda) = \min_{x \neq 0} (|x| + |\Lambda(x)|)$$

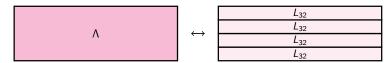
- Any non-trivial differential characteristics in two consecutive rounds has at least B(Λ) active SBoxes.
- ▶ It allows to derive security bounds.

### LS-designs:



•  $\mathcal{B}(\Lambda) = \mathcal{B}(L_{32})$ 

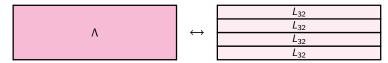
#### LS-designs:



•  $\mathcal{B}(\Lambda) = \mathcal{B}(L_{32})$ 

•  $\mathcal{B}(L_{32}) = 12$  with the best known code

### LS-designs:

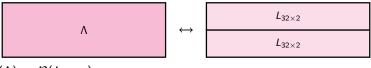


• 
$$\mathcal{B}(\Lambda) = \mathcal{B}(L_{32})$$

•  $\mathcal{B}(L_{32}) = 12$  with the best known code

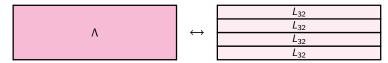
#### Spook:

The linear transformation is defined on two words simultaneously:



• 
$$\mathcal{B}(\Lambda) = \mathcal{B}(L_{32 \times 2})$$

#### LS-designs:

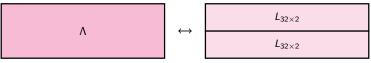


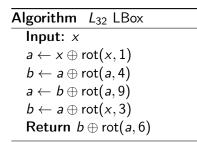
• 
$$\mathcal{B}(\Lambda) = \mathcal{B}(L_{32})$$

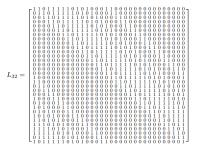
•  $\mathcal{B}(L_{32}) = 12$  with the best known code

#### Spook:

The linear transformation is defined on two words simultaneously:

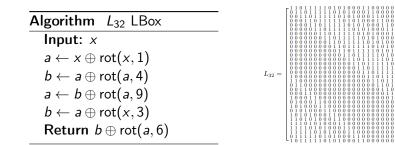






 $\blacktriangleright \mathcal{B}(L_{32}) = 12$ 

Corresponds to circulant matrices



 $\blacktriangleright \mathcal{B}(L_{32}) = 12$ 

- Corresponds to circulant matrices
- ► All circulant matrices can be implemented using Rot and XOR → Goal: minimize the number of Rot and XOR

|                                                                                   | ,          | -11011111010100001100000000000                                                  |
|-----------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------|
| Algorithm L <sub>32</sub> LBox                                                    | -          | $\begin{smallmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0$ |
| Input: x                                                                          | -          | $\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1$                 |
| $\textbf{\textit{a}} \gets \textbf{\textit{x}} \oplus rot(\textbf{\textit{x}},1)$ |            | $\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1$                 |
| $b \leftarrow a \oplus rot(a,4)$                                                  | $L_{32} =$ | $\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $                    |
| $a \leftarrow b \oplus rot(a,9)$                                                  |            | $\begin{smallmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 &$                   |
| $b \leftarrow a \oplus rot(x,3)$                                                  |            | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                         |
| <b>Return</b> $b \oplus rot(a, 6)$                                                |            | $\left[ \begin{array}{c} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0$             |
|                                                                                   |            |                                                                                 |

 $\triangleright$   $\mathcal{B}(L_{32}) = 12$ 

- Corresponds to circulant matrices
- All circulant matrices can be implemented using Rot and XOR  $\rightarrow$  Goal: minimize the number of Rot and XOR
- The inverse can also be implemented using Rot and XOR

|                                                                                   | F1101111                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algorithm L <sub>32</sub> LBox                                                    | $\begin{smallmatrix} & 0 & 1 & 1 & 0 & 1 & 1 \\ & 0 & 0 & 1 & 1 & 0 & 1 \\ & 0 & 0 & 0 & 1 & 1 & 0 \\ & 0 & 0 & 0 & 0 & 1 & 1 \\ & 0 & 0 & 0 & 0 & 0 & 1 \\ & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{smallmatrix}$ |
| Input: x                                                                          |                                                                                                                                                                                                           |
| $\textbf{\textit{a}} \gets \textbf{\textit{x}} \oplus rot(\textbf{\textit{x}},1)$ | $\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$                                                                                                                                            |
| $b \leftarrow a \oplus rot(a, 4)$                                                 | $L_{32} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$                                                                                                                                       |
| $a \leftarrow b \oplus rot(a,9)$                                                  |                                                                                                                                                                                                           |
| $b \leftarrow a \oplus rot(x,3)$                                                  | $\begin{smallmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ \end{smallmatrix}$                  |
| <b>Return</b> $b \oplus rot(a, 6)$                                                | $\begin{array}{c} 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \end{array}$                                  |

 $\blacktriangleright \mathcal{B}(L_{32}) = 12$ 

- Corresponds to circulant matrices
- ► All circulant matrices can be implemented using Rot and XOR → Goal: minimize the number of Rot and XOR
- ▶ The inverse can also be implemented using Rot and XOR

$$\blacktriangleright \ \mathcal{B} = \mathcal{B}_{diff} = \mathcal{B}_{lin}$$

# Linear layer in Spook [BBB+20]

| Algorithm / a sel Box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Algorithm $L_{2\times32}$ LBox inverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Algorithm $L_{2\times32}$ LBoxInput: $(x, y)$ $a \leftarrow x \oplus \operatorname{rot}(x, 12)$ $b \leftarrow y \oplus \operatorname{rot}(y, 12)$ $a \leftarrow a \oplus \operatorname{rot}(a, 3)$ $b \leftarrow b \oplus \operatorname{rot}(b, 3)$ $a \leftarrow a \oplus \operatorname{rot}(x, 17)$ $b \leftarrow b \oplus \operatorname{rot}(y, 17)$ $c \leftarrow a \oplus \operatorname{rot}(a, 31)$ $d \leftarrow b \oplus \operatorname{rot}(b, 31)$ $a \leftarrow a \oplus \operatorname{rot}(c, 25)$ $a \leftarrow a \oplus \operatorname{rot}(c, 15)$ $b \leftarrow b \oplus \operatorname{rot}(d, 15)$ $b \leftarrow \operatorname{rot}(b, 1)$ | $\begin{array}{c} \text{Input: } (x,y) \\ a \leftarrow x \oplus \operatorname{rot}(x,25) \\ b \leftarrow y \oplus \operatorname{rot}(y,25) \\ c \leftarrow x \oplus \operatorname{rot}(a,31) \\ d \leftarrow y \oplus \operatorname{rot}(b,31) \\ c \leftarrow c \oplus \operatorname{rot}(a,20) \\ d \leftarrow d \oplus \operatorname{rot}(b,20) \\ a \leftarrow c \oplus \operatorname{rot}(c,31) \\ b \leftarrow d \oplus \operatorname{rot}(d,31) \\ c \leftarrow c \oplus \operatorname{rot}(d,31) \\ c \leftarrow c \oplus \operatorname{rot}(a,25) \\ a \leftarrow a \oplus \operatorname{rot}(c,17) \\ b \leftarrow b \oplus \operatorname{rot}(d,17) \\ a \leftarrow \operatorname{rot}(a,15) \\ b \leftarrow \operatorname{rot}(b,16) \end{array}$ |
| Return (b, a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Return $(b, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Linear layer in Spook [BBB+20]

| Algorithm $L_{2\times 32}$ LBox                            |
|------------------------------------------------------------|
| Input: $(x, y)$                                            |
| $a \leftarrow x \oplus rot(x, 12)$                         |
| $b \leftarrow y \oplus rot(y, 12)$ 1 step =                |
| $a \leftarrow a \oplus rot(a 3)$                           |
| $b \leftarrow b \oplus \operatorname{rot}(b,3) $ 1 Rot/XOR |
| $a \leftarrow a \oplus \operatorname{rot}(x, 17)$ per word |
| $b \leftarrow b \oplus rot(y, 17)$                         |
| $c \leftarrow a \oplus \operatorname{rot}(a, 31)$          |
| $d \leftarrow b \oplus rot(b, 31)$                         |
| $a \leftarrow a \oplus \operatorname{rot}(d, 26)$          |
| $b \leftarrow b \oplus \operatorname{rot}(c, 25)$          |
| $a \leftarrow a \oplus rot(c, 15)$                         |
| $b \leftarrow b \oplus rot(d, 15)$                         |
| $b \leftarrow rot(b, 1)$                                   |
| Return (b, a)                                              |

Algorithm
$$L_{2\times32}$$
 LBox inverseInput: $(x, y)$  $a \leftarrow x \oplus \operatorname{rot}(x, 25)$  $b \leftarrow y \oplus \operatorname{rot}(y, 25)$  $c \leftarrow x \oplus \operatorname{rot}(a, 31)$  $d \leftarrow y \oplus \operatorname{rot}(b, 31)$  $c \leftarrow c \oplus \operatorname{rot}(a, 20)$  $d \leftarrow d \oplus \operatorname{rot}(b, 20)$  $a \leftarrow c \oplus \operatorname{rot}(c, 31)$  $b \leftarrow d \oplus \operatorname{rot}(d, 31)$  $c \leftarrow c \oplus \operatorname{rot}(c, 31)$  $b \leftarrow d \oplus \operatorname{rot}(a, 25)$  $a \leftarrow a \oplus \operatorname{rot}(c, 17)$  $b \leftarrow b \oplus \operatorname{rot}(d, 17)$  $a \leftarrow \operatorname{rot}(a, 15)$  $b \leftarrow \operatorname{rot}(b, 16)$ Return  $(b, a)$ 

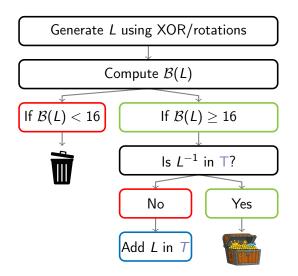
### Efficient implementation of L and $L^{-1}$ in Spook

Idea: find  $L_1$ ,  $L_2$  such that  $L_1 = L_2^{-1}$  $L_1$ ,  $L_2$ : linear layers with efficient implementations

### Efficient implementation of L and $L^{-1}$ in Spook

Idea: find  $L_1$ ,  $L_2$  such that  $L_1 = L_2^{-1}$ 

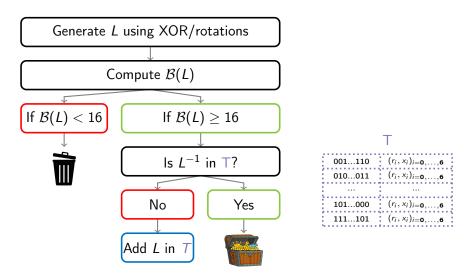
 $L_1$ ,  $L_2$ : linear layers with efficient implementations



### Efficient implementation of L and $L^{-1}$ in Spook

Idea: find  $L_1$ ,  $L_2$  such that  $L_1 = L_2^{-1}$ 

 $L_1$ ,  $L_2$ : linear layers with efficient implementations



Goal: obtain a linear layer operating on 3 or 4 32-bit words with:

Goal: obtain a linear layer operating on 3 or 4 32-bit words with:

• a higher branch number

#### • an efficient implementation of L and $L^{-1}$

Goal: obtain a linear layer operating on 3 or 4 32-bit words with:

- a higher branch number
  - ▶ Naive computation of a 128-bit linear transformation: 2<sup>128</sup> operations.
  - Is there a more efficient method?
- an efficient implementation of L and  $L^{-1}$

Goal: obtain a linear layer operating on 3 or 4 32-bit words with:

- a higher branch number
  - ▶ Naive computation of a 128-bit linear transformation: 2<sup>128</sup> operations.
  - Is there a more efficient method?
- an efficient implementation of L and L<sup>-1</sup>
  - collisions are used in Spook: the search space is too big for 128 bits!
  - Is there a more efficient method?

### Table of contents



#### 2 Efficient Computation of the Branch Number

#### 3 Efficient Implementation of the Linear Layer and its Inverse

#### 4 Conclusion

### How to compute efficiently the branch number?

Reminder:

$$\mathcal{B}(\Lambda) = \min_{x \neq 0} (|x| + |\Lambda(x)|)$$

### How to compute efficiently the branch number?

Reminder:

$$\mathcal{B}(\Lambda) = \min_{x \neq 0} (|x| + |\Lambda(x)|)$$

Property  $\mathcal{B}(\Lambda)$  is equal to the minimal distance of the code with codewords  $x \| \Lambda(x)$  for  $x \in (\{0, 1\}^s)^{\ell}$ . How to compute efficiently the branch number?

Reminder:

$$\mathcal{B}(\Lambda) = \min_{x \neq 0} (|x| + |\Lambda(x)|)$$

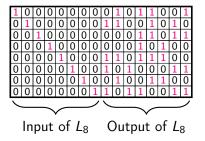
Property  $\mathcal{B}(\Lambda)$  is equal to the minimal distance of the code with codewords  $x \| \Lambda(x)$  for  $x \in (\{0,1\}^s)^{\ell}$ .

We use an Information Set Decoding algorithm to compute  $\mathcal{B}(\Lambda)$ :

- Derived from Prange's algorithm [Pra62]
- Find the non-zero codeword with the lowest possible weight.
- Probabilistic algorithm.

### The Information Set Decoding algorithm

Small example on  $(\mathbb{F}_2)^8$  corresponding to  $L_8$ :



The Information Set Decoding algorithm

Small example on  $(\mathbb{F}_2)^8$  corresponding to  $L_8$ :

We bet that there is a weight 1 on these columns. Input of  $L_8$  Output of  $L_8$ 

Repeat:

Select an information set

The Information Set Decoding algorithm

Small example on  $(\mathbb{F}_2)^8$  corresponding to  $L_8$ :

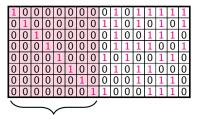


Information set

Repeat:

- Select an information set
- Put the columns of the information set at the left

Small example on  $(\mathbb{F}_2)^8$  corresponding to  $L_8$ :

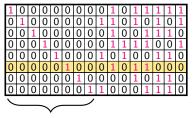


Information set

Repeat:

- Select an information set
- Put the columns of the information set at the left
- Oo a Gauss reduction

Small example on  $(\mathbb{F}_2)^8$  corresponding to  $L_8$ :



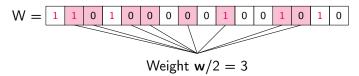
Information set

Repeat:

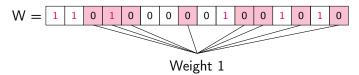
- Select an information set
- Put the columns of the information set at the left
- Oo a Gauss reduction
- Look at the weight of the lines

We assume that there is a word W of weight  ${\bf w}$  We find W if it has weight 1 in the information set

We assume that there is a word W of weight  ${\bf w}$  We find W if it has weight 1 in the information set



We assume that there is a word W of weight  ${\bf w}$  We find W if it has weight 1 in the information set



We assume that there is a word W of weight  ${\bf w}$  We find W if it has weight 1 in the information set

This happens with probability:

$$p = \frac{\binom{\ell}{\mathsf{w}-1} \times \binom{\ell}{1}}{\binom{2\ell}{\mathsf{w}}}$$

We assume that there is a word W of weight  ${\bf w}$  We find W if it has weight 1 in the information set

This happens with probability:

$$p = rac{\binom{\ell}{\mathsf{w}-1} imes \binom{\ell}{1}}{\binom{2\ell}{\mathsf{w}}}$$

 $\Rightarrow$  We can also detect a weight of 2 by considering all the pairs of 2 lines:

- p: ↗
- Time complexity : pprox

(because the time complexity is dominated by the Gaussian Reduction)

We need to adapt this algorithm to our context:

.

.

$$w = 20$$
  $\ell = 32$  4 words

With  $2^{25}$  iterations that costs  $2^{16.8}$  the probability of failing to find W if it exists is  $2^{-604}$ :

| Method | Time Complexity   | Success Probability   |
|--------|-------------------|-----------------------|
| Naive  | 2 <sup>128</sup>  | 1                     |
| ISD    | 2 <sup>41.8</sup> | 1 - 2 <sup>-604</sup> |

## Table of contents

#### Introduction

2 Efficient Computation of the Branch Number

#### Sefficient Implementation of the Linear Layer and its Inverse

#### 4 Conclusion

## Efficient implementation of L and $L^{-1}$

- The method used in Spook uses collisions
- Here, the search space is too big...
  - Sometimes, we only require an efficient implementation of L Example: CounTeR Mode
  - Otherwise, we use a heuristic algorithm to find an efficient implementation of the inverse

#### Efficient implementation of L and $L^{-1}$

## Random circulant matrix:

For 4 32-bit words, after  $2^{18}$  tests: the best  $\mathcal B$  is 21

## Efficient implementation of L and $L^{-1}$

#### Random circulant matrix:

For 4 32-bit words, after  $2^{18}$  tests: the best  $\mathcal B$  is 21

## Efficient matrix:

Our strategy:

- generate candidates based on 6 steps of XOR and rotations
- 2 keep only candidates with  $\mathcal{B} = 21$
- **③** look for an efficient implementation of the inverse
- keep the candidate whose inverse has the most efficient implementation

## Table of contents

#### Introduction

2 Efficient Computation of the Branch Number

#### 3 Efficient Implementation of the Linear Layer and its Inverse

#### 4 Conclusion

#### Results

| L                 | w | Branch number | c(L) | $c(L^{-1})$ | Ref                |
|-------------------|---|---------------|------|-------------|--------------------|
| L <sub>32</sub>   | 1 | 12            | 5    | 5           | LS-designs [Leu19] |
| $L_{32 \times 2}$ | 2 | 16            | 6    | 6           | Spook [BBB+20]     |
| $L_{32\times 3}$  | 3 | 19            | 6    | 13          | New                |
| $L_{32\times4}$   | 4 | 21            | 6    | 18          | New                |

Linear transformations based on XORs and rotations

c(L): number of XORs per 32-bit word in our implementation

#### Conclusion

- $\rightarrow\,$  Extension of the work done in the LS-designs and Spook
- $\rightarrow\,$  Linear layer with branch number 21 over 128 bits with the same cost as Spook (whose branch number is 16)
- $\rightarrow\,$  Illustration of the interactions between different fields of cryptography: use algorithm from coding theory

# Thank you!

