**IRISA** 

# Equivalence of Generalised Feistel Networks

Patrick Derbez <sup>1</sup>, Marie Euler <sup>1,2</sup>

<sup>1</sup>Univ Rennes, Inria, CNRS, IRISA <sup>2</sup>DGA

March 29, 2024







### 1. Introduction to GFNs

### 2. Equivalences

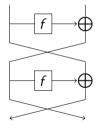
3. Applications

## The original Feistel Network

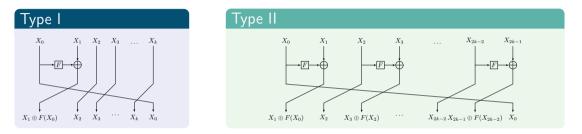
- Invented by Horst Feistel [Smi71; Fei73]
- Data Encryption Standard (DES) in 1977

#### Properties

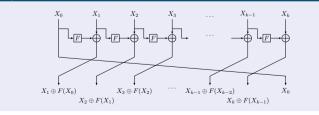
- The state is divided in two branches
- Decryption is similar to encryption
- Transform a "pseudorandom" function in a "pseudorandom" permutation [LR88]



# Generalisations of Feistel Networks [ZMI89]

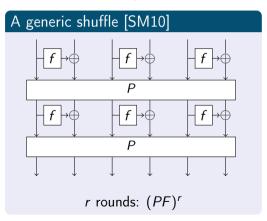


Type III



## Generalisations of Feistel Networks

[Nyb96] Replace the cyclic shift by another well-chosen permutation.

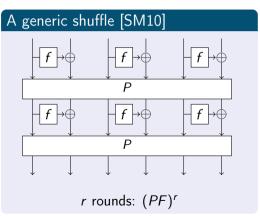


**b** IRISA

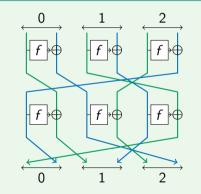
#### **b** IRISA

## Generalisations of Feistel Networks

[Nyb96] Replace the cyclic shift by another well-chosen permutation.



#### Even-odd GFNs



Can be described by two smaller permutations L = [0, 2, 1], R = [1, 2, 0]

# Properties of the linear layer (Independant of the Feistel function)

#### Diffusion round

- *DR*(*P*) is the minimum number of rounds *r* such that all the output branches depend on all the input branches (and conversely).
- Helps to quantify the resistance to integral cryptanalysis, impossible differential attacks and meet-in-the-middle attacks.
- Easy to compute.
- Equal to the number of branches for the cyclic shift.

# Properties of the linear layer (Independant of the Feistel function)

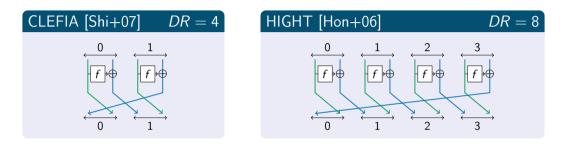
#### Diffusion round

- *DR*(*P*) is the minimum number of rounds *r* such that all the output branches depend on all the input branches (and conversely).
- Helps to quantify the resistance to integral cryptanalysis, impossible differential attacks and meet-in-the-middle attacks.
- Easy to compute.
- Equal to the number of branches for the cyclic shift.

#### Number of active S-boxes / Non-linear functions

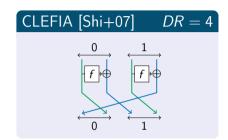
- AS(P, r) is the minimum number of active S-boxes in a differential/linear trails on r rounds.
- Helps to quantify the resistance to differential and linear attacks
- Computed via MILP. Much harder !

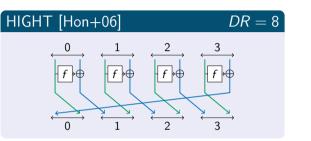
### Blockciphers based on type-II GFNs

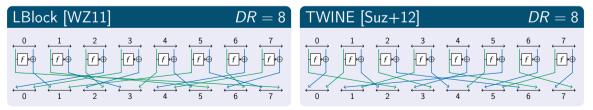


**O** IRISA

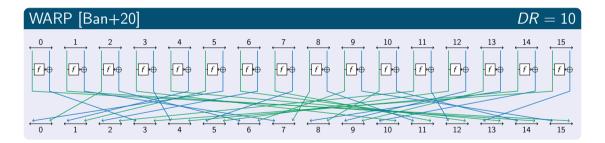
### Blockciphers based on type-II GFNs







### Blockciphers based on type-II GFNs



**IRISA** 

# How to find a good permutation of 2k branches?

Generic case: (2k)! possibilities Even-odd case:  $(k!)^2$  possibilities  $32! \simeq 2^{118} \ (16!)^2 \simeq 2^{88}$ 

How to deal with the huge size of the search space?

- [SM10] Enumerate all the permutations
- [CGT19] Use equivalence classes
- [Der+19] Tree pruning (even-odd case)
- [Del+22] Tree pruning (generic case)

Up to 16 branches Up to 20/24 branches Up to 36 branches Up to 32 branches

# How to find a good permutation of 2k branches?

Generic case: (2k)! possibilities Even-odd case:  $(k!)^2$  possibilities  $32! \simeq 2^{118} \ (16!)^2 \simeq 2^{88}$ 

How to deal with the huge size of the search space?

- [SM10] Enumerate all the permutations
- [CGT19] Use equivalence classes
- [Der+19] Tree pruning (even-odd case)
- [Del+22] Tree pruning (generic case)

Up to 16 branches Up to 20/24 branches Up to 36 branches Up to 32 branches

The greedy strategy "First focus on DR then AS" is non-optimal for AS [Ban+20]



### 1. Introduction to GFNs

### 2. Equivalences

3. Applications

 $\label{eq:product} \ensuremath{\$} \ensuremath{\$} \ensuremath{$\mathsf{T}$} he Feistel step $F$ acts similarly on all the pairs of branches so any shuffling of pairs commutes with $F$. \\ \ensuremath{\mathsf{F}}. \end{array}$ 

 $A \in S_{2k}$  is a permutation of pairs if and only if it shuffles pairs of branches together.

 $\$  The Feistel step F acts similarly on all the pairs of branches so any shuffling of pairs commutes with F.

 $A \in S_{2k}$  is a permutation of pairs if and only if it shuffles pairs of branches together.

For any permutation P, for any number of rounds r,

r a

$$\underbrace{(APA^{-1}F)^{r}}_{\text{rounds of the GFN}} = (APFA^{-1})^{r} = A \underbrace{(PF)^{r}}_{\text{associated to } APA^{-1}} A^{-1}$$

 $\hookrightarrow$  Both GFN are identical up to a relabelling of the inputs and outputs.

The GFNs associated with P and Q are conjugacy-based equivalent if and only if there exists a permutation of pairs A such that  $Q = APA^{-1}$ .

## One round equivalence [CGT19]

The GFNs associated with P and Q are conjugacy-based equivalent if and only if there exists a permutation of pairs A such that  $Q = APA^{-1}$ .

#### Enumeration of even-odd GFNs

The even-odd GFN associated to (L, R) is equivalent to the even-odd GFN associated to  $(aLa^{-1}, aRa^{-1})$  for any permutation *a*.

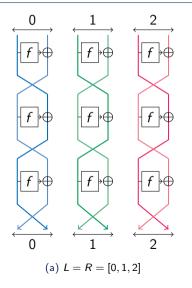
 $\hookrightarrow$  There is no need to enumerate all values of (L, R): It is enough to consider one L per conjugacy class of  $S_k$ .

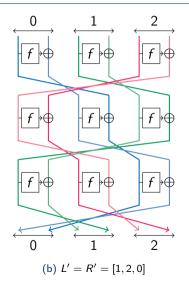
 $\hookrightarrow$  The enumeration goes from  $(k!)^2$  to  $N_k k!$  with  $N_k$  the number of conjugacy classes in  $S_k$ .

For 32 branches: from  $16!^2 \simeq 2^{88}$  to  $231 \times 16! \simeq 2^{52}$ .

🦕 IRISA

## Conjugacy is not enough





**IRISA** 

The GFNs associated with P and Q are expanded equivalent if and only if there exists a permutation of pairs A such that for all positive integer r,  $A_r := Q^r A P^{-r}$  is a permutation of pairs.

 $\hookrightarrow$  It implies that for any positive integer r,  $(QF)^r = A_r(PF)^r A^{-1}$ : both Feistel are identical up to a relabelling of the inputs and outputs.

#### Exemples

- If  $Q = APA^{-1}$ , then for all  $r \ge 0$ ,  $A_r = A$
- If Q = BP = PB, then A = Id and for all  $r \ge 0$ ,  $A_r = B^r$

# Expanded equivalence of even-odd permutations

#### Number of classes

There are k! expanded equivalence classes of even-odd permutations of 2k elements. Each of theses classes contains k! permutations.

# Expanded equivalence of even-odd permutations

#### Number of classes

There are k! expanded equivalence classes of even-odd permutations of 2k elements. Each of theses classes contains k! permutations.

For 32 branches: from  $231 \times 16! \simeq 2^{52}$  to  $16! \simeq 2^{44}$ .

♀ The cycle structure of  $R^{-1}L$  is invariant in the equivalence class of (L,R). It is also true for all the  $R^{-i}L^{i}$ . It is more interesting to describe an even-odd permutation (L,R) by  $R^{-1}L$  and R.

# Expanded equivalence of even-odd permutations

#### Number of classes

There are k! expanded equivalence classes of even-odd permutations of 2k elements. Each of theses classes contains k! permutations.

For 32 branches: from  $231 \times 16! \simeq 2^{52}$  to  $16! \simeq 2^{44}$ .

♀ The cycle structure of  $R^{-1}L$  is invariant in the equivalence class of (L,R). It is also true for all the  $R^{-i}L^{i}$ . It is more interesting to describe an even-odd permutation (L,R) by  $R^{-1}L$  and R.



### 1. Introduction to GFNs

### 2. Equivalences

### 3. Applications

### 1 - Reduction of candidates

| Source & Topic                                                                                                                       | Size<br>of the<br>list | Nb of extended<br>expanded<br>equivalence classes |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------|
| [CGT19] Best-known permutations for GFNs with<br>32,64 or 128 branches regarding diffusion (extended<br>1-round equivalence classes) | 32                     | 10                                                |
| [Der+19] Optimal permutations for even-odd GFNs with 28 to 34 branches (1-round equivalence classes)                                 | 19                     | 9                                                 |
| [Shi+18] Alternative permutations to improve the resistance of LBlock against DS MitM attack.                                        | 64                     | 2                                                 |
| [Shi+18] Alternative permutations to improve the resistance of TWINE against DS MitM attack.                                         | 12                     | 1                                                 |

**IRISA** 

How to find a good 32-branch permutation?

The designers found 152 permutations with DR = 10 and among them 8 permutations with  $AS = 66 \ge 64$  after 19 rounds.

How to find a good 32-branch permutation?

The designers found 152 permutations with DR = 10 and among them 8 permutations with  $AS = 66 \ge 64$  after 19 rounds. But:

- The attack characteristics for other attacks (...) are identical for all of them.
- The designers say that these 8 permutations are not isomorphic.

How to find a good 32-branch permutation?

The designers found 152 permutations with DR = 10 and among them 8 permutations with  $AS = 66 \ge 64$  after 19 rounds. But:

- The attack characteristics for other attacks (...) are identical for all of them.
- The designers say that these 8 permutations are not isomorphic.

They are (extended) expanded-equivalent.

How to find a good 32-branch permutation?

The designers found 152 permutations with DR = 10 and among them 8 permutations with  $AS = 66 \ge 64$  after 19 rounds. But:

- The attack characteristics for other attacks (...) are identical for all of them.
- The designers say that these 8 permutations are not isomorphic.

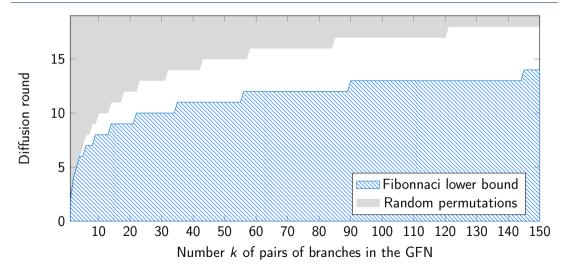
They are (extended) expanded-equivalent.

 $\hookrightarrow$  Regrouping the 152 permutations with DR = 10 before computing the AS leads to 7 classes. The AS computation takes one hour instead of two days.

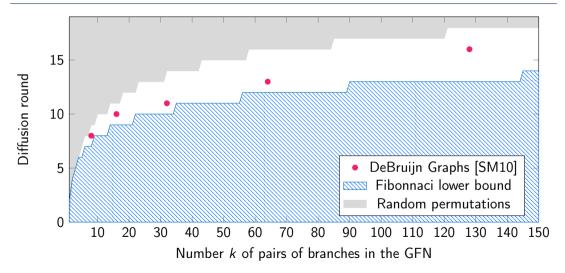
#### A better permutation?

We evaluated the DR/AS for a larger space of permutations (which reduced to 184 classes of permutations with DR = 10) and found 5 classes of permutations with DR = 10 and  $AS \ge 64$  after 18 rounds.

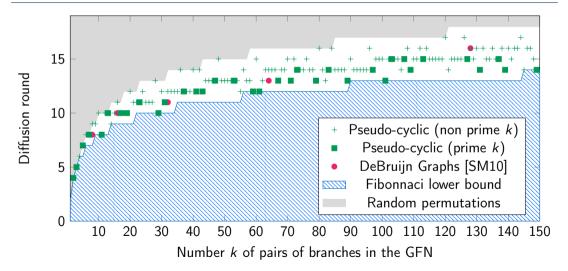
# 3 - New family of GFNs with good diffusion <sup>(</sup>



# 3 - New family of GFNs with good diffusion <sup>(</sup>



# 3 - New family of GFNs with good diffusion



### Conclusion and open questions

- A better understanding of the fundamental structure of type-II GFNs
- New GFN candidates (diffusion, AS, ...)

## Conclusion and open questions

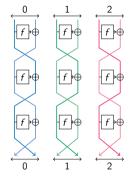
- A better understanding of the fundamental structure of type-II GFNs
- New GFN candidates (diffusion, AS, ...)

#### Open questions

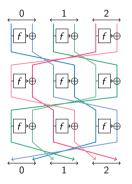
- Non even-odd case:  $\frac{(2k)!}{k!} = \binom{2k}{k}k!$  equivalence classes?
- Finding good permutations to help designers.
  - $\hookrightarrow$  Analysis of the family which diffuses well?
  - $\hookrightarrow$  Any other good families?
- Cryptanalysis / Security analysis
  - $\hookrightarrow$  Can we find an equivalent GFN which is vulnerable to some attacks?
  - $\hookrightarrow$  Can we prove that all the equivalent GFNs are resistant?

#### **IRISA**

### Invariant subspace attacks



(a) 0 is invariant



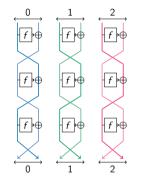
(b) 0 is not invariant  $0 \rightarrow 1 \rightarrow 2 \rightarrow 0 \text{ is a subspace trail.}$ 

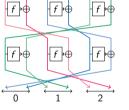
Invariant subspaces are not preserved by expanded equivalence.

Can we find all subspace trails by finding invariant subspaces in an equivalent GFNs?

#### **IRISA**

### Invariant subspace attacks





Invariant subspaces are not preserved by expanded equivalence.

Can we find all subspace trails by finding invariant subspaces in an equivalent GFNs?

(a) 0 is invariant

(b) 0 is not invariant  $0 \rightarrow 1 \rightarrow 2 \rightarrow 0 \text{ is a subspace trail.}$ 

Thank you for your attention