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Abstract. For Arithmetization-Oriented ciphers and hash functions Gröbner basis
attacks are generally considered as the most competitive attack vector. Unfortunately,
the complexity of Gröbner basis algorithms is only understood for special cases, and
it is needless to say that these cases do not apply to most cryptographic polynomial
systems. Therefore, cryptographers have to resort to experiments, extrapolations
and hypotheses to assess the security of their designs. One established measure
to quantify the complexity of linear algebra-based Gröbner basis algorithms is the
so-called solving degree. Caminata & Gorla revealed that under a certain genericity
condition on a polynomial system the solving degree is always upper bounded by the
Castelnuovo-Mumford regularity and henceforth by the Macaulay bound, which only
takes the degrees and number of variables of the input polynomials into account. In
this paper we extend their framework to iterated polynomial systems, the standard
polynomial model for symmetric ciphers and hash functions. In particular, we prove
solving degree bounds for various attacks on MiMC, Feistel-MiMC, Feistel-MiMC-Hash,
Hades and GMiMC. Our bounds fall in line with the hypothesized complexity of
Gröbner basis attacks on these designs, and to the best of our knowledge this is the
first time that a mathematical proof for these complexities is provided.
Moreover, by studying polynomials with degree falls we can prove lower bounds on the
Castelnuovo-Mumford regularity for attacks on MiMC, Feistel-MiMC and Feistel-MiMC-
Hash provided that only a few solutions of the corresponding iterated polynomial
system originate from the base field. Hence, regularity-based solving degree estima-
tions can never surpass a certain threshold, a desirable property for cryptographic
polynomial systems.
Keywords: Gröbner basis · Solving degree · MiMC · GMiMC · Hades

1 Introduction
With the increasing adaption of Multi-Party Computation (MPC) and Zero-Knowledge
(ZK) proof systems new ciphers and hash functions are needed to implement these con-
structions efficiently without compromising security. These new cryptographic primitives
are commonly referred to as Arithmetization-Oriented (AO) designs. The main objective
of AO is to minimize multiplicative complexity, the minimum number of multiplications
needed to evaluate a function. However, this comes at a cost: a very simple algebraic
representation. Examples of recently proposed AO ciphers and hash functions are LowMC
[ARS+15], MiMC [AGR+16], GMiMC [AGP+19a], Jarvis [AD18], Hades [GLR+20], Po-
seidon [GKR+21] and Poseidon2 [GKS23], Vision and Rescue [AAB+20], Ciminion
[DGGK21], Reinforced Concrete [GKL+22], Anemoi [BBC+23], Griffin [GHR+23],
Hydra [GØSW23] and Arion [RST23]. Unfortunately, with AO an often-neglected threat
reemerged in cryptography: Gröbner bases. While being a minor concern for well-
established ciphers like the Advanced Encryption Standard (AES) [BPW06, DR20], certain
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proposed AO designs have already been broken with off-the-shelf computing hardware
and standard implementations of Gröbner bases, see for example [ACG+19, GKRS22].
Therefore, to ensure computational security against Gröbner basis attacks cryptographers
ask for tight complexity bounds of Gröbner basis computations [AAB+20, SS21].

Unfortunately, the Gröbner basis cryptanalysis of the aforementioned AO designs is
lacking mathematical rigor. Broadly speaking, the Gröbner basis analysis of AO designs
usually falls into two categories:

(I) It is assumed that the polynomial system satisfies some genericity condition for which
Gröbner basis complexity estimates are known. E.g., being regular or semi-regular.

(II) Empirical complexities from small scale experiments are extrapolated.

In this paper on the other hand, we present a rigor mathematical formalism to derive
provable complexity estimates for cryptographic polynomial systems. In particular, we
rigorously obtain Gröbner basis complexity estimates for various attacks on MiMC, Feistel-
MiMC, Feistel-MiMC-Hash, Hades and GMiMC. We note that our bounds fall in line with
the hypothesized cost of Gröbner basis attacks on these designs (see [GLR+20, §4.3] and
[AGP+19a, §4.1.1]). To the best of our knowledge these are the first rigor mathematical
proofs for the Gröbner basis cryptanalysis of these designs. Moreover, for MiMC, Feistel-
MiMC and Feistel-MiMC-Hash we prove limitations of our complexity estimations, i.e., we
derive lower bounds which can never be surpassed by our estimation method.

The cryptographic constructions of our interest all follow the same design principle.
Let Fq be a finite field with q elements and let n ≥ 1 be an integer, one chooses a round
function R : Fn

q × Fn
q → Fn

q , which depends on the input variable x and the key variable y,
and then iterates it r times with respect to the input variable. Such a design admits a
very simple model of keyed iterated polynomials

FR(xi−1, y) − xi = 0, (1)

where FR denotes the polynomial vector representing the round function R, the xi’s
intermediate state variables, y the key variable and x0, xr ∈ Fn

q a plain/ciphertext pair
given by the encryption function. This leads us to standard Gröbner basis attacks on
ciphers which proceed in four steps:

(1) Model the cipher function with an iterated system of polynomials.

(2) Compute a Gröbner basis with respect to an efficient term order, e.g., the degree
reverse lexicographic order.

(3) Perform a term order conversion to an elimination order, e.g., the lexicographic
order.

(4) Solve the univariate equation.

Let us for the moment assume that a Gröbner basis has already been found and focus
on the complexity of the remaining steps. Let I ⊂ Fq[x1, . . . , xn] be a zero-dimensional
ideal modeling a cipher, and denote with d = dimFq

(Fq[x1, . . . , xn]/I) the Fq-vector space
dimension of the quotient space. With the original FGLM algorithm [FGLM93] the
complexity of term order conversion is O

(
n · d3), but improved versions with probabilistic

methods achieve O (n · dω) [FGHR14], where 2 ≤ ω < 2.37286 [AW21], and sparse linear
algebra algorithms [FM17] achieve O

(√
n · d2+ n−1

n

)
. To extract the Fq-valued roots of the

univariate polynomial most efficiently we compute its greatest common divisor with the
field equation xq − x via the algorithm of Bariant et al. [BBLP22, §3.1]. The complexity
of this step is then

O
(

d · log(q) · log(d) · log
(

log(d)
)

+ d · log(d)2 · log
(

log(d)
))

, (2)
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provided that d ≤ q otherwise one has to replace the roles of d and q in the complexity
estimate.

Furthermore, in [FP19] it was proven that one can also use d to upper bound the
complexity of linear algebra-based Gröbner basis algorithms. Since d is in general not
known one has to estimate d via the Bézout bound.

To the best of our knowledge, the aforementioned AO designs all admit a very high
quotient space dimension. Hence, to improve the capabilities of Gröbner basis attacks one
must reduce this dimension. For this problem we have two generic approaches:

(i) Alter the standard representation, e.g., choose polynomials in the model which
approximate the round function with high probability. This approach was successfully
deployed in [ACG+19, GKRS22].

(ii) Add polynomials to the system to remove parasitic solutions that lie in algebraic
closure. E.g., the polynomial system for an additional plain/ciphertext pair or the
field equations. This approach is the concern of this paper.

If one successfully filters all solutions from the algebraic closure, then one expects that
steps (3) and (4) are not a major concern anymore. Therefore, we need tight estimates for
the complexity of Gröbner basis computations.

1.1 Contributions & Related Work
Our main tool to bound the complexity of Gröbner basis computations will be the solving
degree of linear algebra-based Gröbner basis algorithms which was first formalized in [DS13].
Linear algebra-based Gröbner basis algorithms perform Gaussian elimination on matrices
associated to a polynomial system. Given the number of equations, the number of variables
and the solving degree one can then estimate the maximal size of these matrices and
henceforth also the cost of Gaussian elimination. In [CG21] the solving degree was upper
bounded via the Castelnuovo-Mumford regularity if the polynomial system is in generic
coordinates. This genericity notion can be traced back to the influential work of Bayer &
Stillman [BS87]. In essence, a polynomial system F = {f1, . . . , fm} ⊂ P = K[x1, . . . , xn]
is in generic coordinates if its homogenization Fhom =

{
fhom

1 , . . . , fhom
m

}
⊂ P [x0] does

not admit a solution with x0 = 0 in the projective space Pn
K , where x0 denotes the

homogenization variable. Moreover, the Castelnuovo-Mumford regularity is always upper
bounded by the Macaulay bound [Cha07, Theorem 1.12.4]. Hence, if a polynomial system is
in generic coordinates, then we can estimate the complexity of a Gröbner basis computation
via the degrees of the input polynomials.

Our paper is divided into two parts. In the first part (Sections 2 to 5), we develop a
rigor framework for complexity estimates of Gröbner attacks on MiMC, Feistel-MiMC, Feistel-
MiMC-Hash, Hades and GMiMC. To streamline the application of the technique developed
by Caminata & Gorla, we prove in Theorem 3.2 that a polynomial system is in generic
coordinates if and only if it admits a finite degree of regularity [BFS04]. This in turn
permits efficient proofs that the keyed iterated polynomial systems of MiMC, Feistel-MiMC,
Feistel-MiMC-Hash, Hades and GMiMC are in generic coordinates.

In the second part (Sections 7 and 8), we study polynomials with degree falls. For
an inhomogeneous polynomial system F = {f1, . . . , fm} ⊂ K[x1, . . . , xm], we say that a
polynomial f ∈ (F) has a degree fall in d > deg (f), if it cannot be constructed below
degree d via F , i.e. there does not exist a sum f =

∑m
i=1 gi · fi such that deg (gi · fi) < d

for all i. We define the last fall degree as the largest integer d for which there exists a
polynomial f ∈ (F) with a degree fall in d. For polynomial systems in generic coordinates
we prove that the last fall degree is equal to the satiety of Fhom (Theorem 7.5). Moreover,
it is well-known that the satiety of Fhom is always upper bounded by the Castelnuovo-
Mumford regularity of Fhom. Therefore, if we find a polynomial with a degree fall in
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(F) then we immediately have a lower bound for the Castelnuovo-Mumford regularity of
Fhom. As consequence one then has a limit on the capabilities of Castelnuovo-Mumford
regularity-based complexity estimates.

We note that a different notion of last fall degree was already introduced by Huang et
al. [HKY15, HKYY18]. Therefore, in Remark 7.7 we discuss the difference between Huang
et al.’s and our notion of last fall degree.

Let MiMC with r rounds be defined over Fq and assume that the MiMC polynomial
systems have fewer than three solutions in Fq, applying our bounds we obtain the following
ranges on the Castelnuovo-Mumford regularity. For MiMC and the field equation for the
key variable we have, see Examples 5.1 and 8.3,

q + 2 · r − 2 ≤ reg
(

Fhom
MiMC +

(
yq − y · xq−1

0

))
≤ q + 2 · r. (3)

For the two plain/ciphertext attack on MiMC we have, see Examples 5.3 and 8.6,

4 · r − 3 ≤ reg
(
Fhom

MiMC,1 + Fhom
MiMC,2

)
≤ 4 · r + 1. (4)

For a Feistel-2n/n network based on the MiMC round function we have, see Examples 5.4
and 8.8,

2 · r − 1 ≤ reg
(

Fhom
MiMC-2n/n

)
≤ 2 · r + 1. (5)

For a Feistel-2n/n network operated in sponge mode [BDPV08] based on the MiMC round
function we have for the preimage attack, see Examples 5.5 and 8.10,

q + 2 · r − 6 ≤ reg
(

Fhom
preimage +

(
xq

2 − x2 · xq−1
0

))
≤ q + 2 · r − 2. (6)

Arguably, the bounds that include the size of the finite field q do not have direct cryp-
tographic significance. We note that these bounds can be significantly improved by an
auxiliary division by remainder computation, see the discussions after Examples 5.1, 5.5,
8.3 and 8.10. We restricted our analysis to the field equation due to generic treatment
as well as simple algebraic representations. Moreover, we point out that our analysis of
MiMC polynomial system serves as role model to showcase that tight complexity estimates
for cryptographic polynomial systems are achievable without the evasion to unproven
hypotheses.

1.1.1 Comparison With Existing Cryptanalysis

In this paper we derive various proven Gröbner basis complexity estimates for the MiMC
family, GMiMC and Hades. Let us now shortly discuss how these estimates relate to
established cryptanalysis of these designs. In Table 1 we collect our complexity estimates,
see Tables 2 to 5 and 7, next to the estimates of established attacks that are closely related
to our Gröbner basis attacks.

The attack on MiMC with a field equation (first three rows in the MiMC row in Table 1)
can be considered as sparse low degree representation of the greatest common divisor
(GCD) attack on MiMC [AGR+16, §4.2]. In the GCD attack with a known plain/ciphertext
attack one represents the MiMC encryption function as univariate polynomial in the key
variable y and then computes the GCD with the field equation yq − y. The number of
MiMC rounds is chosen so that r ≥ log3 (q), where q is the size of the underlying finite field,
to avoid an interpolation attack [LP19]. So the complexity of the GCD computation can
be estimated as O

(
d · log(d)2 · log

(
log(d)

))
with d = 3r (or d = q if one considers the first

division by remainder computation in the GCD algorithm to be for free). If we do not
consider the construction of the univariate polynomial to be for free, we can refine this



Matthias Johann Steiner 361

estimate. The keyed iterated MiMC polynomial system is already a Gröbner basis, so the
univariate polynomial can be constructed via the probabilistic FGLM algorithm [FGHR14]
which has complexity O (n · dω), and for key extraction we can use the efficient factoring
algorithm of Bariant et al. whose complexity is given in Equation (2). In the Gröbner
basis attack on the other hand, the univariate MiMC encryption function is decomposed
into its r round functions of degree 3 and together with the field equation the Gröbner
basis is computed. As Table 1 shows, MiMC achieves a security level of at least 128 bits
for various field sizes when the sparse low degree representation is used to mount a key
recovery attack with the field equation.

Alternatively to the GCD with the field equation, one can consider two plain/ciphertexts
to set up two univariate encryption polynomials and compute their GCD. As before, we can
represent the encryption functions with r sparse polynomials of degree 3 respectively which
share the key variable. A similar two plain/ciphertext attack was investigated by Albrecht
et al. [ACG+19, §6.1]. Since an iterated MiMC polynomial system is already Gröbner basis,
they proposed to run the FGLM algorithm twice to construct two univariate polynomials in
the key variable and then compute their GCD. This approach is obviously equivalent to the
standard two plain/ciphertext GCD attack on MiMC, only difference is that Albrecht et al.
did not consider the univariate polynomial construction to be for free. Note that Albrecht
et al.’s estimate can be refined by again utilizing the probabilistic FGLM algorithm as well
as Bariant et al.’s factoring technique.1 On the other hand, we will discuss in Example 5.3
that the joint polynomial system removes almost all superfluous solutions coming from
the algebraic closure of Fq. Hence, the complexity of running FGLM on the joint system
can be neglected after a Gröbner basis has been found. As Table 1 shows, MiMC achieves a
security level of at least 128 bits for the two plain/ciphertexts Gröbner basis computation
already for 50 rounds.

For MiMC-2n/n one utilizes a two branch Feistel network to encrypt two field elements
with one field element. As consequence, one can represent the left and the right branch
as univariate polynomials in the key variable of degrees 3r and 3r−1 respectively. So
we can again utilize the GCD to recover the key. In Proposition 4.7 we find a DRL
Gröbner basis for MiMC-2n/n when the output of the right branch is ignored. Moreover,
the univariate polynomials that represent the left and the right branch are again present
in the LEX Gröbner basis. So once again, we can refine the complexity of this attack via
the probabilistic FGLM algorithm and Bariant et al.’s factoring algorithm.1 On the other
hand, similar to the two plain/ciphertext attack on MiMC the Gröbner basis computation
on MiMC-2n/n removes almost all superfluous solutions coming from the algebraic closure
of Fq, see Example 5.4. So the complexity of term order conversion via FGLM can again
be ignored. As Table 1 shows, MiMC-2n/n achieves a security level of at least 128 bits
against Gröbner basis computations already for 50 rounds.

For Feistel-MiMC-Hash one utilizes the MiMC-2n/n permutation in sponge mode, though
for the hash function we have only one generic choice for the second polynomial to mount
a GCD attack: the field equation. Again, the complexity estimate of the GCD attack can
be refined via the probabilistic FGLM algorithm and Bariant et al.’s factoring method.
As Table 1 shows, Feistel-MiMC-Hash also achieves a security level of at least 128 bits for
various field sizes with respect to the Gröbner basis computations with the field equation.

Hades is a family of Substitution-Permutation Network (SPN) ciphers targeted for
MPC applications. In the Hades proposal the designers analyze the keyed iterated
polynomial system for the resistance against Gröbner basis attacks [GLR+19, §E.3].2 We
revisit this modeling, in particular we prove in Theorem 6.2 that for a single plain/ciphertext
pair one can produce a Hades DRL Gröbner basis via affine transformations. Moreover,

1 In Table 1 we still use the standard GCD complexity estimate, since the MiMC two plain/ciphertext
and the MiMC-2n/n Gröbner basis attacks do not depend on the underlying field while Bariant et al.’s
method does.

2The keyed iterated polynomial model is called second strategy in the Hades proposal.
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any DRL Gröbner basis immediately implies being in generic coordinates (Corollary 3.3),
so after the affine transformations we have proven complexity estimates for any Gröbner
basis computation on Hades. The Hades designers on the other hand had to assume that
the polynomial systems are generic in the sense of Fröberg’s conjecture [Frö85, Par10] to
derive complexity estimates. Moreover, with the property of being in generic coordinates
we can reproduce the complexity estimate of the designers as minimal baseline for all DRL
Gröbner basis computations on the iterated polynomial model of Hades. Therefore, our
Gröbner basis complexity estimates coincide with the cryptanalysis of the Hades designers.
In [GLR+20, Table 1] round numbers for Hades proposed, the Hades parameters in
Table 1 are chosen so that every instance in [GLR+20, Table 1] exceeds at least one
instance in Table 1. As Table 1 shows, all proposed Hades instances achieve at least 128
bits of security with respect to Gröbner basis computations.

Finally, to the best of our knowledge the keyed iterated polynomial system has not been
considered for GMiMC in the literature before. The GMiMC designers only considered models
where the encryption function is represented in n key variables for known plain/ciphertext
pairs. Moreover, they assumed that GMiMC polynomial systems behave like generic poly-
nomial systems in the sense of Fröberg’s conjecture [Frö85, Par10] to derive complexity
estimates. For GMiMC with contracting round function (crf) they derived the estimate(

n+3r−2·n+2

3r−2·n+2

)ω
[AGP+19a, §4.1.2], and for GMiMC with expanding round function (erf) they

derived the estimate
(

n+3r−n

3r−n

)ω
[AGP+19b, §C.3] for Gröbner basis computations. On

the other hand, in Example 6.6 we will see that GMiMCcrf and GMiMCerf share the same
complexity estimate for the keyed iterated polynomial system, provided that they are
in generic coordinates. In particular, the complexity estimate does not depend on the
number of branches n. Moreover, being in generic coordinates for GMiMC can be verified by
computing the rank of a linear equation system, see Theorem 6.5. As Table 1 shows, 50
rounds are sufficient to achieve at least 128 bits of security for GMiMC.

Table 1: Comparison of Gröbner basis complexity estimates for MiMC, MiMC-2n/n, Feistel-
MiMC-Hash, Hades and GMiMC with established cryptanalysis. With r we denote the
number of rounds of a primitive, with n the number of blocks, with d the degree of a
power permutation and with m the number of samples for an attack. The total number of
Hades rounds is given by r = 2 · rf + rp. For all complexities the linear algebra constant
ω = 2 has been used.

Established Cryptanalysis

Primitive Parameters
Gröbner Basis

Complexity
(bits)

Complexity (bits) Attack Strategy

MiMC

log2 (q) = 64, r = 50 337.5 164.1 Probabilistic FGLM + Efficient factoring
log2 (q) = 128, r = 81 527.4 263.1 Probabilistic FGLM + Efficient factoring
log2 (q) = 256, r = 162 1156.2 520.9 Probabilistic FGLM + Efficient factoring

r = 10, m = 2 99.4 36.0 Probabilistic FGLM + GCD
r = 50, m = 2 538.1 165.1 Probabilistic FGLM + GCD

MiMC-2n/n
r = 10 48.6 35.0 Probabilistic FGLM + GCD
r = 50 266.7 164.1 Probabilistic FGLM + GCD

Feistel-MiMC-Hash
log2 (q) = 64, r = 51 337.5 167.3 Probabilistic FGLM + Efficient factoring
log2 (q) = 128, r = 82 527.4 266.2 Probabilistic FGLM + Efficient factoring
log2 (q) = 256, r = 163 1156.2 524.0 Probabilistic FGLM + Efficient factoring

Hades

rf = 3, rp = 13, n = 2, d = 3 130.0 130.0 Gröbner basis computation
rf = 4, rp = 10, n = 2, d = 3 135.4 135.4 Gröbner basis computation
rf = 5, rp = 5, n = 2, d = 3 130.0 130.0 Gröbner basis computation
rf = 3, rp = 10, n = 2, d = 5 149.0 149.0 Gröbner basis computation
rf = 4, rp = 10, n = 2, d = 5 177.5 177.5 Gröbner basis computation
rf = 5, rp = 4, n = 2, d = 5 163.3 163.3 Gröbner basis computation

GMiMC

r = 10, n = 3, d = 3 48.6 crf: 51.9, erf: 61.4 Gröbner basis computation
r = 25, n = 3, d = 3 130.0 crf: 194.5, erf: 204.0 Gröbner basis computation
r = 50, n = 3, d = 3 266.7 crf: 432.3, erf: 441.8 Gröbner basis computation
r = 10, n = 3, d = 5 63.5 crf: 78.4, erf: 92.4 Gröbner basis computation
r = 25, n = 3, d = 5 170.5 crf: 287.4, erf: 301.3 Gröbner basis computation
r = 50, n = 3, d = 5 350.0 crf: 635.7, erf: 649.6 Gröbner basis computation
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1.1.2 Organization of the Paper

In Section 2 we will formally introduce univariate keyed iterated polynomial systems
(Section 2.1), the MiMC cipher, Feistel-2n/n networks, and recall required definitions and
results for the solving degree (Section 2.2) and generic coordinates (Section 2.3). In
Section 3 we prove that being in generic coordinates is equivalent for the ideal of the
highest degree components to be zero-dimensional (Theorem 3.2). Moreover, we prove that
a large class of univariate keyed iterated polynomial systems, including MiMC polynomial
systems, is already in generic coordinates (Theorem 3.7). As preparation for our bounds
on the solving degree we study in Section 4 properties of the lexicographic Gröbner basis of
the univariate keyed iterated polynomial system and Feistel-2n/n. In Section 5 we finally
provide upper bounds for the solving degree of various attacks on MiMC and MiMC-2n/n.
In Section 6 we extend our framework to multivariate ciphers, in particular we investigate
when the keyed iterated polynomial systems for Substitution-Permutation and generalized
Feistel Networks are in generic coordinates. With our formalism we can then demonstrate
that the security analysis of Hades and GMiMC against Gröbner basis attacks is indeed
mathematically sound. In Figure 1 we provide a directed graph to illustrate the derivation
of the main results of the first part of the paper.

Definition 2.3:
Solving degree

Definition 2.5:
Generic coordinates

Theorem 2.8:
Solving degree & regularity

Corollary 2.9:
Macaulay bound

Section 2.3.1:
Caminata-Gorla technique

Section 3: Characterization
of generic coordinates

Section 5:
upper bounds for attacks
on MiMC

Section 4: LEX & DRL Gröbner
bases of keyed iterated polynomial
systems

Section 6.2: Feistel cipher
in generic coordinates

Section 6.1: SPN cipher
in generic coordinates

Example 6.6: GMiMCExample 6.3: Hades

Section 2: Solving degree & generic coordinates

Section 6: Multivariate ciphers
in generic coordinates

Figure 1: Graphical overview for the development of solving degree upper bounds.

In Section 7 we investigate polynomials with degree falls and the last fall degree. In
particular, we establish that for a polynomial system in generic coordinates the last fall
degree is equal to the satiety (Theorem 7.5). In Section 8 we construct polynomials
with degree falls for the keyed iterated polynomial systems for univariate ciphers and
Feistel-2n/n. Finally, this yields regularity lower bounds for various attacks on MiMC,
Feistel-MiMC and Feistel-MiMC-Hash. In Figure 2 we provide a directed graph to illustrate
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the derivation of the main results of the second part of the paper.

Definition 7.2:
Last fall degree

Definition 7.1:
Satiety

Theorem 7.5:
Last fall degree & satiety

Section 2.3:
Generic coordinates

Section 8: Last fall degree lower
bounds for attacks on MiMC

Section 4: LEX & DRL Gröbner
bases of keyed iterated polynomial
systems

Section 7: Satiety & polynomials
with degree falls

Figure 2: Graphical overview for the development of satiety lower bounds.

Finally, we finish with a short discussion in Section 9.

2 Preliminaries
By K we will always denote a field, by K̄ its algebraic closure, and we abbreviate the
polynomial ring P = K[x1, . . . , xn] if the base field and the number of variables are clear
from context. If I ⊂ K[x1, . . . , xn] is an ideal, then we denote the zero locus of I over K̄
as

Z (I) =
{

p ∈ K̄n | f(p) = 0, ∀f ∈ I
}

⊂ An
K̄

. (7)

If moreover I is homogeneous, then we denote the projective zero locus over K̄ by
Z+ (I) ⊂ Pn−1

K̄
.

Let f ∈ K[x1, . . . , xn] be a polynomial, and let x0 be an additional variable, we call

fhom(x0, . . . , xn) = x
deg(f)
0 · f

(
x1

x0
, . . . ,

xn

x0

)
∈ K[x0, . . . , xn] (8)

the homogenization of f with respect to x0, and analog for the homogenization of ideals
Ihom =

{
fhom | f ∈ I

}
and finite systems of polynomials Fhom =

{
fhom

1 , . . . , fhom
m

}
. Let

F ∈ K[x0, . . . , xn] be a homogeneous polynomial, we call

F deh(x1, . . . , xn) = F (1, x1, . . . , xn) ∈ K[x1, . . . , xn] (9)

the dehomogenization of F with respect to x0, and analog for the dehomogenization of
homogeneous ideals Ideh =

{
fdeh | f ∈ I

}
. Further, we will always assume that we can

extend a term order on K[x1, . . . , xn] to a term order on K[x0, . . . , xn] according to [CG21,
Definition 8].

For a homogeneous ideal I ⊂ P and an integer d ≥ 0 we denote

Id = {f ∈ I | deg (f) = d, f homogeneous} , (10)

and for inhomogeneous ideals I ⊂ P we denote

I≤d = {f ∈ I | deg (f) ≤ d} . (11)

For a term order > and an ideal I ⊂ P we denote with

in>(I) = {LT>(f) | f ∈ I} (12)
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the initial ideal of I, i.e. the ideal of leading terms of I, with respect to >.
Every polynomial f ∈ [x1, . . . , xn] can be written as f = fd + fd−1 + . . . + f0, where fi

is homogeneous of degree i. We denote the highest degree component fd of f with f top,
and analog we denote F top =

{
f top

1 , . . . , f top
m

}
.

Let I, J ⊂ K[x1, . . . , xn] be ideals, then we denote with

I : J = {f ∈ K[x1, . . . , xn] | ∀g ∈ J : f · g ∈ I} (13)

the usual ideal quotient, and with

I : J∞ =
⋃
i≥1

I : J i (14)

the saturation of I with respect to J .
Let I,m ∈ K[x0, . . . , xn] be homogeneous ideals where m = (x0, . . . , xn), then we call

Isat = I : m∞ the saturation of I.
Let > be a term order on P , we recall the definition of Buchberger’s S-polynomial

of f, g ∈ P with respect to > (cf. [CLO15, Chapter 2 §6 Definition 4]). Denote with
xγ = lcm

(
LT>(f), LT>(g)

)
, then the S-polynomial is defined as

S>(f, g) = xγ

LT>(f) · f − xγ

LT>(g) · g. (15)

We will often encounter the lexicographic and the degree reverse lexicographic term
order which we will abbreviate as LEX and DRL respectively.

2.1 Keyed Iterated Polynomial Systems
A natural description of a univariate keyed function over a finite field is to write the
function as composition of low degree polynomials. This idea leads us to the general notion
of keyed iterated polynomial systems.

Definition 2.1 (Univariate keyed iterated polynomial system). Let K be a field, let
g1, . . . , gn ∈ K[x, y] be non-constant polynomials, and let p, c ∈ K be field elements which
will commonly be called plain/ciphertext pair. We say that f1, . . . , fn ∈ K[x1, . . . , xn−1, y]
is a univariate keyed iterated polynomial system, if the polynomials are of the form

f1 = g1(p, y) − x1,

f2 = g2(x1, y) − x2,

. . .

fn = gn(xn−1, y) − c.

Moreover, we require that
Z(f1, . . . , fn) ∩ Kn ̸= ∅.

Before we continue we discuss why the zero locus must contain K-valued points. Let
us for the moment replace p with the symbolic variable x and ignore c. Iteratively we
can now substitute f1, . . . , fn−1 into gn(xn−1, y), then we obtain a polynomial f in the
variables x and y. We can view f : K × K → K as a keyed function, where y is the key
variable. The intersection condition states that if f(p, y) = c, then there must exist y ∈ K
that satisfies the equation. I.e., all computations involving a Gröbner basis for f1, . . . , fn

are non-trivial, that is 1 /∈ (f1, . . . , fn).
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2.1.1 MiMC

Our main example of a univariate keyed iterated polynomial system is MiMC, an AO cipher
proposed in [AGR+16, §2.1]. It is based on the cubing map x 7→ x3 over finite fields. If
Fq is a field with q elements, then cubing induces a permutation if gcd (3, q − 1) = 1, see
[LN97, 7.8. Theorem]. Let k ∈ Fq denote the key, let r ∈ N be the number of rounds, and
let c1, . . . , cr ∈ Fq be round constants. Then the round function of MiMC is defined as

Fi,k(x) =
{

(x + k + ci)3, 1 ≤ i ≤ r − 1,

(x + k + cr)3 + k, i = r.
(16)

The MiMC cipher function is now defined as

F (x, k) = Fr,k ◦ · · · ◦ F1,k(x), (17)

which is a permutation for every fixed key k. Given a plain/ciphertext pair (p, c) ∈ F2
q it

is straight-forward to describe the univariate keyed iterated polynomial system IMiMC ⊂
Fq[x1, . . . , xr−1, y] for MiMC

(p + y + c1)3 − x1 = 0,

(xi−1 + y + ci)3 − xi = 0, 1 ≤ i ≤ r − 1, (18)
(xr−1 + y + cr)3 + y − c = 0.

It was first observed in [ACG+19] that for the DRL term order this system is already a
Gröbner basis. It is now straight-forward to compute that

dimFq

(
Fq[x1, . . . , xr−1, y]/IMiMC

)
= 3r. (19)

For all proposals of MiMC one has that at least r ≥ 60. Hence, using this Gröbner basis we
do not expect a successful key recovery with today’s computational capabilities.

2.1.2 Feistel-MiMC

With the Feistel network we can construct block ciphers with cubing as round function.
Note that a Feistel network induces a permutation irrespective of the size or characteristic
of the finite field Fq. A very special case is the Feistel-2n/n network which encrypts two
message blocks of size n with a key of size n. As previously, let Fq be a finite field, let
r be the number of rounds, let k ∈ Fq denote the key, and let c1, . . . , cr ∈ Fq be round
constants. Then the MiMC-2n/n [AGR+16, §2.1] round function is defined as

Fi,k

(
xL

xR

)
=


(

xR + (xL + k + ci)3

xL

)
, 1 ≤ i ≤ r − 1,(

xR + (xL + k + cr)3 + k
xL

)
, i = r.

(20)

Again the cipher is defined as iteration of the round functions with respect to the plaintext
variables

Fk (xL, xR) = Fr,k ◦ · · · ◦ F0,k (xL, xR) . (21)
Analog to MiMC we can model Feistel-MiMC with a “multivariate” system of keyed

iterated polynomials.

Definition 2.2 (Keyed iterated polynomial system for Feistel-2n/n). Let K be a field,
let g1, . . . , gn ∈ K[x, y] be non-constant polynomials, and let (pL, pR), (cL, cR) ∈ K2

be field elements which will commonly be called plain/ciphertext pair. We say that
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fL,1, fR,1, . . . , fL,n, fR,n ∈ K[xL,1, xR,1, . . . , xL,n−1, xR,n−1, y] is keyed iterated polynomial
system for Feistel-2n/n, if the polynomials are of the form

(
fL,i

fR,i

)
=



(
pR + g1(pL, y) − xL,1

pL − xR,1

)
, i = 1,(

xR,i−1 + gi(xL,i−1, y) − xL,i

xL,i−1 − xR,i

)
, 2 ≤ i ≤ n − 1(

xR,n−1 + gn(xL,n−1, y) − cL

xL,n−1 − cR

)
, i = n.

Moreover, we require that

Z (fL,1, fR,1, . . . , fL,n, fR,n) ∩ K2n−1 ̸= ∅.

2.2 Linear Algebra-Based Gröbner Basis Algorithms & the Solving
Degree

Let I ⊂ P = K[x1, . . . , xn] be an ideal, and let > be a term order on P . A fi-
nite basis G = {g1, . . . , gm} of I is said to be a >-Gröbner basis [Buc65] if in>(I) =(

LT>(g1), . . . , LT>(gm)
)
. For any term order > on P and any non-trivial ideal I a finite

>-Gröbner basis exists. For a general introduction to Gröbner bases we refer to [CLO15].
Today two classes of Gröbner basis algorithms are known: Buchberger’s algorithm and

linear algebra-based algorithms. In this paper we are only concerned with the latter. These
algorithms perform Gaussian elimination on the Macaulay matrices which under certain
conditions produces a Gröbner basis. This idea can be traced back to [Laz83], examples
for modern linear algebra-based algorithms are F4 [Fau99] and Matrix-F5 [Fau02].

The Macaulay matrices are defined as follows, let F = {f1, . . . , fm} ⊂ P be a system
of homogeneous polynomials and fix a term order >. The homogeneous Macaulay matrix
Md has columns indexed by monomials in Pd sorted from left to right with respect to >,
and the rows of Md are indexed by polynomials s · fi, where s ∈ P is a monomial such that
deg (s · fi) = d. The entry of the row s · fi at the column t is then simply the coefficient
of the polynomial s · fi at the monomial t. For an inhomogeneous system we replace Md

with M≤d and similar the degree equality with an inequality. By performing Gaussian
elimination on M0, . . . , Md respectively M≤d for a large enough value of d one produces a
>-Gröbner basis for F .

Obviously, the sizes of the Macaulay matrices Md and M≤d depend on d, therefore
following the idea of [DS13] we define the solving degree as follows.

Definition 2.3 (Solving degree, [CG21, Definition 6]). Let F = {f1, . . . , fm} ⊂ K[x1, . . . ,
xn] and let > be a term order. The solving degree of F is the least degree d such that
Gaussian elimination on the Macaulay matrix M≤d produces a Gröbner basis of F with
respect to >. We denote it by sd>(F).

If F is homogeneous, we consider the homogeneous Macaulay matrix Md and let the
solving degree of F be the least degree d such that Gaussian elimination on M0, . . . , Md

produces a Gröbner basis of F with respect to >.

Algorithms like F4/5 perform Gaussian elimination on the Macaulay matrix for in-
creasing values of d, such an algorithm needs a stopping criterion to decide whether a
Gröbner basis has already been found. Algorithms like the method we described perform
Gaussian elimination on a single matrix M≤d for a large enough value of d. For this class
of algorithms one would like to find sharp bounds on d via the solving degree to keep the
Macaulay matrix as small as possible. Nevertheless, for both classes of algorithms one may
choose to artificially stop a computation in the degree corresponding to the solving degree.
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Due to this reason we consider the solving degree as a complexity measure of Gröbner
basis computations and do not discuss termination criteria further.

Let F = {f1, . . . , fm} ⊂ P be a system of polynomials, and let Fhom be its homoge-
nization in P [x0]. One has that

(
Fhom) ⊆ (F)hom, and it is easy to construct examples

for which the inclusion is strict. Nevertheless, it was demonstrated in [CG21, Theorem 7]
that for the DRL term order one still has that

sdDRL (F) ≤ sdDRL

(
Fhom) . (22)

2.2.1 Complexity Estimates via the Solving Degree

Storjohann [Sto00, §2.2] has shown that a reduced row echelon form of a matrix A ∈ KM×N ,
where K is a field and r = rank (A), can be computed in O

(
M · N · rω−2) field operations,

where 2 ≤ ω < 2.37286 is a linear algebra constant [AW21].
Let F = {f1, . . . , fm} ⊂ P = K[x1, . . . , xn] be a system of homogeneous polynomials.

It is well-known that the number of monomials in P of degree d is given by the binomial
coefficient

N(n, d) =
(

n + d − 1
d

)
. (23)

So the Macaulay matrix Md has N(n, d) many columns and N
(
n, d − deg(f1)

)
+ . . . +

N
(
n, d − deg(fm)

)
many rows, hence we can upper bound the size of Md by m · N(n, d) ×

N(n, d). Overall we can estimate the complexity of Gaussian elimination on the Macaulay
matrices M0, . . . , Md by

O
(

m · d ·
(

n + d − 1
d

)ω)
. (24)

Now let F ⊂ P be an inhomogeneous polynomial system and let Fhom ⊂ P [x0] be its
homogenization. If G is a DRL Gröbner basis of Fhom, then Gdeh is a DRL Gröbner basis
of F , see [KR05, Proposition 4.3.18]. Therefore, we can also consider Equation (24) as
complexity estimate for inhomogeneous Gröbner basis computations.

For ease of numerical computation we approximate the binomial coefficient with(
n

k

)
≈
√

n

π · k · (n − k) · 2n·H2(k/n), (25)

where H2(p) = −p · log2 (p) − (1 − p) · log2 (1 − p) denotes the binary entropy (cf. [CJ06,
Lemma 17.5.1]). Moreover, since in general N(n, d) ≫ m · d we absorb the factor m · d
into the implied constant. Therefore, for solving degree d and number of variables n, we
estimate the bit complexity κ of a Gröbner basis attack via

κ ≈ ω ·
(

1
2 · log2

(
n + d − 1

π · d · (n − 1)

)
+ (n + d − 1) · H2

(
d

n + d − 1

))
. (26)

2.3 Solving Degree & Castelnuovo-Mumford Regularity
The mathematical foundation to estimate the solving degree via the Macaulay bound
draws heavily from commutative and homological algebra. For readers unfamiliar with the
latter subject we point out that Definition 2.5, the notion of generic coordinates, is the
key mathematical technique in this paper. Although this notion dates at least back to the
influential work of Bayer & Stillman [BS87], it was just recently revealed by Caminata
& Gorla [CG21] that for the DRL term order the solving degree of a polynomial system
in generic coordinates can always be upper bounded by the Macaulay bound. Although
the theory requires heavy mathematical machinery, we will discuss in Section 2.3.1 that
being in generic coordinates can be verified with rather simple arithmetic operations. For
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a concise treatment and as reference point for interested readers we now introduce the
mathematical details that serve as foundation of our theory.

The Castelnuovo-Mumford regularity is a well-established invariant from commutative
algebra and algebraic geometry. We recap the definition from [Eis05, Chapter 4]. Let
P = K[x0, . . . , xn] be the polynomial ring and let

F : · · · → Fi → Fi−1 → · · · (27)

be a graded complex of free P -modules, where Fi =
∑

j P (−ai,j).

Definition 2.4. The Castelnuovo-Mumford regularity of F is defined as

reg (F) = sup
i

ai,j − i.

By Hilbert’s Syzygy theorem [Eis05, Theorem 1.1] any finitely graded P -module has a
finite free graded resolution. I.e., for every homogeneous ideal I ⊂ P the regularity of I is
computable.

Before we can introduce the connection between Castelnuovo-Mumford regularity and
solving degree we must introduce the notion of generic coordinates from [BS87]. Let I ⊂ P
be an ideal, and let f ∈ P . We use the shorthand notation “f ∤ 0 mod I” for expressing
that f is not a zero-divisor on P/I.

Definition 2.5 ([CG21, CG22, Definition 5]). Let K be an infinite field. Let I ⊂ K[x0, . . . ,
xn] be a homogeneous ideal with |Z+(I)| < ∞. We say that I is in generic coordinates if
either |Z+(I)| = 0 or x0 ∤ 0 mod Isat.

Let K be any field, and let K ⊂ L be an infinite field extension. I is in generic
coordinates over K if I ⊗K L[x0, . . . , xn] ⊂ L[x0, . . . , xn] is in generic coordinates.

In general, computing the saturation of an ideal is a difficult problem on its own,
but if a homogeneous ideal is in generic coordinates, then the saturation is exactly the
homogenization of its dehomogenization.

Lemma 2.6. Let K be an infinite field, and let P = K[x1, . . . , xn]. Let I ⊂ P [x0] be a
homogeneous ideal with |Z+(I)| ≠ 0. Then I is in generic coordinates if and only if

Isat =
(
Ideh)hom

.

Proof. “⇒”: Let F ∈ Isat = I : m∞, then there exists an N ≥ 0 such that xN
0 · F ∈ I. On

the other hand by [KR05, Proposition 4.3.5] we have that
(
Ideh)hom = I : x∞

0 , so also
F ∈

(
Ideh)hom.

By our assumption |Z+(I)| ≠ 0 and contraposition of the projective weak Nullstellensatz
[CLO15, Chapter 8 §3 Theorem 8], we have that Ideh ̸= (1). Now let F ∈

(
Ideh)hom, since

F deh /∈ K then also by [KR05, Proposition 4.3.5] there must exist an N ≥ 0 such that
xN

0 · F ∈ I. By definition I ⊂ Isat so also xN
0 · F ∈ Isat. By assumption x0 ∤ 0 mod Isat,

hence we must already have that xN−1
0 · F ∈ J sat. Iterating this argument we conclude

that F ∈ J sat.
“⇐”: We have the ideal equality Isat =

(
Ideh)hom = I : x∞

0 , so

Isat : x0 = (I : x∞
0 ) : x0 = I : x∞

0 = Isat.

So if x0 · f ∈ Isat, then already f ∈ Isat which implies x0 ∤ 0 mod Isat.

We provide a simple counterexample to the ideal equality when the ideal is not in
generic coordinates.
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Example 2.7. Let K be a field and let I =
(
x2, y · z

)
⊂ K[x, y, z] be an ideal where we

consider z as the homogenization variable. Then Isat = I but I : z∞ = (x2, y).
Let us now present the connection between the solving degree and the Castelnuovo-

Mumford regularity.
Theorem 2.8 ([CG21, Theorem 9, 10]). Let K be an algebraically closed field, and let
F = {f1, . . . , fm} ⊂ K[x1, . . . , xn] be an inhomogeneous polynomial system such that(
Fhom) is in generic coordinates. Then

sdDRL (F) ≤ reg
(
Fhom) .

By a classical result one can always bound the regularity of an ideal via the Macaulay
bound (see [Cha07, Theorem 1.12.4]).
Corollary 2.9 (Macaulay bound, [Laz83, Theorem 2], [CG21, Corollary 2]). Consider a
system of equations F = {f1, . . . , fm} ⊂ K[x1, . . . , xn] with di = deg (fi) and d1 ≥ . . . ≥
dm. Set l = min{n + 1, m}. Assume that

∣∣Z+
(
Fhom)∣∣ < ∞ and that

(
F hom) is in generic

coordinates over K̄. Then

sdDRL (F) ≤ reg
(
Fhom) ≤ d1 + . . . + dl − l + 1.

In particular, if m > n and d = d1, then

sdDRL (F) ≤ (n + 1) · (d − 1) + 1.

A sufficient condition for a polynomial system to be in generic coordinates is that the
system contains the field equations or their fake Weil descent [CG21, Theorem 11].

Via inclusion of the field equations we obtain the following solving degree bound for
MiMC.
Example 2.10 (MiMC and all field equations I). Let MiMC be defined over Fq, and let r be
the number of rounds. Denote the ideal of all field equations by F , and the MiMC ideal
with IMiMC. Then by [CG21, Theorem 11] the solving degree is bounded by

sdDRL (IMiMC + F ) ≤ r · (q − 1) + 3.

However, this bound is very unsatisfying, because it only takes the field equations
into account except for one summand. On the other hand, it suffices to add only the
field equation for the key variable to IMiMC to restrict all solutions to Fr

q. However, this
modification is not covered by [CG21, Theorem 11].

2.3.1 The Caminata-Gorla Technique

Since we are going to emulate the proof of [CG21, Theorem 11] several times in this
paper, we recapitulate its main argument. By [BS87, Theorem 2.4] a homogeneous ideal
I ⊂ P = K̄[x0, . . . , xn] with dim (P/I) = 1 and |Z+(I)| < ∞ is in generic coordinates if
and only if inDRL(I) is in generic coordinates. Assume that

Z+
(

inDRL(I)
)

∩ Z+ (x0) = Z+

((
inDRL(I), x0

))
= ∅, (28)

then by the projective weak Nullstellensatz [CLO15, Chapter 8 §3 Theorem 8] there
exists some r ≥ 1 such that mr = (x0, . . . , xn)r ⊂

(
inDRL(I), x0

)
. This also implies

that for every 1 ≤ i ≤ n there exists some ri ≥ 1 such that xri
i ∈ inDRL(I).3 Now

suppose that x0 · f ∈ inDRL(I)sat, then for every g ∈ m there exists N ≥ 1 such that
gN · (x0 · f) ∈ inDRL(I). Let g be a monomial, we do a case distinction.

3Let B be a basis of inDRL(I) and B′ be basis of
(

inDRL(I), x0
)

. If mr ⊂
(

inDRL(I), x0
)

for some
r ≥ 1, then for all 0 ≤ i ≤ n there exists a smallest integer ri ∈ Z such that x

ri
i ∈ B′. Observe that a

monomial m ∈ B is also an element of B′ if x0 ∤ m. Conversely, any basis element from B′ different to x0
must come from B.
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• For gcd (g, x0) = 1, we increase the power of g until xri
i | gM · f , for some 1 ≤ i ≤ n

and M ≥ 1, hence gM · f ∈ inDRL(I).

• For gcd (g, x0) ̸= 1, we use the factorization gN+1 = g
x0

· gN · x0, hence gN+1 · f ∈
inDRL(I).

Now let g ∈ m be a polynomial, then we can find N ≥ 0 big enough so that for every
monomial present in g one of the two previous cases applies. So if x0·f ∈ inDRL(I)sat we also
have that f ∈ inDRL(I)sat. Hence, x0 ∤ 0 mod inDRL(I)sat and by [BS87, Theorem 2.4]
also x0 ∤ 0 mod Isat.

Finally, in practice Equation (28) can efficiently be checked with the following ideal
equality [BS87, Lemma 2.2]

inDRL (I, x0) =
(

inDRL(I), x0
)
. (29)

3 Characterization of Polynomial Systems in Generic Coor-
dinates

Let F be a polynomial system which contains equations xdi
i − pi(x1, . . . , xn), where

deg (pi) < di, for all i, then the Caminata-Gorla technique implies that
(
Fhom) is in

generic coordinates, see [CG21, Remark 13]. Though, the polynomial systems of our
interest are not of this form in general, e.g. the keyed iterated polynomial system for MiMC.
However, it is already implicit in the Caminata-Gorla technique that for a homogenized
polynomial system to be in generic coordinates the associated ideal of the highest degree
components has to be zero-dimensional. If this is the case, then we can indeed find
equations xdi

i −pi(x1, . . . , xn) in (F) that lift to xdi
i −x

di−deg(pi)
0 ·pi(x1, . . . , xn) in

(
Fhom)

which implies genericity.
To formally prove this observation we need a lemma.

Lemma 3.1. Let K be a field, and let I ⊂ K[x0, . . . , xn] be a radical monomial ideal such
that (x1, . . . , xn) ⊂ I ⊂ (x0, . . . , xn). Then either I = (x1, . . . , xn) or I = (x0, . . . , xn).

Proof. Let P = K[x1, . . . , xn], by the isomorphism theorems for rings we have that

P [x0]/I ∼=
(
P [x0]/(x1, . . . , xn)

)
/
(
I/(x1, . . . , xn)

) ∼= K[x0]/
(
I/(x1, . . . , xn)

)
.

Moreover, if I/(x1, . . . , xn) ̸= (0), then I/(x1, . . . , xn) = (f), where f ∈ K[x0]. I is radical,
so f has to be reduced. Since I is also a monomial ideal this implies that f = x0.

Now we can prove the following characterization of generic coordinates.

Theorem 3.2. Let K be an algebraically closed field, and let F = {f1, . . . , fm} ⊂
K[x1, . . . , xn] be a polynomial system such that

(i) (F) ̸= (1), and

(ii) dim (F) = 0.

Then the following are equivalent.

(1)
(
Fhom) is in generic coordinates.

(2)
√

F top = (x1, . . . , xn).

(3) (F top) is zero-dimensional in K[x1, . . . , xn].

(4) For every 1 ≤ i ≤ n there exists di ∈ Z≥1 such that xdi
i ∈ inDRL

(
Fhom).
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Proof. “(1) ⇒ (4)”: Let
(
Fhom) be in generic coordinates and suppose that Z+

(
Fhom) = ∅.

Then by the projective weak Nullstellensatz [CLO15, Chapter 8 §3 Theorem 8] xk
0 ∈

(
Fhom),

where k ≥ 1. In particular, this implies that 1 ∈
(
Fhom)deh = (F), a contradiction to

(F) ̸= (1). So
∣∣Z+

(
Fhom)∣∣ ̸= 0, then by Lemma 2.6 we have that

(
Fhom)sat =

((
Fhom)deh)hom

= (F)hom
.

By assumption (F) is zero-dimensional, so for every 1 ≤ i ≤ n there exists f ∈ (F)
such that LMDRL(f) = xd

i , where d > 0, see [Kem11, Theorem 5.11] and [CLO15,
Chapter 5 §3 Theorem 6]. Therefore, fhom ∈

(
Fhom)sat. By definition of the saturation,

for every s ∈ m there exists an integer N ≥ 0 such that sN · fhom ∈
(
Fhom), thus for

s = xi also xN
i · fhom ∈

(
Fhom). Obviously, we have that LMDRL

(
xN

i · fhom) = xN+d
i .

“(4) ⇒ (3)”: By assumption, for every 1 ≤ i ≤ n there exists f ∈
(
Fhom) such that

LMDRL(f) = xdi
i , where di > 0. Without loss of generality we can assume that f is

homogeneous, so we can represent it as

f =
m∑

j=1
gi · fhom

i ,

where gi ∈ K[x0, . . . , xn] is homogeneous for all i. Now we split the gi’s and fi’s as

fhom
i = f top

i + x0 · f̃i,

gi = gtop
i + x0 · g̃i,

where f̃i, g̃i ∈ K[x0, . . . , xn] are homogeneous and if f̃i, gi, g̃i ̸= 0, then

deg
(
fhom

i

)
= deg

(
f top

i

)
= deg

(
x0 · f̃i

)
,

deg (gi) = deg
(

gtop
i

)
= deg (x0 · g̃i) ,

deg (gi) = deg (f) − deg (fi) .

We can now further decompose

f =
m∑

j=1

(
gtop

i + x0 · g̃i

)
·
(

f top
i + x0 · f̃i

)
=

m∑
j=1

gtop
i · f top

i + x0 · f̃ , (30)

where deg
(
f̃
)

= deg (f) − 1. Since
∑m

j=1 gtop
i · f top

i >DRL x0 · f̃ we must have that
LMDRL (f) = LMDRL

(∑m
j=1 gtop

i · f top
i

)
. We can also decompose the left-hand side of

the last equation f = f top + x0 · f̂ , and by rearranging we yield thatf top −
m∑

j=1
gtop

i · f top
i


︸ ︷︷ ︸

∈K[x1,...,xn]

= x0 ·
(

f̃ − f̂
)

.

The only element in K[x1, . . . , xn] divisible by x0 is 0, so we have constructed an element
in (F top) with leading monomial xdi

i . Again by [Kem11, Theorem 5.11] and [CLO15,
Chapter 5 §3 Theorem 6] this implies zero-dimensionality of (F top).

“(3) ⇒ (4)”: Suppose (F top) is zero-dimensional. For the claim we can work through
the arguments of the previous claim in a backwards manner. Since (F top) is homogeneous
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and zero-dimensional we can find f top =
∑m

j=1 gtop
i · f top

i , where gtop
i homogeneous,

such that LMDRL (f top) = xdi
i , where di > 0. With Equation (30) we can lift this

decomposition (with g̃i = 0) to
(
Fhom). Now let s, t ∈ K[x0, . . . , xn] be monomials such

that deg (s) = deg (t) and x0 ∤ s and x0 | t. For compatibility with homogenization we
have set x0 as least variable with respect to DRL, this immediately implies that s >DRL t
and the claim follows.

“(2) ⇔ (3)”: This is just a reformulation of the projective weak Nullstellensatz [CLO15,
Chapter 8 §3 Theorem 8], [CLO15, Chapter 5 §3 Theorem 6] and [Kem11, Theorem 5.11].

“(2) ⇒ (1)”: Assume that
√

F top = (x1, . . . , xn) in K[x1, . . . , xn]. To apply [BS87,
Theorem 2.4] in the Caminata-Gorla technique (Section 2.3.1) we have to show that
dim

(
Fhom) = 1. By the equivalence of (2) and (4) we know that

(x1, . . . , xn) ⊂
√

inDRL (Fhom).

So by Lemma 3.1 either
√

inDRL (Fhom) = (x1, . . . , xn) or
√

inDRL (Fhom) = (x0, . . . , xn).
Assume the latter, then there exists a homogeneous f ∈

(
Fhom) such that LMDRL(f) = xd

0,
where d > 0. Since x0 is the least variable with respect to DRL this already implies
that f = xd

0. Thus, 1 ∈
(
Fhom)deh = (F), a contradiction to the non-triviality of F .

So
√

inDRL (Fhom) = (x1, . . . , xn). Note that this also implies that Z+
(
Fhom) ̸= ∅

by a contraposition of the equivalence in the projective weak Nullstellensatz [CLO15,
Chapter 8 §3 Theorem 3]. It is well-known that

(
Fhom) and inDRL

(
Fhom) have the same

affine Hilbert function, see [CLO15, Chapter 9 §3 Proposition 4]. Moreover, for any ideal
I ⊂ K[x0, . . . , xn] the affine Hilbert polynomials of I and

√
I have the same degree, see

[CLO15, Chapter 9 §3 Proposition 6]. Since dimension of an affine ideal is equal to the
degree of the affine Hilbert polynomial, see [Kem11, Theorem 11.13], the two previous
observations imply that

dim
(
Fhom) = dim

(
inDRL

(
Fhom)) = dim

(√
inDRL

(
Fhom

))
= dim (x1, . . . , xn) = 1

in K[x0, . . . , xn]. Also, the dimension of an affine variety Z(I), where I ⊂ K[x0, . . . , xn],
is defined as the degree of the affine Hilbert polynomial of I, see [CLO15, Chapter 9 §3]. If
I is in addition homogeneous and Z+(I) ̸= ∅, then by [CLO15, Chapter 9 §3 Theorem 12]
we have for the dimension of the projective variety Z+(I) that

dim
(
Z+(I)

)
= dim

(
Z(I)

)
− 1 = dim(I) − 1.

Combining, all our previous observations we yield that dim
(

Z+
(
Fhom)) = 0, and it is

well-known that zero-dimensional projective varieties have only finitely many points, i.e.∣∣Z+
(
Fhom)∣∣ < ∞, see [CLO15, Chapter 9 §4 Proposition 6]. To apply the Caminata-Gorla

technique (Section 2.3.1) it is left to show that Z+

(
inDRL

(
Fhom), x0

)
= ∅. Note that(

Fhom, x0
)

=
(
Fhom, x0

)
=
(
F top, x0

)
,

so by [BS87, Lemma 2.2](
inDRL

(
Fhom), x0

)
= inDRL

(
Fhom, x0

)
= inDRL

(
F top, x0

)
=
(

inDRL

(
F top), x0

)
.

Finally, by our initial assumption and the projective weak Nullstellensatz [CLO15, Chap-
ter 8 §3 Theorem 3] we have

Z+

(
inDRL

(
Fhom), x0

)
= Z+

(
inDRL

(
F top), x0

)
= ∅.

So we can apply the Caminata-Gorla technique (Section 2.3.1) to deduce that x0 ∤ 0
mod

(
Fhom)sat.
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As consequence, we can conclude that every zero-dimensional affine polynomial system
has a set of generators that is in generic coordinates.

Corollary 3.3. Let K be an algebraically closed field, and let F = {f1, . . . , fm} ⊂
K[x1, . . . , xn] be a polynomial system such that

(i) (F) ̸= (1), and

(ii) dim (F) = 0.

For every DRL Gröbner basis G ⊂ (F) the ideal (Ghom) is in generic coordinates.

Another quantity that is often studied in the Gröbner basis complexity literature is
the so-called degree of regularity of a polynomial system.

Definition 3.4 (Degree of regularity, [BFS04, Definition 4]). Let K be a field, and let
F ⊂ P = K[x1, . . . , xn]. Assume that (F top)d = Pd for some integer d ≥ 0. The degree of
regularity is defined as

dreg (F) = min
{

d ≥ 0
∣∣ (F top)

d
= Pd

}
.

It follows from the projective weak Nullstellensatz [CLO15, Chapter 8 §3 Theorem 8]
and [Kem11, Theorem 5.11] that dreg (F) < ∞ is equivalent to dim (F top) = 0.

Corollary 3.5. Let K be an algebraically closed field, and let F = {f1, . . . , fm} ⊂
K[x1, . . . , xn] be a polynomial system such that

(i) (F) ̸= (1), and

(ii) dim (F) = 0.

Then
(
Fhom) is in generic coordinates if and only if dreg (F) < ∞.

Theorem 3.2 also significantly simplifies application of the Caminata-Gorla technique.
For an inhomogeneous polynomial system F ⊂ K[x1, . . . , xn] we can verify Theorem 3.2
(2) as follows.

(1) Homogenize F .

(2) Extract the highest degree components via F top = Fhom mod (x0).

(3) For x1, . . . , xn, construct a polynomial f ∈
√

F top such that f = xd
i , where d > 0.

Then replace F top by F top mod (xi).

Remark 3.6. The notion of generic coordinates is not the only genericity notion for
polynomial respectively monomial ideals. Other worthwhile mentioning notions are being in
quasi-stable position [HSS18, Definition 3.1] and Noether position [HSS18, Definition 4.1].
Let F ⊂ K[x1, . . . , xn] be such that Fhom is in generic coordinates. Then, by the proof of
Theorem 3.2 we have that dim

(
Fhom) = 1. It follows from Lemma 2.6 that being in generic

coordinates coincides with being in quasi-stable position [HSS18, Proposition 3.2] and
Noether position [BG01, Lemma 4.1] in dimension 1. For a survey of different genericity
notions and their relations we refer to [HSS18].

Utilizing Theorem 3.2 we can finally provide an elementary proof that a keyed iterated
polynomial system is in generic coordinates.

Theorem 3.7. Let K be an algebraically closed field, and let P = K[x1, . . . , xn−1, y]. Let
F = {f1, . . . , fn} ⊂ P be a univariate keyed iterated system of polynomials such that

(i) di = deg (fi) ≥ 2 for all 1 ≤ i ≤ n, and
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(ii) fi has the monomial xdi
i−1 for all 2 ≤ i ≤ n.

Then every non-trivial homogeneous ideal I ⊂ P [x0] with Z+ (I) ̸= ∅ and Fhom ⊂ I is in
generic coordinates.

Proof. Let us substitute x0 = 0 into the equations fhom
i = 0. For f1 we then have yd1 = 0

and hence also y = 0. Substituting x0 = y = 0 into f2 then yields x1 = 0, hence by
iteration we obtain that x0 = y = x1 = . . . = xn−1 = 0. Therefore,

√
Itop = (y, x1, . . . , xn)

and the claim follows from Theorem 3.2.

4 DRL & LEX Gröbner Bases of Keyed Iterated Polynomial
Systems

In this section we investigate the DRL & LEX Gröbner basis of univariate keyed iterated
polynomial systems and Feistel-2n/n polynomial systems. Consequently, we will see that
the solving degree of MiMC and all field equations can be upper bounded by MiMC and the
field equation for the key variable, and that under a mild assumption also Feistel-2n/n
polynomial systems are in generic coordinates. Moreover, understanding the degrees of
polynomials in the lexicographic Gröbner basis will be a key ingredient in the proofs of
the Castelnuovo-Mumford regularity lower bounds.

The following lemma certainly has been proven by many students of computer algebra.

Lemma 4.1 ([CLO15, Chapter 4 §5 Exercise 13]). Let K be a field, let f1, . . . , fn ∈ K[x1]
be polynomials in one variable such that deg (f1) > 0, and let

I =
(
f1(x1), x2 − f2(x1), . . . , xn − fn(x1)

)
⊂ K[x1, . . . , xn]

be an ideal.

(1) Every f ∈ K[x1, . . . , xn] can be written uniquely as f = q + r where q ∈ I and
r ∈ K[x1] with either r = 0 or deg (r) < deg (f1).

(2) Let f ∈ K[x1], then f ∈ I if and only if f is divisible by f1 ∈ K[x1].

(3) I is a prime ideal if and only if f1 ∈ K[x1] is irreducible.

(4) I is a radical ideal if and only if f1 ∈ K[x1] is square-free.

(5) Let f1,red ∈ K[x1] be the generator of the radical ideal (f1,red) =
√

(f1), then√
I = (f1,red) + I.

If we use the LEX term order x2 > . . . > xn > x1, then it’s easy to see that the
generators of I are already a LEX Gröbner basis. Now we establish that the LEX Gröbner
basis of a univariate keyed iterated polynomial system has exactly the shape of Lemma 4.1.

Lemma 4.2 (Keyed Iterated Shape Lemma I). Let K be a field, let f1, . . . , fn ∈ K[x1, . . . ,
xn−1, y] be a univariate keyed iterated polynomial system together with the LEX term order
x1 > . . . > xn−1 > y. Let f̂1, . . . , f̂n ∈ K[x1, . . . , xn−1, y] be constructed via the following
iteration:

(i) For i = 1, set f̂1 = −f1.

(ii) For 2 ≤ i ≤ n, let f̂i =
(

−fi mod f̂i−1

)
where the modulo operation is computed

with respect to the LEX term order.

Then
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(1) For 1 ≤ i < n, we have that f̂i = xi − ĝi(y) for some ĝi ∈ K[y] and f̂n ∈ K[y].

(2) I = (f1, . . . , fn) =
(

f̂1, . . . , f̂n

)
, in particular f̂1, . . . , f̂n is a LEX Gröbner basis of

I.

(3) If |K| = q, then I + (yq − y) =
(

f̂1, . . . , f̂n−1, gcd
(

f̂n, yq − y
))

, and this ideal is
radical. In particular,

I + (yq − y) = I + (xq
1 − x1, . . . , yq − y) ,

and

sdDRL (f1, . . . , fn, xq
1 − x1, . . . , yq − y) ≤ sdDRL (f1, . . . , fn, yq − y) .

Proof. For (1), follows from the construction of the f̂i’s.
For (2), if we record the “quotients” which we drop in the modulo operation in the

construction of the f̂i’s, then we can reconstruct the fi’s with the f̂i’s. So the f̂i’s are
indeed an ideal basis. Moreover, they have coprime leading monomials under LEX, so by
[CLO15, Chapter 2 §9 Theorem 3, Proposition 4] they are a LEX Gröbner basis of I.

For (3), let d = gcd
(

f̂n, yq − y
)

. Clearly,
(

f̂1, . . . , f̂n−1, d
)

is an ideal basis of I +
(yq − y), and again the leading monomials are pairwise coprime under LEX, so they are a
Gröbner basis of I + (yq − y). Since yq − y is square-free also d must be square-free, so by
Lemma 4.1 I + (yq − y) is a radical ideal. It is obvious from the shape of the f̂i’s that
already Z

(
I + (yq − y)

)
⊂ Fn

q . Now we can conclude from Hilbert’s Nullstellensatz and
[Gao09, Theorem 3.1.2] that I + (yq − y) = I + (xq

1 − x1, . . . , yq − y). For the inequality
observe that the Macaulay matrix of the polynomial system with one field equation is a
submatrix of the Macaulay matrix of the polynomial system with all field equations. So
the claim follows.

With an additional assumption on the leading monomials of a univariate keyed iterated
polynomial system we can compute the degrees in the LEX Gröbner basis.
Corollary 4.3. Let K field, and let f1, . . . , fn ∈ K[x1, . . . , xn−1, y] be a univariate keyed
iterated polynomial system such that

(i) di = deg (fi) ≥ 2 for all 1 ≤ i ≤ n, and

(ii) fi has the monomial xdi
i−1 for all 2 ≤ i ≤ n.

Let f̂1, . . . , f̂n be the LEX Gröbner basis of f1, . . . , fn. Then

deg
(

f̂i

)
=

i∏
k=1

dk.

Proof. The assertion follows straight-forward from the monomial assumption and the LEX
Gröbner basis construction procedure.

Conversely, we can transform any lexicographic Gröbner basis with the shape of
Lemma 4.1 into a univariate keyed iterated polynomial system.
Lemma 4.4 (Keyed Iterated Shape Lemma II). Let K be a field, and assume that the
ideal I ⊂ K[x1, . . . , y] has a LEX Gröbner basis of the form

x1 − g1(y), . . . , xn−1 − gn−1(y), gn(y)

such that 1 ≤ deg (g1) ≤ . . . ≤ deg (gn). Then I has an ideal basis of the form

ĝ1(y) − x1, ĝ2(x1, y) − x2, . . . , ĝn−1(xn−2, y) − xn−1, ĝn(xn−1, y).

I.e., the ideal is generated by a univariate keyed iterated polynomial system.
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Proof. For the proof we work with the DRL term order x1 > . . . > xn−1 > y. Let f1, . . . , fn

denote the polynomials in the LEX Gröbner basis, and let f̂1, . . . , f̂n denote the polynomials
that we claim are the univariate keyed iterated basis. We set f̂1 = −

(
x1 − f1(y)

)
. For

2 ≤ i ≤ n we now compute f̂i = −fi mod f̂i−1 with respect to DRL. Since we assumed
that 1 ≤ deg (f1) ≤ . . . ≤ deg (fn) the modulo operation indeed constructs non-trivial
polynomials ĝi(xi−1, y).

Note that the keyed iterated system from Lemma 4.4 is in general not a DRL Gröbner
basis. We present a simple counterexample.

Example 4.5. Let K be a field, and let

I = (x1 − y3, x2 − y5, y7) ∈ K[x1, x2, y].

The respective keyed iterated polynomial system of I is then given by

y3 − x1, x1 · y2 − x2, x2 · y2,

but the DRL Gröbner basis of I is given by

x1 · y2 − x2, x2 · y2, y3 − x1, x2
1 − x2 · y, x1 · x2, x2

2.

With Lemma 4.1 (1) and Lemma 4.2 we can transform every polynomial f ∈ K[x1, . . . ,

xn, y] into a univariate polynomial f̂ ∈ K[y] using only ideal operations, i.e. by performing
division by remainder with respect to the LEX Gröbner basis. Understanding the degree
of these univariate polynomials will be our main ingredient in proving lower bounds on
the regularity.

Proposition 4.6. Let K be a field, and let I = (f1, . . . , fn) ⊂ P = K[x1, . . . , xn−1, y] be
an ideal generated by a univariate keyed iterated polynomial system such that

(i) di = deg (fi) ≥ 2 for all 1 ≤ i ≤ n, and

(ii) fi has the monomial xdi
i−1 for all 2 ≤ i ≤ n.

Let f ∈ P be a polynomial, then we denote with f̂ ∈ K[y] the unique univariate polynomial
obtained via division by remainder of f by I with respect to LEX. Then

(1) Let a ∈ P \inDRL(I) be a monomial, in the computation of â via division by remainder
there is never a reduction modulo the univariate LEX polynomial.

(2) Let a, b ∈ P \ inDRL(I) be monomials such that a|b, then â|b̂ and deg (â) ≤ deg
(

b̂
)

.

(3) Let a, b, c ∈ P \ inDRL(I) be monomials such that a · c, b · c ∈ P \ inDRL(I). If
deg (â) ≤ deg

(
b̂
)

, then deg (â · ĉ) ≤ deg
(

b̂ · ĉ
)

.

Let si =
∏n−1

j=i x
di+1−1
i . Then

(4) The degree of ŝi is given by

deg (ŝi) =
n∏

k=1
dk −

i∏
k=1

dk.

(5) Let t ∈ P \ inDRL(I) be a monomial such that deg (t) ≤ deg (si). Then we also have
that deg

(
t̂
)

≤ deg (ŝi), and the inequality is strict if t ̸= s.
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Proof. Let I =
(
x1 − f̃1(y), . . . , xn−1 − f̃n−1(y), f̃n(y)

)
be the LEX Gröbner basis of I, see

Lemma 4.2 (1).
For (1), let m = yd1−1 ·

∏n−1
i=1 x

di+1−1
i , then any monomial a ∈ P \ inDRL(I) divides m.

So if there is a reduction modulo f̃n in the construction of â, then there also must be a
reduction in the construction of m̂. Via Corollary 4.3 let us compute

deg
(

m
(
f̃1, . . . , f̃n−1, y

))
= d1 − 1 +

n−1∑
i=1

(di+1 − 1) ·
i∏

k=1
dk

= d1 − 1 +
n−1∑
i=1

(
i+1∏
k=1

dk −
i∏

k=1
dk

)

= d1 − 1 +
n∏

k=1
dk − d1 =

n∏
k=1

dk − 1.

Since deg
(
f̃n

)
=
∏n

k=1 dk, there cannot be a reduction modulo f̃n in the construction of
m̂ anymore. So we have already computed deg (m̂). By contraposition the claim follows.

For (2) and (3), by (1) there is no reduction modulo f̃n in the construction of â, b̂ and
ĉ, so the claims follow from standard polynomial arithmetic.

For (4), the computation is analog to the degree computation in (1)

deg (ŝi) =
n−1∑
j=i

(dj+1 − 1) ·
j∏

k=1
dk =

n−1∑
j=i

(
j+1∏
k=1

dk −
j∏

k=1
dk

)
=

n∏
k=1

dk −
i∏

k=1
dk.

For (5), we do a downwards induction. Assume that there is a monomial t ∈ P \inDRL(I)
such that t ̸= si, deg (t) ≤ deg (si) and deg

(
t̂
)

> deg (ŝi). The monomial t must differ
from si in at least one variable. Assume that the difference is in the variable xn−1, then t
must divide the monomial

un−1 = yd1−1 · xdn−2
n−1 ·

n−2∏
i=1

x
di+1−1
i .

Let us compute the degree of the LEX remainder degree analog to (1) and (4)

deg (ûn−1) = d1 − 1 + (dn − 2) ·
n−1∏
k=1

dk +
n−2∑
j=1

(dj+1 − 1) ·
j∏

k=1
dk

= d1 − 1 −
n−1∏
k=1

dk +
n−1∑
j=1

(dj+1 − 1) ·
j∏

k=1
dk

=
n∏

k=1
dk −

n−1∏
k=1

dk − 1 < deg (ŝi) .

On the other hand, by (2) we have that deg
(
t̂
)

≤ deg (ûn−1). Therefore, t has to
coincide with si on xn−1, else we already have deg

(
t̂
)

< deg (ŝi). Now we replace si and
t by si/xdn−1

n−1 and t/xdn−1
n−1 respectively, then we perform the same argument for xn−2.

Inductively we now conclude that either t = si or deg
(
t̂
)

< deg (ŝi).

4.1 DRL & LEX Gröbner Bases for Feistel-2n/n
Having studied the LEX Gröbner basis of univariate keyed iterated polynomial systems
we now describe LEX and DRL Gröbner bases of Feistel-2n/n polynomial systems, see
Definition 2.2.
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Proposition 4.7. Let K be a field, and let F = {fL,1, fR,1, . . . , fL,n, fR,n} ⊂ K[xL,1, xR,1,
. . . , xL,n−1, xR,n−1, y] be a keyed iterated polynomial system for Feistel-2n/n such that

(i) di = deg (fL,i) ≥ 2 for all 1 ≤ i ≤ n, and

(ii) fi has the monomial xdi

L,i−1 for all 2 ≤ i ≤ n.

Then

(1) For the DRL term order xL,1 > xR,1 > . . . > xL,n−1 > xR,n−1 > y, a DRL Gröbner
basis G of F \ {fR,n} is given by

(
f̃L,i

f̃R,i

)
=



(
pR + g1(pL, y) − xR,2

pL − xR,1

)
, i = 1,(

pL + g2(xR,2, y) − xR,3
xL,1 − xR,2

)
, i = 2,(

xR,i−1 + gi(xR,i, y) − xR,i+1
xL,i−1 − xR,i

)
, 3 ≤ i ≤ n − 2,(

xR,n−2 + gn−1(xR,n−1, y) − xL,n−1
xL,n−2 − xR,n−1

)
, i = n − 1,(

xR,n−1 + gn(xL,n−1, y) − cR

0

)
, i = n.

(2) If we remove the linear polynomials from the DRL Gröbner basis G, then this
downsized polynomial system H ⊂ P = K[xR,2, . . . , xR,n−1, xL,n−1, y] is already a
zero-dimensional Gröbner basis. Moreover,

(
Hhom, fhom

R,n

)
is in generic coordinates

over K̄.

(3) For the LEX term order xR,2 > . . . > xR,n−1 > xL,n−1 > y the Gröbner basis of (H)
is of the form

xL,1 − f̂1, xR,2 − f̂2, . . . , xR,n−1 − f̂n−1, f̂n

where the f̂i ∈ K[y] are constructed analog to the LEX Gröbner basis in Lemma 4.2.

(4) The degree of f̂i is given by

deg
(

f̂i

)
=

i∏
k=1

dk.

Let f ∈ P be a polynomial, then we denote with f̂ ∈ K[y] the unique univariate polynomial
obtained via division by remainder of f by (H) with respect to LEX, and for 2 ≤ i ≤ n − 1
let si = xdn−1

L,n−1 ·
∏n−2

j=i xdi−1
R,i where sn−1 = xdn−1

L,n−1. Then

(5) The degree of ŝi is given by

deg (ŝi) =
n∏

k=1
dk −

i∏
k=1

dk.

(6) Let t ∈ P \ inDRL(I) be a monomial such that deg (t) ≤ deg (si). Then we also have
that deg

(
t̂
)

≤ deg (ŝi), and the inequality is strict if t ̸= s.

Proof. For (1), the polynomials f̃L,i are constructed by substituting the linear polynomials
of F \ {fR,n} into the non-linear ones. After the substitution all leading monomials are
coprime so by [CLO15, Chapter 2 §9 Theorem 3, Proposition 4] we have constructed a
Gröbner basis.
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For (2), it is easy to see that H = {f̃L,1, . . . , f̃L,n} ⊂ P = K[xR,2, . . . , xR,n−1, xL,n−1, y]
and that inDRL(H) =

(
yd1 , xd2

R,2, . . . , x
dn−1
R,n−1, xdn

L,n−1

)
. Observe that only a finite number

of monomials of P is not contained in inDRL(H). I.e., dimK

(
P/ inDRL(H)

)
< ∞ as

K-vector space and by a well-known equivalence from commutative algebra (see [Kem11,
Theorem 5.11]) this implies zero-dimensionality. Lastly, being in generic coordinates is
proven analog to Theorem 3.7.

For (3), given the DRL Gröbner basis from (1) and (2) the LEX Gröbner basis can be
constructed via iterated substitutions.

For (4), this follows analog to Corollary 4.3.
For (5) and (6), the proofs are identical to Proposition 4.6 (4) and (5).

We provide a counterexample that in general the generators of the DRL Gröbner basis
of Feistel-2n/n cannot be transformed into a univariate keyed iterated polynomial system.

Example 4.8. Consider MiMC-2n/n over F13 with the round constants and plain/ciphertext
pair

c1 = 0, c2 = 0, c3 = 0, c4 = 0,

(
pL

pR

)
=
(

0
0

)
,

(
cL

cR

)
=
(

0
0

)
.

The downsized DRL Gröbner basis is

y3 − xR,2,

x3
R,2 − 2 · x2

R,2 · y − 2 · xR,2 · y2 + y3 − xR,3,

x3
R,3 − 2 · x2

R,3 · y − 2 · xR,3 · y2 + 2 · y3 − xL,3,

x3
L,3 − 2 · x2

L,3 · y − 2 · xL,3 · y2 + y3 + y + xR,3.

But the univariate keyed iterated generators of this system are

y3 − xR,2,

x3
R,2 − 2 · x2

R,2 · y − 2 · xR,2 · y2 + xR,2 − xR,3,

x3
R,3 − 2 · x2

R,3 · y − 2 · xR,3 · y2 + 2 · y3 − xL,3,

y9 − 2 · y7 − 2 · y5 + x3
L,3 − 2 · x2

L,3 · y − 2 · xL,3 · y2 + 2 · y3 + y.

4.2 DRL & LEX Gröbner Bases for Univariate Keyed Iterated Polyno-
mial Systems With Two Plain/ciphertexts

If one has multiple plain/ciphertext samples for a cipher, then one can combine the
respective iterated polynomial systems into a joint system and compute its Gröbner basis.
Analog to Lemma 4.2 and Proposition 4.6 we now describe DRL Gröbner bases for a
two plain/ciphertext attack on a univariate cipher. With the same assumptions as in
Theorem 3.7 we can also prove that the polynomial system of a two plain/ciphertext attack
is in generic coordinates.

Proposition 4.9. Let K be a field, and let

f1, . . . , fn ∈ K[u1, . . . , un−1, y], and
h1, . . . , hn ∈ K[v1, . . . , vn−1, y]

be two univariate keyed iterated polynomial systems which are constructed with the same
g1, . . . , gn ∈ K[x, y] but with different plain/ciphertext pairs (p1, c1), (p2, c2) ∈ K2. Let
F = {f1, . . . , fn, h1, . . . , hn}, and assume that

(i) di = deg (gi) ≥ 2 for all 1 ≤ i ≤ n, and
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(ii) gi has the monomial xdi for all 2 ≤ i ≤ n.

Then

(1) The sets
{f1, . . . , fn}, {h1, . . . , hn}, F \ {h1}, F \ {f1},

are DRL Gröbner bases.

(2) If in addition K is algebraically closed, then
(
Fhom) is in generic coordinates.

Proof. (1) follows from [CLO15, Chapter 2 §9 Theorem 3, Proposition 4], and the proof of
(2) is analog to Theorem 3.7.

Note that it is also straight-forward to generalize (2) for any number of plain/ciphertext
pairs.

5 Solving Degree Upper Bounds For Attacks On MiMC

Combining our results from Sections 3 and 4 we can now derive upper bounds for the
solving degree of various attacks on MiMC, Feistel-MiMC and Feistel-MiMC-Hash. To illustrate
our bounds in practice we also compute the bit complexity of Equation (24) for sample
values.

5.1 Adding a Minimal Number of Field Equations
In the original bound for MiMC, see Example 2.10, we had to include all field equations
into the system, but as we saw in Lemma 4.2 it suffices to include a single field equation
to limit all solutions to the base field.

Example 5.1 (MiMC and one field equation I). Let MiMC be defined over Fq, and let r be
the number of rounds. We denote with IMiMC the MiMC ideal. It follows from Lemma 4.2
(3) that one only needs to include the field equation for the key variable y to limit all
solutions to Fq. Hence, by applying Corollary 2.9 and Theorem 3.7 to this system we yield

sdDRL

(
IMiMC + (yq − y)

)
≤ q + 2 · r.

As an immediate consequence we can also improve the bound of the attack with all
field equations.

Example 5.2 (MiMC and all field equations II). Let MiMC be defined over Fq, and let r
be the number of rounds. Denote the ideal of all field equations by F and the MiMC ideal
with IMiMC. Then by Lemma 4.2 (3) and Example 5.1 the solving degree is bounded by

sdDRL(IMiMC + F ) ≤ q + 2 · r.

Moreover, small scale experiments indicate that the solving degree of this attack is always
less than or equal to q + r − 1.

Since the MiMC polynomials are already a DRL Gröbner basis, we can also replace the
field equation yq − y by its remainder ry modulo IMiMC with respect to DRL. Then the
solving degree bound becomes

sdDRL

(
IMiMC + (yq − y)

)
≤ deg (ry) + 2 · r. (31)

Let r ≥ ⌈log3 (q)⌉, then experimentally we observed that

deg (ry) ≤ 2 · ⌈log3 (q)⌉ . (32)
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In Table 2 we provide complexity estimates in bits for a Gröbner basis computation of
MiMC and the field equation for the key for an optimal adversary with ω = 2. For ease of
computation we estimated the logarithm of the binomial coefficient with Equation (26).
For the chosen field sizes and the least round number such that r ≥ ⌈log3 (q)⌉ MiMC achieves
a security level of at least 128 bits against the field equation attack.

Table 2: Complexity estimation of Gröbner basis computation for MiMC and the field
equation for the key variable with ω = 2. κrem denotes the complexity estimate for the
remainder of the field equation with the empirically observed degree bound (Equation (32)).
The number of rounds r is the least integer such that r ≥ ⌈log3 (q)⌉.

log2 (q) 64 128 256
r 50 81 162

κrem (bits) 337.5 572.4 1156.2

5.2 The Two Plain/Ciphertext Attack
Intuitively, with a single plain/ciphertext pair one can construct a fully determined
polynomial system a cipher. By adding more plain/ciphertext pairs one constructs an
overdetermined system, and it is expected that the additional information reduces the
difficulty of solving the system. Let I, J ⊂ P be ideals representing a cipher for different
plain/ciphertext pairs. Combining these two systems into a single system geometrically
corresponds to the intersection of two varieties, i.e.,

Z(I + J) = Z(I) ∩ Z(J). (33)

Let us now apply these considerations to MiMC.

Example 5.3 (MiMC and two plain/ciphertext pairs I). Let MiMC be defined over Fq, let r
be the number of rounds, and let (p1, c1), (p2, c2) ∈ F2

q be two distinct plain/ciphertext
pairs generated with the same key by a MiMC encryption function. For these pairs we can
construct the univariate polynomials f1, f2 ∈ Fq[y] in the respective LEX Gröbner basis
of degree 3r. These two polynomials must have at least one common root, namely the
key k ∈ Fq. If one divides f1 and f2 by y − k and considers them as random polynomials,
then with high probability they are coprime. Now let IMiMC,1 ⊂ Fq[u1, . . . , ur−1, y] and
IMiMC,2 ⊂ Fq[v1, . . . , vr−1, y] denote the ideals corresponding to the plain/ciphertext pairs.
Then, with high probability Z(IMiMC,1+IMiMC,2) contains only a single point. By Corollary 2.9
and Proposition 4.9 (2) we now obtain the following bound for the solving degree of
IMiMC,1 + IMiMC,2

sdDRL (IMiMC,1 + IMiMC,2) ≤ 4 · r + 1.

In Table 3 we provide complexity estimates in bits for a Gröbner basis computation
of MiMC and two plain/ciphertexts for an optimal adversary with ω = 2. For ease of
computation we estimated the logarithm of the binomial coefficient with Equation (26).
Recall from Table 2 that for q ≥ 264 we have that r ≥ 50, hence 50 rounds are sufficient to
achieve 128 bits security against the two plain/ciphertext attack.

Table 3: Complexity estimation of Gröbner basis computation for MiMC and two
plain/ciphertext pairs with ω = 2 over a finite field Fq with gcd (3, q − 1) = 1.

r κ (bits)
10 99.4
50 538.1
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5.3 Feistel-MiMC

Interestingly, MiMC-2n/n behaves very similar to the two plaintext attack on MiMC, in the
sense that with high probability the standard polynomial model of MiMC-2n/n does not
have any solutions in the algebraic closure and its Gröbner basis is expected to be linear.

Example 5.4 (MiMC-2n/n I). Let Fq be a finite field, let r be the number of rounds, and let
k ∈ Fq denote the key. Suppose we are given a plain/ciphertext pair (pL, pR) , (cL, cR) ∈ F2

q

for MiMC-2n/n generated by the key k. By substituting this pair into the cipher function we
obtain two univariate polynomials Fy(pL, pR)−(cL, cR) = (0, 0) in the key variable y. These
polynomials have at least one common root, namely y − k. If we divide these polynomials
by y − k and consider them as random polynomials, then with high probability they are
coprime. Now, to launch an efficient Gröbner basis attack we first compute the downsized
DRL Gröbner basis of the Feistel-2n/n polynomial system from Proposition 4.7 (1). Then
we add the missing polynomial and compute the Gröbner basis. By Proposition 4.7 (2)
the polynomial system is in generic coordinates, therefore we can also apply Corollary 2.9
to obtain the following bound for the solving degree

sdDRL

(
IMiMC-2n/n

)
≤ 2 · r + 1.

In the following table we provide complexity estimates in bits for a Gröbner basis
computation of Feistel-MiMC for an optimal adversary with ω = 2. For ease of computation
we estimated the logarithm of the binomial coefficient with Equation (26). As in Tables 2
and 3, 50 rounds are sufficient for Feistel-MiMC to achieve 128 bits security.

Table 4: Complexity estimation of Gröbner basis computation for Feistel-MiMC with ω = 2
over a finite field Fq.

r κ (bits)
10 48.6
50 266.7

5.4 Feistel-MiMC-Hash
For Feistel-MiMC-Hash the Feistel-MiMC permutation is instantiated in the sponge framework
[BDPV08]. For a preimage attack on Feistel-MiMC-Hash we have to, as the name suggest,
compute a preimage to a given hash value α ∈ Fq. We have two generic choices to do
so. First, we can guess the second permutation output value and then simply invert the
permutation. If the preimage is of the form (β, 0), for some β ∈ Fq, then the attack was
successful. Though, the success probability of this approach is 1/q, and q is at least a
64-bit prime number, which is too small for a practical attack. Second, we can use an
indeterminate x2 for the second permutation output, then we have to find a solution for
the equation

Feistel-MiMC
(

x1
0

)
=
(

α
x2

)
. (34)

Further, for the preimage problem we have only one generic choice of polynomials to
restrict all solutions to the base field: field equations.

Example 5.5 (Feistel-MiMC-Hash preimage attack I). Let Fq be a finite field, and let r
be the number of rounds. We can construct the polynomial system for Feistel-MiMC-Hash
from the one for the keyed permutation, see Definition 2.2, by setting y = 0, pL = x1,
pR = 0, cL = α and cR = x2, where x1 and x2 are indeterminates and α ∈ Fq is the
hash value. Moreover, we choose the DRL term order such that the intermediate state
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variables are naturally ordered, x1 > x2 and all intermediate state variables are bigger
than x1. Analog to Proposition 4.7 we can compute the DRL Gröbner basis of the system
by substituting the linear polynomials into the non-linear ones, but this time we do not
have to remove any linear polynomial. Since pR = 0 there are only r − 1 polynomials of
degree 3 in r − 1 variables. To find a solution (if it exists) we now either have to compute
the LEX Gröbner basis and factor a polynomial of degree 3r−1 or add the field equation
for x2 to the polynomial system. For the latter case we obtain the following bound on the
solving degree

sdDRL

(
Ihash + (xq

2 − x2)
)

≤ q + 2 · r − 2.

Analog to the field equation attack on MiMC we can also compute the remainder of the
field equation modulo the DRL Gröbner basis to further reduce the solving degree. Note
that the solving degrees of Examples 5.1 and 5.5 differ only by 2, therefore we refer to
Table 2 for the complexity of Gröbner basis computations of Feistel-MiMC-Hash.

6 Multivariate Ciphers in Generic Coordinates
So far all our complexity estimates are only applicable to univariate ciphers and two branch
Feistel networks. Naturally, one would like to extend the theory to more advanced multi-
variate constructions. Therefore, in Section 6.1 we derive that Substitution-Permutation
Network (SPN) based ciphers are in generic coordinates, hence we can apply the Macaulay
bound to estimate the solving degree. In Section 6.2 we study three classes of generalized
Feistel Networks for which we derive efficient criteria to check whether the corresponding
polynomial systems are in generic coordinates.

For starters, let us fix some notation. Let n, r ≥ 1 be integers, n always denotes the
number of blocks and r the number of rounds of a cipher. Throughout this section we will
denote plaintext variables with x = (x1, . . . , xn)⊺ and key variables with y = (y1, . . . , yn)⊺.
With

Ky : Fn
q × Fn

q → Fn
q ,

(x, y) 7→ x + y
(35)

we denote the key addition function, and with

A : Fn
q → Fn

q ,

x 7→ Ax + c
(36)

we denote affine permutations where A ∈ GLn (Fq) and c ∈ Fq. For 1 ≤ i ≤ r let
A(1), . . . , A(r) : Fn

q → Fn
q be affine permutations and let P(1), . . . , P(r) : Fn

q → Fn
q some

arbitrary permutations. Then a block cipher without key schedule is defined to be the
following composition

Cn,r : Fn
q × Fn

q → Fn
q ,

(x, y) 7→
(
Ky ◦ A(r) ◦ P(r)) ◦ · · · ◦

(
Ky ◦ A(1) ◦ P(1))(x + y),

(37)

where the composition is taken with respect to the plaintext variable.
For 1 ≤ i ≤ r − 1, let x(i) =

(
x

(i)
1 , . . . , x

(i)
n

)⊺
denote intermediate state variables,

and let y = (y1, . . . , yn)⊺ denote the key variables. Let p, c ∈ Fn
q be a plain/ciphertext

pair given by the block cipher Cn,r Since every function Fn
q → Fq can be represented

with polynomials, we define the multivariate keyed iterated polynomial system F =
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{
f (1), . . . , f (r)} ⊂ Fq

[
x(1), . . . , x(r−1), y

]
for the cipher Cn,r as

f (i) =


A1P(1) (p + y) + c1 + y − x(1), i = 1,

AiP(i)
(

x(i−1)
)

+ ci + y − x(i), 2 ≤ i ≤ r − 1,

ArP(r)
(

x(r−1)
)

+ cr + y − c, i = r.

(38)

If a key schedule is applied we have two options for the polynomial model. Either we
substitute the key schedule directly into Equation (38) or we add additional iterated key
schedule equations to F .

6.1 Substitution-Permutation Networks
In symmetric key cryptography the Substitution Permutation Network (SPN) is the most
widely adopted strategy to construct block ciphers. For example, the Advanced Encryption
Standard (AES) [AES01, DR20] is an SPN. Moreover, so-called partial SPNs have been
adopted for AO designs [ARS+15, GLR+20, GKR+21, GKS23]. We start with the formal
definition of SPN-based ciphers.

Definition 6.1 (SPN cipher). Let Fq be a finite field, and let n, r ≥ 1 be integers.

(1) Let f1, . . . , fn ∈ Fq[x] be permutation polynomials. Then the full Substitution Layer
is defined as

Sf1,...,fn
: Fn

q → Fn
q ,

(x1, . . . , xn) 7→
(
f1(x1), . . . , fn(xn)

)
.

(2) Let f ∈ Fq[x] be permutation polynomial. Then the partial Substitution Layer is
defined as

Sf : Fn
q → Fn

q ,

(x1, . . . , xn) 7→
(
f(x1), x2, . . . , xn

)
.

(3) For 1 ≤ n ≤ r, let S(i) : Fn
q → Fn

q be either a full or a partial Substitution Layer and
let Ai : Fn

q → Fn
q be an affine permutation. Then the SPN cipher is defined as

Cn,r : Fn
q × Fn

q → Fn
q ,

(x, y) 7→
(
Ky ◦ A(r) ◦ S(r)) ◦ · · · ◦

(
Ky ◦ A(1) ◦ S(1))(x + y),

where the composition is taken with respect to the plaintext variable.

Accordingly, a round where a full/partial Substitution Layer is applied is called a
full/partial round.

Under a mild assumption on the first round of an SPN cipher Cn,r we can compute a
DRL Gröbner basis of the multivariate keyed iterated polynomial system.

Theorem 6.2. Let Fq be a finite field, let Fq be its algebraic closure, let n, r ≥ 1 be
integers, and let Cn,r : Fn

q × Fn
q → Fn

q be an SPN cipher such that S(1) is a full SPN
and every univariate permutation polynomial in S(1) has degree greater than 1. Let
F =

{
f (1), . . . , f (r)} ⊂ P = Fq

[
x(1), . . . , x(r−1), y

]
be the multivariate keyed iterated

polynomial system for Cn,r, and let

G =
{

A−1
1 f (1), . . . , A−1

r f (r)
}

.

Then
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(1) G is a DRL Gröbner basis.

(2) Every homogeneous ideal I ⊂ P [x0] such that Z+(I) ̸= ∅ and Ghom ⊂ I is in generic
coordinates.

Proof. For (1), we consider the DRL term order x
(1)
1 > . . . > x

(1)
n > x

(2)
1 > . . . > x

(n−1)
n >

y1 > . . . > yn. Let f
(j)
1 , . . . , f

(j)
n denote the functions of the SPN in the jth round, then

LMDRL

(
A−1

1 f (1)
)

=
(

y
deg
(

f
(1)
i

)
i

)
1≤i≤n

,

LMDRL

(
A−1

1 f (j)
)

=
(

x
(j)
i

deg
(

f
(j)
i

))
1≤i≤n

, 2 ≤ j ≤ r,

since deg
(

f
(1)
i

)
> 1 for all i and x(1) > . . . > x(r−1) > y. So the polynomials in G have

pairwise coprime leading monomials and the claim follows from [CLO15, Chapter 2 §9
Theorem 3, Proposition 4].

For (2), this follows from (1) and Corollary 3.3.

Let us now apply Theorem 6.2 to a cipher that utilizes partial as well as full Substitution
Layers: the Hades strategy [GLR+20], a cipher family for MPC applications. The keyed
Hades permutation starts with rf full rounds, then it applies rp partial rounds, and it
finishes with another application of rf full rounds. So, in total Hades has r = 2·rf +rp many
rounds. All SPNs apply the same univariate permutation xd for some appropriate d. Hades
has an affine key schedule [GLR+20, §3.1], and it is straight-forward to incorporate an affine
key schedule into the multivariate keyed iterated polynomial system from Equation (38).
Moreover, an affine key schedule does not affect the proof of Theorem 6.2 as long as the
master key was added before application of the first Substitution Layer.

Example 6.3 (Solving degree bounds for Hades). Let Fq be a finite field, let n ≥ 1
denote the number of branches, and let d ∈ Z>1 be an integer such that gcd (d, q − 1) = 1.
Let rf , rp ≥ 1 denote the number full and partial rounds, and let IHades denote the Hades
ideal. Then by Corollary 2.9 and Theorem 6.2

sdDRL (IHades) ≤ (d − 1) · (2 · n · rf + rp) + 1.

Now let IHades,1 and IHades,2 denote Hades ideals for two different plain/ciphertext pairs.
It is straight-forward to extend Theorem 6.2 to IHades,1 + IHades,2, cf. Proposition 4.9 (2),
therefore by Corollary 2.9

sdDRL (IHades,1 + IHades,2) ≤ 2 · (d − 1) · (2 · n · rf + rp) + 1.

The Hades designers use Equation (24) and the Macaulay bound (Corollary 2.9) to
estimate the resistance of Hades against Gröbner basis attacks, see [GLR+20, §4.3] and
[GLR+19, §E.3]. In particular, their second strategy is the multivariate keyed iterated
polynomial system from Equation (38). To justify this approach the authors hypothesized
that the Hades polynomial system is a generic polynomial system in the sense of Fröberg’s
conjecture [Frö85, Par10]. With Theorem 6.2 and Example 6.3 this hypothesis can be
bypassed, and we have proven that the complexity estimation of the Hades designers is
indeed mathematically sound.

In Table 2 we provide complexity estimates in bits for a Gröbner basis computation
of Hades where we use the Macaulay bound of the keyed iterated Hades polynomial
system as minimal baseline of the solving degree for an optimal adversary with ω = 2. We
assume that the key schedule equations have been substituted into Equation (38). Recall
from Theorem 6.2 that a partial Hades round only contributes one non-linear equation
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but n − 1 affine equations. Therefore, we can eliminate rp · (n − 1) many variables in the
Hades polynomial system in advance, i.e. after the elimination the number of variables and
equations in the Hades polynomial system is 2 · n · rf + rp. Note that this elimination does
not affect the Macaulay bound from Example 6.3. We stress that after the substitution we
exactly reproduce the complexity estimation of the second strategy [GLR+19, p. 48-51],
though with a proof and not under a hypothesis. For ease of computation we estimated
the logarithm of the binomial coefficient with Equation (26).

Table 5: Complexity estimation of Gröbner basis computations for Hades via the Macaulay
bound for IHades with n = 2, and ω = 2 over a finite field Fq such that gcd (d, q − 1) = 1.

d = 3 d = 5
rf 3 4 5 3 4 5
rp 13 10 5 10 10 4

κ (bits) 130.0 135.4 130.0 149.0 177.6 163.3

In [GLR+20, Table 1] round numbers for Hades instantiations are proposed, as can
be derived from our table all instantiations achieve a security level of 128 bits already for
n = 2 and d = 3.

We also mention that it is straight-forward to compute Hades’ quotient space dimension

dimFq (IHades) = d2·n·rf +rp . (39)

6.2 Generalized Feistel Networks
The second permutation that has been dominant in block cipher design in the past is
the so-called Feistel Network, named after its inventor Horst Feistel. For example, the
predecessor of AES the Data Encryption Standard (DES) [DES77] is based on the Feistel
Network. Moreover, so-called unbalanced generalized Feistel Networks have been proposed
for AO designs [AGP+19a]. We start with the formal definition of Feistel-based ciphers.

Definition 6.4 (Generalized Feistel cipher). Let Fq be a finite field, and let n, r ≥ 1 be
integers.

(1) For 1 ≤ i ≤ n − 1, let fi ∈ Fq[xi+1, . . . , xn] be a polynomial. Then the generalized
Feistel Layer is defined as

Ff1,...,fn−1 : Fn
q → Fn

q ,

(x1, . . . , xn) 7→
(
x1 + f1(x2, . . . , xn), . . . , xn−1 + fn−1(xn), xn

)
.

(2) For 1 ≤ n ≤ r, let F (i) : Fn
q → Fn

q be a generalized Feistel Layer and let Ai : Fn
q → Fn

q

be an affine permutation. Then the Feistel cipher is defined as

Cn,r : Fn
q × Fn

q → Fn
q ,

(x, y) 7→
(
Ky ◦ A(r) ◦ F (r)) ◦ · · · ◦

(
Ky ◦ A(1) ◦ F (1))(x + y),

where the composition is taken with respect to the plaintext variable.

For special types of Feistel ciphers we can derive efficient criteria to verify whether the
corresponding multivariate keyed iterated polynomial system is in generic coordinates.

Theorem 6.5. Let Fq be a finite field, let Fq be its algebraic closure, let n, r ≥ 1 be
integers, and let Cn,r : Fn

q × Fn
q → Fn

q be a Feistel cipher. Let F =
{

f (1), . . . , f (r)} ⊂ P =
Fq

[
x(1), . . . , x(r−1), y

]
be a multivariate keyed iterated polynomial system for Cn,r.



388 Solving Degree Bounds for Iterated Polynomial Systems

(1) For 1 ≤ i ≤ r, let f (i) ∈ Fq[xn] be polynomials such that deg
(
f (i)) > 1, and

assume that the ith Feistel Layer of Cn,r is Ff(i),...,f(i) . Let the polynomial system
G =

{
g(1), . . . , g(r)} be defined as follows

(
g(i)
)

j
=


(

A−1
i f (i)

)
j

, j = 1, n,(
A−1

i f (i)
)

j
−
(

A−1
i f (i)

)
1

, 2 ≤ j ≤ n − 1.

Then every homogeneous ideal I ⊂ P [x0] such that Z+(I) ̸= ∅ and Ghom ⊂ I is in
generic coordinates if the following linear system has rank r · (n − 1)

yj − y1 +
(

A−1
1

(
x̂(1) − ŷ

))
1

+
(

A−1
1

(
ŷ − x̂(1)

))
j

= 0,(
A−1

1

(
ŷ − x̂(1)

))
n

= 0,

x
(i−1)
j − x

(i−1)
1 +

(
A−1

i

(
x̂(i) − ŷ

))
1

+
(

A−1
i

(
ŷ − x̂(i)

))
j

= 0,(
A−1

i

(
ŷ − x̂(i)

))
n

= 0,

x
(r−1)
j − x

(r−1)
1 +

(
A−1

r

(
x̂(r−1) − ŷ

))
1

+
(

A−1
r

(
ŷ − x̂(r−1)

))
j

= 0,(
A−1

r ŷ
)

n
= 0,

where 2 ≤ i ≤ r − 1, 2 ≤ j ≤ n − 1, x̂(i) =
(

x
(i)
1 , . . . , x

(i)
n−1, 0

)
and ŷ =

(y1, . . . , yn−1, 0).

(2) For 1 ≤ i ≤ r and 1 ≤ j ≤ n − 1, let f
(i)
j ∈ Fq[xi+1, . . . , xn] be polynomials such that

deg
(
f (i)) > 1 and the monomial x

deg
(

f
(i)
j

)
i+1 is present in f

(i)
j , and assume that the

ith Feistel Layer of Cn,r is F
f

(i)
1 ,...,f

(i)
n−1

. Let

G =
{

A−1
1 f (1), . . . , A−1

r f (r)
}

.

Then every homogeneous ideal I ⊂ P [x0] such that Z+(I) ̸= ∅ and Ghom ⊂ I is in
generic coordinates if the following linear system has rank r(

A−1
1

(
ŷ − x̂(1)

))
n

= 0,(
A−1

i

(
ŷ − x̂(i)

))
n

= 0,(
A−1

r ŷ
)

n
= 0,

where 2 ≤ i ≤ r − 1, x̂(i) =
(

x
(i)
1 , 0 . . . , 0

)
and ŷ = (y1, 0, . . . , 0).

(3) For 1 ≤ i ≤ r, let f (i) ∈ Fq[x2, . . . , xn] be such that

f (i)(x2, . . . , xn) = f̂ (i)

 n∑
j=2

ai,j · xj
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with f̂ (i) ∈ Fq[x] such that deg
(

f̂ (i)
)

> 1 and ai,2, . . . , ai,n ∈ Fq, and assume that
the ith Feistel Layer of Cn,r is Ff(i),0,...,0. Let

G =
{

A−1
1 f (1), . . . , A−1

r f (r)
}

.

Then every homogeneous ideal I ⊂ P [x0] such that Z+(I) ̸= ∅ and Ghom ⊂ I is in
generic coordinates if the following linear system has rank r · n

n∑
k=2

a1,k · yk = 0,(
A−1

1

(
y − x(1)

))
j

= 0,

n∑
k=2

ai,k · x
(i−1)
k = 0,

x
(i−1)
j +

(
A−1

1

(
y − x(i)

))
j

= 0,

n∑
k=2

ar,k · x
(r−1)
k = 0,

x
(r−1)
j +

(
A−1y

)
j

= 0,

where 2 ≤ i ≤ r − 1 and 2 ≤ j ≤ n.

Proof. For all cases we show that
√

Gtop = (x1, . . . , xn).
For (1), note that for all 1 ≤ i ≤ r we have that the degree of the first component of g(i) is

deg
(
f (i)) and 1 for the other components. Substituting x0 = 0 into Ghom we yield from the

first components of the
(
g(i))hom’s that y

deg(f(1))
n = x

(1)
n

deg(f(2))
= . . . = x

(r−1)
n

deg(f(r))
= 0

so also y = x
(1)
n = . . . = x

(r−1)
n = 0. Now we substitute these coordinates into the remaining

equations. This yields the linear system from the assertion. If the linear system is of rank
r · (n − 1), then

√
Ghom = (x1, . . . , xn).

For (2), note that for 1 ≤ i ≤ r and 1 ≤ j ≤ n − 1 we have that deg
((

A−1
i f (i))

j

)
=

deg
(

f
(i)
j

)
. Now we substitute x0 = 0 into Ghom, in the ith round in the (n−1)th component

this yields x
(i)
n

deg
(

f
(i)
n−1

)
= 0. Inductively we now work through all higher branches in the

ith round and then through all rounds to obtain that y2 = . . . = yn = x
(1)
2 = . . . = x

(1)
n =

. . . = x
(r−1)
2 = . . . = x

(r−1)
n = 0. Substituting these variables into the remaining equations

that come from the last branch of the f (i)’s yields the linear system from the assertion
which proves the claim.

For (3), after substituting x0 = 0 into Ghom we obtain for the first branch of each round(
n∑

k=2
a1,k · yk

)deg(f̂(1))
=
(

n∑
k=2

ai,k · x
(i−1)
k

)deg(f̂(i))
= 0

=⇒
n∑

k=2
a1,k · yk =

n∑
k=2

ai,k · x
(i−1)
k = 0,

where 2 ≤ i ≤ r. Combining these linear equations with the remaining equations from
Ghom we obtain the linear system from the assertion.
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The Feistel Networks from Theorem 6.5 (1) and (3) are also known as expanding
round function (erf) and contracting round function (crf) respectively. An example for
block ciphers with these round functions is the GMiMC family [AGP+19a, §2.1], which is
targeted for MPC applications. Moreover, the designers of GMiMC use Equation (24) and
the Macaulay bound (Corollary 2.9) to estimate the resistance of GMiMC against Gröbner
basis attacks, see [AGP+19a, §4.1.1].4 To justify this approach the authors hypothesized
that the GMiMC polynomial systems are generic polynomial systems in the sense of Fröberg’s
conjecture [Frö85, Par10]. With Theorem 6.5 this hypothesis can be bypassed for GMiMC
without a key schedule. For GMiMC an affine key schedule was proposed, hence one can
extend Theorem 6.5 to this scenario by replacing the key variables with intermediate key
variables after the first round and by adding the linear part of the affine key schedule to
the linear systems. Thus, we have derived efficient criteria to verify that the complexity
estimations of the GMiMC designers can indeed be mathematically sound.

Example 6.6 (Solving degree bounds for GMiMC). Let Fq be a finite field, let n, r ≥ 1
denote the number of branches and rounds, and let d ≥ 1 be the degree of the degree
increasing function. In the proof of Theorem 6.5 we saw that the GMiMCerf polynomial
system can be transformed so that there is only one non-linear polynomial in every round.
Therefore, GMiMCcrf and GMiMCerf have the same Macaulay bound. Let IGMiMC be a GMiMC
ideal and assume that n and r are such that the corresponding matrix from Theorem 6.5
has full rank, i.e. GMiMC is in generic coordinates. Therefore, by Corollary 2.9

sdDRL (IGMiMC) ≤ (d − 1) · r + 1.

Now let IGMiMC,1 and IGMiMC,2 denote GMiMC ideals for two different plain/ciphertext pairs.
It is straight-forward to extend Theorem 6.5 to IGMiMC,1 + IGMiMC,2, cf. Proposition 4.9 (2).
Provided that n and r are such that IGMiMC,1 + IGMiMC,2 is in generic coordinates we have by
Corollary 2.9

sdDRL (IGMiMC,1 + IGMiMC,2) ≤ 2 · (d − 1) · r + 1.

For small primes we applied Theorem 6.5 to GMiMCcrf and GMiMCerf without key schedules.
Depending on the parameters n and r we noticed a highly regular pattern when the
matrices from the theorem have full rank. In Table 6 we record this pattern for small
sample parameters.

Table 6: Matrix criteria from Theorem 6.5 for sample parameters for GMiMCcrf and GMiMCerf
with the shift permutation (x1, . . . , xn) 7→ (xn, x1, . . . , xn−1) in the affine layer and without
key schedules.

n = 3 n = 4 n = 5
r Full rank r Full rank r Full rank
10 True 12 True 10 True
11 False 13 True 11 False
12 True 14 False 12 True
13 False 15 True 13 False

16 True
17 False

We observed that for the shift permutation (x1, . . . , xn) 7→ (xn, x1, . . . , xn−1) in the
affine layer the matrix criteria for GMiMCcrf and GMiMCerf behave identical. On the other

4For completeness, we mention that the GMiMC designers did not analyze the keyed iterated polynomial
system (Equation (38)). They only studied systems where all rounds are substituted into each other, i.e.
one has n equations in n variables.
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hand, if we instantiate GMiMC with the circulant matrix circ(1, . . . , n)5, then we observed
that GMiMCerf is always in generic coordinates and for GMiMCcrf the criterion is identical to
Table 6.

In Table 7 we provide complexity estimates in bits for a Gröbner basis computation of
GMiMC where we use the Macaulay bound of the keyed iterated GMiMC polynomial system
as minimal baseline of the solving degree for an optimal adversary with ω = 2. We
assume that the key schedule equations have been substituted into Equation (38). Also,
recall from Theorem 6.5 that we can transform a GMiMC polynomial system so that every
round contains only one non-linear polynomial. Thus, we can use the affine equations to
eliminate r · (n − 1) many variables in the GMiMC polynomial system in advance, i.e. after
the elimination the number of variables and equations in the GMiMC polynomial system is r.
Note that the elimination does not affect the Macaulay bound in Example 6.6. For ease of
computation we estimated the logarithm of the binomial coefficient with Equation (26).

Table 7: Complexity estimation of Gröbner basis computations for GMiMC via the Macaulay
bound with ω = 2 over any finite field Fq.

d = 3 d = 5
r 10 25 50 10 25 50

κ (bits) 48.6 130.0 266.7 63.5 170.5 350.0

In [AGP+19b, Table 7] round number for GMiMCerf instantiations are proposed, as can
be derived from our table all instantiations achieve a security level of 128.

6.3 The Problem With Sponge Constructions & Generic Coordinates
Let us return to the sponge construction [BDPV07, BDPV08]. Let P : Fn

q → Fn
q be an

arbitrary permutation which we instantiate in sponge mode with capacity 1 < c < n and
rate r = n − c. Let IV ∈ Fc

q be a fixed initial value, and let α ∈ Fq be a hash output. To
find a preimage x ∈ Fr

q we have to solve the equation

P
(

x
IV

)
=
(

α
y

)
, (40)

where y ∈ Fn−1
q is an indeterminate variable. First, we observe that this polynomial

system is only fully determined if c = n − 1, else one always has r + n − 1 > n many
variables for x and y. Otherwise, we have to guess some entries of x and y which we expect
to be successful with probability 1/q. Second, if we model the sponge P with iterated
polynomials, then the Caminata-Gorla technique (Section 2.3.1) will fail whenever the last
round of P is non-linear in all its components. In this case, after homogenizing the keyed
iterated polynomial system and setting x0 = 0 we will always remove the variables y from
the equations. So Theorem 3.2 (2) cannot be satisfied, and the naive homogenization of a
sponge polynomial system cannot be in generic coordinates.

We illustrate this property with a simple example.

Example 6.7. We work over the field F5. We consider an SPN sponge function based on
the cubing map with n = 2 and r = 3 where the first and the last round are full SPNs and

5We understand circulant matrices as right shift circulant matrices, i.e.

circ(a1, . . . , an) =


a1 a2 . . . an−1 an

an a1 . . . an−2 an−1
...

a2 a3 . . . an a1

 .
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the middle round is a partial SPN. In every round the mixing matrix is circ(1, 2) and all
round constants are 0. The matrix is also applied before application of the first SPN. We
illustrate this sponge function in Figure 3.

(
xin

0

)
circ

xd
1

xd
2

circ
xd

1

x2
circ

xd
1

xd
2

circ

(
hash

yout

)

Figure 3: Illustration of a simple SPN sponge function.

For hash value 0 the iterated polynomial system F ⊂ F5

[
x

(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 xin, yout

]
is

x3
in + 2 · x

(1)
1 + x

(1)
2 = 0,

−2 · x3
in + x

(1)
1 + 2 · x

(1)
2 = 0,

x
(1)
1

3
+ 2 · x

(2)
1 + x

(2)
2 = 0,

x
(1)
2 + x

(2)
1 + 2 · x

(2)
2 = 0,

x
(2)
1

3
+ yout = 0,

x
(2)
2

3
+ 2 · yout = 0.

Note that (F) is zero-dimensional. Let x0 denote the homogenization variable. Then
Isat =

(
Fhom)sat is generated by

x3
in + 2 · x

(1)
1 · x0 = 0,

x
(1)
2 + x

(2)+2·x2(2)
1 = 0,(

x
(2)
1 + x

(2)
2

)
· x2

0 = 0,

x
(2)
2

3
+ 2 · yout · x2

0 = 0,

x
(1)
1

3
+ yout · x2

0 = 0,

x
(1)
1

3
+ 2 · x

(2)
2 · x2

0 = 0,

yout · x4
0 = 0.

Hence, after reducing modulo (x0) we remove the variable yout.

To resolve this problem we have to add additional polynomials to the system. Over finite
fields we can always add the field equations for y though for AO designs this introduces
high degree equations to a low degree polynomial system. On the other hand, we could
add the inverse of the last round of an iterated construction to the polynomial system to
introduce polynomials with leading monomials in y. Though, in general we also expect
that this trick introduces high degree equations.

6.4 The Problem With Non-Affine Key Schedules & Generic Coordi-
nates

We face a similar obstacle for the Caminata-Gorla technique if we deploy a non-affine key
schedule. For sake of example let us return to MiMC with the key schedule

yi = y3
i−1, (41)
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for 2 ≤ i ≤ r and y1 ∈ Fq the master key. We then add the ith key in the ith round.
Obviously, we then have to add the equations y3

i−1 − yi = 0 to the MiMC keyed iterated
polynomial system. Now we homogenize this new system and set x0 = 0, like in Theorem 3.7
we can iterate through the rounds to deduce that y1 = . . . = yr−1 = x1 = . . . = xr−2 = 0.
But for the last round we obtain that yr + xr−1 = 0, and we do not have any more
equations left to cancel one of the variables. Again, we would have to add polynomials to
the system to fix our method like the field equations, or if possible the inverse of the last
key schedule equation.

7 Polynomials With Degree Falls & The Satiety
We now return to studying MiMC, Feistel-MiMC and Feistel-MiMC-Hash. In Section 5 we
derived solving degree estimates for various attacks on these primitives. A natural question
for the cryptanalyst is tightness of these bounds. To partially answer this question we
derive Castelnuovo-Mumford regularity lower bounds for the attacks on these primitives.
Essentially, if we find a non-trivial lower bound for the Castelnuovo-Mumford regularity,
then regularity-based complexity estimates can never improve upon the lower bound.

In this section we develop the theoretical foundation for our regularity lower bounds.
First we introduce the notion of last fall degree of F ⊂ P , that is the largest d ∈ Z ∪ {∞}
such that the row space of the inhomogeneous Macaulay matrix M≤d is unequal to (F)≤d

(as K-vector space). Then we prove that in generic coordinates the last fall degree of F is
equal to the satiety of Fhom, another invariant closely related to the regularity.

Let I ⊂ P = K[x0, . . . , xn] be a homogeneous ideal, it is well-known that the saturation
Isat = I : m∞ is the unique largest ideal J ⊂ P such that there exists m ≥ 0 and for all
l ≥ m one has Il = Jl. This motivates the following definition.

Definition 7.1. Let I ⊂ K[x0, . . . , xn] be a homogeneous ideal. The satiety of I, denoted
by sat (I) is the smallest positive integer m such that Il = Isat

l for all l ≥ m.

We recall some properties of the satiety. If x0 ∤ 0 mod Isat, then by [BS87, Lemma 1.8]
one has that

sat (I) ≤ reg (I) , (42)
and by [Has12, Proposition 2.2] one has that

sat (I) = sat
(

inDRL(I)
)
. (43)

Moreover, if I is in generic coordinates and Z+(I) ̸= ∅, then by [Gre98, Theorem 2.30]
one has that

reg (I) = max
{

sat (I) , reg
(
Isat)} . (44)

Let F = {f1, . . . , fm} ⊂ P = K[x1, . . . , xn] be a polynomial system, and let M≤d be
the inhomogeneous Macaulay matrix in degree d. We denote with

WF,d =
{

f ∈ P

∣∣∣∣∣ f =
m∑

i=1
gi · fi, deg (gi · fi) ≤ d

}
(45)

the row space of M≤d. Next we define the last fall degree.

Definition 7.2. Let K be a field, and let F ⊂ K[x1, . . . , xn] be a polynomial system.

(1) For any f ∈ (F) let
df = min{d ∈ Z≥0 | f ∈ WF,d}.

(2) If df > deg (f), then we say that f has a degree fall in degree df . We say that F
has a degree fall if there is an f ∈ (F) such that f has a degree fall. Else we say
that F has no degree falls.
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(3) Let WF,∞ = (F) and VF,−1 = ∅. The last fall degree of F is

dF = min
{

d ∈ Z≥0 ∪ {∞} | f ∈ WF,max{d,deg(f)} for all f ∈ (F)
}

.

Note that the definition implies that for all d ≥ dF we have that WF,d = (F) ∩ P≤d =
(F)≤d.

Next we collect some alternative characterizations of the last fall degree.

Proposition 7.3. Let K be a field, and let F ⊂ P = K[x1, . . . , xn] be a polynomial
system.

(1) If there exists a largest d ∈ Z≥0 such that WF,d ∩ P≤d−1 ̸= WF,d−1, then dF = d.
Else dF = ∞.

(2) dF ≥ sup {df | f ∈ (F), df > deg (f)}.

(3) If dF < ∞, then dF = max {df | f ∈ (F), df > deg (f)}.

Proof. For (1), let d < ∞ be as asserted. By definition of the last fall degree dF ≥ d. If
f ∈ (F) is such that deg (f) ≤ dF , then by definition of the last fall degree f ∈ WF,dF .
Therefore, we have that

WF,dF ∩ P≤dF −1 = (F) ∩ P≤dF −1 ̸= WF,dF −1,

which implies that dF ≤ d. If such a d ∈ Z≥0 does not exist, then obviously dF = ∞.
For (2), let f ∈ (F) be such that df > deg (f). Then for all d < df we have

f /∈ WF,d. Therefore, by definition of the last fall degree dF > df − 1. Hence, dF ≥
sup {df | f ∈ (F), df > deg (f)}.

For (3), since the last fall degree is finite by assumption the supremum from (2) is
indeed a maximum. Now let d = max {df | f ∈ (F), df > deg (f)} and fix f ∈ (F). If
df > deg (f), then f ∈ WF,df

⊂ WF,d and d = max{d, deg (f)} since d ≥ df > deg (f). If
df = deg (f), then we always have that WF,deg(f) ⊂ WF,max{d,deg(f)}. Thus, for all f ∈ (F)
we have f ∈ WF,max{d,deg(f)}. So d ∈ {e ∈ Z≥0 ∪ {∞} | f ∈ WF,max{e,deg(f)} for all f ∈
(F)} which implies that dF ≤ d.

Unsurprisingly, the last fall degree can also be considered as a measure of the complexity
of solving polynomial systems. Let max. GB. deg> (F) denote the maximal degree of the
polynomials appearing in the reduced >-Gröbner basis of F .

Lemma 7.4. Let K be a field, and let F ⊂ P = K[x1, . . . , xn] be a polynomial system
with dF < ∞. Then

sdDRL (F) ≤ max
{

dF , max. GB. degDRL(F)}.

Proof. Let g ∈ G be an element of the reduced DRL Gröbner basis of F . If g has a degree
fall, then by Proposition 7.3 g ∈ WF,dg ⊂ WF,dF . If g does not have a degree fall, then
g ∈ WF,deg(g). Thus, the upper bound follows by taking the maximum over the last fall
degree and the maximal degree in the reduced DRL Gröbner basis.

If a polynomial system is in generic coordinates, then one can guarantee that the last
fall degree is finite.

Theorem 7.5. Let K be an algebraically closed field, and let F = {f1, . . . , fm} ⊂
K[x1, . . . , xn] be an inhomogeneous polynomial system such that

(
Fhom) is in generic

coordinates and
∣∣Z+

(
Fhom)∣∣ ̸= 0. If d ≥ sat

(
Fhom) is an integer, then

(F)≤d = WF,d.

In particular,
dF = sat

(
Fhom) .
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Proof. As always we abbreviate P = K[x1, . . . , xn]. WF,d ⊂ (F)≤d is trivial, so let
f ∈ (F)≤d. Recall that by Lemma 2.6 (F)hom =

(
Fhom)sat. Therefore, by definition

of the satiety x
d−deg(f)
0 · fhom ∈ (F)hom

d =
(
Fhom)

d
. So we can construct x

d−deg(f)
0 ·

fhom =
∑m

i=1 gi · fhom
i , where gi homogeneous and deg

(
gi · fhom

i

)
= d. Then by [KR05,

Proposition 4.3.2]

f =
(

x
d−deg(f)
0 · fhom

)deh
=

m∑
i=1

gdeh
i · fi,

where deg
(
gdeh

i · fi

)
≤ d. So f ∈ WF,d. Therefore, WF,d ∩ P≤d−1 = (F)≤d ∩ P≤d−1 =

(F)≤d−1 = WF,d−1 for all d > sat
(
Fhom). So by Proposition 7.3 we can conclude that

dF ≤ sat
(
Fhom).

For the second claim let f ∈ (F)≤dF , then it can be constructed as

f =
m∑

i=1
gi · fi,

where deg (gi · fi) ≤ dF . Let d̂ = max1≤i≤m deg (gi · fi) ≤ dF . Then by [KR05, Proposi-
tion 4.3.2]

x
d̂−deg(f)
0 · fhom =

m∑
i=1

x
d̂−deg(fi·gi)
0 · ghom

i · fhom
i .

Multiplying this equation by xdF −d̂
0 lifts it to (F)hom

dF
. Since f ∈ (F)≤dF was arbitrary we

can then conclude that(
Fhom)

dF
=
{

x
dF −deg(f)
0 · fhom

∣∣∣ f ∈ (F)≤dF

}
= (F)hom

dF
.

Obviously, the latter equality extends to all d ≥ dF , so by minimality of the saturation we
also have that sat

(
Fhom) ≤ dF .

Corollary 7.6. In the situation of Theorem 7.5, if f ∈ (F) has a degree fall in df , then

df ≤ sat
(
Fhom) .

Proof. This is a consequence of Proposition 7.3 and Theorem 7.5.

So by Equation (42) the construction of a polynomial with a degree fall yields a lower
bound on the regularity of Fhom.

Remark 7.7. We note that the first notion of “last fall degree” already appeared in
Huang et al. [HKY15, HKYY18]. They define their last fall degree as follows: Let F ⊂
P = K[x1, . . . , xn] be a polynomial system the vector space of constructible polynomials
VF,d in degree d ≥ 0 is defined via

(i) {f ∈ F | deg (f) ≤ d} ⊂ VF,d,

(ii) if g ∈ VF,d and h ∈ P with deg (g · h) ≤ d, then h · g ∈ VF,d.

Analog to Definition 7.2 Huang et al. define the last fall degree as

dF = min
{

d ∈ Z≥0 ∪ {∞} | f ∈ VF,max{d,deg(f)} for all f ∈ (F)
}

.

For Huang et al.’s last fall degree one can also prove analog characterizations to Proposi-
tion 7.3, see [HKYY18, Propostion 2.6] and [CG23, Theorem 2.8]. Moreover, Huang et
al.’s last fall degree is always finite [HKYY18, Propostion 2.6].
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Huang et al.’s last fall degree can also be interpreted in terms of Macaulay matrices.
Let > be a degree compatible term order on P , and let M≤d be the inhomogeneous
Macaulay matrix for F in degree d. First we compute the basis B of the row space of
M≤d via Gaussian elimination. Now we generate the Macaulay matrix M≤d for B and
again compute the row space basis B′ via Gaussian elimination. We repeat this procedure
until B = B′. We then denote with W d the row space of the final stationary Macaulay
matrix in that procedure. It is clear that for d large enough B contains a Gröbner basis,
in analogy to Definition 2.3 one can define another notion of solving degree sd> (F) to be
the minimal d such that the iterated Macaulay matrix construction produces a >-Gröbner
basis for F . Gorla et al. proved that W d = VF,d [GMP22, Theorem 1], and Caminata &
Gorla proved that [CG23, Theorem 3.1]

sd> (F) = max
{

dF , max. GB. deg> (F)
}

.

With the Macaulay matrix interpretation the difference between Huang et al.’s and our
last fall degree notion becomes clear. Our last fall degree is defined via a single Macaulay
matrix in degree d, i.e. it is a last fall degree of the first order. Huang et al.’s last fall
degree is defined via an iteration of Macaulay matrices in degree d, i.e. it is a last fall
degree of higher order.

Finally, it follows easily from the definitions that

dF ≤ dF ,

sd> (F) ≤ sd> (F) .

8 Lower Bounds for the Last Fall Degree of Iterated Poly-
nomial Systems

In this section we prove lower bounds for the Castelnuovo-Mumford regularity of attacks on
MiMC, Feistel-MiMC and Feistel-MiMC-Hash. Essentially, we will achieve this by constructing
S-polynomials with degree falls.

8.1 Lower Bound for Univariate Keyed Iterated Polynomial Systems
With a Field Equation

Before we present the theorem we first outline our proof strategy for all results in this
section. First we pick a polynomial f ∈ (I, g), where I is an ideal with known DRL and
LEX Gröbner bases and g is an additional polynomial, and assume that f does not have a
degree fall in some degree df . Now we express as sum f = fI + fg · g, where fI ∈ I, that
is compatible with df and rearrange this equation so that the right-hand side only consists
of elements of I, i.e. f − fg · g = fI . Additionally, we reduce fg modulo I with respect to
DRL, so without loss of generality we can assume that no monomial of fg is an element of
inDRL(I). Then we use the LEX Gröbner basis of I to transform the left-hand side into a
univariate polynomial. Finally, we compare the degrees of the univariate left-hand side
polynomial and the univariate LEX polynomial of I. If f has a degree fall, then we expect
that the degree of the left-hand side polynomial is less than the degree of the univariate
LEX polynomial, i.e. we have constructed a contradiction.

Theorem 8.1. Let Fq be a finite field, let n ≥ 2 be an integer, and let f1, . . . , fn ∈
Fq[x1, . . . , xn−1, y] be a univariate keyed iterated polynomial system such that

(i) di = deg (fi) ≥ 2 for all 1 ≤ i ≤ n and d1 ≤ q, and

(ii) fi has the monomial xdi
i−1 for all 2 ≤ i ≤ n.
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Let fn+1 = yq − y be the field equation for y, let F = {f1, . . . , fn+1}, and let f̃n ∈ Fq[y] be
the univariate polynomial in the LEX Gröbner basis of (f1, . . . , fn). Further, assume that

(iii) fn+1 /∈ (f1, . . . , fn), and

(iv) f̃n has less than d1 many roots in Fq.

Then

dF ≥ q +
n∑

i=2
(di − 1).

Moreover, if di ≥ d for all 1 ≤ i ≤ n, then

dF ≥ q + (n − 1) · (d − 1).

Proof. Without loss of generality we can assume that LCDRL(f1) = 1. Let I = (f1, . . . , fn),
and let xγ =

∏n−1
i=1 x

di+1−1
i . We consider the S-polynomial

s = xγ · SDRL (f1, fn+1) ,

and the degree ds = q +
∑n

i=2(di − 1). By Assumption (iii) SDRL (f1, fn+1) = yq−d1 · f1 −
fn+1 has a degree fall in q, so we also have that deg (s) < ds. For a contradiction let us
assume that s does not have a degree fall in ds, i.e.,

s =
n∑

i=1
si · fi + sn+1 · fn+1,

where deg (si · fi) < ds for all 1 ≤ i ≤ n + 1. Expanding the definition for s and by
rearranging we yield that

(xγ + sn+1) · fn+1 =
n∑

i=1
s̃i · fi ∈ I.

Via division by remainder we can split sn+1 = sI + sr, where sI ∈ I and no term of sr

lies in inDRL(I). Note that for a degree compatible term order the degree of polynomials
involved in the division by remainder algorithm can never reach ds. Now we move sI · fn+1
to the right-hand side of the equation, so without loss of generality we can assume that no
term of sn+1 lies in inDRL(I). Via the LEX Gröbner basis of I, see Lemma 4.2, we can
transform any polynomial in g ∈ Fq[x1, . . . , xn−1, y] into a univariate polynomial ĝ ∈ K[y]
such that

g ≡ ĝ mod (f1, . . . , fn)

by simply substituting xi 7→ f̃i. Via the substitution we now obtain univariate polynomials
f̂γ , f̂sn+1 ∈ Fq[y] such that

(xγ + sn+1) · fn+1 ≡
(

f̂γ + f̂sn+1

)
· fn+1 ≡ 0 mod I. (46)

By our assumption that s does not have a degree fall, we have that deg (sn+1) < deg (xγ).
So by Proposition 4.6 (5) we also have that deg

(
f̂sn+1

)
< deg

(
f̂γ

)
. Recall that the

degree of f̂γ is given by Proposition 4.6 (4),

deg
(

f̂γ

)
=

n∏
i=1

di − d1. (47)
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Combining Lemma 4.1 (2) and Equation (46) we now conclude that

(xγ + sn+1) · fn+1 ∈ (f1, . . . , fn) ⇔
(

f̂γ + f̂sn+1

)
· fn+1 ∈

(
f̃n

)
, (48)

where f̃n is the univariate polynomial in the LEX Gröbner basis of I. I.e.,
(

f̂γ + f̂sn+1

)
·fn+1

must be a multiple of f̃n. By Assumption (iv) f̃n has less than d1 many roots in Fq and
fn+1 =

∏
a∈Fq

(y − a) is a square-free polynomial, so

deg
(

gcd
(

f̂n, fn+1

))
< d1. (49)

Before our final step we recall the following property of univariate polynomial greatest
common divisors: If p, q, r ∈ K[x], K a field, and gcd (p, r) = 1, then gcd (p, q · r) =
gcd (p, q). Combining this property with Equation (48) we conclude that the following
equation must be true

f̃n = gcd
(

f̃n,
(

f̂γ + f̂sn+1

)
· fn+1

)
= gcd

(
f̃n,
(

f̂γ + f̂sn+1

)
· gcd

(
f̃n, fn+1

))
.

On the other hand, by Equations (47) and (49) we have that

deg
(
f̃n

)
=

n∏
i=1

di ≤ deg
((

f̂γ + f̂sn+1

)
· gcd

(
f̃n, fn+1

))
= deg

(
f̂γ + f̂sn+1

)
+ deg

(
gcd

(
f̃n, fn+1

))
<

n∏
i=1

di − d1 + d1 =
n∏

i=1
di.

A contradiction.

Remark 8.2. (1) If the number of roots of f̂n in Fq is greater than or equal to d1, then
one can still apply the strategy in the proof to obtain a weaker upper bound. It
suffices to choose xγ =

∏n−1
i=j x

di+1
i for a suitable j > 1 such that the degrees of the

polynomials in the final gcd equation yield a contradiction.

(2) We note that small non-trivial bounds can also be proven without Assumption (iv).
In particular, one can prove that

(i) If d1 + q < dn, then dF ≥ q + 1.
(ii) If q +

∏n−1
i=1 di < dn, then dF ≥ q + 2.

One considers the polynomials x1·SDRL(f1, fn+1) and x2
1·SDRL(f1, fn+1) respectively,

and then applies the same strategy as in the proof of Theorem 8.1 to deduce that
these polynomials have degree falls.

Let us now apply the lower bound to MiMC.

Example 8.3 (MiMC and one field equation II). Let MiMC be defined over Fq, and let r be
the number of rounds. The first two conditions of Theorem 8.1 are trivially satisfied by
MiMC. For the third assumption, if we consider f̂n, the univariate polynomial in the LEX
Gröbner basis, as random polynomial, then for q large enough it has on average only one
root in Fq (cf. [Leo06]). Thus, with high probability we can assume that MiMC has only
one root in Fq. Now we pick a random k ∈ Fq and evaluate whether MiMC(p, k) = c or
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not. If the equality is true we can return K as proper key guess, otherwise it implies that
fn+1 /∈ IMiMC. So we can combine Example 5.1 and Theorem 8.1 to obtain the following
range for the solving degree of MiMC and one field equation

q + 2 · r − 2 ≤ reg
(

Fhom
MiMC +

(
yq − y · xq−1

0

))
≤ q + 2 · r.

Small scale experiments indicate that the solving degree of this attack is always equal to
q + 2r − 1.

For any polynomial system F ⊂ P such that Fhom is in generic coordinates we have
by Corollary 3.5 and [CG23, Theorem 5.3] that

dreg (F) ≤ reg
(
Fhom) . (50)

Obviously, this bound also applies to the scenario of Theorem 8.1, though under the
assumptions of the theorem F top ⊂ P is a DRL Gröbner basis since f top

1 = yd1 | yq.
Therefore, inDRL (F top) =

(
yd1 , xd2

1 , . . . , xdn
n−1

)
. Note that a homogeneous ideal and its

DRL initial ideal have to have the same degree of regularity, and it is easy to see that

dreg
(
F top) =

n∑
i=1

di − n + 1, (51)

i.e. the degree of regularity is equal to the Macaulay bound of the keyed iterated polynomial
system.

Recall from Section 5.1 that we can always replace yq − y by its remainder ry modulo
IMiMC with respect to DRL. For MiMC experimentally we observed that the highest degree
component of ry is always a monomial and yd1−1 | ry. To compute the degree of regularity
one then computes the DRL Gröbner basis of (F top) and utilizes it to compute the Hilbert
series h of inDRL (F top). The degree of regularity is then given by deg (h) + 1.

Under some additional assumptions on ry we can adapt the proof of Theorem 8.1.
Suppose that the highest degree component of ry is of the form yd1−1 ·

∏k
i=1 x

di+1−1
i for

some k ≤ n−2. We set xγ =
∏n−1

i=j x
di+1−1
i , where j ≥ k+1, and consider the S-polynomial

s = xγ · SDRL(f1, ry) = xγ ·

(
f1 ·

k∏
i=1

x
di+1−1
i − y · ry

)
. (52)

Again we assume that s does not have a degree fall in ds = deg (ry) +
∑n

i=j+1(di − 1) + 1.
By rearranging we then yield that

(y · xγ + sy) · ry ∈ I = (f1, . . . , fn), (53)

where deg (sy) ≤ deg (xγ). Now we transform again to univariate polynomials in y via the
LEX Gröbner basis. Obviously, ry ≡ yq −y mod I, and the univariate degree of y ·xγ +sy

can again be computed by Proposition 4.6 deg
(

f̂γ

)
=
∏n

i=1 di −
∏j

i=1 di + 1. Provided
that

n∏
i=1

di −
j∏

i=1
di + 1 + deg

(
gcd

(
yq − y, f̃n+1

))
<

n∏
i=1

di

⇔ deg
(

gcd
(
yq − y, f̃n+1

))
<

j∏
i=1

di − 1

(54)
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we can then again construct a contradiction via the greatest common divisor. Under these
additional assumptions one then has the lower bound

dF ≥ deg (ry) +
n∑

i=j+1
(di − 1) + 1. (55)

In case of MiMC, if there is a unique solution for the key variable, then we obtain the lower
bound

dF ≥ deg (ry) + 2 · r − 1, (56)
and if there is less than 8 solutions for the key variable, then we obtain the lower bound

dF ≥ deg (ry) + 2 · r − 3. (57)

8.2 Lower Bound for the Two Plain/Ciphertext Attack of Univariate
Keyed Iterated Polynomial Systems

Next we turn to the attack with two plain/ciphertexts. For this lower bound we work with
the degree of regularity and [CG23, Theorem 5.3].

Theorem 8.4. Let Fq be a finite field, let n ≥ 1 be an integer, and let

f1, . . . , fn ∈ Fq[u1, . . . , un, y], and
h1, . . . , hn ∈ Fq[v1, . . . , vn, y]

be two univariate keyed iterated polynomial systems which are constructed with the same
g1, . . . , gn ∈ Fq[x, y] but have different plain/ciphertext pairs (p1, c1), (p2, c2) ∈ F2

q. Assume
that

(i) di = deg (gi) ≥ 2 for all 1 ≤ i ≤ n,

(ii) gi has the monomial xdi
i−1 for all 2 ≤ i ≤ n, and

Then for the polynomial system F = {f1, . . . , fn, h1, . . . , hn} ⊂ Fq[u1, . . . , un, v1, . . . , vn, y]
we have that

reg
(
Fhom) ≥ 2 ·

(
n∑

i=1
(di − 1)

)
− d1.

Moreover, if deg (gi) ≥ d for all 1 ≤ i ≤ n, then

reg
(
Fhom) ≥ 2 · n · (d − 1) − d.

Proof. We have that (F top) is a DRL Gröbner basis since f top
1 = htop

1 and that inDRL (F top)
=
(

yd1 , ud2
1 , . . . , udn

n−1, vd2
1 , . . . , vdn

n−1

)
, therefore

dreg
(
F top) = d1 − 1 + 2 ·

n∑
i=2

(di − 1) + 1 = 2 ·
n∑

i=1
(di − 1) − d1, (58)

and the claim follows from [CG23, Theorem 5.3].

Remark 8.5. Under the additional assumption that deg
(
SDRL(f1, h1)

)
≥ 2 it can also

be proven that

dF ≥ 2 ·

(
n∑

i=1
(di − 1)

)
− d1.

Though, it requires slightly more effort
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Let us apply this theorem to MiMC.

Example 8.6 (MiMC and two plain/ciphertext pairs II). Let Fq be a finite field of odd
characteristic, let MiMC be defined over Fq, and let r be the number of rounds. Let
(p1, c1), (p2, c2) ∈ F2

q be two different plain/ciphertext pairs given by MiMC. By Example 5.3
and Theorem 8.4 we have the following range for the Castelnuovo-Mumford regularity of
this attack

4 · r − 3 ≤ reg
(
Fhom

MiMC,1 + Fhom
MiMC,2

)
≤ 4 · r + 1.

Moreover, small scale experiments indicate that the solving degree of this attack is always
equal to 4 · r.

8.3 Lower Bound for Feistel-2n/n

Recall that the DRL Gröbner basis of Feistel-MiMC, see Proposition 4.7 (1), is almost a
univariate keyed iterated polynomial system. Therefore, we can utilize the same strategy
as for MiMC and a field equation to prove the lower bound for Feistel-2n/n.

Theorem 8.7. Let Fq be a finite field, let n ≥ 2 be an integer, and let F = {fL,1, fR,1, . . . ,
fL,n, fR,n} ⊂ Fq[xL,1, xR,1, . . . , xL,n−1, xR,n−1, y] be a keyed iterated polynomial system
for Feistel-2n/n such that

(i) di = deg (fL,i) ≥ 2 for all 1 ≤ i ≤ n,

(ii) fi,L has the monomial xdi

L,i−1 for all 2 ≤ i ≤ n,

(iii) d1 ≤ dn and fL,n has the monomial ydn , and

(iv) the greatest common divisor of the univariate polynomials in y that represent the left
and the right branch have degree less than d1.

Then

dF ≥ dn +
n−1∑
i=2

(di − 1) .

Moreover, if deg (fL,i) ≥ d for all 2 ≤ i ≤ n, then

dF ≥ d + (n − 2) · (d − 1) .

Proof. By Assumption (i) and (ii) we can efficiently compute the DRL Gröbner basis
of F \ {fR,n} with Proposition 4.7 (1). Next we remove the linear polynomials from
the Gröbner basis, we denote this downsized base with G = {f̃L,1, . . . , f̃L,n} ⊂ P =
Fq[xR,2, . . . , xR,n−1, xL,n−1, y]. Let xγ =

∏n−1
i=2 xdi−1

R,i , and let t ∈ P be the polynomial
which is obtained by substituting xL,n−1 7→ cR into f̃L,n = fL,n. Note that this substitution
can be constructed via

t = f̃L,n + t̃ · fR,n,

where t̃ ∈ Fq[xL,n−1, y] and LMDRL(t̃) = xdn−1
L,n−1, and by Assumption (iii) deg (t) = dn.

Now we consider the polynomial

s = xγ · SDRL

(
t, f̃L,1

)
.

By Assumption (iii) SDRL(fL,1, t) has a degree fall in dn. For a contradiction we now
assume that s does not have a degree fall in ds = dn +

∑n−1
i=2 (di − 1), i.e.

s =
n∑

i=1
si · f̃L,i + sn+1 · fR,n ⇐⇒ (xγ · t − sn+1) · fR,n =

n∑
i=1

s̃i · f̃L,i ∈ (G),
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where deg
(
si · f̃L,i

)
< ds for all 1 ≤ i ≤ n and deg (sn+1) < ds − 1. By expanding t we

can further rewrite the last equation as(
xγ · t̃ − sn+1

)
· fR,n ∈ (G).

Without loss of generality we can assume that no monomial present in xγ · t̃ and sn+1 is
an element of inDRL(G). Note that by construction

LMDRL

(
xγ · t̃

)
= xdn−1

L,n−1 ·
n−1∏
i=2

xdi−1
R,i ,

deg (sn+1) < ds − 1 = deg
(
xγ · t̃

)
.

With the LEX Gröbner basis of (G), see Proposition 4.7 (3), we now construct univariate
polynomials f̂γ , f̂sn−1 , f̂R, t̂ ∈ Fq[y] such that

xγ ≡ f̂γ , sn+1 ≡ f̂sn+1 , fR,n ≡ f̂R, t̃ ≡ t̂ mod (G) .

By Proposition 4.7 (6) the leading monomial of xγ · t̃ has the largest univariate degree
among all monomials in m ∈ P \ inDRL(G) with deg (m) ≤ deg

(
xγ · t̃

)
, therefore by

Proposition 4.7 (5)

deg
(

f̂γ · t̂ − f̂sn+1

)
=

n∏
i=1

di − d1.

Denote with f̂L the univariate polynomial in the LEX Gröbner basis of (G), this is exactly
the polynomial that describes encoding in the left branch of Feistel-2n/n. Similar the
univariate polynomial f̂R ∈ Fq[y] equivalent to fR,n represents encoding in the right branch
of Feistel-2n/n. By Lemma 4.1 and elementary properties of the polynomial greatest
common divisor the following equality must be true

fL = gcd
(

f̂L,
(

f̂γ · t̂ − f̂sn+1

)
· f̂R

)
= gcd

(
f̂L,
(

f̂γ · t̂ − f̂sn+1

)
· gcd

(
f̂L, f̂R

))
.

On the other hand, by Assumption (iv) gcd
(

f̂L, f̂R

)
has degree less than d1. So with

Proposition 4.7 (4) we have the following inequality

deg
(

f̂L

)
=

n∏
i=1

di ≤ deg
((

f̂γ · t̂ − f̂sn+1

)
· gcd

(
f̂L, f̂R

))
= deg

(
f̂γ · t̂ − f̂sn+1

)
+ deg

(
gcd

(
f̂L, f̂R

))
<

n∏
i=1

di − d1 + d1 =
n∏

i=1
di.

A contradiction.

Applying the theorem to MiMC-2n/n we obtain the following range on the regularity.

Example 8.8 (MiMC-2n/n II). Let MiMC-2n/n be defined over Fq, and let r be the number
of rounds. We construct the downsized DRL polynomial system from Proposition 4.7
F̃ ∪ {fL,r} and embed it into the polynomial ring which has only the variables present in
the system. Let fL, fR ∈ Fq[y] be the univariate polynomials that represent encryption
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in the left and the right branch. If we consider them as random polynomials and divide
them with y − k, where k ∈ Fq is the key, then with high probability they are coprime.
Combining Example 5.4 and Theorem 8.7 we now obtain the following range for the
Castelnuovo-Mumford regularity of MiMC-2n/n

2 · r − 1 ≤ reg
(

Fhom
MiMC-2n/n

)
≤ 2 · r + 1.

Small scale experiments indicate that the solving degree of this attack is always equal to
2 · r.

Let us again compare Theorem 8.7 to Equation (50), since inDRL (F top) =
(

yd1
1 , xd2

R,2,

. . . , x
dn−1
R,n−1, ydn , xL,n−1

)
we have

dreg
(
F top) =

n−1∑
i=1

(di − 1) + 1. (59)

So if dn > d1, then the bound from the theorem is an improvement.

8.4 Lower Bound for Feistel-Hash
We have seen in Proposition 4.7 and Section 5.4 that the LEX Gröbner basis of the
preimage attack of Feistel-MiMC-Hash has the shape of Lemma 4.1. Further, we had to
include the field equation for the variable x2 to remove the parasitic solutions from the
algebraic closure of Fq. Consequently, to prove a lower bound on the last fall degree we
have a mix of the situations in Theorems 8.1 and 8.7. At this point we expect the reader
to be familiar with our techniques, therefore we just mention the polynomials for which it
can be proven that they have a degree fall.

Theorem 8.9. Let Fq be a finite field, let n ≥ 3 be an integer, and let {fL,1, fR,1, . . . ,
fL,n, fR,n} ⊂ K[xL,1, xR,1, . . . , xL,n−1, xR,n−1, x1, x2] denote the keyed iterated polynomial
system for the Feistel-2n/n-Hash preimage attack

Feistel-2n/n

(
x1
0

)
=
(

α
x2

)
,

where α ∈ Fq. Assume that the keyed iterated polynomial system of Feistel-2n/n-Hash is
such that

(i) di = deg (fL,i) ≥ 2 for all 2 ≤ i ≤ n,

(ii) fi has the monomial xdi

L,i−1 for all 2 ≤ i ≤ n, and

(iii) the univariate polynomial f̃ ∈ Fq[x2] of the LEX Gröbner basis of Feistel-2n/n has
less than d2 many roots in Fq.

Then for the polynomial system F = {fL,1, fR,1, . . . , fL,n, fR,n, xq
2 − x2} we have that

dF ≥ q +
n∑

i=3
(di − 1) .

Moreover, if deg (fL,i) ≥ d for all 3 ≤ i ≤ n, then

dF ≥ q + (n − 3) · (d − 1) .



404 Solving Degree Bounds for Iterated Polynomial Systems

Sketch of proof. As a preparation one has to extend Proposition 4.7 to Feistel-Hash. To
do so one sets y = 0 and introduces two variables x1, x2 and sets pL = x1, pR = 0,
cL = α, where α is the hash value, and cR = x2. Now one orders the variables as
xR,n−1 > xL,n−1 > . . . > xR,1 > xL,1 > x1 > x2 for the DRL and LEX term order. Now
one can extend Proposition 4.7 (1)-(6) to Feistel-Hash.

We denote with g ∈ G the polynomial in the DRL Gröbner basis with leading monomial
yd2

1 . Let

xγ = xdn−1
1 ·

n−1∏
i=3

xdi−1
R,i ,

then the polynomial
s = xγ · SDRL (g, yq

1 − y1)

has a degree fall in q + (dn − 1) +
∑n−1

i=3 (di − 1).

For the attacks on Feistel-MiMC-Hash we now obtain the following regularity ranges.

Example 8.10 (Feistel-MiMC-Hash preimage attack II). Let Feistel-MiMC-Hash be defined
over Fq, and let r be the number of round. Under the assumptions of Theorem 8.9 we
obtain with Example 5.5 the following range for the Castelnuovo-Mumford regularity of
the Feistel-MiMC-Hash preimage attack together with a field equation

q + 2 · r − 6 ≤ reg
(

Fhom
preimage +

(
xq

2 − x2 · xq−1
0

))
≤ q + 2 · r − 2.

Small scale experiments indicate that the solving degree of the preimage attack is always
equal to q + 2r − 3.

Like for MiMC and the field equation we can replace xq
2 − x2 by its remainder and obtain

a lower bound on dF via Equation (50).

9 Discussion
In this paper we utilized a rigorous mathematical framework to prove Gröbner basis
complexity estimates for various AO designs. For Hades and the GMiMC family we proved
that the Gröbner basis cryptanalysis of these designs is indeed mathematically sound.
Our analysis of the MiMC family revealed that for mildly overdetermined systems we can
compute small ranges for the Castelnuovo-Mumford regularity, hence putting a limit on
the capabilities of regularity-based solving degree estimates. Arguably, since our regular-
ity/solving degree estimates for MiMC polynomial systems that involve field equations exceed
the size of the underlying field, these bounds do not have direct cryptographic implications.
Instead, they should be viewed as showcase that for well-behaved cryptographic polynomial
systems provable upper as well as lower bounds for the regularity are achievable. Moreover,
as we discussed below Examples 5.1 and 8.3 these bounds can be significantly improved
via an auxiliary division by remainder computation. The reason why we did not work
with the remainder directly is quite simple: For every possible MiMC instantiation and
plain/ciphertext sample the remainder polynomial is different. So unless one can reveal
structural properties of the remainder polynomial one has to do an individual analysis for
every possible instantiation. On the other hand, by working with the field equation itself
we could keep our analysis generic.

To the best of our knowledge this paper is the first time that AO Gröbner basis analysis
has been performed without evasion to assumptions and hypotheses that could fail in
practice. Of course, from an AO designer’s point of view this raises whether more advanced
AO primitives are also provable in generic coordinates. We point out that recent designs
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like Reinforced Concrete [GKL+22], Anemoi [BBC+23], Griffin [GHR+23] and Arion
[RST23] have deviated heavily from classical design strategies, and these deviations seem to
be in conflict with elementary applications of the Caminata-Gorla technique. For example
one of the Reinforced Concrete permutations over Fp is of the form

x1
x2
x3

 7→

 xd
1

x2 ·
(
x2

1 + α1 · x1 + β1
)

x3 ·
(
x2

2 + α2 · x2 + β2
)
 , (60)

where d ∈ Z>1 such that gcd (d, p − 1) = 1 and αi, βi ∈ Fp are such that α2
i − 4 · βi are

non-squares in Fp. Let us naively apply the Caminata-Gorla technique for this permutation.
After homogenizing it and substituting x0 = 0 we yield that xd

1 = x2 · x2
1 = x3 · x2

2 = 0,
but it is not true that x1 = x2 = x3 = 0 is the only solution over Fp to these equations.
Hence, our proving technique for generic coordinates fails. We also want to point out that
we face a similar situation for Griffin and Arion.

For all our regularity lower bounds we were given a DRL Gröbner basis together with
an additional polynomial. Via careful analysis of the arithmetic of the polynomial systems
we could then discover polynomials with degree falls. Of course, we would like to provide
lower bounds in the presence of two or more additional equations. Our readers might also
recall that the attack on MiMC with all field equations was missing in Section 8. From
small scale experiments we raise the following conjecture for this attack.

Conjecture 9.1. Let Fq a finite field. Let F = {f1, . . . , fn} ⊂ P = Fq[x1, . . . , xn−1, y] be
a keyed iterated system of polynomials such that

(i) di = deg (fi) ≥ 2 for all 1 ≤ i ≤ n, and

(ii) fi has the monomial xdi
i−1 for all 2 ≤ i ≤ n.

Let F ⊂ P be the ideal of all field equations. Further, assume that

(iii) (F ) ̸⊂ (f1, . . . , fn), and

(iv) the univariate LEX polynomial has less than d1 many roots in Fq.

Then the polynomial (
n−1∏
i=1

xi

)
· SDRL (f1, yq − y)

has a degree fall for the polynomial system F + F .

We expect that a resolution to this MiMC problem will also reveal insight into the more
general cryptographic polynomial systems.
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