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Abstract. Impossible differential cryptanalysis is very important in the field of
symmetric ciphers. Currently, there are many automatic search approaches to find
impossible differentials. However, these methods have two underlying assumptions:
Markov cipher assumption and key independence assumption. Actually, these two
assumptions are not true in ARX ciphers, especially lightweight ones. In this paper,
we study the impossible differentials in ARX cipher under weak keys for the first time.
Firstly, we propose several accurate difference propagation properties on consecutive
two and three modular additions. Then, these properties are applied to four typical
local constructions composed of two consecutive modular additions, two modular
additions with a rotation operation, xoring secret key or constant in the middle,
to find impossible differentials under weak keys or special constants. What’s more,
we propose a more accurate difference propagation property on three consecutive
modular additions. It can be used to find impossible differentials on more complex
local constructions under weak keys or special constants. In practical ciphers, these
impossible differentials on local constructions can be used to find contradictions.
Lastly, combining our new findings with traditional automatic search methods for
impossible differentials, we propose a framework to find impossible differentials in ARX
ciphers under weak keys. As applications, we apply the framework to SPECK-32/64,
LEA and CHAM-64/128. As a result, we find two 8-round impossible differentials
for SPECK-32/64 under 260 weak keys, and one 11-round impossible differential for
LEA under 2k−1 weak keys, where k is the key size. These impossible differentials
can start from any round. Furthermore, we find two 22-round impossible differentials
for CHAM-64/128 under 2127 weak keys starting from certain rounds. As far as we
know, all these impossible differentials are longer than previous ones.
Keywords: Impossible differential · ARX cipher · Weak key

1 Introduction
1.1 Background
Impossible differential cryptanalysis (IDC) is one of the most powerful cryptanalysis
methods in the field of symmetric ciphers. It was first introduced by Biham et al. and
Knudsen to attack Skipjack [BBS99] and DEAL [Knu98], respectively. Unlike differential
cryptanalysis (DC), IDC aims to find the longest (so-called best) differential characteristic
with probability 0 instead of a differential characteristic with high probability. Using such
an impossible differential (ID), all wrong keys would be filtered out in the key-recovery
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phase, while only the right key is remained. Since it was proposed, it has good performance
on analyzing the security of many block ciphers, such as AES [MDRMH10], Camellia
[Blo15], LEA [HLK+14], HIGHT [CWP12].

The key point of IDC for a target cipher is to find the best valid ID. At the very
beginning, people found IDs by hand. They usually treated the underlying Substitution-box
(S-box) used in the target cipher as the ideal S-box, i.e. all nonzero input and output
difference transitions are possible, and relied on the linear layers to find IDs as long as
possible. It is not always possible to find good IDs by hand because of the numerous
possibilities of differential patterns passing complex linear layers. Later, several automatic
search approaches were invented, such as U-method [KHL10], UID-method [LLWG14]
as well as an extended tool by Wu and Wang in [WW12]. These methods also treat the
S-boxes in target ciphers as ideal ones, but can use the linear layer more carefully to find
IDs by computer. Over about twenty years, these methods are much popular to evaluate
the resistance of target cipher against IDC.

However, S-boxes used in practical ciphers can never be ideal. Some input/output
difference transitions under an S-box in reality will never happen. Taking the difference
propagation through the S-box into consideration, it is possible to find longer IDs that
could never be found with previous methods. Inspired by this, Sasaki et al. [ST17]
and Cui et al. [CCJ+16] applied the MILP to impossible differential automatic search,
respectively. Both described Differential Distribution Table (DDT) in their search models.
As a result, they found longer IDs of LBlock, HIGHT, SHACAL-2, Midori128 and so
on. Especially, Cui et al.’s automatic search method can be applied on ARX ciphers for
the first time. Actually, the methods for searching differential characteristics based on
SAT/SMT [AK18, KLT15, MP13, RKJ+20] or CP [SGL+17] can also be used to find ID
by fixing its input and output differences.

As we summarize above, all methods to find ID are based on two underlying assumptions:
Markov cipher assumption [LMM91] and key independence assumption. In the past decade,
we have seen a trend in the cipher designs gearing towards lightweight applications. It
usually implies a lighter round function, accompanied by a lighter key schedule for the
cipher. This means that the validity of the Markov cipher assumption might be even
less true for this new design paradigm due to less diffusion of round function, simpler
key schedule, as well as more dependencies between internal state and secret round keys.
Specifically, the fact is that most ARX ciphers are not true Markov ciphers due to round-key
dependencies introduced by the key-schedule or consecutive modular additions without key
injection. Therefore, searching for differential characteristics in ARX ciphers under the
Markov cipher assumption may lead to incorrect probabilities. Ultimately, some differential
characteristics searched out under Markov cipher assumption may never happen in practice.

Inspired by this, Beyne and Rijmen [BR22] studied differential cryptanalysis under fixed-
key, developed a general methodology to analyze the fixed-key probabilities of differentials.
They assert that several attacks are shown to be invalid, most others turn out to work
only for some keys but can be improved for weak keys. Xu et al. [XLJ+22] proposed
a SAT-based automatic search tool for impossible differential characteristics in ARX
ciphers and found some distinguishers ignored by previous methods. Peyrin et al. [PT22]
discussed a generic framework that cryptanalysts can use to analyze existing differential
characteristics and provided a clear picture of the probability distribution for the cipher
SKINNY as an example. However, some of these methods have basically verified their
conclusions through a large number of experiments, and there is not enough theoretical
analysis of the difference propagation patterns. Meanwhile, whether the differentials or
impossible differentials do exist or not has remained unknown with the current theoretical
understanding. The weak key space in the difference propagation of ciphers has not been
determined.

In order to better evaluate the security of ARX ciphers, it is meaningful to evaluate



328 Finding Impossible Differentials in ARX Ciphers under Weak Keys

the resistance against impossible differential cryptanalysis under weak keys. Inspired by
that, we aim to propose a more accurate framework to find longer impossible differentials
under weak keys and show how to find the weak key space theoretically.

1.2 Contribution
In this paper, we study the impossible differentials in ARX ciphers under weak keys. We
propose more accurate XOR difference propagation properties on consecutive multiple
modular additions according to ID patterns found experimentally. Then we apply them
to some typical local constructions composed by two or three modular additions, some
linear operations such as rotation, xor with key or constant under weak key. Based on
our work and traditional automatic search method for ID, we propose a new framework
to find IDs under weak keys. As applications, we use this framework on SPECK-32/64,
LEA and CHAM-64/128, and find longer IDs. All the code can be found in our repository
https://github.com/lingqing0707/ID-patterns. Our main contributions are listed as follows:

Propose more accurate XOR difference propagation properties on multiple
modular additions. In [LM02], Lipmaa and Moriai studied the difference propagation
patterns of modular addition and proposed two properties. Based on them, Fu et al.
[FWG+16] and Mouha et al. [MP13] proposed an automatic method to search differential
characteristics in ARX ciphers based on MILP and SAT/SMT respectively. Recently, Li et
al. [LGCX19] proposed a more accurate difference propagation property with constraints
on input pair. In this paper, we further study the differential propagation patterns
on consecutive additions. As a result, we find three impossible difference propagation
properties for two consecutive modular additions. Within one of these properties, some
internal state difference bits may need to be fixed. This may feel confusing because internal
state differences can not be directly controlled. However, as the internal difference state of
differential patterns passing consecutive several modular additions has been limited to a
special set naturally in practical ciphers, which can meet the requirement on the internal
state difference bits corresponding to that mentioned in the property.

Find three IDs for each of four local constructions and one ID for three
more complex local constructions in ARX ciphers. By studying lots of ARX ciphers,
we extract four typical local constructions, including two consecutive modular additions,
two modular additions with a rotation, xor secret key or constant in the middle (please
refer to Figure 4), from two consecutive round functions in ARX ciphers. Applying our
new impossible difference propagation properties on these constructions, we obtain three
IDs for each. Moreover, we extract three more complex local constructions about three
consecutive modular additions from consecutive three round functions in ARX ciphers
(please refer to Figure 5). For each construction, we find one ID. Note that some of these
IDs are true only under weak keys. In practical ciphers, these IDs can be used in finding
contradictions.

Propose a framework for finding IDs under weak keys. Based on traditional
automatic search method to find differentials, truncated differentials and impossible
differentials under key-independence assumption, as well as our new properties on local
constructions, we propose a framework for finding IDs under weak keys. As far as we
know, this is the first work to study ID in ARX ciphers under weak keys.

Applications. As applications, we apply the framework on SPECK cipher [BSS+13]
proposed by NSA, ISO standard cipher LEA [HLK+14] and ultra lightweight cipher CHAM
[KRK+17]. As a result, we find two 8-round IDs for SPECK-32/64 under 260 weak keys,
one 11-round ID for LEA under 2k−1 weak keys, where k is the key size. All these IDs can
start from any round. What’s more, we find two 22-round IDs for CHAM-64/128 under
2127 weak keys starting from certain rounds. All IDs we found are longer than previous
ones which are summarized in Table 1.

https://github.com/lingqing0707/ID-patterns
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Table 1: Summary of impossible differential results for SPECK-32/64, LEA,
CHAM-64/128

Cipher Round Weak key space Starting round Resource

SPECK-32/64
6 264 any [LGCX18]
6 264 any [XSQ17]
7 264 any [LGCX19]
8 260 any Section 4.1

LEA-k 10 2k any [HLK+14]
10 2k any [CCJ+16]
11 2k−1 any Section 4.2

CHAM-64/128 18 2128 any [KRK+17]
20 2128 i, i ∈ A [XLJ+22]
22 2127 i, i ∈ B Section 4.3

1 A = {3, 5, 11, 13, 19, 21, 27, 29, 35, 37, 43, 45, 51, 53, 59}.
2 B = {2, 4, 10, 12, 18, 20, 26, 28, 34, 36, 42, 44, 50, 52, 58}.

1.3 Outline

This paper is organized as follows. Some preliminaries are given in Section 2. In Section 3,
we propose more accurate XOR difference propagation properties on modular additions
and a general framework for finding IDs under weak keys. Then, we apply this framework
to SPECK-32/64, LEA and CHAM-64/128 in Section 4. In Section 5, we conclude this
paper.

2 Preliminaries

2.1 Notations

General notations used in this paper are shown in the following list.

x[i] The i-th bit of string x
x[j : i] The i-th to the j-th bits of x, i ≤ j
∆x The XOR difference of two inputs x and x′

x ⊞ y Addition of x and y modulo 2n

x ⊟ y Subtraction of x and y modulo 2n

x⊕ y Bitwise exclusive OR of x and y
x ∧ y Bitwise AND of x and y
≫ α Right circular shifts by α bits
≪ β Left circular shifts by β bits
≫ α Right shifts by α bits
≪ β Left shifts by β bits
¬x Bitwise NOT of x
x∥y Concatenation of bit strings x and y

(n−1
∗ · · ·

i
∗ · · ·

0
∗)

n-bit string, the bit superscript indicates the position of the bit
and ∗ is an undetermined bit whose value may be 0 or 1

∆A→ ∆B A possible differential pattern
∆A ↛ ∆B An impossible differential pattern
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2.2 Properties of Addition Modulo 2n

Addition Modulo 2n, denoted as ⊞, is one of the important nonlinear components used
in symmetric ciphers. We list some existing XOR difference propagation properties on
modular addition.

Definition 1. (Addition modulo 2n[LM02]). Let z = x ⊞ y, where z, x, y ∈ Fn
2 , then{

z[0] = x[0]⊕ y[0],
z[i] = x[i]⊕ y[i]⊕ c[i− 1], 1 ≤ i ≤ n− 1.

where c = (c[n− 1], · · · , c[1], c[0]) ∈ Fn
2 is the carry bit vector of x ⊞ y, defined recursively

as: {
c[0] = x[0] ∧ y[0],
c[i] = (x[i] ∧ y[i])⊕ (x[i] ∧ c[i− 1])⊕ (y[i] ∧ c[i− 1]), 1 ≤ i ≤ n− 1.

(1)

In [LM02], Lipmaa and Moriai studied the XOR difference propagation patterns of
modular addition. Their results are summarized in Property 1 and Property 2.

Property 1. [LM02] Let ∆x, ∆y and ∆z be fixed n-bit XOR differences. The differential
(∆x, ∆y → ∆z) passing modular addition is possible if and only if

eq(∆x≪ 1, ∆y ≪ 1, ∆z ≪ 1) ∧ (∆x⊕∆y ⊕∆z ⊕ (∆y ≪ 1)) = 0, (2)

where
eq(x, y, z) = (¬x⊕ y) ∧ (¬x⊕ z). (3)

Property 2. [LM02] Let ∆x, ∆y and ∆z be fixed n-bit XOR differences. The differential
(∆x, ∆y→ ∆z) passing modular addition is possible if and only if ∆x[0]⊕∆y[0]⊕∆z[0] = 0
and ∆x[i− 1] = ∆y[i− 1] = ∆z[i− 1] = ∆x[i]⊕∆y[i]⊕∆z[i], for ∆x[i− 1] = ∆y[i− 1] =
∆z[i− 1], 0 ≤ i ≤ n− 1.

These two properties are widely used in the automatic search of (impossible) differential
characteristics based on MILP and SAT/SMT. Besides that, one more intuitive and one
more accurate difference propagation properties of modular addition as Property 3 and
Property 4 respectively have been proposed.

Property 3. [XSQ17] Let ∆x, ∆y and ∆z be fixed n-bit XOR differences. Suppose that
the differential (∆x, ∆y→ ∆z) passing modular addition is possible. If l1 = min{i|∆x[i] =
1, 0 ≤ i ≤ n}, l2 = min{i|∆y[i] = 1, 0 ≤ i ≤ n} and l = min{l1, l2}, we have:

(1) If l1 = l2 = l, then ∆z[i] = 0 for 0 ≤ i ≤ l.

(2) If l1 ̸= l2, then ∆z[l] = 1, ∆z[i] = 0 for 0 ≤ i ≤ l − 1.

Property 4. [LGCX19] Let ∆x, ∆y and ∆z be fixed n-bit XOR differences, where
∆x = x ⊕ x′, ∆y = y ⊕ y′ and ∆z = z ⊕ z′. Suppose the differential (∆x, ∆y → ∆z)
passing modular addition is possible. If ∆x = ∆y = (0 · · · 0

l
1 0 · · · 0), then ∆z = (0 · · · 0) if

and only if x[l] ̸= y[l] or x′[l] ̸= y′[l].

2.3 SPECK, LEA, and CHAM Block Ciphers
2.3.1 SPECK Block Cipher

SPECK [BSS+13] is a family of lightweight block ciphers published by the National
Security Agency (NSA) in 2013. The instance with 2n-bit block is denoted as SPECK-2n



Qing Ling, Tingting Cui, Hongtao Hu, Sijia Gong, Zijun He, Jiali Huang, Jia Xiao 331

where n ∈ {16, 24, 32, 48, 64}. SPECK-2n with mn-bit key is referred as SPECK-2n/mn,
m ∈ {2, 3, 4}. In total, SPECK has ten instances according to n and m. Each instance of
SPECK uses the Feistel-like structure shown in Figure 1.

The key-dependent round function of SPECK-2n can be written as:

Rk(x, y) = (((x ≫ α) ⊞ y)⊕ k, (y ≪ β)⊕ ((x ≫ α) ⊞ y)⊕ k). (4)

where the rotation amounts are α = 7 and β = 2, if n = 16, as well as α = 8 and β = 2,
otherwise. Parameters for all instances of SPECK are specified in Table 2.

Table 2: All versions of SPECK family
Block size Key size n m α β Rounds

32 64 16 4 7 2 22

48 72 24 3

8 3

22
96 4 23

64 96 32 3 26
128 4 27

96 96 48 2 28
144 3 29

128
128

64
2 32

192 3 33
256 4 34

Key Schedule. Let the mn-bit master key be k = lm−2∥lm−3∥ · · · ∥l1∥l0∥k0, where
k0, li ∈ Fn

2 , 0 ≤ i ≤ m− 2. Sequences kj and lj are generated by{
lj+m−1 = (kj + (lj ≫ α))⊕ j,
kj+1 = (kj ≪ β)⊕ lj+m−1.

Then, kj(j ≥ 0) is the j-th round key. It is worth noting that m known consecutive
round keys kj , · · · , kj−m+1 are enough to derive the master key. For more information
about SPECK, please refer to [BSS+13].

𝐾𝑖  

𝑥𝑖  𝑦𝑖  

⋙𝛼 

⋘𝛽 

𝑥𝑖+1 𝑦𝑖+1  

Figure 1: Round function of SPECK

2.3.2 LEA Block Cipher

LEA [HLK+14] is an ISO standard lightweight block cipher designed by Hong et al. It
supports 128-bit block size and 128-bit, 192-bit, and 256-bit key sizes. The numbers of
rounds for LEA are r = 24 for 128-bit key size, r = 28 for 192-bit key size and r = 32 for
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256-bit key size. LEA’s key-dependent round function (refer to Figure 2) can be written
as:

x0
i+1 ← ((x0

i ⊕RK0
i ) ⊞ (x1

i ⊕RK1
i )) ≪ 9,

x1
i+1 ← ((x1

i ⊕RK2
i ) ⊞ (x2

i ⊕RK3
i )) ≫ 5,

x2
i+1 ← ((x2

i ⊕RK4
i ) ⊞ (x3

i ⊕RK5
i )) ≫ 3,

x3
i+1 ← x0

i .

where x0
i ||x1

i ||x2
i ||x3

i is the 128-bit input of the i-th round, RK0
i ||RK1

i ||RK2
i ||RK3

i ||RK4
i ||RK5

i

is the 192-bit round key.
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Figure 2: Round function of LEA

Key Schedule with a 128-bit key. Let K = (K0, K1, K2, K3) be a 128-bit key. We set
T j = Kj for 0 ≤ j < 4. Round key RKi, 0 ≤ i < 24 are generated as follows:

T 0 ← (T 0 ⊞ (δi mod 4 ≪ i)) ≪ 1,

T 1 ← (T 1 ⊞ (δi mod 4 ≪ (i + 1))) ≪ 3,

T 2 ← (T 2 ⊞ (δi mod 4 ≪ (i + 2))) ≪ 6,

T 3 ← (T 3 ⊞ (δi mod 4 ≪ (i + 3))) ≪ 11,

RKi ← (T 0, T 1, T 2, T 1, T 3, T 1).

where δ0, δ1, · · · , δ3 are constants defined as:

δ0 = c3efe9db, δ1 = 44626b02, δ2 = 79e27c8a, δ3 = 78df30ec.

For more information about LEA, especially key schedules with 192-bit and 256-bit
keys, please refer to [HLK+14].

2.3.3 CHAM Block Cipher

CHAM [KRK+17, RKJ+20] is a family of lightweight block ciphers based on ARX con-
struction. It has three versions: CHAM-64/128, CHAM-128/128, and CHAM-128/256,
where CHAM-n/k denotes the version with n-bit block and k-bit key. The total rounds of
these three versions are 88, 112 and 120, respectively.

Divide the plaintext P into four w-bit words x0
0, x1

0, x2
0 and x3

0, where P = x0
0∥x1

0∥x2
0∥x3

0.
Then the n-bit output Xi+1 of the i-th round for 0 ≤ i ≤ r can be noted as Xi+1 =
x0

i+1∥x1
i+1∥x2

i+1∥x3
i+1. CHAM’s key-dependent round function (depicted in Fig. 3) can be

written as: if i is even,

x3
i+1 ← ((x0

i ⊕ i) ⊞ ((x1
i ≪ 1)⊕ (ki mod 2k/w))) ≪ 8,

xj
i+1 ← xj+1

i , for 0 ≤ j ≤ 2,
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otherwise,

x3
i+1 ← ((x0

i ⊕ i) ⊞ ((x1
i ≪ 8)⊕ (ki mod 2k/w))) ≪ 1,

xj
i+1 ← xj+1

i , for 0 ≤ j ≤ 2,

where ki mod 2k/w is the i-th round key.
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Figure 3: Two rounds of CHAM

Key Schedule. Let K = K0||K1|| · · · ||Kk/w−1, then the 2k/w w-bit round keys
RK0, RK1, · · · , RK2k/w−1 are generated as follows:

RKj ← Kj ⊕ (Kj ≪ 1)⊕ (Kj ≪ 8),
RK(j+k/w)⊕1 ← Kj ⊕ (Kj ≪ 1)⊕ (Kj ≪ 11),

where 0 ≤ j < k/w and ki ← RKi mod 2k/w.

3 Framework for Finding Impossible Differential Character-
istics Under Weak Key in ARX Ciphers

In this section, we further study more accurate XOR difference propagation properties on
multiple consecutive modular additions in Section 3.1. Based on these new properties, we
propose a framework to find impossible differentials in ARX ciphers under weak keys in
Section 3.2.

3.1 More Accurate XOR Difference Propagation Properties on Modular
Addition

In this part, we first propose an accurate difference propagation property on Modular
Subtraction shown in Property 5. Then we describe three ID properties on two consecutive
modular additions depicted in Properties 6, 7, 9, as well as apply them on four typical local
constructions extracted from two consecutive round functions of ARX ciphers as in Table
3∼6. What’s more, we study the more accurate ID properties on three consecutive modular
additions shown in Property 9, and apply it on three more complex local constructions,
please refer to Table 7.
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Property 5. Let x = z ⊟ y and x′ = z′ ⊟ y′, where x, y, z, x′, y′, z′ ∈ Fn
2 . Suppose that

∆x = x⊕x′, ∆y = y⊕y′ and ∆z = z⊕ z′. If ∆z = ∆y = (
n−1
0 · · · 0

l
1 0 · · ·

0
0), 0 ≤ l < n−1,

then ∆x = (
n−1
0 · · ·

0
0) if and only if z[l] = y[l] or z′[l] = y′[l].

Proof. Let c, c′ ∈ Fn
2 be the carry bit vectors used to calculate z and z′, and ∆c = c⊕ c′.

According to Definition 1, we have

z[i] = x[i]⊕ y[i]⊕ c[i− 1], z′[i] = x′[i]⊕ y′[i]⊕ c′[i− 1]. (5)

Thus, their XOR difference is

∆z[i] = ∆x[i]⊕∆y[i]⊕∆c[i− 1]. (6)

Suppose that ∆x = (
n−1
0 · · ·

0
0). As ∆z = ∆y = (

n−1
0 · · · 0

l
1 0 · · ·

0
0), we have

∆c[i] = 0, 0 ≤ i ≤ n− 2, (7)

according to Equation (6).
By Definition 1 and Equation (7), as well as ∆x[l] = 0, ∆y[l] = 1, we have

(x[l] ∧ y[l])⊕ (y[l] ∧ c[l − 1])⊕ (x′[l] ∧ y′[l])⊕ (y′[l] ∧ c′[l − 1]) = 0.

Then {
x[l]⊕ c[l − 1] = 0, if y[l] = 1;
x′[l]⊕ c′[l − 1] = 0, if y[l] = 0.

Thus, z[l] = x[l]⊕ y[l]⊕ c[l − 1] = y[l] or z′[l] = x′[l]⊕ y′[l]⊕ c′[l − 1] = y′[l].
Conversely, suppose that z[l] = y[l] or z′[l] = y′[l]. By ∆z = ∆y = (

n−1
0 · · · 0

l
1 0 · · ·

0
0)

and Property 3, we have
∆x[i] = 0, for 0 ≤ i ≤ l. (8)

Thus, according to Equation (6), we have ∆c[l− 1] = 0. Due to Definition 1 again, we can
obtain

∆c[l] = ∆(x[l] ∧ y[l])⊕∆(x[l] ∧ c[l − 1])⊕∆(y[l] ∧ c[l − 1]).

As ∆c[l − 1] = ∆x[l] = 0 and ∆y[l] = 1, we can deduce that

∆c[l] =
{

x[l]⊕ c[l − 1], if y[l] = 1;
x′[l]⊕ c′[l − 1], if y[l] = 0.

Since ∆z[l] = ∆y[l] = 1, we have z[l]⊕ y[l] = z′[l]⊕ y′[l]. Then, due to Equation (5) and
the supposition z[l] = y[l] or z′[l] = y′[l], we have

∆c[l] =
{

x[l]⊕ c[l − 1] = z[l]⊕ y[l] = 0, if y[l] = 1;
x′[l]⊕ c′[l − 1] = z′[l]⊕ y′[l] = 0, if y[l] = 0.

Thus
∆x[l + 1] = ∆z[l + 1]⊕∆y[l + 1]⊕∆c[l] = 0. (9)

By Property 1, it is clear that

∆x[i] = 0, for l + 2 ≤ i ≤ n− 1. (10)

Summing up the Equation (8), (9) and (10), we have ∆x = (
n−1
0 · · ·

0
0).
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Notably, Property 4 and Property 5 reveal two special cases of modular addition
differential propagation on two consecutive bits. Surprisingly, these two properties are also
found by Bao et al. in ASIACRYPT 2023. They listed the concrete bit-wise conditions for
valid differential propagation through modular addition. For more details please refer to
[BLYZ23].

Property 6. Let z = x⊞y, z′ = x′⊞y′, h = z⊞g and h′ = z′⊞g′, where x, y, z, g, h, x′, y′, z′,
g′, h′ ∈ F5

2. Suppose that ∆x = x ⊕ x′, ∆y = y ⊕ y′, ∆z = z ⊕ z′, ∆g = g ⊕ g′ and
∆h = h⊕ h′. If ∆z[2 : 1] ̸= 00, then we have

(∆x = 1000∗, ∆y = 00 ∗ ∗∗, ∆g = 0000∗↛ ∆h = 00 ∗ ∗∗). (11)

Proof. Reductio ad absurdum. Suppose (∆x = 1000∗, ∆y = 00 ∗ ∗∗, ∆g = 0000∗ →
∆h = 00 ∗ ∗∗). Let c1, c′

1, c2 and c′
2 be the carry bit vectors of x ⊞ y, x′ ⊞ y′, z ⊞ g and

z′ ⊞ g′ respectively, ∆c1 = c1 ⊕ c′
1 and ∆c2 = c2 ⊕ c′

2. By Property 1, we have

h = z ⊞ g, ∆g = 0000∗, ∆h = 00 ∗ ∗∗ ⇒∆z[4] = 0, if ∆z[3] = 0;
z = x ⊞ y, ∆x = 1000∗, ∆y = 00 ∗ ∗∗ ⇒∆z[4] = 1, if ∆z[3] = 0.

Thus, ∆z[3] = 1. Due to Definition 1,

∆z[i] = ∆x[i]⊕∆y[i]⊕∆c1[i− 1], (12)
∆h[i] = ∆z[i]⊕∆g[i]⊕∆c2[i− 1]. (13)

Therefore, by bringing the corresponding bit difference values into Equation (12) and
Equation (13) respectively, we have ∆c1[2] = 1 and ∆c2[2] = 1.

According to the value of ∆z[2], there are two cases.
Case 1: Suppose ∆z[2] = 1. Since ∆x[2] = 0, then ∆y[2] = ∆c1[1]⊕ 1 by Equation

(12). Due to Definition 1 again,

∆c1[i] = ∆(x[i] ∧ y[i])⊕∆(x[i] ∧ c1[i− 1])⊕∆(y[i] ∧ c1[i− 1]). (14)

Thus,

∆c1[2] =
{

∆c1[1] ∧ (x[2]⊕ y[2]), if ∆y[2] = 0;
∆y[2] ∧ (x[2]⊕ c1[1]), if ∆y[2] = 1.

⇒

{
c1[2] = c1[1] and x[2]⊕ y[2] = 1, if ∆y[2] = 0;
c1[2] = y[2] and x[2]⊕ c1[1] = 1, if ∆y[2] = 1.

While,

z[2] = x[2]⊕ y[2]⊕ c1[1] =
{

1⊕ c1[1] = 1⊕ c1[2], if ∆y[2] = 0;
1⊕ y[2] = 1⊕ c1[2], if ∆y[2] = 1.

Therefore,
z[2] = 1⊕ c1[2]. (15)

On the second modular addition h = z ⊞ g and h′ = z′ ⊞ g′, by Definition 1,

∆c2[i] = ∆(z[i] ∧ g[i])⊕∆(z[i] ∧ c2[i− 1])⊕∆(g[i] ∧ c2[i− 1]). (16)

Since ∆z[2] = 1, ∆c2[2] = 1, ∆g[2] = 0,

∆c2[2] =
{

∆(z[2] ∧ c2[1]), if ∆c2[1] = 1;
∆z[2] ∧ (g[2]⊕ c2[1]), if ∆c2[1] = 0.

⇒

{
c2[1] = z[2] = c2[2], if ∆y[2] = 0;
g[2]⊕ c2[1] = 1 and c2[2] = z[2], if ∆y[2] = 1.
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Above,
z[2] = c2[2]. (17)

Furthermore,

a) If ∆z[4] = 1. Since ∆x[4] = 1, ∆y[4] = 0, ∆g[4] = 0 and ∆h[4] = 0, then ∆c1[3] = 0
and ∆c2[3] = 1 due to Equation (12) and (13). Since ∆c1[2] = 1, ∆x[3] = 0, ∆y[3] = 0,
by Equation (14), we can obtain

∆c1[3] = ∆c1[2] ∧ (x[3]⊕ y[3]) = 1⇒ x[3]⊕ y[3] = 0.

Then by Definition 1, and according to Equation (15),

z[3] = x[3]⊕ y[3]⊕ c1[2] = c1[2] = 1⊕ z[2]. (18)

Meanwhile, on the second modular addition h = z ⊞ g and h′ = z′ ⊞ g′, since
∆z[3] = 1, ∆c2[2] = 1, ∆g[3] = 0 and Equation (16), we have

∆c2[3] = ∆(z[3] ∧ c2[2]) = 1⇒ z[3] = c2[2].

Thus by Equation (17)
z[3] = z[2]. (19)

Equation (18) and Equation (19) constitute a contradiction.

b) If ∆z[4] = 0. Similar to the deduction of a) and Equations (15) and (17), we can
obtain

z[3] = 1⊕ c1[2] = z[2] (20)
and

z[3] = 1⊕ c2[2] = 1⊕ z[2] (21)
which constitute a contradiction.

Case 2: Suppose ∆z[2] = 0. Since ∆x[2] = 0, ∆y[2] = ∆c1[1] by Equation (12). Due
to ∆c1[2] = 1 and Equation (14), we can obtain

∆c1[2] = ∆(y[2] ∧ c1[1]) = 1
⇒ ∆y[2] = ∆c1[1] = ∆c1[2] = 1 and y[2] = c1[1] = c1[2].

(22)

Due to ∆c2[2] = 1, ∆g[2] = 0 and Equation (16), we have

∆c2[2] = ∆c2[1] ∧ (z[2]⊕ g[2]) = 1⇒ ∆c2[1] = 1 and z[2]⊕ g[2] = 1.

By Definition 1,

c2[2] = (z[2] ∧ g[2])⊕ (z[2] ∧ c2[1])⊕ (g[2] ∧ c2[1])
= 0⊕ (z[2]⊕ g[2]) ∧ c2[1] = c2[1].

(23)

According to ∆z[2 : 1] ̸= 00, we have ∆z[1] = 1. Since ∆x[1] = 0, ∆g[1] = 0 combined
with ∆c1[1] = 1, ∆c2[1] = 1, then we can deduce that

z[1] = 1⊕ c1[1], z[1] = c2[1].

Due to Equations (22) and (23), we have

z[1] = 1⊕ c1[2], z[1] = c2[2].

Also, according to the value of ∆z[4], we have the same result in Case 1 that{
z[3] = c1[2]
z[3] = c2[2] if ∆z[4] = 1;

{
z[3] = 1⊕ c1[2]
z[3] = 1⊕ c2[2] if ∆z[4] = 0.

Then we have the contradiction about the relation between the values of z[3] and z[1].
To sum up, (∆x = 1000∗, ∆y = 00 ∗ ∗∗, ∆g = 0000∗↛ ∆h = 00 ∗ ∗∗).
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Similarly, we find the other property about two consecutive modular additions in F5
2 as

follows.

Property 7. Let z = x⊞y, z′ = x′⊞y′, h = z⊞g and h′ = z′⊞g′, where x, y, z, g, h, x′, y′, z′,
g′, h′ ∈ F5

2. Suppose that ∆x = x ⊕ x′, ∆y = y ⊕ y′, ∆z = z ⊕ z′, ∆g = g ⊕ g′ and
∆h = h⊕ h′. Then

(∆x = 0000∗, ∆y = 0010∗, ∆g = 0000∗↛ ∆h = 1010∗). (24)

Proof. See Appendix A.

Property 8. Let z = x⊞y, z′ = x′⊞y′, h = z⊞g and h′ = z′⊞g′, where x, y, z, g, h, x′, y′, z′,
g′, h′ ∈ F4

2. Suppose that ∆x = x ⊕ x′, ∆y = y ⊕ y′, ∆z = z ⊕ z′, ∆g = g ⊕ g′ and
∆h = h⊕ h′. Then

(∆x = 0000, ∆y = 00 ∗ ∗, ∆g = 0000 ↛ ∆h = 100∗) (25)

Proof. See Appendix B.

For Property 8, it can be noticed that the carry brought by the difference of the least
significant bit does not affect the result of the differential propagation property. The ID
can be extended as (∆x = 0000∗, ∆y = 00 ∗ ∗∗, ∆g = 0000∗↛ ∆h = 100 ∗ ∗). Therefore,
Property 8 still shows a propagation property of two consecutive 5-bit modular differential
patterns.

So far, we have put forward three differential propagation properties about two consec-
utive modular additions z = x⊞ y, h = z ⊞ g in F5

2, which are Properties 6, 7, and 8. It can
be seen that the least significant bits of these IDs are undetermined, which means that the
feasibility of these IDs is not affected by the values of less significant bits. What’s more,
the carries brought by lower bits can not make these impossible differential transitions
viable. Thus, for x, y, z, g, h, if we add some uncertain bits at higher and lower positions,
the IDs still hold. For example, if ∆z[i+2: i+1] ̸= 00, then

(∆x=∗· · ·∗
i+4,··· ,i

1000∗ ∗· · ·∗, ∆y =∗· · ·∗
i+4,··· ,i

00∗∗∗ ∗· · ·∗, ∆g =∗· · ·∗
i+4,··· ,i

0000∗ ∗· · ·∗

↛ ∆h=∗· · ·∗
i+4,··· ,i

00 ∗∗∗ ∗· · ·∗)

according to Property 6.
By analyzing lots of ARX ciphers, we find that the round function is usually simple

enough that we can extract four typical local constructions from two consecutive rounds.
The first local construction shown in Figure 4(a) is two consecutive modular addition
operations. We can directly apply Properties 6, 7, 8 on this local construction and find
out three IDs under some constraints which are described in Table 3.

The second local construction shown in Figure 4(b) is two modular addition operations
with a left rotation in the middle. Please note the left rotation is a special permutation,
we can still easily apply Properties 6, 7, 8 on this local construction and find out three
IDs under some constraints which are described in Table 4.

The third local construction shown in Figure 4(c) adds one more XOR operation in
the middle of two consecutive modular addition operations to mix the secret key. Due
to the freedom of secret key, all IDs found in Table 5 become possible under certain key.
However, we can remove such keys from the key space so as to avoid all possible difference
propagation patterns. In other word, we can still apply Properties 6, 7, 8 on this local
construction and find out three IDs under weak key setting (described in Table 5).

The fourth local construction shown in Figure 4(d) adds one more XOR operation
in the middle of two consecutive modular addition operations to mix a known constant.
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Figure 4: Four typical local constructions extracted from two consecutive rounds in ARX
ciphers

Table 3: Three IDs on local construction shown in Figure 4(a)
Constraints ∆z[i+2: i+1] ̸= 00

Differentials

∆x = (∗· · ·∗
i+4,··· ,i

1000∗ ∗· · ·∗) ∆x = (∗· · ·∗
i+4,··· ,i

0000∗ ∗· · ·∗) ∆x = (∗· · ·∗
i+3,··· ,i

0000 ∗· · ·∗)

∆y = (∗· · ·∗
i+4,··· ,i

00∗∗∗ ∗· · ·∗) ∆y = (∗· · ·∗
i+4,··· ,i

0010∗ ∗· · ·∗) ∆y = (∗· · ·∗
i+3,··· ,i

00∗∗ ∗· · ·∗)

∆z = (∗· · ·∗
i+4,··· ,i

∗∗∗∗∗ ∗· · ·∗) ∆z = (∗· · ·∗
i+4,··· ,i

∗∗∗∗∗ ∗· · ·∗) ∆z = (∗· · ·∗
i+3,··· ,i

∗∗∗∗ ∗· · ·∗)

∆g = (∗· · ·∗
i+4,··· ,i

0000∗ ∗· · ·∗) ∆g = (∗· · ·∗
i+4,··· ,i

0000∗ ∗· · ·∗) ∆g = (∗· · ·∗
i+3,··· ,i

0000 ∗· · ·∗)

∆h = (∗· · ·∗
i+4,··· ,i

00 ∗∗∗ ∗· · ·∗)∆h = (∗· · ·∗
i+4,··· ,i

1010∗ ∗ · · · ∗)∆h = (∗· · ·∗
i+3,··· ,i

100∗ ∗· · ·∗)

Result (∆x, ∆y, ∆g ↛ ∆h) (∆x, ∆y, ∆g ↛ ∆h) (∆x, ∆y, ∆g ↛ ∆h)
according to Property 6 according to Property 7 according to Property 8

Table 4: Three IDs on local construction shown in Figure 4(b)
Constraints ∆z[i+2: i+1] ̸= 00

Differentials

∆x = (∗· · ·∗
i+4,··· ,i

1000∗ ∗· · ·∗) ∆x = (∗· · ·∗
i+4,··· ,i

0000∗ ∗· · ·∗) ∆x = (∗· · ·∗
i+3,··· ,i

0000 ∗· · ·∗)

∆y = (∗· · ·∗
i+4,··· ,i

00 ∗∗∗ ∗· · ·∗) ∆y = (∗· · ·∗
i+4,··· ,i

0010∗ ∗· · ·∗) ∆y = (∗· · ·∗
i+3,··· ,i

00∗∗ ∗· · ·∗)

∆z = (∗· · ·∗
i+4,··· ,i

∗∗∗∗∗ ∗· · ·∗)∆z = (∗· · ·∗
i+4,··· ,i

∗∗∗∗∗ ∗· · ·∗) ∆z = (∗· · ·∗
i+3,··· ,i

∗∗∗∗ ∗· · ·∗)

∆z = (∗· · ·∗
j+4,··· ,j

∗∗∗∗∗ ∗· · ·∗)∆z = (∗· · ·∗
j+4,··· ,j

∗∗∗∗∗ ∗· · ·∗)∆z = (∗· · ·∗
j+3,··· ,j

∗∗∗∗ ∗· · ·∗)

∆g = (∗· · ·∗
j+4,··· ,j

0000∗ ∗· · ·∗)∆g = (∗· · ·∗
j+4,··· ,j

0000∗ ∗· · ·∗)∆g = (∗· · ·∗
j+3,··· ,j

0000 ∗· · ·∗)

∆h = (∗· · ·∗
j+4,··· ,j

00∗∗∗ ∗· · ·∗)∆h = (∗· · ·∗
j+4,··· ,j

1010∗ ∗· · ·∗)∆h = (∗· · ·∗
j+3,··· ,j

100∗ ∗· · ·∗)

Result (∆x, ∆y, ∆g ↛ ∆h) (∆x, ∆y, ∆g ↛ ∆h) (∆x, ∆y, ∆g ↛ ∆h)
according to Property 6 according to Property 7 according to Property 8

1 The i-th bit of z is cyclically shifted to the j-th bit of z.

Similar to the analysis that on the third local construction, we can find three IDs based on
Properties 6, 7, 8 by putting some constraints on the constant (refer to Table 6). However
the constant usually is the round constant that is fixed and known in advance. Thus, these
IDs only apply to certain rounds in practical ciphers.

These impossible differentials were identified by experimentally obtaining the differential
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Table 5: Three IDs on local construction shown in Figure 4(c)

Constraints k[i+3: i+1] = 000 or 111
k[i+3: i+2] = 00 or 11 k[i+2: i+1] = 00 or 11∆z[i+2: i+1] ̸= 00

Differentials

∆x = (∗· · ·∗
i+4,··· ,i

1000∗ ∗· · ·∗) ∆x = (∗· · ·∗
i+4,··· ,i

0000∗ ∗· · ·∗) ∆x = (∗· · ·∗
i+3,··· ,i

0000 ∗· · ·∗)

∆y = (∗· · ·∗
i+4,··· ,i

00∗∗∗ ∗· · ·∗) ∆y = (∗· · ·∗
i+4,··· ,i

0010∗ ∗· · ·∗) ∆y = (∗· · ·∗
i+3,··· ,i

00∗∗ ∗· · ·∗)

∆z = (∗· · ·∗
i+4,··· ,i

∗∗∗∗∗ ∗· · ·∗) ∆z = (∗· · ·∗
i+4,··· ,i

∗∗∗∗∗ ∗· · ·∗) ∆z = (∗· · ·∗
i+3,··· ,i

∗∗∗∗ ∗· · ·∗)

∆g = (∗· · ·∗
i+4,··· ,i

0000∗ ∗· · ·∗) ∆g = (∗· · ·∗
i+4,··· ,i

0000∗ ∗· · ·∗) ∆g = (∗· · ·∗
i+3,··· ,i

0000 ∗· · ·∗)

∆h = (∗· · ·∗
i+4,··· ,i

00 ∗∗∗ ∗· · ·∗) ∆h = (∗· · ·∗
i+4,··· ,i

1010∗ ∗ · · · ∗) ∆h = (∗· · ·∗
i+3,··· ,i

100∗ ∗· · ·∗)

Result (∆x, ∆y, ∆g ↛ ∆h) (∆x, ∆y, ∆g ↛ ∆h) (∆x, ∆y, ∆g ↛ ∆h)
according to Property 6 according to Property 7 according to Property 8

Table 6: Three IDs on local construction shown in Figure 4(d)

Constraints c[i+3: i+1] = 000 or 111
c[i+3: i+2] = 00 or 11 c[i+2: i+1] = 00 or 11∆z[i+2: i+1] ̸= 00

Differentials

∆x = (∗· · ·∗
i+4,··· ,i

1000∗ ∗· · ·∗) ∆x = (∗· · ·∗
i+4,··· ,i

0000∗ ∗· · ·∗) ∆x = (∗· · ·∗
i+3,··· ,i

0000 ∗· · ·∗)

∆y = (∗· · ·∗
i+4,··· ,i

00∗∗∗ ∗· · ·∗) ∆y = (∗· · ·∗
i+4,··· ,i

0010∗ ∗· · ·∗) ∆y = (∗· · ·∗
i+3,··· ,i

00∗∗ ∗· · ·∗)

∆z = (∗· · ·∗
i+4,··· ,i

∗∗∗∗∗ ∗· · ·∗) ∆z = (∗· · ·∗
i+4,··· ,i

∗∗∗∗∗ ∗· · ·∗) ∆z = (∗· · ·∗
i+3,··· ,i

∗∗∗∗ ∗· · ·∗)

∆g = (∗· · ·∗
i+4,··· ,i

0000∗ ∗· · ·∗) ∆g = (∗· · ·∗
i+4,··· ,i

0000∗ ∗· · ·∗) ∆g = (∗· · ·∗
i+3,··· ,i

0000 ∗· · ·∗)

∆h = (∗· · ·∗
i+4,··· ,i

00 ∗∗∗ ∗· · ·∗) ∆h = (∗· · ·∗
i+4,··· ,i

1010∗ ∗ · · · ∗) ∆h = (∗· · ·∗
i+3,··· ,i

100∗ ∗· · ·∗)

Result (∆x, ∆y, ∆g) ↛ ∆h) (∆x, ∆y, ∆g ↛ ∆h) (∆x, ∆y, ∆g ↛ ∆h)
according to Property 6 according to Property 7 according to Property 8

probability of all possible transitions over two consecutive five-bit modular additions.
Actually, we obtained total hundreds of impossible differential patterns (under some
classification of truncated differential) passing two continuous additions modulo 25, which
are possible under the Markov hypothesis. It takes about 6 hours on a personal computer.
Some of these ID patterns have been summarized in truncated impossible differentials
shown in Properties 6∼8. There are other impossible differential patterns, such as the ID
(∆x = 0000∗, ∆y = 0000∗, ∆g = 0000∗↛ ∆h = 0100∗) shown in our repository1.

Next, we propose a more complex property on three consecutive modular additions
which is described in Property 9. As in the practical ARX ciphers, rotation shift is often
used in round function. Rotation shift moves bits in the higher position to the lower
position. By Definition 1, the least significant bits of a modular addition triplet has special
property: z[0] = x[0]⊕ y[0], c[0] = x[0] ∧ y[0] for z = x ⊞ y. Therefore, we should consider
such property when analyzing differential propagation.

Property 9. x ⊞ y = z(mod 24), x′ ⊞ y′ = z′(mod 24), z ⊞ d = e(mod 24), z′ ⊞ d′ =
e′(mod 24), f⊞g = h(mod 25) and f ′⊞g′ = h′(mod 25). Suppose that ∆x = x⊕x′, ∆y =
y ⊕ y′, ∆z = z ⊕ z′, ∆d = d⊕ d′, ∆e = e⊕ e′, ∆f = f ⊕ f ′, ∆g = g ⊕ g′ and ∆h = h⊕ h′.
If f [4 : 1] = e, then

(∆x = 000∗, ∆y = 000∗, ∆d = 10 ∗ ∗, ∆g = 0000∗↛ ∆h = 0000∗) (26)

Proof. See Appendix C.
1https://github.com/lingqing0707/ID-patterns
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The three modular additions in Property 9 can also be described as z = x ⊞ y, e =
z ⊞ d, h = f ⊞ g, z = z and f is still related to e as f [4 : 1] = e, where x, y, z, z, d, e ∈ F4

2
and f, g, h ∈ F5

2. Actually, if we add some uncertain bits at higher and lower positions
for x, y, z, f, g, h and add some uncertain bits only at higher positions for z, d, e, the ID
(∆x, ∆y, ∆d, ∆g ↛ ∆h) in Property 9 still holds. The details are shown in Figure 5 and
Table 7.
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Figure 5: Three more complex constructions extracted from consecutive three round in
ARX ciphers

Table 7: IDs on three more complex local constructions shown in Figure 5

Constraints k1[2 :1]=00 or 11 c1[2 :1] = 00 or 11
k2[j+3:j+1] = 000 or 111 c2[j+3:j+1] = 000 or 111

Differentials

∆x = (∗· · ·∗
i+3,··· ,i

000∗ ∗· · ·∗) ∆x = (∗· · ·∗
i+3,··· ,i

000∗ ∗· · ·∗) ∆x = (∗· · ·∗
i+3,··· ,i

000∗ ∗· · ·∗)

∆y = (∗· · ·∗
i+3,··· ,i

000∗ ∗· · ·∗) ∆y = (∗· · ·∗
i+3,··· ,i

000∗ ∗· · ·∗) ∆y = (∗· · ·∗
i+3,··· ,i

000∗ ∗· · ·∗)

∆z = (∗· · ·∗
i+3, ··· , i

∗∗∗∗ ∗· · ·∗) ∆z = (∗· · ·∗
i+3, ··· , i

∗∗∗∗ ∗· · ·∗) ∆z = (∗· · ·∗
i+3, ··· , i

∗∗∗∗ ∗· · ·∗)

∆z = (∗· · ·∗
3, ··· , 0
∗∗∗∗) ∆z = (∗· · ·∗

3, ··· , 0
∗∗∗∗) ∆z = (∗· · ·∗

3, ··· , 0
∗∗∗∗)

∆d = (∗· · ·∗
3, ··· , 0

10∗∗) ∆d = (∗· · ·∗
3, ··· , 0

10∗∗) ∆d = (∗· · ·∗
3, ··· , 0

10∗∗)

∆e = (∗· · ·∗
3, ··· , 0
∗∗∗∗) ∆e = (∗· · ·∗

3, ··· , 0
∗∗∗∗) ∆e = (∗· · ·∗

3, ··· , 0
∗∗∗∗)

∆f = (∗· · ·∗
j+4, ··· , j

∗∗∗∗∗ ∗· · ·∗) ∆f = (∗· · ·∗
j+4, ··· , j

∗∗∗∗∗ ∗· · ·∗) ∆f = (∗· · ·∗
j+4, ··· , j

∗∗∗∗∗ ∗· · ·∗)

∆g = (∗· · ·∗
j+4,··· ,j

0000∗ ∗· · ·∗) ∆g = (∗· · ·∗
j+4,··· ,j

0000∗ ∗· · ·∗) ∆g = (∗· · ·∗
j+4,··· ,j

0000∗ ∗· · ·∗)

∆h = (∗· · ·∗
j+4,··· ,j

0000∗ ∗· · ·∗) ∆h = (∗· · ·∗
j+4,··· ,j

0000∗ ∗· · ·∗) ∆h = (∗· · ·∗
j+4,··· ,j

0000∗ ∗· · ·∗)
Result (∆x, ∆y, ∆d, ∆g ↛ ∆h) according to Property 9

1 The i-th bit of z is cyclically shifted to LSB of z.
2 The LSB of e is cyclically shifted to the j-th bit of f .
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3.2 General Framework for Finding IDs Under Weak Key in ARX
Ciphers

Until now, we can clearly find that ARX ciphers do not always follow the Markov cipher
assumption. Based on the more accurate differential propagation properties in ARX
ciphers, it is possible to find longer IDs for target cipher under weak keys, which may pose
a threat to the security of ARX ciphers.

In this section, we propose a general framework to find IDs in ARX ciphers by combining
our new findings with traditional automatic search method for ID based on STP. In our
framework, different from almost impossible differential cryptanalysis [MDS10], we can
deduce the exact weak key space for which the IDs hold. The framework is shown in
Algorithm 1.

Algorithm 1 Finding IDs in ARX ciphers under weak keys
1: Initialization: Assign values to i and j so that j−i is larger than the existing traditional

ID rounds for the ARX cipher;
2: Determine the values of the i-th round input difference ∆xi and the j-th round output

difference ∆xj , which satisfy

∆xi
P ro=1−−−−→ ∆xi+1 with some constraints on input xi, x′

i and round key ki

∆xj−1
P ro=1←−−−− ∆xj with some constraints on output xj , x′

j and round key kj

(via Property 1∼Property 5);
3: Using Property 1, the values of ∆xi+m and ∆xj−n are obtained by means of automatic

search tool for truncated differential and

∆xi+1
P ro=1−−−−→ ∆xi+m( or ∆xi

P ro=1−−−−→ ∆xi+m)

∆xj−n
P ro=1←−−−− ∆xj−1( or ∆xj−n

P ro=1←−−−− ∆xj),

where i + m < j − n;
4: According to Properties 6∼9, check if there is contradiction from ∆xi+m to ∆xj−n.

Constraints on the internal state difference bits existed in some IDs can be checked by
automatic search tool for finding differential characteristics.

5: If no contradiction, via automatic search tool for differential, find out the set of all
possible cases of ∆xj+m+s. Then, split and classify the differential ∆xi+m → ∆xj−n

into two parts as ∆xi+m → ∆xj+m+s and ∆xj+m+s → ∆xj−n according to the values
of some bits of the internal state difference ∆xj+m+s.

6: Divide and conquer, for each part, use Properties 6∼9 again to avoid the set by weak
keys.

Output: ∆xi
(j−i)-round↛ ∆xj and weak keys

(with some constraints on input xi, x′
i and output xj , x′

j).

4 Applications
We apply the new framework on practical ARX ciphers to find more accurate impossible
differentials which were not found with traditional methods. As a result, we find two
8-round IDs for SPECK-32/64 under 260 weak keys, one 11-round ID for LEA under 2k−1

weak keys, as well as two 22-round IDs for CHAM-64/128 under 2127 weak keys. All these
IDs are longer than previous ones.
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4.1 Applications to SPECK-32/64
According to the framework proposed in Section 3.2, we find two 8-round impossible
differentials for SPECK-32/64 under 260 weak keys.

The first one is that if xi[2] ̸= yi[11] (or x′
i[2] ̸= y′

i[11]), xi+8[2] = xi+8[4] ∧ yi+8[4], we
have

(∆xi = 0 · · · 0100, ∆yi = 000010 · · · 0) ↛ (∆xi+8 = 0 · · · 010, ∆yi+8 = 0 · · · 01010)

under ki+1[14 : 13] = 00 (or 11), ki+3[14 : 12] = 000 (or 111), ki+7[1] = 0.
The second one is that if xi[2] ̸= yi[11] or (x′

i[2] ̸= y′
i[11]), xi+8[2] ̸= xi+8[4] ∧ yi+8[4],

we have

(∆xi = 0 · · · 0100, ∆yi = 000010 · · · 0) ↛ (∆xi+8 = 0 · · · 010, ∆yi+8 = 0 · · · 01010)

under ki+1[14 : 13] = 00 (or 11), ki+3[14 : 12] = 000 (or 111), ki+7[1] = 1.
Due to Property 4, if xi[2] ̸= yi[11] or x′

i[2] ̸= y′
i[11], at the first round, it can be

deduced that

(∆xi = 0 · · · 0100, ∆yi = 000010 · · · 0)→ (∆xi+1 = 0 · · · 0, ∆yi+1 = 0010 · · · 0)

with Probability 1. Please refer to the red part at the first round in Figure 6.
Similarly, based on Property 5, if ki+7[1] = 0, xi+8[1] = xi+8[3] ∧ yi+8[3] or ki+7[1] =

1, xi+8[1] ̸= xi+8[3] ∧ yi+8[3], at the last round, it can be deduced that

(∆xi+7 = 0 · · · 0, ∆yi+7 = 0 · · · 010)← (∆xi+8 = 0 · · · 010, ∆yi+8 = 0 · · · 01010)

with Probability 1. Please refer to the red part at the last round in Figure 6.
Then, by traditional automatic search tool for impossible differential, we find that by

analyzing the difference propagation, only two forms of (∆xi+3, ∆yi+3) leads

(∆xi+1 = 0 · · · 0, ∆yi+1 = 0010 · · · 0)→ (∆xi+7 = 0 · · · 0, ∆yi+7 = 0 · · · 010)

to be possible. The two forms are

∆xi+3 = ∗ ∗ ∗ ∗ ∗ ∗ ∗101000000, ∆yi+3 = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗10000 ∗ ∗ (27)

and
∆xi+3 = 10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1000000), ∆yi+3 = 00 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 10000 ∗ ∗. (28)

This result can be obtained in few minutes. Meanwhile, (∆xi+3, ∆yi+3) with form (28)
results in that ∆xi+4[13 : 12] ̸= 00.

As we would like to find ID from (∆xi+1, ∆yi+1) to (∆xi+7, ∆yi+7), we have to put
some constraints on subkeys to avoid such two forms of (∆xi+3, ∆yi+3).

Due to Table 5, we can get that if ki+1[14 : 13] = 00 (or 11), (∆xi+3, ∆yi+3) with form
(27) will never happen. Please refer to the green part at rounds i + 1 ∼ i + 3 in Figure 6.

Similarly, according to Table 5, we can obtain that if ki+3[14 : 12] = 000( or 111),
(∆xi+3, ∆yi+3) with form (28) will never happen. Please refer to the blue part at round
i + 3 ∼ i + 5 in Figure 6.

In short, by putting constraints on ki+1[14 : 13], ki+3[14 : 12] and ki+7[1] together, no
differential of the form

(∆xi = 0 · · · 0100, ∆yi = 000010 · · · 0)→ (∆xi+8 = 0 · · · 010, ∆yi+8 = 0 · · · 01010)

will happen with probability larger than 0. In other words, we find two 8-round IDs for
SPECK-32/64 under 260 weak keys.
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Figure 6: 8-round ID for SPECK-32/64

4.2 Applications to LEA
Here, we propose an 11-round impossible differential for LEA-128 under 2127 weak keys.
That is

(∆x0
i =10 · · · 0, ∆x1

i =10 · · · 0, ∆x2
i =10 · · · 0, ∆x3

i =10 · · · 0)
↛ (∆x0

i+11 =0 · · · 0, ∆x1
i+11 =00010 · · · 0, ∆x2

i+11 =10 · · · 0, ∆x3
i+11 =0· · ·0)

under two fixed subkey bits T 1
i+6[6 : 5] = 00 or 11.

This ID can be split into three parts: rounds i ∼ i + 5, rounds i + 5 ∼ i + 7 and the
last rounds i + 7 ∼ i + 11. By traditional IDC, we can easily get the input difference of
round i + 6 as

∆x0
i+5 = ∗ · · · ∗

9
1 ∗ · · · ∗, ∆x1

i+5 = 0 · · ·
27
0 ∗ · · · ∗

13
1 0 · · · 0,

∆x2
i+5 = 000 ∗ · · · ∗

19
1 0 · · · 0, ∆x3

i+5 = 0 · · ·
9
0 ∗ · · · ∗

(29)

and output difference of round i + 7 as

∆x0
i+7 = ∗ · · · ∗ 100), ∆x1

i+7 = ∗ · · · ∗ 100, ∆x2
i+7 = ∗ · · · ∗, ∆x3

i+7 = ∗ · · · ∗ (30)

depicted in Figure 9 and 10 respectively.
According to Table 5, if subkey bits T 1

i+6[6 : 5] = 00 (or 11), the difference with form
(29) can not lead to the difference with form (30). Please refer to the red part in Figure 7.
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Figure 7: Contradiction on the rounds i + 5 ∼ i + 6 of 11-round ID for LEA-128

It is worth noting that all versions in the LEA family have such 11-round ID under
2k−1 weak keys, where k is the size of key. This fact can be found simply by comparing
the key schedule between different versions. Meanwhile, such ID can start from any round.

Table 8: Comparison of IDs for LEA
ID Rounds Weak key space Resource

(11031, 11031, 11031, 11031) ↛ (032, 032, 0311028, 032) 10 2k [HLK+14]
(11031, 11031, 11031, 11031) ↛ (032, 032, 0311028, 032) 11 2k−1 this paper

1 0i(resp. 1i) represents i consecutive bits of 0 (resp. 1).
2 k is the size of key for LEA.

Discussion about key-recovery attack on LEA. We compare the new 11-round
ID with the previous best 10-round ID [HLK+14] in Table 8. It is easy to find that both
IDs have the same input/output difference, but 11-round ID is only valid under 2k−1 weak
keys and has a more complex contradiction in the middle. Furthermore, both IDs can be
truncated to truncated ID distinguishers as

(032, 032, 032, ∗6026) ↛ (032, 032, 0311028, 032),

which can be used to implement the key-recovery attack.
Note that the truncated ID transformed from 11-round ID has 9 rounds, still one more

round than that from 10-round ID. In the other hand, due to the key schedule of LEA,
as long as the forms of input/output difference of distinguishers are the same, then their
key-recovery phases are the same. Therefore, one can exploit the 11-round impossible
differential to make a better key-recovery attack under 2k−1 weak keys than that mentioned
in [HLK+14] by using a set of specially chosen plaintexts.

4.3 Applications to CHAM-64/128
By applying our method on CHAM-64/128, we find two 22-round impossible differentials
for CHAM-64/128 under 2127 weak keys.

The first one is, if x0
i [7] ̸= x1

i [15], then

(∆x0
i =0· · ·0

7
1 0· · ·0, ∆x1

i =10· · ·0, ∆x2
i =0· · ·0, ∆x3

i =0· · ·0)

↛ (∆x0
i+22 =01· · ·0, ∆x1

i+22 =0· · ·0, ∆x2
i+22 =0· · ·0, ∆x3

i+22 =0· · ·0
7
1 0)

under ki[7] = 0.
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The second one is, if x0
i [7] = x1

i [15], then

(∆x0
i =0· · ·0

7
1 0· · ·0, ∆x1

i =10· · ·0, ∆x2
i =0· · ·0, ∆x3

i =0· · ·0)

↛ (∆x0
i+22 =01· · ·0, ∆x1

i+22 =0· · ·0, ∆x2
i+22 =0· · ·0, ∆x3

i+22 =0· · ·0
7
1 0)

under ki[7] = 1.
These IDs are only established when starting from the i-th round, where

i ∈ {2, 4, 10, 12, 18, 20, 26, 28, 34, 36, 42, 44, 50, 52, 58}.

According to Property 4, if Ki[7] = 0, x0
i [7] ̸= x1

i [15] or Ki[7] = 1, x0
i [7] = x1

i [15], after
the first round, the output difference will be

(∆x0
i+1 =10· · ·0, ∆x1

i+1 =0· · ·0, ∆x2
i+1 =0· · ·0, ∆x3

i+1 =0· · ·0)

with Probability 1. Please refer to the red part in Figure 8. Then, by traditional IDC, we
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Figure 8: Contradiction on the i-th round of 22-round ID for CHAM-64/128

can obtain the output difference of round i + 8 as

(∆x0
i+9 =10000000 ∗· · ·∗, ∆x1

i+9 =0· · ·0, ∆x2
i+9 =∗ ∗ ∗ ∗ ∗ ∗ 10 ∗· · ·∗, ∆x3

i+9 =∗· · ·∗ 1∗)

and the input difference of round i + 18 as

(∆x0
i+18 =∗ ∗ 10· · ·0, ∆x1

i+18 =0· · ·0, ∆x2
i+18 =0· · ·0, ∆x3

i+18 =0· · ·0),

which are shown in Table 9 and 10 respectively.
Within the middle remained 9 rounds, according to Table 7 in Appendix E, we have

(∆x0
i+9 =10000000 ∗· · ·∗, ∆x1

i+9 =0· · ·0, ∆x2
i+9 =∗ ∗ ∗ ∗ ∗ ∗ 10 ∗· · ·∗, ∆x3

i+9 =∗· · ·∗ 1∗)
↛ (∆x0

i+18 =∗ ∗ 10· · ·0, ∆x1
i+18 =0· · ·0, ∆x2

i+18 =0· · ·0, ∆x3
i+18 =0· · ·0)

under constants bits (i + 13)[2 : 1] = 00 or 11 and (i + 17)[10 : 8] = 000 or 111, which is
depicted in the red part of Figure 11 in Appendix F.

Please note that the conditions are on the known constants. The IDs above must
start from specific rounds, such as the {2, 4, 10, 12, 18, 20, 26, 28, 34, 36, 42, 44, 50, 52, 58}
-th round.

In short, we find two 22-round impossible differentials for CHAM-64/128 under 2127

weak keys.



346 Finding Impossible Differentials in ARX Ciphers under Weak Keys

5 Conclusion
In this paper, we propose a framework to find impossible differentials of ARX ciphers under
weak key for the first time. As applications, we consider SPECK, LEA and CHAM to
find longer IDs under weak key. Actually, there is much further work along this direction.
As properties 6 to 8 and 9 represent just a thin selection of the impossible differentials
found experimentally, it is valuable to continue analyzing these ID patterns. It is also
a meaningful work to try to build an automated search model to find more impossible
differentials like the ones used in this paper. Trying to build a new automatic search model
for impossible differentials of target ARX ciphers under weak keys is deserving as well.
On the other hand, we evaluated the effectiveness of these new impossible differentials in
key recovery attacks and found that some of them are indeed not good, but some could be
better than previous ones, such as the distinguisher we proposed for LEA. In fact, there
are still many differential patterns that we have not used yet. It is conceivable that some
patterns could be used to further extend the impossible differential distinguishers of ARX
ciphers to solve the problem in key recovery attacks. Therefore, it is worthwhile to dig
deeper for more impossible differentials to get better key recovery attacks for ARX ciphers.
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A The proof of Property 7
Property 7. Let z = x⊞y, z′ = x′⊞y′, h = z⊞g and h′ = z′⊞g′, where x, y, z, g, h, x′, y′, z′,
g′, h′ ∈ F5

2. Suppose that ∆x = x ⊕ x′, ∆y = y ⊕ y′, ∆z = z ⊕ z′, ∆g = g ⊕ g′ and
∆h = h⊕ h′. Then

(∆x = 0000∗, ∆y = 0010∗, ∆g = 0000∗↛ ∆h = 1010∗). (31)
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Proof. Reductio ad absurdum. Suppose (∆x = 0000∗, ∆y = 0010∗, ∆g = 0000∗ →
∆h = 1010∗). Let c1 and c2 be the carry bit vectors of x ⊞ y and z ⊞ g respectively. Then
the Equations (12-14) and (16) can be still obtained. By Property 1, ∆z[3] = 1 is obvious.
Due to Equations (12) and (13), clearly ∆c1[2] = 1 and ∆c2[2] = 1.

According to the value of ∆z[4], there are two cases.
Case 1: Suppose ∆z[4] = 0. Since ∆x[4] = 0, ∆y[4] = 0, ∆g[4] = 0, ∆h[4] = 1, we

have ∆c1[3] = 0 and ∆c2[3] = 1 by Equation (14) and Equation (16) respectively. Since
∆x[3] = 0, ∆y[3] = 0, according to Equation (14), we have

∆c1[3] = ∆c1[2] ∧ (x[3]⊕ y[3]) = 0⇒ x[3]⊕ y[3] = 0.

By Definition 1,
z[3] = x[3]⊕ y[3]⊕ c1[2] = c1[2].

Meanwhile, on the second modular addition h = z ⊞ g and h′ = z′ ⊞ g′, since ∆z[3] =
1, ∆c2[2] = 1, ∆g[3] = 0, by Equation (16), we have

∆c2[3] = ∆(z[3] ∧ c2[2]) = 1⇒ z[3] = c2[2].

Then, considering the value of ∆z[2], there are two sub-situations.
Subcase 1.1: When ∆z[2] = 1, we have ∆c1[1] = 0 and ∆c2[1] = 0. Due to

∆x[2] = 0, ∆y[2] = 1 and ∆c1[2] = 1,

∆c1[2] = ∆y[2] ∧ (x[2]⊕ c1[1]) = 1⇒ x[2]⊕ c1[1] = 1.

By Definition 1,

c1[2] = (x[2] ∧ c1[1])⊕ (x[2] ∧ y[2])⊕ (y[2] ∧ c1[1])
= 0⊕ (x[2]⊕ c1[1]) ∧ y[2] = y[2],

z[2] = x[2]⊕ y[2]⊕ c1[1] = 1⊕ y[2] = 1⊕ c1[2].

Thus,
z[3] = 1⊕ z[2]. (32)

Due to ∆z[2] = 1, ∆g[2] = 0, ∆c2[1] = 0, by Equation (16), we have

∆c2[2] = ∆z[2] ∧ (g[2]⊕ c2[1]) = 1⇒ g[2]⊕ c2[1] = 1.

By Definition 1,

c2[2] = (z[2] ∧ g[2])⊕ (z[2] ∧ c2[1])⊕ (g[2] ∧ c2[1])
= z[2] ∧ (g[2]⊕ c2[1])⊕ 0 = z[2].

Thus z[3] = z[2] which is in contradiction to Equation (32).
Subcase 1.2: When ∆z[2] = 0, we have ∆z[1] = 1 by Property 1 (or Property

2) as ∆x[1] = 0 and ∆y[1] = 0 (or ∆g[1] = 0 and ∆h[1] = 0). Then, we obtain
∆c1[1] = 1, ∆c1[0] = 1 and ∆c2[1] = 1, ∆c2[0] = 1 by Equations (12) and (13). Similar to
Subcase 1,{

∆c1[2] = ∆(y[2] ∧ c1[1])⇒ c1[2] = y[2] = c1[1],
∆c1[1] = ∆c1[0] ∧ (x[1]⊕ y[1])⇒ x[1]⊕ y[1] = 1 and c1[1] = c1[0],

⇒ z[1] = x[1]⊕ y[1]⊕ c1[0] = 1⊕ c1[0] = 1⊕ c1[2].

Thus,
z[3] = 1⊕ z[1]. (33)
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And, {
∆c2[1] = ∆(z[1] ∧ c2[0])⇒ c2[1] = z[1] = c2[0],
∆c2[2] = ∆c2[1] ∧ (z[2]⊕ g[2])⇒ z[2]⊕ g[2] = 1 and c2[2] = c2[1],

⇒ z[1] = c2[2].

Thus z[3] = z[1] which is in contradiction to Equation (33).
Case 2: Suppose ∆z[4] = 1. Since ∆x[4] = 0, ∆y[4] = 0, ∆g[4] = 0, ∆h[4] = 1, we have

∆c1[3] = 1 and ∆c2[3] = 0 by Equation (14) and Equation (16) respectively. Similar to
Case 1, there are two sub-situations according to the value of ∆z[2].

Subcase 2.1: When ∆z[2] = 1, in the first modular addition z = x⊞y and z′ = x′⊞y′,
we have {

z[3] = 1⊕ c1[2]
z[2] = 1⊕ c1[2] ⇒ z[3] = z[2]; (34)

in the second modular addition h = z ⊞ g and h′ = z′ ⊞ g′, we have{
z[3] = 1⊕ c2[2]
z[2] = c2[2] ⇒ z[3] = 1⊕ z[2]. (35)

Then Equation (34) and Equation (35) constitute a contradiction.
Subcase 2.2: When ∆z[2] = 0, we have{

z[3] = 1⊕ c1[2]
z[1] = 1⊕ c1[2] ⇒ z[3] = z[1]; (36)

and {
z[3] = 1⊕ c2[2]
z[1] = c2[2] ⇒ z[3] = 1⊕ z[1]. (37)

Then Equation (36) and Equation (37) constitute a contradiction.
Thus, (∆x = 0000∗, ∆y = 0010∗, ∆g = 0000∗↛ ∆h = 1010∗).

B The proof of Property 8
Property 8. Let z = x⊞y, z′ = x′⊞y′, h = z⊞g and h′ = z′⊞g′, where x, y, z, g, h, x′, y′, z′,
g′, h′ ∈ F4

2. Suppose that ∆x = x ⊕ x′, ∆y = y ⊕ y′, ∆z = z ⊕ z′, ∆g = g ⊕ g′ and
∆h = h⊕ h′. Then

(∆x = 0000, ∆y = 00 ∗ ∗, ∆g = 0000 ↛ ∆h = 100∗) (38)

Proof. Reductio ad absurdum. Suppose (∆x = 0000, ∆y = 00 ∗ ∗, ∆g = 0000 →
∆h = 100∗). Let c1 and c2 be the carry bit vector of x ⊞ y and z ⊞ g respectively.
Then the Equations (12-14) and (16) can be still obtained. By Property 1, we have
∆z[2 : 1] = 11. Due to Equation (12) and (13), clearly ∆c1[1] = 1, ∆y[1]⊕∆c1[0] = 1 and
∆c2[1] = 1, ∆c2[0] = 1.

According to the value of ∆z[3], there are two cases.
Case 1: Suppose ∆z[3] = 1. Since ∆x[3] = 0, ∆y[3] = 0, ∆g[3] = 0, ∆h[3] = 0, then

∆c1[2] = 1 and ∆c2[2] = 0 due to Equation (12) and Equation (13) respectively. By
Equation (14) and ∆x[2] = 0, ∆y[2] = 0, ∆c1[1] = 1, we have

∆c1[2] = ∆c1[1] ∧ (x[2]⊕ y[2]) = 1⇒ x[2]⊕ y[2] = 1.

By Definition 1,
z[2] = x[2]⊕ y[2]⊕ c1[1] = 1⊕ c1[1].
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Due to ∆x[1] = 0, ∆c1[1] = 1, ∆y[1]⊕∆c[0] = 1 and Equation (14), we have

∆c1[1] =
{

∆(x[1] ∧ c1[0])⊕∆(y[1] ∧ c1[0])⇒ x[1]⊕ y[1] = 1, if ∆y[1] = 0;
∆(x[1] ∧ y[1])⊕∆(y[1] ∧ c1[0])⇒ x[1]⊕ c1[0] = 1, if ∆y[1] = 1.

Additionally, by Definition 1,

c1[1] =
{

c1[0], if ∆y[1] = 0;
y[1], if ∆y[1] = 1.

⇒ z[1] =
{

1⊕ c1[0] = 1⊕ c1[1], if ∆y[1] = 0;
1⊕ y[1] = 1⊕ c1[1], if ∆y[1] = 1.

⇒ z[1] = 1⊕ c1[1].

Since z[2] = 1⊕ c1[1],
z[2] = z[1]. (39)

Meanwhile, on the second modular addition h = z ⊞ g and h′ = z′ ⊞ g′, by Equation (16)
and ∆z[2] = 1, ∆c2[1] = 1, ∆g[2] = 0, ∆z[1] = 1, ∆c2[0] = 1, ∆g[1] = 0, we have

∆c2[2] = ∆(z[2] ∧ c2[1]) = 0⇒ z[2] = 1⊕ c2[1];

∆c2[1] = ∆(z[1] ∧ c2[0]) = 1⇒ z[1] = c2[0] = c2[1].

Thus z[2] = 1⊕ z[1] which is in contradiction to Equation (39).
Case 2: Suppose ∆z[3] = 0. Since ∆x[3] = 0, ∆y[3] = 0, ∆g[3] = 0, ∆h[3] = 0, then

∆c1[2] = 0 and ∆c2[2] = 1 due to Equation (12) and Equation (13) respectively. Similar
to Case 1, in the first modular addition z = x ⊞ y and z′ = x′ ⊞ y′, we have{

z[2] = c1[1]
z[1] = 1⊕ c1[1] ⇒ z[2] = 1⊕ z[1]; (40)

in the second modular addition h = z ⊞ g and h′ = z′ ⊞ g′, we have{
z[2] = c2[1]
z[1] = c2[1] ⇒ z[2] = z[1]. (41)

Then Equation (40) and Equation (41) constitute a contradiction.
To sum up, (∆x = 0000, ∆y = 00 ∗ ∗, ∆g = 0000 ↛ ∆h = 100∗)

C The proof of Property 9
Property 9. x ⊞ y = z(mod 24), x′ ⊞ y′ = z′(mod 24), z ⊞ d = e(mod 24), z′ ⊞ d′ =
e′(mod 24), f ⊞ g = h(mod 25) and f ′ ⊞ g′ = h′(mod 25). Suppose that ∆x = x⊕ x′, ∆y =
y ⊕ y′, ∆z = z ⊕ z′, ∆d = d⊕ d′, ∆e = e⊕ e′, ∆f = f ⊕ f ′, ∆g = g ⊕ g′ and ∆h = h⊕ h′.
If f [4 : 1] = e, then

(∆x = 000∗, ∆y = 000∗, ∆d = 10 ∗ ∗, ∆g = 0000∗↛ ∆h = 0000∗) (42)

Proof. Reductio ad absurdum. Suppose (∆x = 000∗, ∆y = 000∗, ∆d = 10 ∗ ∗, ∆g =
0000∗ → ∆h = 0000∗). Firstly, by Property 1, we can obtain A is the set of the possible
value of ∆z∥∆f [4 : 1] based on SAT/SMT solver, where

A = {01100000, 01100001, 01110000, 01110001, 11100000, 11100001, 11110000,

11110001, 00000111, 00001111, 00010111, 00011111, 00100111, 00101111,

00110111, 00111111, 01100011, 01100111, 01101111, 01110011, 01110111,

01111111, 11100011, 11100111, 11101111, 11110011, 11110111, 11111111}.
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Let c1, c′
1, c2, c′

2 ∈ F4
2 be the carry bit vectors used to calculate z, z′, e, and e′, and

c3, c′
3 ∈ F5

2 be the carry bit vectors used to calculate f, and f ′. And ∆c1 = c1 ⊕ c′
1, ∆c2 =

c2 ⊕ c′
2∆c3 = c3 ⊕ c′

3. By Definition 1, we have

∆z[i] = ∆x[i]⊕∆y[i]⊕∆c1[i− 1] (43)
∆e[i] = ∆z[i]⊕∆d[i]⊕∆c2[i− 1] (44)
∆h[i] = ∆f [i]⊕∆g[i]⊕∆c3[i− 1] (45)

∆c1[i] = ∆(x[i] ∧ y[i])⊕∆(x[i] ∧ c1[i− 1])⊕∆(y[i] ∧ c1[i− 1]) (46)
∆c2[i] = ∆(z[i] ∧ d[i])⊕∆(z[i] ∧ c2[i− 1])⊕∆(d[i] ∧ c2[i− 1]) (47)
∆c3[i] = ∆(f [i] ∧ g[i])⊕∆(f [i] ∧ c3[i− 1])⊕∆(g[i] ∧ c3[i− 1]) (48)

According to the value of ∆z∥∆f [4 : 1], there are three cases.

(1) When ∆e[3 : 1] = ∆f [4 : 2] = 000, by Property 1, ∆z[2 : 1] = 11 is obvious. Due
to Equation (43) and (44), ∆c1[1] = 1, ∆c1[0] = 1 and ∆c2[1] = 1, d[1] = 1⊕∆c2[0].
By Definition 1 and (46),

∆c1[1] = ∆c1[0] ∧ (x[1]⊕ y[1]) = 1⇒x[1]⊕ y[1] = 1
⇒z[1] = 1⊕ c1[0] = 1⊕ c1[1].{

∆c1[2]=∆c1[1]∧(x[2]⊕ y[2])=1⇒x[2]⊕ y[2]=1, if ∆z[3]=1;
∆c1[2]=∆c1[1]∧(x[2]⊕ y[2])=0⇒x[2]⊕ y[2]=0, if ∆z[3]=0.

z[2] = x[2]⊕ y[2]⊕ c1[1] =
{
1⊕ c1[1]=z[1], if ∆z[3]=1;
c1[1]=1⊕ z[1], if ∆z[3]=0.

However,{
∆c2[1]=∆(z[1]∧c2[0])=1⇒z[1]=c2[0] =c2[1], if ∆c2[0]=1;
∆c2[1]=∆(z[1]∧d[1])=1⇒z[1]=d[1] =c2[1], if ∆c2[0]=0.

⇒ z[1] = c2[1].

and {
∆c2[2]=∆(z[2]∧c2[1])=0⇒z[2]=1⊕ c2[1]=1⊕ z[1], if ∆z[3]=1;
∆c2[2]=∆(z[2]∧c2[1])=1⇒z[2]=c2[1]=z[1], if ∆z[3]=0.

(2) When ∆z[3 : 2] = 00, ∆e[2 : 0] = ∆f [3 : 1] = 111, clearly ∆c2[1] = 1, ∆c3[2] =
∆c3[1] = ∆c3[0] = 1 due to Equations (47) and (48). By Equation (48),

∆c3[2] = ∆(f [2] ∧ c3[1])⇒ f [2] = c3[1] = c3[2].

∆c3[1] = ∆(f [1] ∧ c3[0])⇒ f [1] = c3[0] = c3[1].
Thus,

f [2] = f [1] = c3[2] (49)

Subcase 1: If ∆e[3] = ∆f [4] = 0, then ∆c3[3] = 0 and ∆c2[2] = 1. By Equation
(48),

∆c3[3] = ∆(f [3] ∧ c3[2]) = 0⇒ f [3] = 1⊕ c3[2].
Thus

f [3] = 1⊕ f [2] = 1⊕ f [1]. (50)
By Equation (47) and Definition 1, since ∆z[2] = 0, ∆d[2] = 0, ∆c2[2] = 1 and
∆c2[1] = 1, we have

∆c2[2] = ∆c2[1] ∧ (z[2]⊕ d[2])⇒ z[2]⊕ d[2] = 1⇒ e[2] = 1⊕ c2[1]. (51)

By Equation (44),since∆e[1] = 1, we have ∆z[1]⊕∆d[1]⊕ c2[0] = 1.
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a) If ∆c2[0] = 0, then by Equation (47),{
∆c2[1]=∆z[1]∧ (d[1]⊕ c2[0])=1, if ∆z[1]=1;
∆c2[1]=∆d[1]∧ (z[1]⊕ c2[0])=1, if ∆z[1]=0.

⇒

{
d[1]⊕ c2[0]=1, if ∆z[1]=1;
z[1]⊕ c2[0]=1, if ∆z[1]=0.

⇒

{
c2[1]=z[1], if ∆z[1]=1;
c2[1]=d[1], if ∆z[1]=0.

Thus, by Definition 1, we have{
e[1]=z[1]⊕ d[1]⊕ c2[0] = 1⊕ z[1] = 1⊕ c2[1], if ∆z[1]=1;
e[1]=z[1]⊕ d[1]⊕ c2[0] = 1⊕ d[1] = 1⊕ c2[1], if ∆z[1]=0.

⇒ e[1] = 1⊕ c2[1].
(52)

Combining Equation (51) and (52), e[1] = e[2], i.e.

f [2] = f [3]. (53)

Equation (50) and Equation (53) constitute a contradiction.
b) If ∆c2[0] = 1, then by Equation (47), when ∆z[1] = ∆d[1] = 0

∆c2[1] = ∆c2[0] ∧ (z[1]⊕ d[1]) = 1⇒ z[1]⊕ d[1] = 1⇒ c2[1] = c2[[0].

Thus, e[1] = z[1]⊕ d[1]⊕ c2[0] = 1⊕ c2[0] = 1⊕ c2[1]. According to Equation
(51), e[1] = e[2], then we obtain Equation (53) again which is in contradiction
to Equation (50). When ∆z[1] = ∆d[1] = 1 = ∆c2[0], we can obtain that
d[1]⊕ c2[1] = d′[1]⊕ c′

2[1].{
∆c2[1]=∆z[1] ∧ (d[1]⊕ c2[0])⇒ c2[1] = z[1], if d[1]⊕c2[0] =1;
∆c2[1]=∆(d[1]∧c2[0])⇒c2[0]=d[1] =d2[1]and∆d[1]=1=∆c2[0], if d[1]⊕c2[0] =0.

By Definition 1, e[1] = 1 ⊕ z[1] = 1 ⊕ c2[1] when d[1] ⊕ c2[0] = 1. According
to Equation (51), e[1] = e[2], then we obtain Equation (53) again which
is in contradiction to Equation (50). For the case d[1] ⊕ c2[0] = 0, since
e[0] = z[0]⊕ d[0], c2[0] = z[0] ∧ d[0], ∆e[0] = 1, ∆c[0] = 1, we obtain{

∆e[0]=∆d[0], ∆c2[0]=∆d[0]⇒ e[0]=1⊕ d[0]=1⊕ c2[0]=1⊕ c2[1], if ∆d[0] =1;
∆e[0]=∆z[0], ∆c2[0]=∆z[0]⇒ e[0]=1⊕ z[0]=1⊕ c2[0]=1⊕ c2[1], if ∆d[0] =0.

⇒ e[0] = 1⊕ c2[1].
(54)

According to Equation (51), we have

e[2] = e[0], i.e. f [3] = f [1]. (55)

Equation (50) and Equation (55) constitute a contradiction.

Subcase 2: The reason for the contradiction when ∆e[3] = ∆f [4] = 1 is similar to
the Subcase 1.

(3) For other cases in set A, using similar discussions, there would be contradictions
between z[2] and z[1] or among f [3], f [2] and f [1] as well.



354 Finding Impossible Differentials in ARX Ciphers under Weak Keys

D Differentials with probability 1 in LEA
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Figure 9: first 5 rounds of 11-round ID for LEA-128

0 ( 100)
7

x
i

 1 ( 100)
7

x
i

 2 ( )
7

x
i

 3 ( )
7

x
i



0

7iT 1

7iT

2

7iT 1

7iT

3

7iT 1

7iT

9 5 3

0 (10 0)
8

x
i

 1 ( 10 0)
8

x
i

 2 ( 10000)
8

x
i

 3 ( 100)
8

x
i



0

8iT 1

8iT

2

8iT 1

8iT

3

8iT 1

8iT

9 5 3

0 (10 0)
9

x
i

 1 (10 0)
9

x
i

 2 (10 0)
9

x
i

 3 (10 0)
9

x
i



0

9iT 1

9iT

2

9iT 1

9iT

3

9iT 1

9iT

9 5 3

0 (0 0)
10

x
i

 1 (0 0)
10

x
i

 2 (0 0)
10

x
i

 3 (10 0)
10

x
i



0

10iT 1

10iT

2

10iT 1

10iT

3

10iT 1

10iT

9 5 3

0 (0 0)
11

x
i

 1 (0 0)
11

x
i

 2 (00010 0)
11

x
i

 3 (0 0)
11

x
i



22
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E Differentials with probability 1 in CHAM-64/28

Table 9: first 10 rounds of 22-round ID for CHAM-64/128
r ∆xr ∆xr r

x0 i 0000000010000000 10000000∗∗∗∗∗∗∗∗ i + 9
x1 1000000000000000 0000000000000000
x2 0000000000000000 ∗∗∗∗∗∗10∗∗∗∗∗∗∗∗
x3 0000000000000000 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗1∗
x0 i + 1 1000000000000000 0000000000000001 i + 8
x1 0000000000000000 10000000∗∗∗∗∗∗∗∗
x2 0000000000000000 0000000000000000
x3 0000000000000000 ∗∗∗∗∗∗10∗∗∗∗∗∗∗∗
x0 i + 2 0000000000000000 0000000000000000 i + 7
x1 0000000000000000 0000000000000001
x2 0000000000000000 10000000∗∗∗∗∗∗∗∗
x3 0000000010000000 0000000000000000
x0 i + 3 0000000000000000 0000000000000000 i + 6
x1 0000000000000000 0000000000000000
x2 0000000010000000 0000000000000010
x3 0000000000000000 10000000∗∗∗∗∗∗∗∗
x0 i + 4 0000000000000000 0000000010000000 i + 5
x1 0000000010000000 0000000000000000
x2 0000000000000000 0000000000000000
x3 0000000000000000 0000000000000001

Table 10: last 5 rounds of 22-round ID for CHAM-64/128
r ∆xr

x0 i + 18 **10000000000000
x1 0000000000000000
x2 0000000000000000
x3 0000000000000000
x0 i + 19 0000000000000000
x1 0000000000000000
x2 0000000000000000
x3 0100000000000000
x0 i + 20 0000000000000000
x1 0000000000000000
x2 0100000000000000
x3 0000000000000000
x0 i + 21 0000000000000000
x1 0100000000000000
x2 0000000000000000
x3 0000000000000000
x0 i + 22 0100000000000000
x1 0000000000000000
x2 0000000000000000
x3 0000000010000000

F Mid 9 rounds for 22-round ID for CHAM-64/128
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Figure 11: Contradiction on the i + 9-th ∼ i + 18-th rounds of 22-round ID for CHAM-
64/128
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