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Abstract. Integral, impossible-differential (ID), and zero-correlation (ZC) attacks
are three of the most important attacks on block ciphers. However, manually
finding these attacks can be a daunting task, which is why automated methods are
becoming increasingly important. Most automatic tools regarding integral, ZC, and
ID attacks have focused only on finding distinguishers rather than complete attacks.
At EUROCRYPT 2023, Hadipour et al. proposed a generic and efficient constraint
programming (CP) model based on satisfiability for finding ID, ZC, and integral
distinguishers. This new model can be extended to a unified CP model for finding
full key recovery attacks. However, it has limitations, including determining the
contradiction location beforehand and a cell-wise model unsuitable for weakly aligned
ciphers like Ascon and PRESENT. They also deferred developing a CP model for the
partial-sum technique in key recovery as future work.

In this paper, we enhance Hadipour et al’s method in several ways. First, we remove
the limitation of determining the contradiction location in advance. Second, we
show how to extend the distinguisher model to a bit-wise model, considering the
internal structure of S-boxes and keeping the model based on satisfiability. Third,
we introduce a CP model for the partial-sum technique for the first time. To show
the usefulness and versatility of our approach, we apply it to various designs, from
strongly aligned ones like ForkSKINNY and QARMAV2 to weakly aligned ones such as
Ascon and PRESENT, yielding significantly improved results. To mention a few of our
results, we improve the integral distinguisher of QARMAV2-128 (resp. QARMAvV2-64)
by 7 (resp. 5) rounds, and the integral distinguisher of ForkSKINNY by 1 round, only
thanks to our cell-wise distinguisher modelings. By using our new bit-wise modeling,
our tool can find a group of 2'®® 5-round ID and ZC distinguishers for Ascon in
only one run, taking a few minutes on a regular laptop. The new CP model for
the partial-sum technique enhances integral attacks on all SKINNY variants, notably
improving the best attack on SKINNY-n-n in the single-key setting by 1 round. We
also enhance ID attacks on ForkSKINNY and provide the first analysis of this cipher
in a limited reduced-round setting. Our methods are generic and applicable to other
block ciphers.
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1 Introduction

Three important attacks on block ciphers are integral, impossible differential (ID), and
zero-correlation (ZC) attacks. For example, the best attack on 6 rounds of AES so far is the
integral attack [FKL100], taking advantage of the partial-sum technique in key recovery.
As another example, the first 7-round attack on AES-128 was the ID attack [LDKKOS].
The integral attack was initially introduced as a theoretical generalization of differential
analysis by Lai [Lai94], and as a practical attack by Daemen et al. [DKR97]. The core idea
of the integral attack is to find a set of inputs whose outputs sum to a key-independent
value in some positions. The ID attack, independently introduced by Biham et al. [BBS99]
and Knudsen [Knu98], exploits an impossible differential in a block cipher to retrieve
the master key. The ZC attack, first introduced by Bogdanov and Rijmen [BR14], is
the dual method of the ID attack when it comes to linear analysis. These attacks were
discovered and studied independently at different times. At ASTACRYPT 2012 [BLNW12],
Bogdanov et al. established a link between the (multidimensional) ZC approximation and
integral distinguishers. At CRYPTO 2015 [SLR™15], Sun et al. developed further the links
among the ID, ZC, and integral attacks. These links are handy because a discovery or tool
regarding one of these attacks may be used to improve another. For example, the miss-in-
the-middle technique that was first introduced to find ID distinguishers [BBS99] was later
used to find ZC distinguishers [BLNW12]. At ToSC 2019 [ADGT19], Ankele et al. studied
the impact of the tweakey schedule in ZC distinguishers and used a miss-in-the-middle-like
approach to find ZC and integral distinguishers for tweakable block ciphers.

The core idea of the miss-in-the-middle technique is to find a pair of differences (resp.
linear masks) that propagate halfway through the cipher forward and backward with
certainty but contradict each other somewhere in the middle. The inconsistency between
these propagations yields an impossible differential (resp. unbiased linear hull). Yet, this
technique involves tracking how the differences (resp. linear masks) propagate through
the cipher, either in the word- or bit-level, which is a time-consuming and potentially
error-prone process using a manual approach. Moreover, finding a complete integral, ID,
or ZC attack includes two phases: finding the distinguisher is only the first phase, and the
key recovery phase should also follow that. Although finding the distinguishers for ID, ZC,
and integral attacks can benefit from the same technique (miss-in-the-middle), the key
recovery techniques for these three attacks differ. For example, the early-abort technique
is a common approach for the key recovery of ID attacks, and the partial-sum technique is
the typical method for the key recovery of ZC and integral attacks.

Expanding the distinguisher on either one or both ends is necessary when constructing
the key recovery. This involves tracking the spread of additional cryptographic charac-
teristics while considering various important factors. For example, the position of the
involved cells/bits in the key recovery and the order of guessing variables can affect the
final complexity of the attack. Overall, finding an optimum complete integral, ID, or ZC
attack is a combinatorial optimization problem, which is very hard to solve using a manual
approach. This is why developing automatic tools to evaluate the security of block ciphers
against these attacks is becoming increasingly important. Particularly for new lightweight
designs, a more accurate and efficient security evaluation helps designers minimize security
margins, and improve performance.

One of the common approaches to solving the optimization problems stemming from
cryptanalytic attacks is converting the cryptanalytic problem into a constraint satisfaction
problem (CSP) or a constraint optimization problem (COP) and then solving it with
off-the-shelf general-purpose CP/MILP/SMT/SAT solvers. As a pioneering work at
EUROCRYPT 2017, Sasaki and Todo proposed an automatic tool based on MILP solvers
to find ID distinguishers [ST17]. At the same time, Cui et al. proposed a similar approach
to finding ID and ZC distinguishers [CCJT16]. However, all of these works were focused only
on finding the distinguishers. As another primary limitation, all of these modelings were
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based on the unsatisfiability of the models where the input/output difference/mask is fixed.
This has also been the case in all existing CP models to search for integral distinguishers
based on division property [Tod15, XZBL16] or monomial prediction [HSWW20, HE22].

At EUROCRYPT 2023, Hadipour et al. [HSE23] proposed a very generic and efficient
CP-based method to search for the complete integral, ID, and ZC attacks. Unlike all
previous works, the core idea in [HSE23] was creating a CP model based on satisfiability
to search for ID, ZC, and integral distinguishers. This key feature allows extending the
distinguisher model to a unified optimization model for directly finding a nearly optimum
attack, including the key recovery and complexity evaluation. Another advantage of the
method in [HSE23] is considering some key recovery techniques, such as key-bridging, to
find a better attack. However, the method in [HSE23] has some limitations as mentioned
by the authors:

o In the CP model for distinguishers in [HSE23], one should determine the contradic-
tion’s location in advance. It means the model should be run for several possible
contradiction locations, which is sometimes inefficient. So, one question is how to
relax this limitation.

o The method in [HSE23] is a cell-wise model that was proved to work very well for
strongly aligned or cell-wise designs such as SKINNY [BJK™16], but not for weakly
aligned and bit-wise ciphers, such as Ascon [DEMS21] and PRESENT [BKL™07]. So,
the second question is how to extend the method in [HSE23] to a bit-wise model.

e Most importantly, the partial-sum technique, which is an important optimization
technique in the key recovery of integral attacks, is not integrated into the CP model
in [HSE23]. The authors only propose a separate tool to apply after a distinguisher has
already been fixed, which is suboptimal for two reasons: First, the best distinguisher
does not necessarily lead to the best key-recovery attack. Second, their tool does
not fully optimize the order of partial-sum steps. So, the third question is how to
convert the partial-sum technique into a CP model, which the authors left open as
future work.

Our contributions. In this paper, we answer all of these questions and improve the
method in [HSE23] in several ways:

o We first remove the limitation of determining the contradiction location in advance.
Our new modeling automatically locates contradictions to optimize the objective
function while still keeping the model based on satisfiability. We need not split the
distinguisher into two parts, as in [HSE23]. Given only one integer number r;, as the
number of rounds for the distinguisher, a CP model based on satisfiability is created
to find the best distinguisher for r, rounds. We applied this new improved cell-wise
modeling to ForkSKINNY [ALP*19], MANTIS [BJK'16], QARMAV2 [ABD 23] and
got a series of significantly improved results.

Regarding QARMAV2, we discovered a 12-round (resp. 10-round) integral distin-
guisher for QARMAV2-128 (resp. QARMAV2-64), outperforming the best integral
distinguisher by 7 (resp. 5) rounds (see Table 1). The existing best integral distin-
guisher for QARMAV2 is a 5-round one based on the division property claimed by
the designers [ABD*23]. This highlights the effectiveness of our tool for strongly
aligned ciphers. Note that our findings for QARMAV2 do not threaten its security.

For ForkSKINNY/, we could efficiently scan many variants of this cipher (depending on
the SKINNY version, the position of the fork (r;), and the length of output branches
(ro,r1). Attacks on SKINNY can be adapted to ForkSKINNY, but not vice versa. So,
without previous ID, ZC, and integral distinguishers for specific ForkSKINNY variants,
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we have to compare our findings with top SKINNY ID/ZC and integral distinguishers
for these variants. For instance, we introduce a 22-round related-tweakey ID (resp.
17-round integral) distinguisher for ForkSKINNY-64-192, improving the best-known
ID (resp. integral) distinguisher for this cipher by 5 (resp. 1) rounds; see Table 1.
Extending our distinguisher modeling to a unified model for key recovery, we find
the best ID attacks on many variants of ForkSKINNY. We also analyze ForkSKINNY
for the first time in the limited reduced-round setting (see Appendix E). In all cases,
we propose the best ID attacks; see Table 2.

e Next, we show how to extend the distinguisher model to a bit-wise model, taking
advantage of the DDT and LAT of S-boxes yet keeping the model based on sat-
isfiability. To show the efficiency and versatility of our approach, we applied it
to very diverse designs, including Ascon and PRESENT, and could reproduce the
best-known ID and ZC distinguishers with much less effort than the methods based
on unsatisfiability [ST17, CCJT16]. For example, only one run of our tool, taking a
few minutes on a regular laptop, can find a cluster of 2'%5 ID/ZC distinguishers for
5 rounds of Ascon (see Appendix M, Figure 50, Figure 51, Figure 52, and Figure 53).
Similar to the cell-wise model, our bit-wise model is a simple CP/MILP model
based on satisfiability that can be extended to a unified optimization model for key
recovery.

e Lastly, we focus on the key recovery part and introduce a CP model for the partial-
sum technique for the first time. We applied our tool to SKINNY and ForkSKINNY.
For SKINNY, we could improve the best-known integral attacks on all variants of this
cipher. Notably, we introduce an 18-round integral attack on SKINNY-n-n, which
improves the best single-key attack on this variant of SKINNY by 1 round. We
provided 27-round (resp. 23-round) integral attacks on ForkSKINNY-64-192 (resp.
ForkSKINNY-128-256) that are the best attacks in the single-key setting; see Table 2.

The source code of our tool is available at https://github.com/hadipourh/zeroplus.

Table 1: Integral and ID distinguishers. t: Distinguishers of SKINNY that can be directly
applied to ForkSKINNY. I: #Rounds by skipping the first S-box layer.

Cipher #Rounds Dist. Data complexity  Ref.
QARMAV2-64 5 Integral - [ABD"23]
QARMAV2-64 (7 =1) 7 /8/9 Integral 28 / 216 / 244 J
QARMAV2-64 (7 =2) 8 /9 /10 Integral 28 /216 / 244 J
QARMAV2-128(7 =2) 10 /11 / 12 Integral 2'¢ /2% /2% ]
MANTIS 9 Integral 2% [ADGT19]
MANTIS 7/8/9 Integral 28 / 216 /2% K
ForkSKINNY-64-192" 16 Integral 272 [NLSW21]
ForkSKINNY-64-1921 16 Integral  2°° [HSE23]
ForkSKINNY-64-192 17 Integral 26 G
ForkSKINNY-64-1921 16 (17%) D - [HSE23]
ForkSKINNY-64-192 21 (22%) D - G
ForkSKINNY-128-256" 14 Integral ~ 2°° [HSE23]
ForkSKINNY-128-256 15 Integral 2% G
ForkSKINNY-128-256 17 (18%) D - [BDL20]
ForkSKINNY-128-256 17 (18%) D - G

ForkSKINNY-128-288 21 (22%) ID - H.9
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Table 2: Summary of our cryptanalytic results for SKINNY. ID/Int = impossible differential,
integral. STK/RTK = single/related-tweakey. SK = single-key with given keysize, CP/KP
= chosen/known plaintext, CT = chosen tweak. {: attack has minor issue (see Appendix A).
x : limited setting for ForkSKINNY, i.e., reduced-round by r; — x rounds before the fork
and rp — 2z = r; —x rounds in each branch after the fork for an integer = (see Appendix E).

Cipher #R  Time Data  Mem. Attack Setting / Model — Ref.

17 26180 95950 94960 I STK / CP [YQC17]
SKINNY-64-64 17 25 25879 940 D STK / CP [HSE23]

18  253:58  953.58 948 Int 60,SK / CP,CT 4.2

17 212080 2118450 29750 D STK / CP [YQCl?]
SKINNY-128-128 17 211651 2l16:37 980 D STK / CP [HSE23]

18  2105:58 910558 996 Int 120,SK / CP,CT 4.2

20 29750 00840 982 Int 120,SK / CP,CT [ADG*19)
SKINNY-64-128 22 2110 257:58 9108 Int 120,SK / CP,CT [HSE23]

22 2106 258 2104 Int 120,SK / CP,CT D.1

22 2216 211358 9216 Int 240,SK / CP,CT [HSE23]
SKINNY-128-256 22 2213 2114 2208 Int 240,SK / CP,CT D.1

23 2155:60 97320 9138 Int 180,SK / CP,CT [ADG*19)
SKINNY-64-192 26 2172 261 2172 Int 180,SK / CP,CT [HSE23]

26 2166 262 2164 Int 180,SK / CP,CT D.2

26 234 2121 2340 Int 360,SK / CP,CT [HSE23]
SKINNY-128-384 26 2331 2122 2328 Int 360,SK / CP,CT D.2

26 2286.38  9l22 2194 IDY 288, RTK / CP L1
SKINNY-128-288 23 212678 9l21.80 98880 Ipi 128, RTK / CP L2

232 65 228 <

SKINNYev2 30 2 2 2 Int 240,SK / CP,CT [HSE23]

31 2Ll 963 2110 D RTK / CP L3

27 2166 258 2164 Int 180,SK / CP,CT F.2

32 218627 963 2114 IDY 192,RTK / CP H.3
ForkSKINNY-G4-192 55 912373 963 9% DI 128 RTK / CP H.4

28* 2169.60 961 2104 D 192,RTK / CP H.1

28* 212378 963 286 D 128,RTK / CP H.2

23 224 2114 2208 Int 240,SK / CP,CT F.1

26 22546 2125 2160 D 256,RTK / CP [BDL20]

26 22903 2127 2160 D 256,RTK / CP [BDL20]

26 223850 9I28.60  9l75.60  pi 256,RTK / CP H.5
ForkSKINNY-128-256 5 24450 9128 9175 |pi 956 RTK / CP H.5

24 21245 2122.50 9975 DY 128,RTK / CP [BDL20]

24 212317 9l1940  HlI8A0 D 128,RTK / CP H.7

24* 2246.62 9127.70 9158.70 ID’[ 256,RTK / CP H.7

20* 210220 9102 293 D} 128,RTK / CP H.8

31 228052 912750 919050 Ipf 288, RTK / CP H.9
ForkSKINNY-128.288 _ 28 2126.68  9125.80  9100.69 i 128,RTK / CP H.10

28* 9277.23 2127.90 2158.90 DT 288, RTK / CP H.11

26* 2126.74 9125.50 968.50 DT 128 RTK / CP H.12

Outline. In Section 2, we provide background on ID, ZC, and integral attacks with the
partial-sum technique, and recall CP models for deterministic trails. In Subsection 3.1,
we introduce our new cell-wise CP model. In Subsection 3.2, we present our bit-wise CP
model. In Section 4, we propose our unified optimization model for integral attacks using
the partial-sum technique and apply it to SKINNY. Finally, we conclude in Section 5.
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2 Background

Here, we briefly review ID attacks, then explain the connection between ZC and integral
distinguishers to help the reader understand the terminology for integral distinguishers in
this paper. Next, we discuss the partial-sum technique for key recovery in integral attacks.
Finally, we review constraint programming models in automatic cryptanalysis.

2.1 Impossible Differential Attacks

Biham et al. [BBS99] and Knudsen [Knu98] independently introduced the impossible
differential (ID) attack. The ID attack relies on an impossible differential to distinguish
the block cipher from a random permutation. An impossible differential for Ey, is a pair of
differences (Ay, A;) such that Ay can never lead to A;. Consider E as a block cipher with
n-bit block size and k-bit key. As depicted in Figure 1, let’s assume the existence of an
impossible differential A, -» A, for r, rounds of E denoted by Ej,. Suppose that Ay (A,)
propagates backward (resp. forward) with probability 1 through Fy ! (resp. Ep) to Ag
(Ap), and |Ag| (JAg|) denotes the dimension of the vector space Ay (resp. Ag). Let cp (cr)
be the number of bit-conditions that should be satisfied for Ay — Ay (resp. Ap + Ap),
ie., Pr(Ag — Ay) =27 (resp. Pr (A, + Ap) = 27%). Additionally, we denote kg (ky)
as the key information, typically subkey bits, used in Ey (or Er). Then, we can divide the
ID attacks into three steps [HSE23]:

o Step 1: Pair Generation. We generate N pairs (z,y) € {0,1}%" such that z @y € Ag
and E(x) ® E(y) € Ar and store them. This is a limited birthday problem, and
according to [BNPS14] the complexity of this step is:

Ty = max{ min { N2"+1*\A\} ,N2"+1|AB|IAF|} (1)
AE{An, AL}

e Step 2: Guess-and-Filter. The objective of this stage is to eliminate all subkeys in
kg U kp that are invalidated by any of the generated pairs. Instead of attempting
to guess all subkeys in kg U kp simultaneously and testing them against all pairs,
we can optimize this step by using the early abort technique [LKKDO08]: We divide
kg U kp into smaller subsets, typically the round keys, and guess them step by step.
At each step, we reduce the remaining pairs by checking if they satisfy the conditions
of the truncated differential trail through Fy and Fy. The average number of partial
encryptions/decryptions in this step is [BLNPS18]:

ook N
Ty + Ty = N + 2lkaUksl T (2)

Key-Schedule

[ ] [ ]

1 1
Ag Es Ay E, AL Er Ag
2*(’1; 2*(’1

Figure 1: The effective parameters of the ID attack.
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o Step 3: Ezhaustive Search. The probability of a wrong key surviving the guess-and-
filter step is P = (1 - 2*(CB+CF))N. Consequently, the average number of candidates
after the guess-and-filter is P - 2/F+Yk|  Additionally, the guess-and-filter step doesn’t
involve k — |ks Uky| bits of key information. Therefore, for a unique key determination,
we need to search exhaustively in a space of size Ty = 2k~ [ksUke| . p . olkaUke| — 9k . P,

Assuming Cfg is the cost of one full encryption and Cg/ is the ratio of the cost for one
partial encryption to the full encryption, the total time complexity of the ID attack is:

Tiot = (To + (1 + T2) Cpr + 1) Cg, (3)

To maintain data complexity below the full codebook, we need Ty < 2". Additionally,
to extract at least one bit of key information in the guess-and-filter we need P < %
It’s important to note that Equation 2 represents the average time complexity of the
guess-and-filter step. Therefore, for each ID attack, a precise evaluation of its complexity
is necessary to ensure we meet this bound.

In the related-(twea)key setting, an attacker can access two encryption (or decryption)
oracles utilizing the related keys K, and K & AK, where the attacker knows AK. The
aim is to retrieve K. In the related-(twea)key setting, any plaintext structure is encrypted
with two different (twea)keys. However, for any plaintext P in each structure, we can
build two different pairs ((K, P), (K & AK,P & AP)), and (K & AK, P),(K,P & AP)).
As a result, the complexity formulations of the related-(twea)key setting are the same as
the single-key setting, except that the data complexity and term 7y should be modified as
follows:

TITK = max{ min  {2v/N2n-lal} ,N2”+1‘|AB‘|AF} [ DRTK — TRTK (4
Ae{As,Ar}

Moreover, the condition Ty < 2" is replaced by TFTH < 27*+1 in the related-key setting.

As discussed in some previous works, e.g., [Derl6], the above formulations typically
provide a lower bound of the complexity of key recovery phase, and the exact complexity
may deviate from the above formulations. However, to create an optimization model for
finding a nearly optimum attack, the above formulation is sufficient and, more importantly,
easy to model. The only little effort we should make is to evaluate the exact complexity
of the discovered attack. This approach is more practical and faster than creating an
optimization model that considers the exact complexity of the attack. Making a model
that considers the exact complexity of the ID attack becomes very complicated and hard
to handle. This makes it impractical to solve in a reasonable time and likely gives the
same result as a simpler model, even if the simpler one can be solved faster.

2.2 Integral Attacks and ZC Attacks

The idea of integral distinguishers was first introduced as a theoretical extension of differen-
tial distinguishers by Lai in [Lai94]. Later on, Daemen et al. in [DKR97] demonstrated it
as a practical attack. Knudsen and Wagner further formalized this concept in [KW02]. The
central concept behind integral distinguishers is to find inputs where their corresponding
outputs sum up to zero (or generally key-independent value) in certain bit/cell positions.
ZC attacks [BR14] are essentially the dual of the ID attack when it comes to linear analysis.
They rely on a linear approximation with zero correlation to distinguish the block ciphers
from a random permutation. At CRYPTO 2015, Sun et al. [SLR™15] proposed Theorem 1,
according to which a ZC linear hull for block ciphers defined over Fy always yield an
integral distinguisher.
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Theorem 1 (Sun et al. [SLRT15]). Let F : Fy — FY be a vectorial Boolean function.
Assume A is a subspace of FY and § € F§ \ {0} such that (o, B) is a ZC approzimation
for any o € A. Then, for any X € Fy, (B, F(x + \)) is balanced over the set

At ={z €Ty |VacA: (a,z)=0}.

Based on Theorem 1, the data complexity of the integral distinguisher derived from a
ZC linear hull is 2"~™, where n stands for the block size and m is the dimension of the
linear space created by the input linear masks in the corresponding ZC linear hull.

In ToSC 2019, Ankele et al. [ADG'19] explored the impact of the tweakey on ZC
distinguishers of tweakable block ciphers (TBCs). Their findings revealed that considering
the tweakey schedule can lead to a longer ZC distinguisher and, consequently, a longer
integral distinguisher. They introduced Theorem 2, providing an algorithmic approach to
finding ZC linear hulls for TBCs based on the superposition tweakey (STK) construction
of the TWEAKEY framework [JNP14] (see Figure 2)

Theorem 2 (Ankele et al. [ADGT19]). Let Ex(T, P) : F}*" — F% be a TBC following
the STK construction. Assume that the tweakey schedule of Ex has z parallel paths
and applies a permutation h on the tweakey cells in each path. Let (T'o,T,.) be a pair of
linear masks for r rounds of Ex, and I'y,...,[',_1 represents a possible sequence for the
intermediate linear masks. If there is a cell position i such that any possible sequence
Toli), T1[h~1(0)], T2 [h=2(0)], ... T, [h7(i)] has at most z linearly active cells, then (To,T)
yields a ZC linear hull for v rounds of E.

T —————(HD (D)o
TK2 »{ h @2 »( h ag e e an
TKl h 1 J h g PO
' i h 1 (i J‘\A 2 h2(i J 'R—1 [ €1 4 h (@
Co —> éro[] C1»€§r [ C<‘2)]4>€j>r [ C}iji{éln [ CR<») 91—‘1{[ ()]
P Iy EVB—’ Ty E‘;_» f I'y é}—»—bé I'r g_»c

Figure 2: The STK construction of the TWEAKEY framework.

Using Theorem 2 Ankele et al. manually discovered ZC linear hulls for several tweakable
block ciphers including SKINNY, and MANTIS [BJKT16]. At EUROCRYPT 2023, Hadipour
et al. [HSE23], introduced a new CP/MILP modeling to find ZC linear hulls for TBCs
based on Theorem 2, and significantly improved the ZC and integral attacks on all variants
of SKINNY and other tweakable block ciphers.

2.3 Partial-Sum Key Recovery

The partial-sum technique optimizes key recovery in integral attacks [FKLT00]. Assume
that we are provided with an integral distinguisher for a certain number of rounds of a
block cipher. The distinguishing property of the (zero-sum) integral distinguishers is that
the sum (XOR) of the distinguisher’s output should be zero for certain cell/bit positions,
which are typically referred to as balanced positions. In the key recovery of integral attacks,
we add a few rounds after the distinguisher. Subsequently, starting from the ciphertexts,
we guess the involved key bits and partially decrypt the ciphertexts to obtain the value
of balanced positions at the end of the distinguisher. Then, we verify if these values
collectively sum to zero. If so, we keep the corresponding guessed key as a candidate;
otherwise, we discard it.
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In the partial-sum technique, instead of simultaneously guessing all the key bits, we
break down the partial decryption into steps. At each step, we guess only a portion of
the involved key bits while storing intermediate values. We continue this process until we
reach the output of the distinguisher. This way, we can use memory in favor of time and
reduce the time complexity of the key recovery. Note that at each step, we only need to
derive a portion of the internal state, whose values are necessary to compute the sum of
the balanced positions at the output of the distinguisher. We refer to these intermediate
cell/bit positions as involved cell/bit positions.

Recall @;:01 x = z if n is odd; otherwise, @?;01 x = 0. Thus, values that appear an
even number of times do not contribute to the final sum. Therefore, to calculate the final
sum at the balanced positions, we only need to know whether each value appears an odd
or even number of times. To achieve this, we use an array of binary values whose indices
correspond to all possible values of the involved cells/bits at each step, and whose values
indicate the parity of occurrences for each possible value (1 for odd occurrences and 0 for
even occurrences). The primary advantage is that the number of involved cell/bit positions
diminishes as we approach the output of the distinguisher. After a certain point, the count
of possible values for the involved cells/bits falls below the count of actual intermediate
values for all ciphertexts. Here, we switch from tracking parity across all ciphertexts to
tracking parity for each possible intermediate value, reducing memory usage.

Example. To show how the partial-sum technique works, we explain the integral attack
on 6 rounds of AES based on a 4-round distinguisher [FKL*00, DKR97]. As illustrated
in Figure 3a, we assume the internal state is arranged column-wise in a 4 x 4 array of
bytes, with the last round not including MixColumns. Also, Ky is the initial whitening
key, and K5, Kg are the 5th and 6th round keys, respectively. To derive the 4-round
integral distinguisher, we encrypt a set of 232 plaintexts where all bytes are equal except
for the main diagonal, which takes all possible values exactly once. Then, the sum of
outputs after 4 rounds is zero. As depicted in Figure 3a, for the 5th round, we aim to
retrieve the equivalent subkey K3, the subkey that is derived by transforming the original
subkey before the MixColumns. According to Figure 3a, the relation between the targeted
balanced position C4[0] and the ciphertexts is as follows:

Cyf0) =851 (K5[0] ®OE-S™1(C[0] ® K6[0]) ® 09 - S (Cs[7] ® K¢[7])
@ 0D - S (Cs[10] @ K[10]) @ 0B - S~ (C6[13] @ K6[13])) , (5)

where S is the S-box, and multiplications are performed in the finite field Fos. As shown in
Equation 5, 40 key bits are involved. Checking the integral property in a balanced position
provides an 8-bit filter. So, we check 6 sets of 232 plaintexts to retrieve the key bits. Hence,
the time complexity of naive key recovery is 6 - 232 - 240 & 27458 partial decryptions.

Now we explain how to optimize the key recovery using the partial-sum technique
[FKLT00]. We denote OE - S71(.) by Sp(.), 09-S~1(.) by Si(.), 0D-S71(.) by Sa(.), and
0B - S~!(.) by S3(.). Note that Sp, S1, S, and Sz can be implemented as lookup tables.
Additionally, we need to store 232 ciphertexts indexed as C%, 0 < 1 < 232,

As illustrated in Figure 3b, we first guess Kg|0, 7] and compute p; = So(Cg[0] @ Kg[0]) ®
S1(Ce[7] ® Kg[7]) for all ciphertexts. We store how often each value of (p1,Cg[10, 13])
occurs among all ciphertexts. This step is denoted by count in Figure 3b. To do so, we
create a list £1 of 224 bits whose indices are all possible values for (p;, Cg[10,13]) and
whose entries represent whether the corresponding value appears an odd (marked by 1)
or even (marked by 0) number of times. The complexity of computing £; for all possible
values of Kg[0,7] is 216 - 232 = 248 S-box lookups. The memory complexity of this step is
224 bits.

In the second step, as Figure 3b shows, we guess K4[10], and compute p; = p; 6
82 (Cs[10] & Kg[10]) for all (py, Cs[10,13]) such that £1[(p1, Cs[10,13])] = 1. We create a
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Figure 3: Overview of the partial-sum technique applied on AES. Inspired by [Jeal6].

list Lo of 216 bits such that La[(p2, Cs[13])] represents the occurrence parity of (p2, Cs[13]).
We compute Lo for all possible values of K;[0,7,10] and also for all indices of £; whose
corresponding value is 1. Hence, the time complexity of this step is at most 2% S-box
lookups, and the memory complexity is 2'¢ bits.

In the third step, we guess Kg[13] and compute the parity of occurrences of p3 =
p2 @ S35 (Cs[13] @ Kg[13]) for all (p2, Cs[13]) such that Lo[(p2, Cs[13])] = 1. We store the
parity of occurrences of ps in a list £3 of 2% bits. Therefore the cost of computing L3 for
all possible values of K0, 7,10, 13] is at most 24® S-box lookups. The memory complexity
of this step is 28 bits.

Finally, we guess K5[0], and compute ®pgeF§:£3[p3]:1 S~ (K5[0] @ ps). If the result

is zero, we add K3[0]||Ks[0,7,11,13] to the set of key candidates; otherwise, we discard it.
Algorithm 1 briefly describes the entire procedure. The total complexity for a single set
of 232 plaintexts is 2'6 - (232 +28. (224 +28. (216 +28. 28))) = 250 S-box lookups. Since
checking one balanced byte provides an 8-bit filter and 40 bits of the key are involved, we
need to repeat the whole procedure for 6 different sets of 232 plaintexts to retrieve the
involved key bits uniquely. Therefore, the total time complexity is about 6 - 250 ~ 252-58
S-box lookups. One AES encryption employs about 28 S-box lookups. As a result, the
complexity of the partial-sum technique is equivalent to about 244-5% AES encryptions,
storing 232 ciphertexts dominates the memory complexity, which amounts to approximately
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232 128-bit blocks. Data complexity is also 6 - 232 ~ 23458 chosen plaintexts. We can
similarly retrieve other key bits by using the other balanced positions.

Algorithm 1: Partial-sum key recovery attack on 6 rounds of AES

Input: 232 ciphertexts, and the set of discarded keys DIC (empty in the first run)
Output: A set of candidates K for K5[0]||Ks[0, 7, 10, 13]

1 K« 0

2 forall Kg[0,7] do

3 Initialize a list £1 of size 224 with zeros;

4 forall 232 ciphertexts do

5 p1 4 So (Ce[0] ® K[0]) ® S1 (Cs[7] @ Ke[7]);

6 | L1 [(p1, 06[10, 13})] «— L [(pl, 6'6[107 13])} ®1;

7 forall Ks[10] do

8 Initialize a list Lo of size 216 with zeros;

9 forall (p1,Cs[10,13]) s.t. L1 [(p1,C6[10,13])] =1 do
10 p2 < p1 D Sa (CG[IO] [a) K@[lO]);

1 L L2[(p2, C6[13])] = L2 [(p2, Cs[13])] @ 1;

12 forall Ks[13] do

13 Initialize a list £3 of size 28 with zeros;

14 forall (p2,Cs[13]) s.t. L2 [(p2,Cs[13])] =1 do

15 p3 < p2 @ S3 (Cs[13] & Ke[13]);

16 | Lslps] < Ls[ps] @ 1

17 forall K5[0] do

18 if K5[0]||Ks[0,7,10,13] ¢ DK then

19 Result < @psngz Lalps]=1 st (Ks[O] EBP{S)%
20 if Result = 0 then K « K U {K;5[0]||Ks[0,7,10,13]};
21 else DK + DK U {K5[0]||K¢[0, 7, 10, 13]}

22 return K;

2.4 Constraint Programming

A mathematical problem involving variables and constraints is known as a Constraint Satis-
faction Problem (CSP). Formally, a CSP is a triple (X, D,C), with X = {X¢, X1,..., Xn_1}
representing the variable set; D = {Dy, Dy, ...,D,_1} as the domain set, where X; € D;
for 0 <i<mn-1;and C = {Cp,Cy,...,Cnr_1} serving as the constraint set. Each constraint
C; € C is a tuple (S;,R;), where S; = {X;,,...,X;, ,} C X, and R; is a relation defined
on the corresponding domain, that is, R; C D;, x --- x D;, _,. A feasible solution is an
assignment of values to the variables in a CSP problem that satisfies all constraints.

A constraint optimization problem (COP) is a CSP with an objective function. Search-
ing for the solution of a CSP or COP problem is referred to as constraint programming (CP),
and CP solvers are the tools that can solve CSPs and COPs. We use MiniZinc [NSBT07]
to create a CSP or a COP over integer variables in this paper. MiniZinc can model CSP
and COP problems in a high-level and solver-independent way. It converts the model
into FlatZinc, a standard language supported by a wide range of CP solvers. We also use
Or-Tools [PF] as the CP solver.

2.5 Cell-Wise Model for Deterministic Differential and Linear Trails

Before explaining our new modelings in the following sections, we first recall the cell-wise
model in [SGWW20] for deterministic differential trails. The duality relation between
differential and linear analysis allows one to derive the corresponding model for linear
trails. Thus, we skip the details for linear trails.

To encode deterministic truncated differential trails, we introduce two types of variables.
Let AX = (AX]0],...,AX[m — 1]) denote the difference value of the internal state X
in an n-bit block cipher E, where n = m - ¢, and AX[i] € F§ for all 0 <i<m —1. We
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use the variable AX[i] € {0,---,3} to represent the activity pattern of AX[i], and another
variable DX[¢] € {—2,—1,0,---,2¢ — 1} indicates the actual ¢-bit value of AX[i]. We use
—2 and —1 for DX[¢] to differentiate between cases where AXT[i] can take any nonzero value
and cases where AX[i] can take any value, respectively. These variables should satisfy the
following constraints:

if AX[i] = O then DX[i] = 0
elseif AX[i] = 1 then DX[i] >0
elseif AX[i] = 2 then DX[i] = —1
else DX[i| = —2 endif

Link(AX[i], DX[1]) :=

Following that, we will provide a concise explanation of the propagation rules for
deterministic truncated differential trails.

Proposition 1 (XOR). For F : F3¢ —» FS, F(X,Y) = Z where Z = X @Y, the valid
transitions for deterministic truncated differential trails satisfy

if AX+AY > 2 then AZ=3NDZ= —2

elseif AX+ AY=1 then AZ= 1A\ DZ= DX+ DY
elseif AX=AY=0 then AZ=0ADZ=0
elseif DX+ DY < 0 then AZ=2AN\DZ= —1
elseif DX= DY then AZ=0ADZ=0

else AZ= 1A\ DZ= DX® DY endif

XOR(AX, DX, AY, DY, AZ, DZ) :=

Proposition 2 (Branching). For F : F§ — F3¢, F(X) = (Y, Z) where Z =Y = X, the
valid transitions for deterministic truncated differential trails satisfy

Branch(AX, DX, AY, DY, AZ,DZ) := (4Z= AX N DZ=DX N DY=DX A DY = DX)

Proposition 3 (S-box). Assume that S : F§ — F§ is a c-bit bijective S-box and Y = S(X).
The valid transitions for deterministic truncated differential trails satisfy

S-boz(ax, 4Y):=(av# 1 N ax+4av€{0,3,4,6} A ar>ax AN av—4ax<1)

For modeling more complex operations, e.g., the non-MDS matrix employed in SKINNY,
we can use the rules of XOR and branching to encode the propagation as in Appendix C.

3 Modeling the Distinguishers

In this section, we present our improvements to the CSP model presented in [HSE23] for
identifying 1D, ZC, and integral distinguishers.

3.1 Improved Cell-Wise Model to Find Distinguishers

We start by explaining how we relax the requirement for the contradiction to occur at a
specific fixed meeting point. In the CSP model introduced in [HSE23], the distinguisher
is divided into two parts. For this, it is necessary to specify the distinguisher using
two integer numbers, i.e., ry, and r, as depicted in Figure 4a, which determine the
length of each segment. Following this, deterministic truncated trails are propagated
in opposing directions, moving towards the designated meeting point. By introducing
certain constraints for this meeting point, one can ensure that there is an inconsistency
between the two opposite propagations, creating a contradiction. In our CSP model, we
refrain from splitting the distinguisher into two parts. Instead, as illustrated in Figure 4b,
we encode the propagation of deterministic trails in opposite directions across the entire
distinguisher. Subsequently, we introduce additional constraints to ensure inconsistency
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(a) Modeling the distinguishers in [HSE23]. (b) Our modeling of the distinguishers.

Figure 4: Modeling the ID, ZC, and integral distinguishers as a CSP problem.

between the two propagations at least at one point throughout the entire distinguisher.
This adjustment enables the CSP model to automatically determine the optimal location
for the contradiction, thereby optimizing the objective function.

We explain our modeling for ZC and integral distinguishers, but the same approach
applies to ID distinguishers. Assume that we aim to find a distinguisher for r, rounds of a
block cipher E. We also assume that the block size of F is n bits, where n = m - ¢ and
c represents the cell size. As represented by Figure 4b, we define integer variables AXU,
(resp. AXL,) to represent the activeness pattern of the internal state after r rounds in the
forward direction (resp. backward direction). Similarly, we also define the integer variables
LXU, (resp. LXL,) to represent the actual values of linear masks. Next, as represent by
Figure 4b, we model the propagation of the deterministic trails in forward and backward
direction over 7, rounds independently. We add the constraints Z;Z_Ol AXUg[i] # 0, and
S AXL,, [i] # 0 to exclude all trivial solutions in the single-tweakey setting '. Let
CSPy(AXUy, LXU, . . . , AXU,.,, LXU,, ) and CSP,(AXLy,LXL, ..., AXL,  LXL, ) denote the CSP
models for the forward and backward propagation, respectively. Now we add the following
constraints to ensure the inconsistency between the two deterministic propagations at least
one point throughout the distinguisher:

N kv + AR < 3) A VS ARO[} =1 A
ilJ ilJ
CSPyy = AXL;[j] =1 6
M \,/ Y (Axui[j} # AXL,[j] )V \! =i ©
i=0 \ j= 3=0 \LXU; [j] # LXL; 3]

The conjunction of the CSP models above, i.e., CSP, = CSP; A CSPy; N CSP,, creates
a unified CP or MILP model based on satisfiability, whose all feasible solutions are
the ZC or integral distinguishers. Hence, when provided with only an integer value ryp,
this model yields a distinguisher for r,, rounds of the block cipher, eliminating the need
to specify the location of the meeting point (contradiction). We can also include an
objective function, e.g., max. (Zf:ol AXUp[i]+ >
of differentially (linearly) active cells at the input and output. This objective function
is useful for finding integral distinguishers with minimum data complexity or ID/ZC
distinguishers with maximum multiplicity.

We can also extend our idea to automatically find integral distinguishers using Theo-
rem 2. Let F be a tweakable block cipher following the STK framework, as represented
in Figure 2. Assume that E has z parallel independent paths in the tweakey schedule
that apply the permutation h to shuffle the position of cells in each path. Additionally,
let STK,[i] denote the ith cell of the subtweakey after r rounds. We define an integer

-1 . -
", AXL, [i])?, to maximize the number

n the related-tweakey setting, we ensure AP # 0V ATK # 0V AC # 0.
2The second summation is not present when searching for the integral distinguishers.
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variable ASTK,.[i] € {0, 1,2,3} to encode the activation pattern of ST K, [i]. By the way, let
AYU,.[i] (resp. AYL,[i]) encode the activation pattern of the internal state at the subtweakey
addition in round r in forward (resp. backward) propagation. Now, we add the new
constraint ASTK,.[i] = min{AYU, [i], AYL,[i]} for all 0 <r <r, —1,and 0 <i<m —1, to
link the activeness pattern of the subtweakey to the activeness pattern of the internal state.
This simple constraint causes the subtweakey to follow the activeness pattern in one of
the forward or backward propagations with less active cells. Finally, we add the following
constraint to ensure the conditions of Theorem 2 are met:

CSPTK(ASTK(), ey ASTKTDfl) =

_ ™1 poo12int (ASTK,[h—"(i)] #0) < z - .
\/:7;01 <<ZTO ( ) v (/\:Dzol ASTKT[h_T(i)] _ 0) ( )

AL (asTRA [T (0)] = 1)
Consequently, we do not need to define the border between the forward and backward
propagations, as the model automatically finds the best configuration.

Before explaining our following enhancement, we would like to highlight some insightful
discoveries we made using only the CP model described above. At FSE 2020, Bariant
et al. conducted an extensive manual analysis on ForkSKINNY-128-256 [BDL20]. They
demonstrated that one of the ID distinguishers of SKINNY-128-256 could be extended
by up to 5 rounds for a particular reduced-round version of ForkSKINNY-128-256 (where
ro = 27, see the specification of ForkSKINNY in Appendix E). However, their analysis
was based solely on the existing ID distinguishers of SKINNY. Furthermore, they did not
explore various variants of ForkSKINNY (e.g., ForkSKINNY-64-192, and ForkSKINNY-128-
288) due to the tedious and time-consuming nature of identifying ID distinguishers/attacks
using the previous automated tools. They also deferred the analysis of more significant
reduced-round versions of ForkSKINNY where ry = r; to future work.

Thanks to the efficiency of our new CP/MILP modeling for distinguishers, we identified
longer ID distinguishers for many versions of ForkSKINNY, whether rg = r; or ry # ry.
Figure 28 and Figure 27 illustrate some of these distinguishers. Moreover, we applied our
modeling to find integral distinguishers for ForkSKINNY. We discovered several integral
distinguishers for reduced-round versions of ForkSKINNY that are one round longer than the
integral distinguishers of SKINNY. Figure 26 and Figure 25 illustrate one of our 17-round
(for ForkSKINNY-64-192) and 15-round (for ForkSKINNY-128-256) integral distinguishers.
Our results show that ForkSKINNY can be generally weaker than SKINNY against the
integral attack for some (rj, ro,r1).

As another interesting application, we used our cell-wise model to find integral distin-
guishers for QARMAV2-64 and QARMAV2-128. The designers of QARMAV2 managed to
find a 5-round integral distinguisher for QARMAV2-64 by using the division property. For
QARMAV2-128, they could not apply the division property due to the challenges posed
by its large block size and complex MILP/SAT models. With our CP/MILP model, we
identified several 12-round (for QARMAV2-128) and 10-round (for QARMAvV2-64) inte-
gral distinguishers. Additionally, we found multiple 11-round integral distinguishers for
QARMAV2-128 with the data complexity of only 244, which is lower than the threshold of
280 for data complexity of this version. Note that our integral distinguishers do not threaten
the security of QARMAV2 as it has enough security margin against our distinguishers.

We point out that the cell-wise model proposed in [HSE23] can theoretically also find the
integral distinguishers we discovered for QARMAV2 and ForkSKINNY/, but it requires several
runs for several predefined contradiction locations to find these distinguishers. However,
our improved cell-wise model can find the distinguisher in just one run and automatically
locates the positions of contradictions to optimize the objective function. One might be
concerned that adding the new inconsistency checkers in Equation 7 could increase the
solving time of the CP model, compared to solving one CP model based on [HSE23].
However, in all our implementations, including these new inconsistency checkers in our
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model has only a minor effect on solving time. The CP model remains solvable in seconds
on a standard laptop. For example, in the case of a cipher like ForkSKINNY, where the
fork point is also a critical parameter, the model in [HSE23] would need to be run for
many different configurations before finding the optimal attack, which can be inefficient.
In contrast, our model can find the optimal distinguisher in just one run, taking only a
few seconds on a standard laptop. As a result, our new cell-wise model enhances the one
from [HSE23] by eliminating the need to specify contradiction locations and reducing the
effort required to discover the optimal ID, ZC, or integral distinguishers.

3.2 Bit-Wise CP Model to Find ID, ZC and Integral Distinguishers

We now explain our second enhancement to the distinguisher modeling in [HSE23], which
is to create a bit-wise model for searching ID, ZC, and integral distinguishers while
maintaining a satisfiability-based approach. This model takes advantage of the internal
structure of S-boxes and is more appropriate for weakly aligned primitives, such as Ascon.

In our bit-wise model, for each bit of the internal state, we define an integer variable
with the domain of {—1,0,1} to indicate whether the difference (linear mask) is unknown,
zero, or one, respectively. Then, we impose some constraints to model the deterministic
propagation of differential (linear) trails at the level of bits. For this aim, we first define
some simple rules for deterministic propagations through the building block operations,
i.e., XOR, Branching, and S-boxes or generally a vectorial Boolean function. We explain
our modeling for deterministic differential trails; the same approach applies to linear trails.

Proposition 4 (Branching-Bitwise). For f : Fo — F%, f(z) = (yo,y1,---,Yn—1) where
Yo = Y1 = -+ = x, the valid transitions for deterministic differential trails satisfy

Branchy(AX, AY[0],. .., A¥[n — 1]) /\ (AY[i] =

where AX, and AY[i] are integer variables with the domain of {—1,0,1} for all0 <i <n-—1.

Proposition 5 (XOR-Bitwise). For f : Fy — Fs, f(xo,21,...,2n—1) = y, where y =
To DT, D D xp_1, the valid deterministic differential transitions satisfy the following:

if \/" (4x[i] = —1) then AY = —1
XORy, (AY, 4X[0], . . ., AX[n —
else AY = AX[0] + AX[1] 4+ --- 4+ AX[n — 1] mod 2 endif

where AX[i], and AY are integer variables with the domain of {—1,0,1} for all0 <i<n-—1.

For the S-boxes, or generally a vectorial Boolean function, we refer to its DDT (resp.
LAT) to identify differential (resp. linear) transitions in which the difference (resp. linear
mask) is known with certainty for at least one bit. We refer to these transitions as bit-wise
deterministic differential (linear) transitions and use some simple CP constraints to model
them. We recall that the deterministic differential transitions are already used in [Tez14]
under the name of undisturbed bits. To explain our bit-wise model for the S-boxes, we give
a basic example. Take the 4-bit S-box of MANTIS as an example. We define the integer
variables AX[i] and AY[i] for 0 < i < 3 to represent the bit differences at the input and
output of this S-box, respectively, where AX[0] and AY[0] correspond to left-most bit, i.e.,
MSB. The domain of these variables is {—1,0, 1}, where —1 indicates that the difference
is unknown. Referring to the DDT of the S-box, the following constraints can model all
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valid deterministic differential transitions (see Appendix N):

if (AX[0] = 0 A AX[1] = O A AX[2] = O A AX[3] = 0) then (AY[0] = O A AY[1] = O A AY[2] = 0 A AY[3] = 0)

elseif (AX[0] = 0 A AX[1] = O A AX[2] = 1 A AX[3] = 0) then (AY[0] = —1 AAY[1] = —1 AAY[2] = 0 A AY[3] = —1)

elseif (AX[0] = O A AX[1] = O A AX[2] = —1 A AX[3] = 0) then (AY[0] = —1 A AY[1] = —1 A AY[2] = O A AY[3] = —1)

elseif (AX[0] = 1 A AX[1] = 1 A AX[2] = O A AX[3] = 1) then (AY[0] = —1 AAY[1] = —1 AAY[2] = 1 A AY[3] = —1)

elseif (AX[0] = 1 A AX[1] = 1 A AX[2] = 1 A AX[3] = 1) then (AY[0] = —1 A AY[1] = —1 A AY[2] = 1 A AY[3] = —1)

elseif (AX[0] = 1 A AX[1] = 1 A AX[2] = —1 A AX[3] = 1) then (AY[0] = —1 A AY[1] = —1 A AY[2] = 1 A AY[3] = —1)
[2

else (AY[0] = —1 AAY[1] = —1 AAY[2] = —1 A AY[3] = —1) endif

Using the bit-wise propagation rules above, we can independently model the determin-
istic differential (linear) trails forward and backward. Similar to our cell-wise modeling,
we include some constraints to ensure the inconsistency between the two deterministic
propagations at least one point throughout the distinguisher. More precisely, assume
that AXU,.[#], (resp. AXL,[i]) represents the difference (linear mask) in the ith bit of in-
ternal state in round r in forward (resp. backward) propagation. Then, we include
csPy =\ (\/;;‘01 (AXU, [i] + AXL,[i] = 1)) to ensure that the two deterministic prop-
agations are inconsistent in at least one bit throughout the distinguisher. As a result, the
conjunction of CSP models for forward and backward propagations together with CSPy,
creates a unified CP or MILP model based on satisfiability, whose all feasible solutions are
the ID distinguishers. The same approach applies to ZC and integral distinguishers.

To show the usefulness of our bit-wise model, we applied it to two bit-wise (weakly
aligned) designs, e.g., Ascon, and PRESENT. When searching for ID and ZC distinguishers of

Ascon, we include the objective function min. (ZZ o AXUo[i] + S0, AXL,, [i ]) to maximize

the number of unknown bits at the input/output of distinguisher. This way, any model’s
solution is indeed a cluster of ID, ZC, or integral distinguishers. The more unknown bits
at the input/output of the distinguisher, the more distinguishers it contains. Figure 50,
Figure 51, Figure 52, Figure 53, and Figure 54 illustrate some of the 5-round ZC and ID
distinguishers discovered by our tool for Ascon, respectively. The unknown bit (in terms of
difference value or mask value) in the forward and backward propagations are represented
by P, and |4, respectively. In addition, the bit difference (or linear mask) 1 is represented
by P and |4 in forward and backward propagations, respectively. As seen in Figure 50,
the contradiction happens at the bit level (at the output of the first round), which is not
detectable by a cell-wise model. The result represented in Figure 50 can be derived with
our tool running on a regular laptop in a few minutes. However, as seen in Figure 50 it is a
cluster of 2155 ZC distinguishers. Regarding the ID and ZC distinguisher of PRESENT, we
also achieved the best previous results (see Appendix L). This highlights the advantage of
our search method over previous works [ST17,CCJT16], where each ZC or ID distinguisher
had to be derived separately when fixing the input/output to specific differences or linear
masks in each run.

3.3 Comparing Our Distinguisher Modeling to Previous Methods

We emphasize that, similar to [HSE23], our primary aim with our CP models for dis-
tinguishers is to create satisfiability-based models that extend to a unified COP for
deriving the complete key-recovery ID, ZC, and integral attacks. Unlike previous tools
such as [ST17,CCJT16], which rely on unsatisfiability and require fixing input/output
differences or linear masks to find distinguishers, our models are satisfiability-based, elimi-
nating the need for fixing input/output differences or linear masks. Consequently, both
the approach in [HSE23] and our new models are the only methods for ID, ZC, and
integral distinguishers that can be extended into a unified CP model for key recovery.
While our primary goal in distinguisher modeling is not to create tools for proving the
non-existence of ID and ZC distinguishers, one might wonder if our models, especially
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the bit-wise one, could serve this purpose. We do not assert that our models can be used
for proving the non-existence of ID or ZC distinguishers. Nevertheless, both the findings
from [HSE23] and our recent results have demonstrated their efficiency in discovering the
longest ID and ZC distinguishers for various applications, including SKINNY, ForkSKINNY/
SKINNYe, SKINNYee, CRAFT, Deoxys-BC, MANTIS, QARMAV2, Ascon, and PRESENT. For
instance, our CP model aimed at finding an ID distinguisher for 6 (or 7) rounds of Ascon
(or PRESENT) returns UNSATISFIABLE. This indicates that, under the assumptions of our
model, e.g., round independence and round-key independence, there is no ID distinguisher
for 6 (or 7) rounds of Ascon (or PRESENT). Note that the majority of existing ID/ZC
distinguisher tools also neglect cross-round or round-key dependencies 3. Moreover, we
assume that deterministic bit-wise (or word-wise) forward and backward propagations
contradict each other in at least one bit (or word) throughout the distinguisher. However,
all of the existing tools have yet to discover any 6 (resp. 7) ID distinguisher for Ascon (resp.
PRESENT). This is the case in all other applications studied in [HSE23] or this paper.

Note that previous tools such as [ST17, CCJT16] also cannot be directly used to prove
the non-existence of ID distinguishers due to their inherent limitation, which involves fixing
the input/output differences. To demonstrate the non-existence of ID distinguishers using
the methods from [ST17,CCJT16] for a specific number of rounds in a block cipher, one
must examine all possible combinations of input/output differences to ensure the presence
of at least one differential trail for each input/output difference *. However, checking all
possible combinations of input/output differences or linear masks is not feasible. Thus, a
very few heuristic methods have been proposed to simplify this task, e.g., [HPW22]. These
methods primarily involve dividing the space of all possible input/output differences into
equivalent classes and then examining only one representative from each class. Nonetheless,
this approach remains computationally demanding, particularly for larger block sizes,
and often encounters computational complexity challenges, as highlighted in [HPW22],
particularly in the related-(twea)key setting.

In summary, our new cell-wise and bit-wise models, inspired by [HSE23], bridge the
gap in developing a satisfiability-based model that can extend into a unified COP for
key recovery in ID, ZC, or integral attacks. Similar to [HSE23], we expand our modeling
for near-optimal complete ID, ZC, or integral attacks (demonstrated for SKINNY and
ForkSKINNY)). We use the same model as in [HSE23] for key recovery of ID attack. However,
our key recovery model for integral attacks is novel, as explained in the next section.

4 Modeling the Key Recovery for Integral Attacks

This section introduces a COP model for optimizing the partial-sum key recovery of integral
attacks. When combined with the CSP model for integral distinguishers in Section 3, it
is possible to construct a unified COP for finding an optimized full integral attack. This
unified model receives three integer numbers (74, rp, 75, corresponding to the lengths of
each part in Figure 1, and outputs an optimized integral attack with the corresponding
time, memory, and data complexity. Moreover, due to our modular approach, our COP
for the partial-sum technique can be used together with other models for distinguishers.

Previous Work If we apply the partial-sum technique to AES as seen in Section 2.3, the
order in which the partial sums are calculated does not affect the final complexity. However,
this may not be the case for ciphers where each input of the MixColumns operation only

31t is worth mentioning that [HLJT20] takes into account the impact of the key schedule, and [XLJT22]
considers specific cross-round dependencies.

4This approach fails for ZC distinguishers as multiple linear trails can exist between input and output
masks, each with different signed correlations, leading to a total correlation of zero. Currently, there is no
systematic method for proving the non-existence of ZC distinguishers.
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affects some cells in the same column of the output, particularly when more rounds are
appended to the distinguisher. A straightforward way to optimize the key guessing order is
to use the partial-sum reduction at the MixColumns step by guessing the keys column-wise.
Previous works [ADG 119, HSE23] also optimize which column should be determined first
to reduce the overall time complexity. However, they only do this one round at a time.

Improving the partial-sum key guessing order For ciphers like SKINNY, the optimizations
in previous works are insufficient for finding the best partial-sum guessing order, as
demonstrated by the example in Figure 5. Here, we compare optimizing the partial sums
locally, one round at a time, with a global optimization. The time complexity of the local
optimization is listed in Table 3. If we apply a global optimization and instead guess
STK;7[6] in step 4, we have to store on partial-sum less, as shown in Figure 5. This
reduces the data complexity of step 4 and, as a result, the time complexity of step 5.
Because step 5 dominates the time complexity of the key recovery, we significantly decrease
the time to recover the key.

Table 3: Complexity of local 4 round partial-sum optimization with balanced cell X;5[4].
Step  Guessed K x D=Mem  Time Stored Texts

0o - 20 x232= 232 932752 7..01,2,4,7]; X15[8,11 — 15]; X17[12]; STK16[5)]
1 STKis[4] 2% x2%32= 2% 23672 7[1,2,7]; Xis[11,13 — 15]; Z17[0, 7]; X17[10,12];
STK16[5]
2 STKig[l] 28 x2%2= 210 210772 7,02, 7]; Xis[11,14,15]; Zi7[0,7]; X17[10,12,14];
STK16[5]
3 STKis[7] 2%2x2%= 2% 2482 7.9, Xis[l4]; Zi7[0,6,7);  Xir[10,12,14];
STK16[5]
STKs[2] 2'9x2%= 2%  218-72  7..10,6,7]; X17[10,12, 14, 15]; STK16]5]
STKy7[6] 2%0x220= 210 252=72  7..10,7]; X17[12,15]; X16[5]

]
]

STK17[0] 2*x2'6= 20 2%=72  7.17]; Xi7[15]; X165, 13]
]

STKy7[7) 2%x2%=2% 2707 Xi5[4]
248 244486

M~ o otk

Making use of this global optimization, our novel approach uses a COP model that
takes into account every key guess possible at each step. The main idea is to assign to the
cells of each state the step number in which it is guessed. The various internal parts of
ciphers affect how these step numbers propagate to the next state.

Overview of the COP Model. Our unified COP model comprises the following modules:
e Model the distinguisher as in Section 3.

e Model the meet-in-the-middle part. A distinguisher with two or more balanced
cells may yield a better attack when using the meet-in-the-middle technique [SW12].
If that is the case, the following parts of our model are applied to each of the balanced
cells, and the overall complexity is the sum of each of these branches.

e Model which state cells are involved in the key recovery part.

e Model the key-schedule. We take advantage of the linear key-schedule and make
sure that we exclude the active sub-(twea)keys from the optimization.

o Model the step assignment to define in which order the (twea)key cells are
guessed in the key-recovery attack.

e Model the data usage of each step. We want to know how many partial sums we
have to store per step to model the time complexity.

e Model the complexity. The complexity of each step consists of all the key guesses
so far, times the data usage of the previous step. The overall complexity we want to
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[ guessed key [ balanced cell B determined B stored [ not yet determined

X5 Y15 STKi5 Z1s Wis Xi6 X15 Y15 STKi5 Zi5 Wis Xi6

N N

STKis V; 6 STKi6

(a) When optimizing the partial-sum guessing (b) When optimizing the partial-sum guessing
order one round at a time, 7 cells need to be order globally, 6 cells need to be stored in step
stored in step 4. 4.

Figure 5: Advantage of an advanced guessing order for the partial-sum technique. For
ciphers like SKINNY, it is often better to guess some keys in earlier rounds first, instead of
guessing one round at a time. In this example, this allows us to store one cell less in the
partial-sum recovery step 4, reducing the time and memory complexity by 2.

minimize is the sum of the complexities of each step. If we use the meet-in-the-middle
technique, we also have to sum over all branches.

4.1 Detailed model for SKINNY

In this section, we explain our model in more detail using the cipher SKINNY, for which
the specification can be found in Appendix B. We combine this key recovery COP model
with the distinguisher model of Section 3 to create a unified model. However, for simplicity,
we describe just the partial-sum optimization given the position of the balanced cell AXL g,
and the active input cells AT from the distinguisher. Furthermore, the tweakey setting z,
the start (Rs = rg + rp) and end (R = r5 + rp + ) round of the key recovery, and the
active tweakey AT need to be specified.

Model the Involved State Cells First, we want to model which state cells are involved
in the partial-sum key recovery in Algorithm 2. For this, we create two Boolean arrays
IXF, IWF representing the cells of state X and W in each round, respectively (see Figure 10).
If a cell at index ¢ equals True, then this cell is involved in the key recovery. We set IXFp,
to True (1) at the balanced positions; otherwise it takes False (0). Then, using the
properties of MixColumns and the permutation ShiftRows, we deduce the involvement
of each cell until we reach the last round. MizColumnsForwards models the inverse
MixColumns matrix M ~! (see Appendix B):

if i <4 then TWF[i + 12]

elseif i < 8 then TWF[i — 4] V IWF[i] V IWF[i + 4]
elseif i < 12 then IWF[i — 4]

else TWF[i — 8] V IWF[i — 4] V IWF[i] endif.

MixzColumnsForwards(IWF,1) =

Model the Key-Schedule In SKINNY, each subtweakey is linearly derived from the z
tweakey cells. If we already determined z subtweakeys derived from the same cell position
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Algorithm 2: CSP model to find which cells are involved in the partial-sum
key-recovery of SKINNY

Input: integer numbers (start round Rs, end round R, output of distinguisher AXLg_)
Output: CSP;¢

1 Declare an empty CSP model M;

2 M.uvar + {IXF.[i]] € {0,1}: R; <r<R+1, 0<i<15}
3 M.var + {IWF,.[i]] € {0,1}: Rs <r <R, 0<i<15};

4 fori=0,...,15do

5 | Mo.con  IXFp_[i] = (if AXLg,[i] > O then 1 else 0);
6

7

8

9

forr=Rs,...,R; i=0,...15do

M.con < IWF,[i] = IXF.[ShiftRowsl[i]];

M.con ¢ IXF,1[i] = MizColumnsForwards(IWF,,1);
return M;

of the tweakeys, we can recover this part of the tweakey. Furthermore, in our integral
attacks on SKINNY-n-z - n, z cells of the tweakey are known and under the attacker’s
control. Thus, only the other positions (15 - z cells) must be recovered.

In Algorithm 3, we ensure that the active tweakey cell is not considered in the partial-
sum optimization and that at most z subtweakeys per tweakey position have to be guessed.
The precomputed input stkp maps each subtweakey position to a tweakey position. In
STKC, we store how often a tweakey cell is involved in the forward propagation done in
Algorithm 2. Based on the conditions mentioned in the previous paragraph, we store
which subtweakey positions are involved in the key recovery in ISKF. If in STKC a certain
tweakey position is guessed more than z times, we store the rounds in which it is guessed
in STKIR.

Model the Step Assignment The main part of our model assigns a step number between
0 and the maximum number of involved tweakey cells S to each state cell (Algorithm 4).
On the subtweakey state, KF, this number represents in which step we want to guess this
subtweakey. The other states XF, ZF, WF are used to propagate the step numbers backward.
Uninvolved cells are represented by —1. First, we assign to each involved cell in the last
round the step number 0. We then trace the step assignment backward until we reach the
output of the distinguisher. An example step assignment is illustrated in Figure 6. All
states not depending on each other can have the same step number. This makes it possible
that multiple tweakeys are guessed at the same time.

In detail, we first model that the step number in WF is always the maximum step
number of the cells it depends on in XF. By looking at the dependencies in M !, we model
MizColumnsBackwards as

if 1 < 4 then XF[i + 4]

elseif i < 8 then max{XF[i|,XF[i + 4], XF[i + 8]}
elseif i < 12 then max{XF[i — 4],XF[i + 4]}
else max{XF[: — 12],XF[:]} endif.

MizColumnsBackwards(XF, 1) =

Afterward, the step numbers in ZF are the values in WF shifted by ShiftRows. Each new
subtweakey guess corresponds to a step. Therefore, we impose the condition that KF is
larger than ZF.

Model the Data Usage of Each Step To calculate the time and data complexity of the
partial-sum technique, we first need to calculate how much data needs to be stored at each
step. This is done in Algorithm 5. The number of subtweakeys determined at each step
is stored in STKPS. Furthermore, the variables ZC and XC store how many partial sums
have to be stored per step in the state Z and X, respectively. In SBC, we store how many
S-Boxes are passed in each step. Lastly, in ASTKC, we store whether an active tweakey cell
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Algorithm 3: CSP model of properties of the tweakey schedule of SKINNY

Input: CSPr¢.var, integer numbers (start round Rs, end round R, tweakey setting z, active
tweakey AT)
Output: CSPryy
1 Declare an empty CSP model M;
2 M.var < {STKC[i] € {0,...,(R— Rs)/2+1}: 0<:<15};
3 M.var < {ISKF.[i]] € {-1,...,15}: R <r <R, 0<i¢<T}
4 M.var < {STKIR,[i] € {-1,...,15}: Rs <r <R, 0<i<15};

5 M.con « STKC[i] = 3 F Z;:O IXF, [j] = 1 AKF,[j] = i;

6 forr=Rs,...,R; i=0,...7do

7 if IXF.[i] = 1A stkp,[i] # AT then
8

9

if STKC[stkp,[i]] < z then
| M.con ¢ ISKF,[i] = stkp,[i];

10 else

11 | M.con « ISKF,[i] = stkp,[i] V ISKF,[i] = —1;
12 else

13 L M.con  ISKF,[i] = —1;

14 for ¢ ={0,...,15} \ AT do

15 L M.con <z > Zf:R ZZ:O ISKF,[j] = 3;
16 for :=0,...,15 do .

17 if STKC[i] > z Ai # AT then

18 forr=Rs,...,R do

19 if 1 €; ISKF: then

20 | M.con ¢ STKIR;[i] = KF,[j];

21 else

22 | M.con ¢ STKIR,[i] = —1;

23 else

24 | M.con « STKIRR_ . gli] = —1;

25 forr=Rs,...,R; i=0,...7 do

26 if IXF.[i] = 1A stkp,[i] # AT A stkp,.[i] # ISKF.[i] then
27 | M.con « STKIRR, .. p[stkp,[i] < XF[i;

28 return M;

Xoo Yy STK» Zao Wao Xo1
7]5/1[3 7]5/1]3 6/4/0]2 6]4]0]2} 17113
8/9(3/8| [sc| [s[9]3]8 4]0(2[6| b>1| @402} 4/0[2

64l |AC 64| [7] [3] 6 4| 2 |6]4 0/0/0]f
1af27e] L J [ala]1]1] ([8[9l3]8] [1]1[1]1] >3 [1]1[1[F olofo]
Xy Yy STKx Z Way Xaz
17111 1[1]1]1 0000 0]0]0]0 0]0/0]0
6/4/0]2]| |sc| [6]4[0]2 oooogoooo olo/ofo
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Figure 6: Example of a step assignment to the various states. We highlight how the
subtweakey addition and the MixColumns operation affect the step number.

is involved in a step. We again use M ! to obtain the relation used by MCBigger, defined
as

if j <4 then WF[j +12] >4

elseif j < 8 then WF[j — 4] > i VWF[j] > i VWF[j +4] >4
elseif j < 12 then WF[j — 4] > 1

else WF[j — 8] > i VWF[j — 4] > ¢ VWF[j] > i endif.

MCBigger(WF,1,j) =

Model the Complexity Combining all previous models, we can create the COP model,
minimizing the time complexity displayed in Algorithm 6. We do this by calculating the
cost of each step. As described in Subsection 2.3, we do this by multiplying all the keys
guessed this far by the number of partial sums stored in the previous step. First, we
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Algorithm 4: CSP model for the step assignment of each state of SKINNY

Input: CSPr¢.var, CSPryy .var, integer numbers (start round Rs, end round R, maximum step
number S)
Output: CSPg»
1 Declare an empty CSP model M;

2 Muvar « {XF[i] € {-1,...,S—1}: Re<r <R, 0<i<15};
3 M.uar < {KF.[i]e {-1,...,§—1}: Rs<r<R, 0<i<T}
4 Muvar + {ZF,.[i]]e {-1,...,8S—1}: R <r<R, 0<:<15};
5 M.uvar < {WF.[i]]e {-1,...,5—1}: Rs <r <R, 0<1i<15};
6 fori=0,...,15 do

7 | M.con ¢+ XFry[i] = IXFryq[i] — 1 //Assign either 0 or —1;
8 forr=Rs,...,R; i=0,...15do

9 if IWF,.[i] =1 then

10 | M.con ¢ WF.[i] = MizColumnsBackwards(XFr1,%);

11 else

12 L M.con  WF.[i] = —1;

13 M.con ¢ ZF,[ShiftRows[i]] = WF[i];

14 if 4 < 8 then

15 if ISKF.[i] > 0 then

16 | M.con  (KF.[i] > ZFy[i]) A (XF,[i] = KF;[1]);

17 else

18 | M.con  (KF[i] = —1) A (XFy[i] = ZF,[i]);

19 else

20 L M.con  XF[i| = ZF,[i];

21 return M;

Algorithm 5: CSP model for data use of the partial-sum technique on SKINNY

Input: CSPrc.var, CSPryy .var, CSPs 4.var, integer numbers (start round Rs, end round R,
maximum step number S)

Output: CSPr M

Declare an empty CSP model M;

M.var < {STKPS[i] € {0,...,8}: 1 <i<S—1}

Mvar + {zc[i] € {0,...,16}: 0<i< §—1};

M.var + {XC[i] € {0,...,16}: 0<i< S —1};

M.var < {SBC[i] € {0,...,16}: 1 <i< S —1};

M.var < {ASTKC[i] € {0,...,(R—Rs)/2}: 0<i< S —1};

fori=1,...,5—1do

M.con + STRRS[i] = 31 o 37 KF.[j] = is

o | Mcon < sBeli] =Y )0, 3007 XF.lj) = s
10 fori=0,...,5—1do

1| Meeonzcli] =37 S o 2l < i AKE[] >

12| Meonexcli] =31 > o XFrs1lj] < i A MCBigger(WFy, i, j);
138 | Mcon « ASTKC[i] = Y2% o 377 stkp, [j] = AT AXF.[j] > i

14 return M;

® N O s W N

ensure that at least one tweakey is guessed in each step, up to the point where all are
determined. In Te,.p, we store the exponents of the time complexity of each step and use
them to calculate the time complexities T of each step. Lastly, we sum each T multiplied
by the number of S-box evaluations used in the corresponding step. This is done to obtain
the time complexity in equivalent cipher encryptions. Since the total amount of S-Box
usage per encryption remains constant for a fixed number of rounds, we do not have to
divide T by this number for the objective function. For our model, this has the advantage
that we stay in an integer domain and can use a wide range of CP/MILP solvers, including
OrTools, to solve it.
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Algorithm 6: COP model for the partial-sum optimization on SKINNY

Input: integer numbers (tweakey setting z, start round Rs, end round R, output of distinguisher
AXLp,, active tweakey AT, input active AI, maximum step number S)
Output: Ccop
DI « 16 — AI + z;
Declare an empty COP model M;
M < CSP;c N\ CSPrw A CSPsa N CSPyrEM;
Movar < {Tezplt] €{0,...,2-16-c}: 1 <i< S —1};
Mvar + {T[i] € {0,...,2*16¢}: 1 <i<S—1}
M.var <+ Tyopq € [0,2716°¢];
fori=1,...,5—-2do
if STKPS[i + 1] # 0 then
| M.con « STKPS[i] > 0;
fori=1,...,S—1do
if STKPS[i] > 0 then
if DI > (ASTKC[i — 1] 4 Zc[i — 1] + XCfi — 1]) then
L M.con ¢ Teqpli] = c - (ASTKC[i — 1] + ZC[i — 1] + XC[i — 1] + )" STKPS[j]);
else
L M.con < Tegpli] = ¢ - (DI + 22:1 STKPS[j]);

© 0N ks W N

[ =
v = O

e
L)

-
o

16 else
17 | M.con ¢ Teqp[i] = 0;
18 | M.con < T[i] = 2Texnlil;

S—1 . .
19 M.con < Tiptaqr = Zi:l T[:] - SBC[4];
20 M.obj < Minimize Tyiptq7;
21 return M;

4.2 Results

An overview of the improved integral attacks on SKINNY and ForkSKINNY obtained by
using our new method can be found in Table 2. In this section, we show an integral
distinguisher and the corresponding key-recovery attack for SKINNY found with our model.
We list additional results for SKINNY in Appendix D and ForkSKINNY in Appendix F.

Integral Key-Recovery Attack on 18-Round SKINNY-n-n  The distinguisher is obtained
from ZC distinguishers by inverting the activity pattern at the ZC distinguisher’s input.
More precisely, plaintext cells with active linear masks take a fixed value, and plaintext
cells with zero linear masks take all possible values. Besides, the active tweakey cells
involved in the attack take all possible values, and the remaining tweakey cells take a fixed
value. Consequently, the sum of the active output cells forms a balanced Boolean function
over the input set.

The attack is based on a 12-round ZC distinguisher, extended with one free initial round
plus a final key-recovery phase over 5 rounds. In this distinguisher, shown in Figure 7,
the tweakey cell 8 is only active in exactly z = 1 round (‘nonzero’ in STK7). At the
input to the distinguisher, 4 cells are active. Thus, we can convert it to an integral
distinguisher [ADG*19] with data complexity 24 (16=4+1) — 952 for n = 64, where the
values in the active input cells and the tweakey cell with index 8 iterate over all values.
The inactive input cells are constant; the other tweakey cells form the 4 - 15 = 60-bit
key. Then, the distinguisher’s outputs in Wi3[12] sum to zero. We can trivially prepend 1
round because adding the equivalent tweakey does not change the input structure (key
cell 8 is not involved), and all other operations in the first round are unkeyed.

Key recovery. For the key recovery, we separately recover the sums in X;3[0] (branch 1)
and X;3[12] (branch 2) using the partial-sum technique [FKLT00] and merge the results
following the meet-in-the-middle approach [SW12]. For the merging, we combine each key
candidate for the first branch with each candidate for the second branch that produces
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Figure 7: ZC-based integral attack on 18 rounds of SKINNY-n-n.

the same sum, so that the overall sum is zero. We can repeat the attack a few times to
reduce the size of this remaining set of key candidates.

The procedures for the two sums are summarized in Figure 8 and Figure 9. For each
sum, we start with Step 0 by storing the obtained ciphertexts (after unwrapping the last
linear layer, i.e., Z17) together with their corresponding chosen tweakey values. For the
tweakey, we either store the required subtweakey values (i.e., STKi7[2]) or, if this is more
efficient, the input tweakey values from which all subtweakeys can be reconstructed. At
this point, we can already recover all intermediate cells that do not depend on any key
values, and do not need to further store any cells without further dependencies (i.e., nodes
in the dependency tree whose parents are already recovered). For example, consider the
recovery of X;3[0] in Figure 8. From STK;7[2]|, Z17(2], Z17[14] we can recover X;g[15]
using 3 S-box computations via Yi[15] from Z14[15] = Wig[14] = X17[2] ® X17[14] from
Y17[2], Y17[14]. None of these intermediate cells appear in any other computation paths
for X13[0], so the only of all these cells we store is X16[15]. Similarly, we can derive all
other cells labelled with step 0 without any guesses and only need to store 10 cells for this
step: Z17[1,3,4,7], X17[8,11,12,13,15], X16[15]. In each of the following steps, we guess
one or more cells of involved subtweakey STK,., add new cells we can derive from this
guess, and remove any cells that are no longer needed. For example, in step 1, we guess
STK;7[1] (tweakey cell index £), allowing us to derive X;4[14] with 2 S-box computations
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from Z37[1], X17[13]; the latter are no longer needed, reducing the remaining data by one
cell. Note that the figure shows step indices in each state cell, but tweakey cell indices
(instead of steps) in the round tweakey cells. If a subtweakey index is involved more
than z = 1 time (such as indices 6, a, d), we only guess the first z times and derive the
remaining values afterwards. The order of guessing steps is chosen to optimize the overall
time complexity.

Complexity. The complexity of each step is determined by the number of guessed key
cells so far and the number of new stored cells (for memory) or previously stored cells
(for time). We use the number of S-box lookups as unit for the time complexity, as
customary in previous attacks (although in reality, the memory accesses would likely be
more expensive). Overall, we obtain a mapping from values of the sum in X;3[0] to disjoint
subsets of the 247 = 228 key candidates with complexity 24132, and for the sum in X;3[12]
for 2%* candidates with complexity 24°-23. These can be merged to obtain 260~4 = 256 key
candidates that produce zero-sums. This remaining keyspace can either be brute-forced
(complexity 259), or the attack can be repeated 3 times (complexity 3 - 245:23 = 24681 plyg
merging plus 260734 = 248) As merging can be done efficiently, the total complexity is
less than 249 encryptions equivalents plus 3 - 2°2 = 253:58 data, for 18-round SKINNY-64-64
with 60-bit keys, so the data querying phase dominates overall. The same approach yields
a complexity of about 3 - 210472 4 2120-3:8 & 999 plyg 3. 2104 = 2105:58 data for 18-round
SKINNY-128-128 with 120-bit keys.

X3 13 Wis X4 Yiy STK4 Z1y Wiy X15

_ Yig : Z13__ 13
K g gt T g
AC] [=>2 AC]| [>>2]
L] U L H::HH ey [ il L] H::HH ) 1]
Xi5 5 5 5 5 5 5 Wie
t (M) o (M) L] N L] HEN
sC [s1
el o e
- ] &3
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AC >2
- e

Step Guessed K x D =Mem Time Stored Texts

0 - 20 x210= 210 940=52 7,11 3.4, 7]; X17[8,11,12,13,15]; X16[15]
1 STKi7[1] 2* x2%= 20 24-72 7.[3.4,7]; X17[8,11,12,15]; X16[14,15]
2 STKi7[7] 28 x2%2= 240 2%=82 7,13 4]; X17[8,12,15]; Zis[6]; X16[14,15]
3 STKi7[3] 212x228= 210 272 7,.[4]; X17[8,12]; Zis[6]; X16[12,14,15]

4 STKi7[4] 2'x2%8= 2% 272 7,4]0,6,7]; X16[10,12,14,15]

5  STKs[6] 220x2%20= 210 218=72 710, 7]; X16[12,15]; Xi5[5]

6  STKi6[7] 22*x2'6= 210 2%=72 Z40]; X16[12]; X15[5,9]

7 STKi6[0] 2%x2*= 2% 2%762 x,;5[0]

b 244 241.32

Figure 8: Complexity of partial-sum key-recovery of X;3[0] for 18 rounds of SKINNY-n-n.

Discussion Our model only uses integer variables, enabling us to use any CP solvers that
supports integer CP models. We use the CP solver Or-Tools to find optimized integral
attacks. Due to the heavy use of sums in the partial-sum COP model, the model takes a
while to solve, depending on the settings. For z = 1, we used a unified COP model to find
the best integral attack within a few hours. However, when using z = 2 and z = 3, using a
separate model for the distinguisher and the partial-sum optimization was faster. In these
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Figure 9: Complexity of partial-sum key-recovery of X13[12] for 18 rounds of SKINNY-n-n.

settings, our model took too long to find optimal solutions. Still, compared to previous
works [HSE23], we found better partial-sum optimizations.

Our results show that minimizing the number of tweakey cells involved in key recovery,
as in previous work [HSE23], is not optimal. For example, for an 18-round integral attack
on SKINNY with z = 1, the best key recovery involving 9 key cells has a time complexity
of 2440 compared to 2%°-33 when 11 key cells are involved. It is also essential to optimize
the guessing order globally rather than one round at a time, as highlighted by Figure 13
where two cells in round 18 are guessed before a cell in round 20.

There are still ways to improve the model. For example, it may be more efficient to
compute an intermediate partial-sum in MixColumns. Moreover, there might be cases
where we should wait to apply the S-Box operation for a few steps to decrease the complexity
of one step at the cost of increasing the cost later.

5 Conclusion and Future Works

This paper improved the automated search for ID, ZC, and integral attacks. In three
aspects, we addressed the limitations of the approach introduced by Hadipour et al. at
EUROCRYPT 2023. First, we removed the need to determine the contradiction location
in advance. Second, we introduced a bit-wise CP model based on satisfiability to search for
1D, ZC, and integral distinguishers. Third, we proposed a CP model for the partial-sum
technique for the first time. We implemented our approach, applied it to several block
ciphers following different design strategies, and got improved results. Our results show
that the proposed approach is efficient and helpful in analyzing and designing block ciphers.
One interesting future work is applying our bit-wise CP model to ARX designs. Another
interesting future work is extending the idea of our distinguisher modeling, i.e., CP/MILP
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models based on satisfiability, to other cryptanalytic techniques, such as division property
and monomial prediction techniques. Furthermore, one can consider extending our CP
model for the partial-sum technique to the key recovery of ZC attacks.
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A Bonnetain and Lallemand’s Note on Related-Tweakey
Impossible Differential Attacks

In our related-tweakey ID attacks, we reuse the same technique as [SMBI18] to take
advantage of multiple ID distinguishers with the same input/output activeness pattern
(truncated ID distinguishers). As before, assume that ¢y denotes the number of bit
conditions in Ey. Additionally, let |A;| represent the number of (differentially) active
bits in the tweakey. According to [SMB18], and also as we discuss in Subsection H.1, we
assume that |A;| bits of the exterior filters in Ej can be passed for free. Therefore, to
consider the impact of multiple distinguishers in our CP model on the time complexity
formula, i.e., Ty in Equation 4 and T} in Equation 2) we use ¢z — |A¢| in our objective
function terms. That is why the caption of our ID attacks in the related-tweakey setting
includes two values for the number of bit conditions in Fy: ¢), which denotes the number
of bit conditions in Ej, and ¢z, which represents the value of ¢, — |A| that we use in our
CP model for related-tweakey settings to calculate time complexity terms.

However, on February 19, 2024, Xavier Bonnetain and Virginie Lallemand [BL24]
informed us that the key recovery procedure for the related-tweakey ID attacks in [SMBI1§]
has a logical flaw. Following the same technique as [SMB18], we assumed the attacker could
access two related-tweakey oracles in our related-tweakey setting. While this assumption
aligns with using a single distinguisher, according to Bonnetain and Lallemand [BL24],
it presents a conflict when attempting to bypass exterior filters without cost when using
multiple distinguishers. Bonnetain and Lallemand suggested using more than two related-
tweakey oracles to fix this issue. Using this new setting, they could still take advantage of
multiple distinguishers. Also, they showed that this change mostly does not change the
time complexity of our related-tweakey ID attacks, whereas it can change the memory
complexity. Consequently, our attacks remain valid in terms of time complexity, but the
memory complexity of our attacks should be re-evaluated [BL24]. To incorporate the
updated setting by Bonnetain and Lallemand, we need to modify our CP model slightly:
instead of reducing cg by |A;|, we should increase Ay by A,. Interestingly, this change has
the same effect on terms Ty in Equation 4 and only changes the term T} in Equation 2.
However, in almost all of our discoveries, T was not the most dominant term in the time
complexity. As a result, our reported attacks remain optimal in terms of time complexity.

B Specification of the SKINNY family of tweakable block
ciphers

SKINNY is a family of lightweight tweakable block ciphers porposed by Beierle et al. in
CRYPTO 2016 [BJK"16]. SKINNY suggests two block sizes, n € {64,128}, and for each
block size it offers three tweakey sizes, t € {n,2n,3n}. SKINNY-n-t represents SKINNY
with n-bit block size and t-bit tweakey size. The internal state of SKINNY is a 4 x 4 array
of cells arranged in a row-major order. The tweakey state is composed of z 4 x 4 array of
cells, where z = 7’% € {1,2,3}. We use TK1,TK2, and TK3 to denote the tweakey arrays.

The cell size is 4 (or 8) bits when n = 64 (resp. n = 128).

X Y, STK, Zy W, XT+1
0/1]2]3 o~

8 9]a|b| |AC [T 1T] 2

clalats [ EEEN -

Figure 10: Round function of SKINNY
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In each round of SKINNY, five basic operations are applied to the internal state, as
illustrated in Figure 10: SubCells (SC), AddConstants (AC), AddRoundTweakey (ART),
ShiftRows (SR), and MixColumns (MC). The SC operation applies a 4-bit (or an 8-bit) S-box
on each cell. AC combines the round constant with the internal state using the bitwise
exclusive-or (XOR). In ART layer, the cells in the first and the second rows of subtweakey
are XORed to the corresponding cells in the internals state. SR applies a permutation P
on the position of the state cells, where P = [0,1,2,3,7,4,5,6,10,11,8,9,13,14,15,12].
MC multiplies each column of the internal state by a non-MDS matrix M. M and its
inverse are as follows:

M1t =

o= OO

1
0
1
1

— O = =
o O O =
_ O O O
O~ =
o O = O
== O

To denote the internal states of SKINNY after r rounds, we use the variables represented
in Figure 10. We also represent the difference of state X, as AX,. and the linear mask as
I'X,. To refer to the ith cell of state X,., we use X,.[i], where i ranges from 0 to 15. We use
STK, to denote the subtweakey after r rounds, and FTK,, referred to as the equivalent
subtweakey in round r, is calculated as ETK, = MC o SR(STK,.). Figure 11 shows the
relation between STK,, ETK,.

ol1]2]3 0o[1]2]3
45/6|7 SR ol1/2]3
MC| |7]4|5 6

0/1/2/3

STK, FTK,

Figure 11: Relation between the subtweakey and the equivalent subtweakey

The tweakey schedule of SKINNY splits the master tweakey into z tweakey arrays
(TK1,..., TKz), each consisting of n bits. Here, z can be one of three values: 1, 2, or 3.
After this division, each tweakey array follows its own separate schedule. The subtweakey
for the ith round is generated as follows:

STK, = TK1, ift=n
STK, = TK1, @ TK2, if t = 2n (8)
STK, = TK1, ® TK2, ® TK3, ift=3n,

where TK1,, TK2,, and TK3, represent the tweakey arrays in round r, and they’re
generated as follows:. First, we use a permutation h on each tweakey array. It means that
we set TKmy[n] < TKm,_1[h(n)], for 0 <n < 15. This applies to m from 1 to 3. Then,
we apply an LFSR to every cell in the first and second rows of T K2, and T K3,.. For more
in-depth information about SKINNY, you can refer to [BJK™16].

C Encoding the Matrix of SKINNY

Here, we recall the CP constraints for the propagation of deterministic differential trails
though the matrix of SKINNY in [HSE23]. To see the constraints for deterministic linear
trails, refer to [HSE23]. Let Y = M(X), where X,Y € F3%, and M represents the matrix
of SKINNY. Additionally, we use a compact representation for the constraint encoding the
branching operation Copy(Y[k], X|[¢], X[j]) as Branch(AX[i],DX[4], AX[j], DX[4], AY[k], DY[k]).
The following CP constraints describe valid transitions for deterministic truncated linear
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trails through M:

M $(4%, DX, AY, DY) = XOR(AX[1], DX[1], AX[2], DX[2], AY[2], DY[2]) A
T xoR(AX[0], DX[0], AX[2], DX[2], AY[3], DY[3]) A
XOR(AY[3],DY[3], AX[3], DX[3], AY[0], DY[0])

Given that Y = M ~1(X), we apply the following constraints to represent the propagation
of deterministic truncated linear trails through M ~1:

Minvdi f(AX, DX, AY, DY) = XOR(AX[1],DX[1], AX[3], DX[3], AY[2],DY[2]) A
T ) xoR(AX[0], DX[0], AX[3], DX[3], AY[3], DY[3]) A
XOR(AY([2], DY[2], AX[2], DX[2], AY[1], DY[1])
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D
D.1

Following a similar approach as in Section 4.2, we obtain the following complexity. For
SKINNY-64-128 with 120-bit keys, we repeat the attack 4 times for a total data complexity
of 4 .2%(6-442) — 958 and a brute-force complexity of 2'120-44 = 2104 Based on the
partial-sum approach in Figure 13 and Figure 14, the memory complexity is 2'% and the
summation time complexity about 4 - (2102:23 4 299.07) ~ 910438 opcryption equivalents
plus merging. The total time complexity is less than 2196,

For SKINNY-128-256 with 240-bit keys, we repeat the attack 4 times for a data
complexity of 4 - 28°(16=4+2) — 9114 314 a brute-force complexity of 2240-84 — 2208

Integral Attacks on SKINNY
Integral Key-Recovery Attack on 22-Round SKINNY-n-2n

Using partial sums, the memory complexity is 22°% and the summation time complexity
4 - (2210:08 4 9202.96) ~ 9212.09 gneryption equivalents plus merging, less than 2213 in total.
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Figure 12: ZC-based integral attack on 22 rounds of SKINNY-n-2n.
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Figure 13: Complexity of partial-sum key-recovery of Xi5[3] for 22 rounds of SKINNY-n-
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Figure 14: Complexity of partial-sum key-recovery of X15[15] for 22-round SKINNY-n-2n.
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D.2 Integral Key-Recovery Attack on 26-Round SKINNY-n-3n

For SKINNY-64-192 with 180-bit keys, we repeat the attack 4 times for a total data
complexity of 4 - 24:(16=4+3) — 962 31d a brute-force complexity of 2180-44 = 2164 Baged
on the partial-sum approach in Figure 16 and Figure 17, the memory complexity is 2164 and
the summation time complexity about 4 - (2162:38 4 2160.76) ~ 916449 epcryption equivalents
plus merging. The total time complexity is less than 2166,

For SKINNY-128-384 with 360-bit keys, we repeat the attack 4 times for a total data
complexity of 4 - 28'(16=443) — 9122 314 a brute-force complexity of 236084 = 2328 Baged
on the partial-sum approach, the memory complexity is 2328 and the summation time
complexity about 4 - (2330-30 4. 2328.30) ~, 2330.62 gperyption equivalents plus merging. The
total time complexity is less than 2331
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Figure 15: ZC-based integral attack on 26 rounds of SKINNY-n-3n.
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11 STK22[3] 21049529156 9160-7-7  7,,[1,2,4,5]; X22[8, 12,13, 14]; Z21[3, 6]; X21[12]; Zaol[1, 4]
12 STKo2[4] 21085048 _ 9156 9160=8.7  7,,[1,2, 5]; X22[13, 14]; Z21[0, 3,6, 7]; X21[12]; Zao[1, 4]
13 STK3:[2)] 2112244 =2156  Q160=7T 7,0 [1,5]; X22[13]; Z21[0,3,6,7]; X21[12,15]; Zao[L, 4]
14 STKo2[1] 2116 94— 9160 9160=7.7  7,,[5]; Xo2[13]; Z21[0, 3,6, 7]; X21[12, 14, 15]; Zao[1, 4]
15 STKa2[5] 2120, 940 9160 9164=7-7  7,.10,3,6,7); Xa1[11,12, 14, 15]; Zao[1, 4]
16 STKo1[6] 212459369160 9164=7.T  7,.10,3,7]; Xo1[11, 12, 15]; Zao[1,4]; X20[8]
17 STKo1[7] 21289329160 9164=8.7  7,.10,3]; X21[12,15]; Zao[1, 4, 6]; X20[8]
18  STKo21[3] 2182928 - 9160 9164=7.T  7,,10]; X21[12]; Zao[1, 4, 6]; X20[8,12]
19 STK20[4] 21369209156 9164=8.7 7, 10]; X21[12]; Zao[1, 6]; Z10[7]
20  STK21[0] 21405916 9156 9160=7-T " 7,,[1,6]; X20[13]; Z19[7]
21  STKaxo[l] 21445912 9156 9160=7-T 7,,(6]; Z19[7]; X10[14]
22 STKa0[6] 2148912 9160 9160=8.7 7 ,[2,7]; X10[14]
23 STKi9[2] 21525 98 =160 9164=7-7  7,,17]; X15[15]
24 STKyo[7] 9156y 98 _ 9164 5164-8.7 Z18[3]; X1s[15]
25 STKig[3] 21605 94 — 9164 9l68=7.7T ¥ .[12]
» 2164 2160,76

Figure 17: Complexity of partial-sum key-recovery of X;7[12] for 26-round SKINNY-n-3n.
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E Specification of ForkSKINNY

In this section we briefly describe the specification of ForkSKINNY. ForkSKINNY is a
tweakable block cipher following the Forkcipher design strategy [ALP*19], that advanced to
the second-round of the NIST LWC standardization process. As can be seen in Figure 18,
Forkcipher receives the key, tweak and n-bit plaintext and can generate 2n-bit ciphertext.
ForkSKINNY is one instantiation of the Forkcipher framework that uses SKINNY as its
underlying primitive. Following the same notation as in [BDL20], we represent the number
of rounds before the fork point by r;. To represent the number of rounds in the Cy and
C4 branches (see Figure 18), we use ry and ry, respectively. Depending on the underlying
SKINNY variant and the parameters (rj,ro,r1), ForkSKINNY has four variants that are
listed in Table 4. For more details, we refer the reader to [ALPT19].

Given that ForkSKINNY has two branches after the fork, there are several ways of
interpreting the concept of reduced-round instances of ForkSKINNY. In addition, one can
attack the path between the Cy and C; branches, called the reconstruction type of attack.
However, the designers of ForkSKINNY define the meaning of reduced-round instance
of ForkSKINNY as follows. A reduced-round instance has the same parameters as the
full-round (see Table 4), except that it has r;j — x rounds before the fork, and ro—z =r; —x
rounds in each branch after the fork for an integer x. It essentially means reducing the
number of rounds from three ends by the same amount. Nevertheless, none of the previous
analysis on ForkSKINNY falls into this category, including [BDL20, QDW*21, DQSW22].
In this paper, for the first time, we provide a limited setting where we limit ourselves to the
definition of the designers of ForkSKINNY. For the sake of completeness and to have a fair
comparison with previous works, we also provide attacks in arbitrary settings, where we do
not limit ourselves to the definition of the designers similar to [BDL20,QDW ™21, DQSW22].

T., [Tks}— - - - -—]rks
BC
|
RF |—----—— RF [— (4
M —RF|—----——RF
RF —----—— RF |— o

K\\T@—————@ ITksh— - - - -——TKs Tw

Figure 18: The Forkcipher framework [ALP*19).

Table 4: Different variants of ForkSKINNY.

Primitive block tweak tweakey r; r9 1]
ForkSKINNY-64-192 64 64 192 17 23 23
ForkSKINNY-128-192 128 64 192 21 27 27
ForkSKINNY-128-256 128 128 256 21 27 27

ForkSKINNY-128-288 128 128 288 25 31 31
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F Integral Attacks on ForkSKINNY

F.1 Integral Key-Recovery Attack on 23-Round ForkSKINNY-128-256
with r;, = 9 and rg = 27

We follow the same approach as for SKINNY above. For our attacks, we assume that the
tweakey is similarly flexible as in SKINNY, i.e., we choose each tweakey cell to be either
key or tweak material, as has been done in previous published analysis of ForkSKINNY.
For ForkSKINNY-128-256 with 240-bit keys, we repeat the attack 4 times for a total data
complexity of 4 - 28:(16-4+2) — 9114 4114 a brute-force complexity of 2240-84 = 2208 Baged
on the partial-sum approach in Figure 20 and Figure 21, the memory complexity is 22°® and
the summation time complexity about 4 - (2210-1 4 2210:08) ~ 9213:49 opcryption equivalents
plus merging. The total time complexity is less than 2214,
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Figure 19: ZC-based integral attack on 23 rounds of ForkSKINNY-128-256.
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STK»o Zao

Step Guessed K x D =Mem Time  Stored Texts
0o - 20 x2l12_9M12 911252 7,,10,2-7]; X22[8-15]; Xa1[14]
1 STK23[3,4,6] 224 x2112=2136 9136=6.2 7,,10,2,5,7]; X22[9,11-15]; Z21[0, 2,5, 7]; X21[10,12, 14]
2 STKa2[5]; 240 591129152 9152-6.9 7,,10,2,7); Xao2[11,12,14,15]; Zo1[1,2,4,5,7]; X21[10,14];
STKo21[0] X20[13]
3 STK2[5] 248 51129160 916085 7,,10,2,7); Xa22[11,12,14,15]; Z21[1,2,4,7]; Xo1[5,10,14];
X20[13]
4 STK3[0,2,7] 277 x2%0 =218 2184759 7,/[1-4 6,7); X21[10,13, 14, 15]; Zao[4]; X20[13]
5 STK»1[1,2] 288 988 _ o176 9184=6.5 7,,13,4,6,7]; X21[10, 14, 15]; Zao[4]; X20[13, 14, 15]
6  STK21[6] 296 288 — 9184 9184=T-5  7,,13,4,7]; X21[15]; Zao[2,4,5]; X20[8,13, 14, 15]
7 STK20[2] 21045 980 _ 9184 9192=7-5  7,,(3,4,7]; Xa21[15]; Zao[4, 5]; Xa0[8, 13, 15]; X19[15]
8  STK21[3] 21125 980 _ 9192 9192=T-5  7,.14,7]; X21[15]; Zao[4, 5]; X20[8, 12,13, 15]; X19[15]
9 STKa[4] 21205 972 — 9192 920085 7,14, 7]; X21[15]; Zao[5]; X20[12,13,15]; Z19[7]; X10[15]
10 STKo1[7] 21285 972 — 9200 9200-7-5 7, [4]; Zs0[3,5]; X20[9,12,13,15]; Z19[7]; X19[15]
11 STK20[5] 21865 972 — 9208 9208=T-5 7., [4]; Z20[3]; X20[12,15]; Z10[1,4,7]; X19[11,15]
12 STKio[7) Q1445 956 — 9200 921675 7, [4]; Z20[3]; Xa20[12, 15]; Z10[1,4]; X15[6]
13 STKo0[3] 21525 948 — 9200 9208=7-5 7, [4]; Xo0[12]; Zi1o[1,4]; X10[12]; X18[6]
14 STKio[4] 21605 940 — 9200 9208=7-5 7, [4]; X20[12]; Zio[1]; X186, 10]
15 STKo1[4] 2168 5 940 — 9208 9208=8.5 7,010]; X20[12]; Zio[1]; X156, 10]
16 STK20[0] 21765 232 — 9208 9216-7-5 7, 411]; X19[13]; X15[6,10]
17 STKlg[l] 0184y o8 _ 9192 5216-7.5 217[5]
18 STK17[5] 0192, 98 _ 9200 9200-7.5 X16[1]
» 2208 2210.1

Figure 20: Complexity of partial-sum key-recovery of Xj¢[1] for 23 rounds of ForkSKINNY-

128-256.
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Step Guessed K X D =Mem Time  Stored Texts

- 20 xol12=9l12 9l12=5.2 7,,10,2-7]; Xo22[8-15]; Xo1[14]; STK20[7); STK1s[3]
1 STKa2[0,2, 248 x2112=2160 2160-4.9 7., 14]; Xo2[8, 12]; Z21[1-6]; X21[8,9, 11-15]; STK20[7); STK15[3]

3,5,6,7)
2 STK»1[2,3, 280 x2112=2192 2192-5.2 7, [4]; X22[8,12]; Zo1[1,5]; X21[9,11,12,13,15]; Za20[0]; Xa0[8,
4,6 10,12); X19[9]; STK15[3]
3 STK2s[4] 288 1129200 9200=8:5 7,,10,1,5,7); X21[9,11,12,13,15]; Z20[0]; X20[8,10,12]; X10[9];
STK15[3]
4 STK2 7] 296 501049200 9208=8.5 7,,10,1,5]; X21[9,12,13]; Z20[0,6]; X20[8,10,12]; Xi0[9];
STK15[3]
5  STKo1[0] 2104, 996 — 9200 9208=7-5 7, 11.5];  X21[9,13]; Z20[0,6]; Xa0[8,10,12,13];  X19[9];
STK15[3]
6  STK2i[1] 21125 996 — 9208 9208=75 7, [5]; X21[9,13]; Z20[0,6]; Xa20[8,10,12,13,14]; Xi0[9];
STK13[3]

7 STK21[5] 21205 988 2208 9216-8:5  7,,10,1,4, 6]; X20[8,10,12,13,14]; X19[9]; STK:15[3]
8  STK2[6] 21285 980 — 9208 9216=8.5 7,500, 1,4]; X20[8,12,13]; Z10[2,5]; X10[9]; STK1s[3]
9 STKx[l] 2% 272 =2%98 2216775 7,0(0,4]; X50[8,12]; Z19[2,5]; X10[9, 14]; STK:s[3]
10 STKao[4] 21445 964 — 2208 9216-8.5 7,,10]; X20[12]; Z10[2,5, 7]; X10(9, 14]; STK:15[3]

11 STKio[7] 21525 956 — 9208 9216=7-5  7,,[0]; X20[12]; Z10[2, 5]; X10[9, 14]; X18[3]

12 STKi9[2] 21605 940 — 9200 9216=6.9  7,,10]: Xo0[12]; Z19[5]; X19[9]; X17[12]

13 STKo20[0] 2168y 952 — 9200 9208=7-5 7, ,15]. X19[9, 13]; X17[12]

14  STKio[5] 21765 98 — 9184 9208=6.5 ¥ ,113]
» 2208 2210.8

Figure 21: Complexity of partial-sum key-recovery of X4[13] for 23 rounds of ForkSKINNY-
128-256.
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F.2 Integral Key-Recovery Attack on 27-Round ForkSKINNY-64-192
with r;, = 9 and rg = 23

For ForkSKINNY-64-192 with 180-bit keys, we repeat the attack 4 times for a total data
complexity of 4 - 24:(16=4+2) — 958 31d a brute-force complexity of 2180-44 = 2164 Baged
on the partial-sum approach in Figure 23 and Figure 24, the memory complexity is 2'64 and
the summation time complexity about 4 - (2162:11 4 2158.77) ~ 9164.25 epcryption equivalents
plus merging. The total time complexity is less than 2166,
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Figure 22: ZC-based integral attack on 27 rounds of ForkSKINNY-64-192.
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Step Guessed K X D =Mem Time Stored Texts
0 - 20 %200 960 960=5.4 7,10, 2-7]; Xa6[8-15]; Xas[14]; STK24[7]
1 STKag[4,5] 28 x260= 268 9268=6.8 7 .10,2,3,6,7]; Xa6[10,11,12,14,15]; Z25[0,1,4,7); Xa5[10,11,
14]; STK24[7]
2 STKag[7); 216 x260= 276 276-7-2  7,:10,2, 3, 6]; X26[10,12,14,15]; Z25[0,3,4,6,7]; Xa25[1,9,10,11,
STK25[1] 14]; STK24[7]
3 STK25[0,3, 228 x260= 288  288-68  7,.10,2,3,6]; Xo6[10,12,14,15]; Zas5[4,7); Xo5[0,1,3,9,11,14];
6 Z94[2, 5]; Xo4[8]; STK24[7)
4 STK4[2] 232 x200= 1292 29288  7,.00,2,3,6]; Xa6[10,12,14,15]; Zas[4,7); Xas[0,1,3,9,11,14];
Z24[5]; X24[2, 8]; STK24[7]
5  STKos[0] 236 x260= 296  296-6-8 7,12 3 6]; Xo26[10, 14, 15]; Za25[4, 7]; X25[0,3,9, 11,13, 14]; Z24[5];
X24[8,14]; X23[15]; STK24[7]
6  STKsg[2,6] 2% x200=2104 2104=64 7,[3]; X56[15]; Z25[2,4,5,7); X25[0,8,9,11,13,14,15]; Zaa[5];
X24 [8, 12, 14]; X23[15]; STK24[7]
7 STKos[7] 2% x260=2108 9l08=7-8 7, .13]; Xog[15]; Z25[2, 4, 5]; X25[0,8,9,13,14]; Z24[3, 5, 6]; Xo4[8,
9, 12, 14]; X23[15]; STK24 [7}
8  STKas[4] 2°2 x200=2112 911288 7, .13].  Xp6[15]; Zos[2,5]; X25[0,4,8,9,13,14]; Z24[0,3,5,6];
X04[8,9,12, 14]; Xo3[15]; STK24[7]
9 STK24[0,5] 260 x260=2120 2120=7-2 7,.13]. Xy»6[15]; Za5[2, 5]; Xa5[0,4,8,9,13,14]; Z24[3, 6]; X24[5, 8,
9, 12, 14]; 223[1]; X23[137 15]; STK24[7]
10 STKaul6] 264 x260=2124 2124778 7,,[3]; Xog[15]; Zas5(2,5]; X25[0,4,8,9,13, 14]; Z4[3]; X245, 6,8,
9,12, 14]; Z23(1, 2]; X23(8,13, 15]; STK24(7]
11 STKos[5] 208 x260=2128 2128=7-8 7, .13]; Xos[15]; Za2s[2]; Xa5[0,4,8,14]; Zo4[1,3,4]; X24[5,6,8,9,
11,12, 14]; Za3[1, 2]; X23[8,13,15]; STK24[7]
12 STKag[3]; 276 x200=2136 913659 7, .19]. Xo5[14]; Zoa[1,3]; Xaa[7,11,13]; Z23[0,1,2,3,4,5,7);
STKo4[4] X>3(8,11,13, 15]
13 STKa3z[5] 280 x260=2140 ol40=7-8 7, 19].  Xo5[14]; Z2a[1,3]; Xo4[7,11,13]; Z23[0,1,2,3,4,7];
X23 [8, 11, 137 15]; ZQQ[].]; Xzz[l].]
14  STKas[2]; 292 x200=2152 2152-6.8 7, 11,3]; X24[13,15]; Z23[0,1,2,3,4,6]; Xo3[8,13,15]; Zaa[6];
STK23[7]; X22[1, 11]
STK22[1]
15 STKao[6] 290 x260=2156 9156-8.8 7, 1. 3]; Xa4[13, 15]; Z23[0, 1,2, 3, 4, 6]; X238, 13, 15]; X221, 6, 11]
16 STKo4u[3] 2100x260=2160 9160-7-8 7, N]; Xo4[13]; Z23[0,1,2, 3,4, 6]; Xa3[8, 12,13, 15]; Xa22[1,6,11]
17 STKo3[0] 2104x256=2160 2164=7-2 7, 11]; Xo4[13]; Z23[1,2,3,4,6]; Xa3[8,12,13,15]; Xa2[6,11];
Xo1[14]
18  STKa3[1] 2108x252=2160 9164=7-8 7, 1]; X04[13]; Z23[2, 3,4, 6]; X23[8,12, 15]; X22[6, 11, 14]; Xo1[14]
19 STKoj[4] 2'12x2%8=2160 9164-7.8 224[[1];])(24[13]; Z93(2,3, 6]; X23[15]; Z22[0, 7); Xa2[11,14]; Zo1[5];
X21 14
20 STKa3[3] 2116x2%4=2160 9164=78 7 [1]; X24[13]; Z23[2,6]; Z22[0, 7]; X22[11,12, 14]; Zo1[5]; Xo1[14]
21 STKoaa[l] 2'20x2%0=2160 2164=7-8 7,.19 6]; Xo3[14]; Z22[0,7]; Xa2[11, 12, 14]; Z21[5]; X21[14]
22 STK35[0] 2124x236=2160 9164=7.8 7,19 6]; Xa3[14]; Zo2[7]; Xaa[11, 14]; Z21[5]; Xo1[13, 14]
23 STKa3[2] 2128x232=2160 9164=7-8  7,.16]; Z22[7]; Xo2[11,14,15]; Z21[5]; X21[13,14]
24 STKap[7) 2132x232=29164 2164=T-8  7,.16]; Xo[14]; Z21[3,5, 6]; X219, 13, 14]
25 STK»[5] 2136x224=2160 9168=78 7 .16]; X22[14]; Zo1[3, 6]; Xo1[14]; X20[4]
26  STK21[6] 2140x220=2160 9164=7.8 7 .16]; Xa2[14]; Zo1[3]; Xa0[4, 8]
27 STK23[6] 2144 2209164 9164-8.8 222[2] X22[14] Z21[3] Xa0 [4, 8]
28 STK2z[2] 2148x216=2164 2168-7.8 7, [3]: X5, [15]; Xa0[4, 8]
29  STK»[3] 2'52x 2% =2156 2168-7.8 7 ,[7]
30  STKyol[7] 9156y 94 _ 9160 5160—7.8 X15[3]
> 2164 2162.11

Figure 23: Complexity of partial-sum key-recovery of X;g[3] for 27 rounds of ForkSKINNY-

64-192.
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0 - 20 x260= 260 960=5-4 7,10, 2-7]; Xog[8-15]; Xas[14]; STK24[7]; STK22(3]
1 STK26[0,2,4, 220 x260= 280 28054 7,13 5]; Xo6[9,13,15]; Z25[0,2,3,5,6,7]; X25[8,9,10,13, 14,
6,7) 15]; STK24[7]; STK22[3]
2 STKag[5]; 236 5200 996 996=5.8 7 (13]; Xog[15]; Zas[0-4]; Xo5[8,13,14,15]; Zaa[1-6]; Xo4[8, 9,
STK25[5,6,7] 11]; STK24[7]; STK22[3]
3 STK»25(2,3,4]; 260 x260=2120 9120=5.4 7, 131 Xo5[15]; Z25(0, 1]; X25[4, 8,13]; Z24[0, 1,2, 6]; X24[5, 9,
STK24[3, 4, 5] 11, 12, 15]; Z23[0, 1, 7]; X23[10, 12]; STK24[7]; STK22[3]
4 STK»[3]; 280 2009140 9140—-4.9 7, 10,1, 6]; X24[10,12,13,14]; Z23[0,1,3,4,6]; Xa3[9,10,12,
STK25(0, 1]; 15]; Z22(6]; X22(3]
STK24[2];
STK23[7]
5  STK24[0,1]; 292 x260=2152 9152=6.2 7, [6]; X04[10,14]; Z23[0,1, 4, 6]; X23[9, 10,12, 13, 14]; Za2[6];
STKo23(3] X22(3,12]
6  STK24[6] 296 % 2562152 915688 7,.10,1,2,4,5,6]; X23[9,10,12,13,14]; Z22[6]; X22[3,12]
7 STKa3[5] 21005952 9152 915688 7,.10,1, 2,4, 6]; X23[10,12, 13, 14]; Za22[4, 6]; Xa22[3,12]
8  STK»3[2] 210450489152 915672 7,.10, 1, 4, 6]; Xa3[10, 12, 13, 14]; Zaa[4, 6]; Xaa[12]; X21[12]
9  STK23[l] 2108 044 9152 9156=T-8  7,:10, 4, 6]; X23[10,12,14]; Za2[4, 6]; X22[12, 14]; Xo1[12]
10 STK23[4] 21125044 9156 9156=T-8  7,.10, 6]; X23[10,12,14]; Zas[4, 6]; X22[10, 12, 14]; Xo1[12]
11 STK22[6] 211659409156 9160=8.8 7,10, 6]; X23[10,12, 14]; Zoo[4]; X22[12, 14]; Z21[5]; Xo1[12]
12 STK23[0] 212059362156 9l60=7-8  7,.16]; X23[10, 14]; Zao[4]; X22[12,13, 14]; Z21[5]; X21[12]
13 STK23[6] 21245936 9160 9160=T-8  7,,12,4, 5]; X22[8,12, 13, 14]; Zo1[5]; X21[12]
14 STKo2[5] 21285932 9160 9164=7-8  7,,12,4]; X22[8,12,14]; Zo1[5]; Xo1[11,12]
15 STKas[4] 21822282160 9164=8.8  7,,12]; Xa2[14]; Z21(0,5,7]; Xa1[11, 12]
16 STK22[2] 21365924 9160 9164=78  7,.10,5,7]; X21[11, 12, 15]
17 STKo1[7] 214059169156 9164=7-8 7,10, 5]; Xo1[12]; Z19[2]
18  STK21[0] 21445212 9156 2160-7-8  7,,[5]; X20[13]; Z19[2]
19 STKy1[5] 21489122 9160 9160-8.8 7, [1]; X20[13]; Z10[2]
20 STKazo[l] 21525 98 — 2160 9l64=7-8 7 19]: X19[14]
21  STKi9[2] 2156 94 = 2160 2164-7.8 ¥ . [15]
» 2160 2158.77

Figure 24: Complexity of partial-sum key-recovery of X13[15] for 27 rounds of ForkSKINNY-

64-192.
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G ID, ZC and Integral Distinguishers for ForkSKINNY

This section presents the ID, ZC, and integral distinguishers for ForkSKINNY. To illustrate
how our CP model works, we represent both forward and backward propagations in
the shape of our distinguishers. To represent a cell with a fixed, nonzero, or unknown
difference value (linear mask), we use (7, P, 7)), and (L4, [4, [d) in forward and backward
propagations, respectively. In addition, we represent the active tweak cell in our integral
distinguishers by [ .

Figure 25, and Figure 26 illustrate some of our discovered integral distinguishers for
ForkSKINNY in the single-key and chosen-tweak setting. Figure 27, and Figure 28 illustrate
some of our discovered ID distinguishers for ForkSKINNY in the related-tweakey setting.
For example, as can be seen in Figure 28, the type of activeness pattern for Yy[5] and
ST Ky[5] is nonzero fixed. It means that the difference value in these cells should be equal
but can take any of the 15 possible nonzero values.
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[ fixed M nonzero M any [ active tweak

Figure 25: Integral and ZC distinguishers for 15 rounds of ForkSKINNY-128-256, where
ri =6,rg =27, and r; = 9.
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Figure 26: Integral and ZC distinguishers for 17 rounds of ForkSKINNY-64-192, where
ri =6,rp =23, and r; = 11.
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Figure 27: A cluster of 15 related-tweakey ID distinguishers for 18 rounds of ForkSKINNY-
128-256, where r; = 10,ry = 17, and r; = 8.
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Figure 28: A cluster of 15 related-tweakey ID distinguishers for 22 rounds of ForkSKINNY-
64-192, where r; = 8,r¢9 = 15, and r; = 14.
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H Related-Tweakey ID Attack on ForkSKINNY

Similar to the tool in [HSE23], our tool for finding complete ID attack provides only an
estimation of the time complexity for the Guess-and-Filter step in the ID attack (namely a
lower bound). Therefore, after identifying the nearly optimal attack through our automated
tool, we offer a more comprehensive complexity analysis by accurately calculating the
complexity of each step within the Guess-and-Filter phase. Additionally, we incorporate
Lemma 1 into the complexity analysis of our ID attacks.

Lemma 1. For a given S-box S, and any input/output difference 6;,9, # 0, the equation
S(z @ d;) @ S(x) = 0, has one solution on average that can be derived efficiently. In
addition, the inverse of S has a similar property.

H.1 28-round Related-Tweakey ID Attack on ForkSKINNY-64-192-192
(ri=11,rg = 17)

In this section, we introduce a 28-round ID attack on ForkSKINNY-64-192-192 within
the related-tweakey setting. Figure 29 illustrates the attack identified by our tool. This
attack occurs in a limited setting, where there are r; = 17 — X rounds before the fork, and
ro =r; = 23 — X rounds in each branch after the fork, with X = 6.

In our case, the distinguisher is placed at rounds 5 to 24, and we use 225 related-key
impossible differences for 20 rounds, with the input differences AY; = 0§,0006(,0 - - - 0, and
ASTK, = 00p0008{,0 - - - 0 and the output difference AZs3 = 00;500000740 - - - 0, where dy,
and J) can take any nonzero differences (1 < dg, ) < 15) and ¢; (resp. d;) is determined
after a linear transformation implemented for ¢ times with the LFSRs (in TKj, and TK3)
on &y (resp. 6,) °. We extend the 20-round related-tweakey impossible differential 4 rounds
on the top and 4 rounds at the bottom, which is illustrated in Figure 29.

Pair Generation We should prepare 2% structures S;,0 <t < 2% — 1 at W{j and evaluate
all possible values in 13 cells W{[1,2,3,4,5,6,7,8,9,11, 12,13, 15] for each structure, while
the other cells assume a fixed value. For each plaintext P, in S;, we ask the encryption
oracle to get (Cy, = Ex(P,),Cy = Exaa(P,)), where

A = AFETK, = 000A;000A;0A500000A1, Aj,As #0.

This step needs a total of 2*152+! encryption calls. By using 22752 plaintexts, we can have
22+104 pairs of ciphertexts. The expected number of the remaining pairs of ciphertexts is

approximately N = 2¢T104=(n—|Ac]) — 92496 1y54p,

Guess-and-Filter

Step 1. For each guess of ETK[0-3,8-11] = Ky, encrypt all N pairs. For each
guess, create a set £ containing pairs that satisfy both AY; and Y7, as illustrated
in Figure 29. Due to the MC™! operation on active cells in X5, we have AY (1] =
AYi[4] = AYi[11], AY1[2] @ AY3[8] = AYi[15], AYi[3] @ AYi[6] = AY;[12], and
AY[6] = AY1[9]. Consequently, a 20-bit filter is established. On average, the size
of a single £; set is approximately N2720, The time complexity of this step is
approximately N232.

Step 2. For each guess of Ky, and STK;[0-7] = K1, encrypt all pairs within the
corresponding £ set associated with ICy. Additionally, construct a subset Lo C £
that contains all the pairs satisfying AY5 and Y5 as shown in Figure 29. Due to

5Suppose the one-cell tweakey differences of TK1, TK2, and TK3 are di, d2, and d3, respectively. If
we set di @ d2 @ d3 = do, then §; = d1 © LFSR}(d2) ® LFSRY(d3).
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Figure 29: Related-Tweakey ID attack on 28 rounds of ForkSKINNY-64-192-192 in the
limited setting (r; = 11,rg = 17). |ks U ke| = 160, ¢, = 52 (cz = 44), ¢ = 56, Ap = 52,
Ay = 56. In this case we have 15 x 15 related-key impossible differences.
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MC™! operation on the active cells in the X3, we will have a 16-bit filter on AY5.
On average, the size of a single £, set is approximately N2720716 = N2736 The
time complexity of this step is approximately N2720+32+32 — 244

Step 3. For each guess of Ko, K1, and STK»[0-2,6]||STK3[1] = K2 3, encrypt all
pairs within the corresponding Lo set associated with Kg||K;. Additionally, construct
a subset L3 C Lo that contains all the pairs satisfying AW3 and W3 as shown in
Figure 29. Due to MC™! operation on the active cells in the X4, we will have an
8-bit filter on AWs5. Therefore, we can determine AY4[1,5]. On average, the size
of a single L3 set is approximately N2736=8 = N2744, The time complexity of this
step is approximately N2736+32+32+20 — N9248  ere, the established relationships
AYy[1] = STK4[1], and AYy[5] = STK4[5] have the potential to result in an 8-bit filter.
Nevertheless, to improve the attack by exploiting multiple impossible differentials.
In this step, we are aware that there are 15 x 15 distinct nonzero values for the pair
(STKy[1], STK4[5]) = (d0,0;). To handle this, drawing inspiration from [SMB18],
we utilize a hash table with 225 rows, labeled as h(dg, d;), where dy ranges from
1 to 15 and 4, ranges from 1 to 15. This hash table facilitates the partitioning of
the remaining pairs within the L3 set. The partitioning is based on the values of
(AYy[1], AY4[5]) = (0o, &), which correspond to row (dp, d}) in the hash table.

During the attack procedure, data associated with fixed nonzero differences (AY4[1],
AY,[5]) is effectively stored within the h(dg,d}). We continue the attack in each set
based on each row of the hash table.

Step 4. For each guess of Ky, K1, Ko 3, and STK»7[0,1,3,6,7] = ka7 decrypt all
pairs within the corresponding L3 set associated with KCo||KC1]|K2,3. Additionally,
construct a subset £, C L3 that contains all the pairs satisfying AZs7 and Zar
as shown in Figure 29. There is no requirement for any tweakey information to
compute AXo7[12]. We get AX97[12] = AX5r[4] because of the MC operation on
the active cells in the first column of Wags. From the knowledge of AXa7[4], we can
determine Y37[4] by applying Lemma 1. Thus, we can determine STK»7[4] (due to
STK27[4] = Zar[4] @ Yar[7]). Similarly, based on the MC operation on the active
cells in the second, and the third column of Wsg, Lemma 1 helps us to derive the
tweakey cells STK>7[2,5]. We compute Zag and AZag as shown in Figure 29. We can
determine AX6[8,12] from the knowledge of AZx6[8,12]. Due to MC operation on
the active cells in the first column of Was, we have AXo6[0] = AXo4[8] = AX26[12].
Checking if AXo6[8] = AXy6[12] will lead to a 4-bit filter. Also, the knowledge of
A X56[0] can help us to determine Y54[0] by applying Lemma 1, and so we can drive the
tweakey cell STK6[0]. Similarly, based on the MC operation on the active cells in the
third column of Was, and using Lemma 1, we can derive the tweakey cells STKy5[2, 6].
On average, the size of a single £, set is approximately N2~44=% = N2748 The
time complexity of this step is approximately N2~ 44+32+324+20420 — 7960,

Step 5. For each guess of Koy, K1, K23, Ko7, and STKo4[5] = Kos decrypt all pairs
within the corresponding L4 set associated with Co||KCq||K2,3||//Co7. Additionally,
construct a subset L5 C L4 that contains all the pairs satisfying AWo5[5] as shown
in Figure 29. For each pair in the row (dg,d() of hash table h of set L5, checking if
AWoy5[5] = 019 will generally lead to a 4-bit filter on all rows. On average, the size
of a single L5 set is approximately N2748~4 = N2752, The time complexity of this
step is approximately N2748+32+324+20420+4 _ 960

Step 6. For each guess of Ko, K1, Ka.3, Kaz, Kag, and STKag[1,4,7] = K'96 decrypt
all pairs within the corresponding L5 set associated with

Ko |IC1 [|IC2 3| Ca7 || Ko -
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Additionally, construct a subset L C L5 that contains all the pairs satisfying Zas
and AZss as shown in Figure 29. We know the values of ETKy[8,9], STK>|1, 6],
and STK»7(0,5] from the previous steps. Therefore, we can deduce STK»5(1,6]. The
values STK»5[6] help us to compute AXo5[6]. Due to MC operation on the active
cells in the third column of Wa4, we have AXo5[6] @ AXa5[10] = AXo5[14]. This
equality will lead to a 4-bit filter. Also, Due to MC operation on the active cells
in the third column of Way, we have AXsy5[14] = AXo5[2]. From the knowledge of
AX»5[2], Lemma 1 helps us to derive STK25[2]. On average, the size of a single
L set is approximately N275274 = N27%6 The time complexity of this step is
approximately N2-52+32+32+20+20+4+12 _ 7968

Step 7. For each guess of Ko, K1, Ka,3, Koz, Kag, K'26, and STKs5[7] = Ka5 decrypt
all pairs within the corresponding Lg set associated with

Kol|K1||Ka,3]|Kar||Kas] K 26.

Additionally, construct a subset L7 C Lg that contains all the pairs satisfying Zoy4
and AZs4 as shown in Figure 29. Due to MC operation on the active cells in the third
column of Was, we have AXo4[2] = AX54[6] = AXoy[14]. There is no requirement
for any tweakey information to compute AXs4[14]. Therefore, we can determine
AXs4[2], and AX54[6]. Now, Lemma 1 helps us to determine STK4[2,6]. We
compute Zz3 and AZs3 as shown in Figure 29. For each pair in the row (4o, d})
of hash table h of L7 set, checking if AZy3[2] = 015, and also AZy3[7] = di5 will
generally lead to an 8-bit filter on all pairs in h. On average, the size of a single
L set is approximately N275678 = N2764  The time complexity of this step is
approximately N2~50+32+32+20420+4+1244 _ 968,

We can confirm that a guess is an incorrect key guess if and only if one of the IV pairs
under the guess satisfies the following property:

AYy = 00p0005(,0 - - - 0, AZs3 = 0051300000740 - - - 0.

After the above steps, each of the rows in each of L7 sets which is nonempty suggests
the wrong keys. The probability of a given pair surviving the filtering step satisfying AYj,
and AZs3 under a random key guess is about (1 — 2_100)21+96 =270, Therefore, the
total number of remaining tweakeys is 2/Fkrl x e=2"t = 2160 =277 Woe guess the
remaining 32-bit tweakey cells and exhaustively search the 232 x 2160 x e 2" tweakeys
to find the correct tweakey.

Complexity analysis The time complexity of the pair generation step, analyzing N pairs,
and exhausted search is about:
27+53 2—18 X (N232 4 N2% 4 N2%8 x 2 4 N260 x 2 4 N208 x 2) 4 2192 x ¢=2"

—4

28-round encryptions. The attack needs a data complexity of D = 2*+52, Memory
complexity is storing plaintext/ciphertext pairs. Hence, to optimize the time complexity of
the attack, we select x = 8. Thus, the data, time, and memory complexities of the attack
on ForkSKINNY are 260, 2169:60 " anq 2104 respectively.

We can also find the specification of this attack in Table 5, which is divided into three
parts: Pair Generation, Guess-and-Filter, and Complexity analysis. In this table, for the
sake of simplicity, we utilize the notation AX[a =b=c] or AX[a @ b = ¢] in place of the
lengthier expressions AX[a] = AX[b] = AX]c], or AX[a] ® AX[b] = AX]c], respectively.
Moreover, the keys enclosed within parentheses represent the keys that are derivable from
one another through the linear relationships established by the key schedule algorithm.

For other (Related-Tweakey) ID attacks, we follow the approach outlined in this section.
To streamline the presentation, avoid redundancy, and provide comprehensive details about
each attack, we will present the attack procedure in their respective figures and tables.
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Table 5: Key-recovery procedure for ID attack on 28 rounds of ForkSKINNY-64-192-192,
where r; = 17— X, rg =r; =23 — X for X =6.

Pair Generation

# Plaintexts # Pairs N # Enc.
Qu+52 gu+104 9@+96 gu+53
Guess-and-Filter
Ste Guessed Condition(s) # Remaining Time  Deduced
P keys {#} {# filters} pairs(|L;])
ETK,[0-3,8-11] = Ko AY1[1l =4 = 11] N2720 N232  AY, Y,
i1 {32} AY1[2® 8 = 15]
= AY1[3® 6 = 12]
AY1[6 =9] {20}
Ko AY>[0 =7 = 10] N2736 N2**  AYs,Ys
i=2 STK,[0-7] = K, AYy[5 =8 = 15
{32} {16}
Ko, K1 AW3[1 =5 =9 N2~ N2 AWs5, W3
i=3 STK>[0-2, 6]|] {8}
n STK3[1] = K23
{20} (AYa[1], AY4[5]) = (0, )
(Building hash table h) AYy[1, 5]
Ko, K1, K23 AXor7[12 = 4] N2748 N26°  STKy7[4]
STK27[O,1,3,6,7] AX27[5@9 = 13] STK27[5]
= Ko7
i=4 {20} AXor[2 = 14] STK47[2)
Za6, AZ2g
AXa6[8 =12] {4}
AXo6[0 = 8] STK>6[0]
AXo6[2 = 6 = 14] STK26[2, 6]
i=5 Ko, K1, K2,3, K27 N2752 N260
STK25[5] = ’CQG {4} AW25[5] = 619 {4}
Ko, K1, Ka,3, K27, K26 N2756 N268
(ETKo[8,9])
=6 (STK>[1,6])
(STK>7[0,5]) (STK»511,6])
{12} AX25[6 @ 10 = 14]
{4}
AXo5[14 = 2| STKa25(2]
Ko, K1, K2,3, K27, K26, N2764 N268
K26
STKa5[7] = Kas Zoa,AZoy
=7 {4} AX24[2 =6= 14] STK24 [2, 6]
Zag, AZag
AZzg [2] = 518
AZas[7] =615 {8}
Total - - N264-19 98 round Enc.
Complexity analysis
T Data Memory Total time
8 960 9104 961 4 No64-19 | 9192 ,-2"7% _ 5169.60

H.2 28-round Related-Tweakey ID Attack on ForkSKINNY-64-192-128
(i=11,rp = 17)

The 28-round related-tweakey ID Attack on ForkSKINNY-64-192-128 occurs in a limited
setting, where there are r; = 17 — X rounds before the fork, and ry = r; = 23 — X rounds
in each branch after the fork, with X = 6. We give the pattern of the attack in Figure 30.

Since the attack in this section has the same structure as in the 30-round related-
tweakey ID Attack on ForkSKINNY-64-192-128 (Subsection H.4, Figure 32), we can reuse
the key recovery part of that attack. Consequently, we proceed to target a modified
version of ForkSKINNY-64-192-128 with 28 rounds in a constrained scenario, with identical
computational complexity as the attack of Subsection H.4. Therefore, the attack’s data,
memory, and time complexities are 262, 286 and 212373 respectively.
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Figure 30: Related-Tweakey ID attack on 28-round ForkSKINNY-64-192-128 in the limited
setting (r; = 11,rg = 117). |ks U ks| = 112, ¢}, = 24 (c5 = 20), ¢x = 64, Ay = 24, Ay = 64.
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H.3 32-round Related-Tweakey ID Attack on ForkSKINNY-64-192-192
(i =11,ry = 15)

Since the goal is to recover the full 192-bit tweakey, the generic bound is 2'°2. We give the
pattern of the attack in Figure 31. The key recovery details are given in Table 6.

Table 6: Key-recovery procedure for ID attack on 32 rounds of ForkSKINNY-64-192-192,

where r; = 11, rg = 15, and r; = 21.

Pair Generation

# Plaintexts # Pairs N # Enc.
go+52 go+104 go+104 9@+53
Guess-and-Filter
St Guessed Condition(s) # Remaining  Time  Deduced
°p keys {#} {# filters} pairs(|L;])
STK31[0-7] = K31 AX31[4® 8 =12] N2~16 N232  Z30[0-15)
i1 {32} AX31[569 = 13] AZ30[0-15]
= AX31[6 = 14]
AX31[3 =15 {16}
K31 AX30[5®9 = 13] N2732 N28  Z59[0-15]
i=2 STK30[0-7] = Kso AX30[2® 6 = 14] AZ20[0-15]
{32} AXso[3 =15 {16}
Ks1, K30 AX29[2 =6= 14] N2—40 N260 228[0*15]
s STK3[0,1,2,4-7 = {8}
Koo {28} AWag[5] = 620 (= ASTKa2s[4]) AZas[0-15]
(Building hash table h) AXog[14]
K31, Kzo, Kag AXog[2 =6 = 14] N2~44 N260  STKas[2, 6]
STKas[1,7) = Kas Z27[0-15]
iy {8 AZa7[0-15]
= AXa7[2 =6 = 14] STK»7[2, 6]
AZsg [2] = 519(: ASTKsg [2]) AZsg [2]
{4}
K31, K30, Kag, Kas N2~ N260
ETK[11] = Ko
) AYq | ] ETKy[2,5]
_ [2=5=8 0[2,5
=5 (BTKo[8,10]) AY,[7 = 10] ETKol[7]
(ETKo[3]) AY;[3 =9] ETKy[9]
(ETK,[13]) AY1[0 @ 13 = 7] ETK,[0]
Y1, AY1, AX>
K31, K30, K29, Kas, N2~ N26®  AY,[4,12]
Ko
STK1[0,2] = K1 AYa[d =1 = 11] Xa[1,11]
{8} Xa[1] = W[l ®© 9 @ 13] STK; (1]
X2[1112W1[7@9@11] STKl[G]
i=6 AY>2[6 = 9] = AY2[9] X5[9]
X2[9] = Wh[5 @ 9] STK:[4]
AY2[6 B 12 = 3] X3[3]
X2[3] = W13 @ 11 @ 15] STK1[3]
(STK:[3)) AYy[7]
AY3[7) = 5_1(= ASTK[T)) {4}
K31, K30, Kag, Kas, N2756 N2™
Ko, K1
i—n STK1[5,7 = K'1 Yo, AY:
(8}
(STK;[1-4,6,7]) Vs, AY;
AY3[5 = 8 = 12] {8}
K31, K30, Kag, Kas, N2764 N268
Ko, K1,K'1
i—8 STK3[2] = K3
(STK3([1, 6])
(STK4[1]) AY5[1]
AYs5[1] = 6(= ASTK5[1]) {4}
Total - - N267-17 39_round Enc.
Complexity analysis
x Data Memory Total time
10 262 o114 263 4 N967-17 4 o102 2778 _ 5186.27
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Figure 31: Related-Tweakey ID attack on 32 rounds of ForkSKINNY-64-192-192 in the
arbitrary setting (r; = 11,ro = 15). |kg U kg| = 176, ¢}, = 52 (cz = 48), ¢r = 64, Ap = 52,
Ap = 64. In this case we have 15 related-key impossible differences.
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H.4 30-round Related-Tweakey ID Attack on ForkSKINNY-64-192-128
(ri=9,rp = 15)
In this section, we give a 30-round related-tweakey ID Attack on ForkSKINNY-64-192-128.

Since the goal is to recover the full 128-bit tweakey, the generic bound is 228, We give the
pattern of the attack in Figure 32. The key recovery details are given in Table 7.
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Figure 32: Related-Tweakey ID attack on 30-round ForkSKINNY-64-192-128 in the arbitrary
setting (r; = 9,19 = 15). |ky Uke| = 112, ¢, = 24 (cz = 20), ¢z = 64, Ay = 24, A, = 64.
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Table 7: Key-recovery procedure for ID attack on 30 rounds of ForkSKINNY-64-192-128,
where r; =9, ry = 15, and r; = 21.

Pair Generation

# Plaintexts # Pairs N # Enc.
gu+24 gu+48 qu+48 Qu+25
Guess-and-Filter
Step Guessed Condition(s) # Remaining Time  Deduced
keys {#} {# filters} pairs(|L;])
ETK[2]|| N2716 N23¢
STK29[0-7] = Ko,29
{36} AY1[2] = 61 (ASTK.[2])
i=1 AW28[6 =8=9= 12] =0 Zasg, AZag
- {16} AXog[12, 14, 15]
AXog[0 = 12] STK2gl0]
AXog[6 = 14] STK»g(6]
AXag[7 = 15] STKs[7]
Ko,29 N2~24 N240
STK>5[1-5] = Kasg
{20} Zor, Aoz
AXy7[0 = 4 = 12] STK>7[0, 4]
=2 AX27[10 = 2] STK>7[2]
= AXo7[10 = 14] {4}
AXo7[7 = 15] STK>7[7]
A){(gi 7] = 620(ASTK26[3])
4
(ETKo[0], STK29[T7]) (STK27(3])
Ko,29, Kas N2—28 N240
STK27[5, 6] = Ko7
=3 {8} Zoe, AZog
AXa6[8 =12] {4}
AXQS[O = 8] STK26 [0]
Ko,29, Kas, K27 N2732 N240
STK37[4] = Kae
=1 {4} AZa[5]
AZ24 [5] = 619(ASTK24[5])
{4}
(STKa9[1,3-6]) (ETK,[2, 3,5,
(STK27[2,4-7)) 8, 10])
Ko,20, Kag, K27, Kae N2~ N240
ETKy[9] = Ko
{4} AY1,Y
AY1[3=6=9] {8}
(STKas[2], STK24[0]) (STKL[3))
i AY>[10]
= AY3[10 = 7 = 0] X5[7,0]
X2[0] = W10 8 @ 12] STK;[0]
Xo[7] = W3] STK; (3]
AY32,Ys
(STK29[3], STK27[5]) (STK>[0])
AYs[4]
AY3[4] = 60 (ASTK3[4])
{4}
Total - - N237-11 30-round Enc.
Complexity analysis
T Data Memory Total time

38 962 986 263 | 23711 +2123672I*36 — 9123.73
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H.5 26-round Related-Tweakey ID Attack on ForkSKINNY-128-256-
256 (I’i = 9, rp = 17)

In this section, we give a 26-round related-tweakey ID Attack on ForkSKINNY-128-256-256.
Since the goal is to recover the full 256-bit tweakey, the generic bound is 22°6. We give the
pattern of the attack in Figure 33. The key recovery details are given in Table 8.
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Figure 33: Related-Tweakey ID attack on 26 rounds of ForkSKINNY-128-256-256 in the
arbitrary setting (r; = 9,19 = 17). |kg U ke| = 216, ¢}, = 104 (cz = 96), cp = 72, Ay = 104,
Ay = 72. In this case we have 15 related-key impossible differences.
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Table 8: Key-recovery procedure for ID attack on 26 rounds of ForkSKINNY-128-256-256,
where r; =9, ryp = 17, and r; = 17.

Pair Generation

# Plaintexts # Pairs N # Enc.
o@+104 9@+208 Qo+152 9@+105
Guess-and-Filter
Step Guessed Condition(s) # Remaining Time  Deduced
keys {#} {# filters} pairs(|L;])
AXoa5[8,12,
13, 14]
STK25(1,4,7] = Kas N2720 N22%4
24} AXo5[5] = 619(ASTK24[1])
(15 x 278 filters) — {4}
AXo5[8 =12] {8}
AXo5[0 = 12] STK25[0]
i=1 AXas[5 = 13] STK35(5]
AXos5[2 = 6 = 14] STK2s(2, 6]
AZsy, Zoy
AX24[10 = 14] {8}
AX34[2 = 10] STK24[2]
Kas N2728 N212
{8} {8}
Kas, Koa N2736 N236
ETKo[1,3,9]|| AYi[1,5,7,15]
STKl[l] = ](:()71
{32} AY1[0 = 7 = 10] ETKo|0, 10]
AY;[1 = 11] ETKo[11]
i=3 AYi[5=8=2@ 15 ETK,[2, 8]
(STK>25[0,1,2,4-7])
(ETK,[0-3,8-11]) (STK-]0, 1, 3-6])
AY3[5] = 6_1(ASTK3[5])
{8}
Kas, K24, Ko,1 N2~44 N236
STK1[0] = K1 AY>[4]
{8} AYz[1 @14 = 4 = 11] X,[11,14]
X[11] = WL [7 @ 11] STK,[6]
X2[14] = W1[2 © 10] STK1[2], AYz[6]
AY>[3 =6 =9] X>[3,9]
i Xo[3] = W1[3® 11 & 15] STK,[3]
X2[9] = W15 @ 9] STK, [4]
(STK:[0,-,4,6])
(STK,[0,1,3-,6]) AY3[7,13]
AY3[7 =13] {8}
AY3[7 = 10] X3[10]
X3[10] = W6 & 10] W2[10], X2[8]
X2[8] = W1[7 & 11] STK1[7]
Kas, Ko, Ko,1, K1 N2~68 N252
STK1[5]||STK3(3,4] = AY3,Y3
=5 ’Cl_g
{24}
(STK24[6], STK1[1]) (STK3[0])
AY:[3] =50 {8}
Total - - N2%8:29 96_round Enc.
Complexity analysis
x Data Memory Total time
23 9127 9175 9128 | N948.29 4 22566—2""720 — 9244.45
23.6 9127.6 5175.6 2128.6 | N948.20 | 9256,-27720 _ 52385
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H.6 24-round Related-Tweakey ID Attack on ForkSKINNY-128-256-
128 (r, = 17,1 = 27)
In this section, we give a 24-round related-tweakey ID Attack on ForkSKINNY-128-256-128.

Since the goal is to recover the full 128-bit tweakey, the generic bound is 228, We give the
pattern of the attack in Figure 34. The key recovery details are given in Table 9.

X Yy STK> Z
|_|SC s>1
AC 17 W] -
- 6[4 %) &3

sC s>1
AC 7|3/1]6 [>2
) | dddd [0/4]2]5] dddd >3

X4
X
— —
sC 1
AC [3]5 52
J [1]2 &3
X3
— —
sC b
Ql
J [7lo

¥
1

ps>1
N

52|
(>3

[ i
%E

X0 Y10 STK1o Z10 Wi :
— — i
d b1 1 PP | 4
AC [6]a]5]0] 52 b2
09 817 = =) 2441
Xy Yo STKw _Zip_ Zi3_ Wi X1
Vi Vi Vi
V| |sc | 4 W) [ o1
AC 4]2/6[1 52 b2
yyvE | VYVE (5730 PPVHE >
PR 4 STK 14 PR Zis W5 Xi6
sC s> [s>1
AC [2T0]4]7] P2 [s>2
J [6/3[5]1] &9 >3
Xy Yig STKie _Zis_ Zir__Wir X1
sC s>1 [s>1
AC [oT1]2]3] P2 [s>2
UJ [4/5]617] ) >3
Xis Yis STK:g Zis Zyg Wig X20
— — —
sC >>1 [>1
AC [a8]c[f] P2 bs>2
UJ [e[b[al9] ) 3
Xao Yoo STKs Zao STKs Za1 Woy X
— — N — l T
sC P>1 =t {1
AC [879]alb] 52 1/2[3] L]l L
J [eldlel£] >3 4[5[6]7 >3 (]
_ Xo Yo STKzy  Zy STKs3 Za3 Was Xou
— — —
[ ] scl| || Ll P> ps>1
CRE R RE QN NEC
L[] L] lalefcl | [ ] ) R4 &9

M fixed M nonzero M any M involved in key-recovery diff. is needed N value is needed [ filter

Figure 34: Related-Tweakey ID attack on 24 rounds of ForkSKINNY-128-256-128 in the
arbitrary setting (r; = 17,rg = 27). |k U kg| = 104, ¢}, = 56 (cz = 48), cr = 64, Ap = 64,
Ay = 64. In this case, we have 15 related-key impossible differences
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Table 9: Key-recovery procedure for ID attack on 24 rounds of ForkSKINNY-128-256-128,
where rj = 17, rg =27, and r; = 7.

Pair Generation

# Plaintexts # Pairs N # Enc.
gu+64 gu+128 gu+64 Q@+65
Guess-and-Filter
Step Guessed Condition(s) # Remaining  Time Deduced
keys {#} {# filters} pairs(|L;])
STK23[5] = Ka3 N2720 N28 ETK[11]
{8} AX33[9=13] {8}
=1 AXo3[1 =9] STKs3(1]
= AXay3[3 =7 = 15] STK»3[3,7)
AX23[11] = 523(ASTK22[6])
(15 x 278) — {4}
AY1[1 =4 = 11] ETK,(1,4]
ETK[12]
(STKas[7)) (ETKo[3])
AY1[124 3 =6 = 9] ETK,[6,9]
Y1,AY;
VAL IRAVA Y
AXao[11 =15] {8}
AX2[3 = 11] STKs2[3]
Kas N2728 N2—4
i=2 STKa[7] = Koz AZao[4]
{8} A?zo}[‘*] = 022 (ASTK30[4])
8
(STKa» (7)) (STK: [7))
AY> (8]
AY,[8 = 5] X2[5]
Xo[5] = Wy 1] STK;[1]
(STK22[3,7]) (STK1[3,7])
(STKy3[2, 7)) (STK[2.7])
AY3[2,8, 14
AZ3[2 = 8] = §o(ASTK;[5)]) AZ3[2,8]
X3(2, 8]
X3 [2] = Ws [2 $ 10 14] Wo [2]
X5[2]
X3[2] = Wi [2 @ 10 @ 14] Wi[2]
STK[2]
X3[8] = Wa[4 @ 8] Wa[8]
X2[10]
X,[10] = W1 [6 @ 10] W1 [6]
STK; [5]
Total - - N2*4! 24_round Enc.
Complexity analysis
T Data Memory Total time
54.4 9118.4 9118.4 Q1194 | noddl 21286—21*52 _ 9123.17
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H.7 24-round Related-Tweakey ID Attack on ForkSKINNY-128-256-
256 (I’i = 9, rp = 15)

In this section, we give a 24-round related-tweakey ID Attack on ForkSKINNY-128-256-256.
Since the goal is to recover the full 256-bit tweakey, the generic bound is 2256, This attack
occurs in a limited setting, where there are ri = 21 — X rounds before the fork, and
rg =r; = 27 — X rounds in each branch after the fork, with X = 12. We give the pattern
of the attack in Figure 35. The key recovery details are given in Table 10.

Xo Yy Wo Wi ETK, X, Y, STK, A
— — —
sc Q 0 sC =1
AC P2 1 AC EAA LY b2
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1
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| 1lsc 51 sc kst
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sC [s>1 sc|,| kst
AC [5]618]2] 2 AC BEER 2
U [7lol1]4] &3 J [7lol1]4] &3
X9 Y10 STK o Z10 Wio X1y Y1y STK1 Z11 Wiy X1
— — — —
sC [s>1 sC kst
| Acl [elclal8] o) AC (672 50] o
U [o]o[z]a] ) UJ Bl1]7]2] )

X, Vi STK12 Zyp Wiy X3 Vs STK13 Zi3_ W3 X4
sC [s>1 sC [s>1
AC [clale]9] 32 AC [a]2]6]1] [s>2
U lalf[b[8] & UJ (57810} )
X4 Y14 STK4 714 Wiy Xi5 Y15 STKi5 Z15 Wis Xi6
— — — — (4
SC 1 SC [s>1 |4
AC [a[8]cf] p>2 AC [2[0]4]7] P2
J le[bla[9] &9 LJ [6185/1] b Yy
Xig_ _Vie STKi6 Zg Wi Xy o Yip STK17 Zir__Wir Xig
|44 vy yy 4 VV;I
yy sclpy | 4.4 1 4 A4 sc o [>1 ﬁ
AC 8]9 alb b2 V| |ac 0[12]8 b2
wry (wrry it wrrr ) ry v (9 les 607 = ]
Xis Yis STKs Zis Wis X Yig STK1g Z1g Wi X
sC >>1 SsC 1
AC [o]£[8]d] 2 AC [1[70/5] 2
J [alec[b] &3 J [2]6/4[8] e
‘ ‘XZO P ‘ ‘Y;U STKZO ‘ ‘Z’ZU P I/V‘ZO‘ 7X21 . 7Y21 STKZI 7221 PR
e HN ol || %: | scl,| | L] | 1
AC £[b[9 32 AC 713 p>2
IR ) BRI Sn SlsjSS SRHRNGNAE Sl
Xps  Yio  STKy ey STKyy  Zos  Wa
sC 5 1 [s>1
I AC % c| = w 2
U BLLY &9 WY &3

M fixed M nonzero M any M involved in key-recovery diff. is needed N value is needed [ filter

Figure 35: Related-Tweakey ID attack on 24 rounds of ForkSKINNY-128-256-256 in the
limited setting (r; = 9,rg = 15). |ks U ke| = 224, ¢}, = 64 (cg = 56), ¢ = 96, Ay = 64,
Ap = 96. In this case we have 15 related-key impossible differences.
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Table 10: Key-recovery procedure for ID attack on 24 rounds of ForkSKINNY-128-256-256,
where r; =9, and rg = r; = 15.

Pair Generation

# Plaintexts # Pairs N # Enc.
Qo+64 ow+128 Q@+96 g@+65
Guess-and-Filter
Step Guessed Condition(s) # Remaining Time  Deduced
keys {#} {# filters} pairs(|L;])
STK»3(1,3,7] = Kas N2~8 N2%4
{24} AXo3[0 =4 =12] STK»3(0, 4]
i AXa3[5 = 13] STK33(5]
- AX23[2 =6 10 = 14] STK23(2, 6]
Za2, AZa
AX22[8 =12] {8}
Kas N2716 N248
STK22[1,4,7]|| AX32[0 = §] STK22[0]
=2 STK21[6] = K:22,21
{32} AX2s[2 = 6 = 14] STK22[2, 6]
Z21, AZ2
AX2[10 = 14] {8}
AXo[2 = 14] STK21[2]
AZ19[7] = 615(ASTK19[7]) AZig
(15 x 278 filters) — {4}
Kaz, K22 21 N2728 N264
ETKo[3,10])|
STKl[S] = K:(),l
{24}
(STK23[4, 5])
(STK21[2,6]) (ETKo[1,2,6,14])
AYi[l=4=11] ETK[4,11,12]
i=3 AY 3@ 12 =6=09] ETK[3,9]
Y1, AY;
AY;,[6,15]
AY>2[6] = 6_1(ASTK>(T7])
{8}
AY>3[15 =5 =§] X215, 8]
Xo[5] = Wh[l] STK;[1]
Xo[8] = W14 @ 8] STK,[7]
Kaz, K22,21,Ko,1 N2736 N276
STK1[2,4,6] = K4
{24}
Y2, AY>
i (STK23[2, 3, 6])
= (ETKo[4,8,9]) (STK>[1, 2, 6])
(STK22[0], STK1[7)) (STK3(1])
AYy
AYy = 50 (ASTK,[1])
{8}
Total - - N27241 24 round Enc.
Complexity analysis
T Data Memory Total time
62.7 9126.7 9158.7 Q1277 4 NoT241 | 925622760 _ 5246.62
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H.8 20-round Related-Tweakey ID Attack on ForkSKINNY-128-256-
128 (r, = 7,rp = 13)

In this section, we give a 20-round related-tweakey ID Attack on ForkSKINNY-128-256-128.
Since the goal is to recover the full 128-bit tweakey, the generic bound is 2!?8. This attack
occurs in a limited setting, where there are ri = 21 — X rounds before the fork, and
ro =r; = 27 — X rounds in each branch after the fork, with X = 14. We give the pattern
of the attack in Figure 36. The key recovery details are given in Table 11.
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M fixed M nonzero M any M involved in key-recovery diff. is needed N value is needed [ filter

Figure 36: Related-Tweakey ID attack on 20 rounds of ForkSKINNY-128-256-128 in the
limited setting (r; = 7,rg = 13). |k U kg| = 96, ¢ = 40 (¢ = 32), ¢z = 56, Ap = 40,
A = 80. In this case we have 255 related-key impossible differences
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Table 11: Key-recovery procedure for ID attack on 20 rounds of ForkSKINNY-128-256-128,
where r; =7, and rg = r; = 13.

Pair Generation

# Plaintexts # Pairs N # Enc.
ga+40 g@+80 qu+32 qu+4l
Guess-and-Filter
Ste Guessed Condition(s) # Remaining Time  Deduced
p keys {#} {# filters} pairs(|L;])
STK19[0] = K19 N2~8 N28
{8} AX1o[0 =4 = 12] STK1o[0, 4]
i1 AXio[l = 13] STK1e[1]
= AX1e[2 = 10] STK1o[2]
AX1o[10 = 14]
(8}
(STK19[0]) (ETKo[0])
AY;[0 =7 = 10 ETKo|[7,10]
(STK19[3,5])
Z18,AZ1g
Y1,AY
Kio N2—16 N28
STK1[0] = K1 AYa[4]
i—o {8} AY>[4 =1 =11] Xo[1,11]
= AX15[0 = 12] STK15[0]
Xo[1] = Wil @9 @ 13] STK, [1]
Xo[11] = WA [7 @ 11] STK, [6]
Yo, AY>
Zi7,AZ17
(STK19[1,2,5]) (STK17(0,6,7])
X7, AX17
AXy7[6 =10] {8}
Kio, K1 N2716 N28
i=2 STK>[1] = K2 AY3][5]
{8} AY3[5] = 6o(ASTK3[5])
Total N26-26 20-round Enc.
Complexity analysis
T Data Memory Total time
61 9101 993 Q102 4 Nj96-26 21286—2"3*56 — 9102.20

H.9 31-round Related-Tweakey ID Attack on ForkSKINNY-128-288-
288 (r;, = 10,ry = 25)

This section gives a 31-round related-tweakey ID Attack on ForkSKINNY-128-288-288.
Since the goal is to recover the full 288-bit tweakey, the generic bound is 22%8. This attack
has r; = 10 rounds before the fork, and ro = 25/r; = 21 rounds in each branch after the
fork. Figure 37 represent the complete ID attack discovered by our tool, Table 12 describes
the key recovery procedure.
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Figure 37: Related-Tweakey ID attack on 31 rounds of ForkSKINNY-128-288-288 in the
arbitrary setting (r; = 10,rg = 25). |kg U kg| = 272, ¢}, = 64 (cz = 56), ¢z = 128, Ap = 64,
Ap = 128. In this case we have 15 related-key impossible differences.
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Table 12: Key-recovery procedure for ID attack on 31 rounds of ForkSKINNY-128-288-288,
where r; = 10, rg = 25, and r; = 21.

Pair Generation

# Plaintexts # Pairs N 7# Enc.
ge+64 ge+128 qu+128 gT+65
Guess-and-Filter
Step Guessed Condition(s) # Remaining Time  Deduced
keys {#} {# filters} pairs(|L;])
STK30[0-7] = K30 N2~ N264
i1 {64} AWag[5 =8 = 15 = 0]
- {24}
Zag, AZ2g
K30 N2736 N264
STK29[0,2,4] = Kag
i=2 {24} AXo9[1=13=5@9] STKa9[1,5]
- AXo9[6 = 14] STK29[6]
AXo9[3 =15 =7 11] STK29[3,7]
AZsg, Zas
AXpgl9 =13] {8}
AXQg[ll] = (524(ASTK27[6])
(15 x 27%) — {4}
K30, K29 N2~ N276
STK2s[2,4,5] = Kas
i=3 {24} AXog[l = 9) STK»s[1]
AXog[3 =7=15] STK>s5(3,7]
AZa7, Zar
AXyr[11 = 15] {8}
K30, K29, Kasg N2~52 N276
STK>7[7] = Ka7
i—d {8} AXor[3 = 11] STK27(3]
- AZ3ys5[4]
AZ35[4] = 623(ASTK25(4])
{8}
K30, K29, Kasg, Ka7 N2760 N2°2
ETKO[L 2, 8] =Ko
(24}
(STK2[1,7])
(STK27[3,7]) (ETKy[10, 11])
AY1[0 = 7 = 10] ETKy[0, 7]
Ayl[?)@ 12 :9] ETKo[Q],Ayl,Yl
i=5 (STK30[0,1,3,4,6,7])
(STK2s[1-5, 7)) (STK:[0,1,3,5,6])
Y>[0,7,8, 10, 15]
AY3[1,4,7,15)
AY,[1 =4] {8}
AY>[1 = 11] X [11]
Xo[11] = W1 [T @ 11] STK1[2]
Kso0, K29, Kas, K27, N2~68 N292
Ko
STK,[7] = K1 {8} Ya, AY:
(STK29[2])
(ETKo[s)) (STK[1]),AY3[5]
AY3[5 =2 = 8] X3[2,8]
i=6 X3[2] = Wa[2 @ 10 @ 14] STK[2]
X3[8] = W24 @ 8] STK;[7]
Y3, AY3
(STK30[6])
(STK2s4]) (STK3(2]),AY4[6]
AY,[6]) = 6o (ASTK4[6])
{8}
Total - - N288:63 31_round Enc.
Complexity analysis
x Data Memory Total time
62.5 9126.5 9190.5 Q1275 4 N988.63 | 9288 ,—27 760 _ 5280.52
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H.10 28-round Related-Tweakey ID Attack on ForkSKINNY-128-288-
128 (r, = 14,ry = 15)

In this section, we give a 28-round related-tweakey ID Attack on ForkSKINNY-128-288-128.
Since the goal is to recover the full 128-bit tweakey, the generic bound is 2'28. We give the

pattern of the attack in Figure 38. The key recovery details are given in Table 13.
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Figure 38: Related-Tweakey ID attack on 28 rounds of ForkSKINNY128-288-128 in the
arbitrary setting (r; = 14,ro = 15). |kg U ke| = 112, ¢, = 64 (cs = 56), ¢ = 40, Ap = 64,
A = 40. In this case, we have 15 related-key impossible differences.
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Table 13: Key-recovery procedure for ID attack on 28 rounds of ForkSKINNY-128-288-128,
where r; = 14, rg = 15, and r; = 14.

Pair Generation

# Plaintexts # Pairs N # Enc.
gu+64 gu+128 gu+40 g@+65
Guess-and-Filter
Ste Guessed Condition(s) # Remaining Time  Deduced
P keys {#} {# filters} pairs(|L;])
STK27[1,7] = Kar N2~12 N216
{16} AXy7[2 = 6 = 14] STKy7[2, 6]
Z26, AZ2e
i AXag[2 = 6 = 14] STK26[2, 6]
- AZ25[2]
AZ25(2] = 618 (ASTK25(2])
(15 x 278) — {4}
(STK27[1,2,6,7)) (ETK,[6,8,9,10])
AY1[6 =9] {8}
Koz N2—28 N2ol2
ETKo[4] = Ko ETK,[12]
{8} AYi[4 =1 = 11] ETKo[1,11]
AYL[3 = 12 @ 9] ETK,[3]
Y1, A
i=2 (STK26(2, 6]) (STK1[1,3])
= AY3[5,7,15]
AY2[7] = 6_1(ASTK>[T7))
8
AY>[5 =15] {8}
AY3[5 = §] X(8]
X2[8] = Wi[4 @ 8] STK.[7]
Kar, Ko N2—36 N220
STK1[2,4,6] = K1 Ya, AYs
(24}
i=2 (ETK,[4,8,9]) (STK>]1, 2, 6])
(STK:1[7]) (STK3[1])
AY>[1]
AYy[1] = 80 (ASTK4[1])
{8}
Total - - N216-80 98 round Enc.
Complexity analysis
T Data Memory Total time
60.8 2124.80 2100.69 9125.8 | Nol16.8 4 912827700 _ 5126.68

H.11 28-round Related-Tweakey ID Attack on ForkSKINNY-128-288-
288 (ri=11,rp = 17)

In this section, we give a 28-round related-tweakey ID Attack on ForkSKINNY-128-288-288.
Since the goal is to recover the full 288-bit tweakey, the generic bound is 22%8. This attack
occurs in a limited setting, where there are r; = 25 — X rounds before the fork, and
ro =r; = 31 — X rounds in each branch after the fork, with X = 14. We give the pattern
of the attack in Figure 39. The key recovery details are given in Table 14.
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Figure 39: Related-Tweakey ID attack on 28 rounds of ForkSKINNY-128-288-288 in the
limited setting (r; = 11,19 = 17). ks U ke| = 248, ¢}, = 56 (cz = 48), ¢z = 104, Ay = 56,
Ap = 104. In this case we have 15 related-key impossible differences.
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Table 14: Key-recovery procedure for ID attack on 28 rounds of ForkSKINNY-128-288-288,

where r; = 11, and ryp = ry = 17.

Pair Generation

# Plaintexts # Pairs N # Enc.
9*+56 oz +112 o©+88 9@ +57
Guess-and-Filter
Ste Guessed Condition(s) # Remaining  Time Deduced
p keys {#} {# filters} pairs(|L;])
STK»7[0,2,6] = Kar N2~ 12 N2%4
{24} AX27[4 D8 = 12] STK27[4}
AXy7[1=13=56 9 STKa7[1, 5]
ie1 AX27[3 =7=15] STK27(3,7]
AZse, Z2e
AXop[1l = 15] {8}
AXo6[3 = 15] STKo6[3]
AXag[l =5 = 13] STKa6]1, 5]
AX26[1 = 620(: STK25[5])
(15 x 27%) — {4}
Kar N2728 N244
STK26[0,6,7]|| AZss, Z2s
STK35(5] = Kas,25
{32}
i=2 AXo5(9=13] {8}
AXo5[1 = 9] STKss5(1]
AZy36]
AZ23[6] = 518(ASTK23[6])
{8}
Kar, K26,25 N2736 N268
ETKo0,2,7,11]|| AY:[2,7)
STK, [0] = }CO,I
{40}
(STK27[0])
i=3 (STK»s5(1]) (ETKo[9])
AY;[2 = 5 = 8] ETK,[5, 8]
AYL[T = 10] ETK,[10]
AY>[0] = §-1(ASTK>[0])
{8}
Kaz, Ka26,25, Ko,1 N2752 N2100
4 STK\[2-5,7] =K AYs,Ys
= {40}
AY3[6 =9 =12] {16}
Kaz, K26,25, Ko,1 N2~60 N2100
K1
STK>[2,7] = K2
{16}
(STK27[4])
i=5  (ETKo[10]) (STK>[3))
(STK26[3])
(STK:1[0]) (STK3[2])
AYa[2])
AY4[2] = 60(ASTK4[2])
{8}
Total - - N296-19 28 round Enc.
Complexity analysis
T Data Memory Total time
70.9 2126.9 5158.9 2127.9 | N996.19 | 9288 ,—27 708 _ 5277.23
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H.12 26-round Related-Tweakey ID Attack on ForkSKINNY-128-288-
128 (r, = 10,ry = 16)

In this section, we give a 26-round related-tweakey ID Attack on ForkSKINNY-128-288-128.
Since the goal is to recover the full 128-bit tweakey, the generic bound is 2!?8. This attack
occurs in a limited setting, where there are r;i = 25 — X rounds before the fork, and
ro =r; = 31 — X rounds in each branch after the fork, with X = 15. We give the pattern
of the attack in Figure 40. The key recovery details are given in Table 15.
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[ fixed M nonzero M any M involved in key-recovery diff. is needed N value is needed [ filter

Figure 40: Related-Tweakey ID attack on 26 rounds of ForkSKINNY-128-288-128 in the
limited setting (r; = 10,r¢ = 16). |k Uky| = 88, ¢}, = 8(cs = 0), ¢y = 64, Ap =8, Ay = 64.
In this case we have 15 related-key impossible differences.
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Table 15: Key-recovery procedure for ID attack on 26 rounds of ForkSKINNY-128-288-128,
where r; = 10, and ryp = r; = 16.

Pair Generation

# Plaintexts # Pairs N # Enc.
g@+8 9e+16 Q@ —48 9@+9
Guess-and-Filter
gt Guessed Condition(s) # Remaining  Time  Deduced
P keys {#} {#filters} pairs(|£;|)
STK25(2,4,5] = Kas N2716 N224
{24} AXas[l = 9] STKss[1]
AXo5[9 =13] {8}
i=1 AXo5[3 =7 = 15] STK25[3,7]
Zoa, AZ2y
AZQ4 [6] = 619(ASTK24 [6])
(15 x 278) — {4}
AXo4[11 =15] {8}
AXo4[3 = 15] STK>24[3]
K25 N2728 N216
=2 STK24[7] = K24 AZao[4]
{8} AZ2z[4] = 618(ASTK22[4])
{8}
Kas, Kaa N2736 N228
ETK[0,10,13] = Ko AYi1, Vi
{24}
i=3 (STK25[5]) (STK1[0])
AY2[0]
AY>[0] = do(= STK>[0])
{8}
Total - - N223:46 96_round Enc.
Complexity analysis
T Data Memory Total time
116.6 9124.5 968.5 9125.5 | N923.46 4 21286—217116 _ 9126.74
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I Related-Tweakey ID Attack on SKINNY

.1 26-round Related-Tweakey ID Attack on SKINNY-128-288-288

In this section, we give a 26-round related-tweakey ID Attack on SKINNY-128-288-288.
Since the goal is to recover the full 288-bit tweakey, the generic bound is 2288, We give the
pattern of the attack in Figure 41. The key recovery details are given in Table 16.
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I acll | - %
H LJ L <)
Xs Ys Z7 Wy Xs
— —
scC [s>1
AC [>2
— )
X3 Y3 Zy Wy Xy
— —
sC [s>1
AC [>2
— )
Xy Yo Zn W X1
sC [s>1
AC [s>2
— &3
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[ fixed M nonzero M any M involved in key-recovery diff. is needed N value is needed [ filter

Figure 41: Related-Tweakey ID attack on 26 rounds of SKINNY-128-288-288. |k U k| =
264, ¢, =72 (cg = 64), ¢ = 128, Ay = 72, Ay = 128. In this case, we have 255 related-key
impossible differences.
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Table 16: Key-recovery procedure for ID attack on 26 rounds of SKINNY-128-288-288

Pair Generation

# Plaintexts # Pairs N # Enc.
Q@+72 gw+144 gu+144 Q@ +73
Guess-and-Filter
Ste Guessed Condition(s) # Remaining  Time  Deduced
P keys {#} {# filters} pairs(|L;])
STK25[0-7] = Kas N2~24 N264
i1 {64} AWay[5 =8 =15] =0
- {24}
Zoa, AZ2y
Kas N2732 N264
STK24[0,2,4] = Kag
{24} AXou[l=13=5®9] STK»4[1, 5]
o AXa4[6 = 14] STK4[6]
- AX24[3: 15=76¢ 11] STK24[3, 7]
AZs3z, Zas
AXo3[9=13] {8}
AX23[11] = 09 (ASTK22[6])
Kas, Koy N2~40 N280
STK23 [2, 4:7 5] = ’ng
ie3 {24} AXj3[l =9] STK>3(1]
- AXo3[3 =17 =15] STK23(3,7]
AZ2, Za2
AXqo[11 =15] {8}
Kas, Kaa, Kas N2~48 N280
STK25[7] = Kas
ied {8} AX9o[3 = 11] STK>2(3]
- AZss4]
AZ20[4] = 58(ASTK2()[4])
{8}
Kas, Ko, Ka3, K22 N275¢ N289
ETK,[1] = Ko ETKo[5]
(8}
ie5 (STK24[1,7])
(STK[3,7)) (ETKy[9,11])
AYi[1 @11 = 14] ETKo[14]
AY1[2 = 8] ETK[8]
AY1[2=5] {8}
Kas, Kaa, Ka3, K22 N2764 N29%6
Ko
ETK[0,3,10] = Ko AY1,V:
{24}
i—6 (STKa25[0,3,4,6,7])
B (STK23[1-5]) (STK1[1,2,4,5,7)])
AY3[2,6,9]
AY>[2] = 5_1(ASTK,[2])
AY>[6 =9] {16}
AY3[3 = 6] X2(3]
X»[3] = W1[3 @ 11 @ 15) STK;[3]
Kas, Kog, Koz, Koo N2—80 N2
Ko, K'o
i STKi[0] = K1 AY,, Y,
(8}
AY>[3=6] {8}
Kas, Kaa, Ka3, K22 NoT104 N288
Ko, Ko, K1
STK,[0] = K {8}
(STK>24[0,1])
(ETK,[10,11]) (STK2([3,5])
i=8 AYs, Vs
AY3[0 =7=10] {16}
(STK25[6])
(STK23[4]) (STK3[0]),AY,
AY4[4] = 60 (ASTK4[4])
{8}
Total - - N292:30 26_round Enc.
Complexity analysis
T Data Memory Total time
50 9122 9194 9123 | N992.30 | 9288,—27 748 _ 5286.38
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.2 23-round Related-Tweakey ID Attack on SKINNY-128-288-128

In this section, we give a 23-round related-tweakey ID Attack on SKINNY-128-288-128.
Since the goal is to recover the full 128-bit tweakey, the generic bound is 2'28. We give the
pattern of the attack in Figure 42. The key recovery details are given in Table 17.
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[ fixed M nonzero M any M involved in key-recovery diff. is needed N value is needed [ filter

Figure 42: Related-Tweakey ID attack on 23 rounds of SKINNY128-288-128. |k;Uky| = 120,
¢, = 56 (cy = 48), ¢ = 40, Ay = 56, Ay = 40. In this case, we have 255 related-key
impossible differences.
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Table 17: Key-recovery procedure of ID attack on 23 rounds of SKINNY-128-288-128.

Pair Generation

# Plaintexts # Pairs N # Enc.
g+56 gr+112 ge+24 g@+57
Guess-and-Filter
St Guessed Condition(s) # Remaining  Time  Deduced
°p keys {#} {# filters} pairs(|L;])
STK22[1,7]|| N2~8 N224
ETKO [9] = K:gzyg
{24} AXo2[2=6=14] STK22(2, 6]
Z21, AZy
AX21[2 =6 = 14] STK»1(2, 6]
AZ20[2]
AZy[2] = 08(ASTK20[2])
(STK22[1,2,6,7]) (ETKy[0, 8,10, 11])
AY1[2 =5 =8] ETKy[2,5]
=1 AY1[7 =10 ETKy[7]
AY1, Y
(STK21[6]) (STK,[2])
AY>[6]
AY;3[6 =9 = 12] X5[9,12]
X2[9] = W1i[5 @ 9] STK; [4]
Xo[12] = W1 [0 @ 8] STK;[0]
AY>[0]
AY>[0] = 5_1(ASTK>[0])
{8}
K220 N2~16 N240
STK1[3,5,7] = Ky AY3, Y,
{24}
(ETKy|0, 3, 10]) (STK>[2,3,7])
=3 (STK.[0]) (STK[2))
AYy[2]
AY4[2] = 60 (ASTK4[2])
{8}
Total - - N237-96 93_round Enc.
Complexity analysis
x Data Memory Total time
64.8 9120.80 988.80 2121.80 | N937.06 4 9128 ,—22704 _ 5126.73

.3 31-round Related-Tweakey ID Attack on SKINNYe-v2

SKINNYe-v2 is essentially SKINNY-n-4n with cell size ¢ = 4. The pattern of the attack is
illustrated in Figure 43, with key-recovery details given in Table 18.
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Figure 43: Related-Tweakey ID attack on 31 rounds of SKINNYe-v2. |kz U ki| = 240,
cl, = 48 (cy = 44), ¢y = 64, Ay = 48, Ay = 64. In this case, we have 15 related-key

impossible differences.



Hosein Hadipour, Simon Gerhalter, Sadegh Sadeghi and Maria Eichlseder 315
Table 18: Key-recovery procedure for ID attack on 31 rounds of SKINNYe-v2.
Pair Generation
# Plaintexts # Pairs N # Enc.
Qu+48 5@ +96 9@ +96 Qw+49
Guess-and-Filter
Ste Guessed Condition(s) # Remaining  Time Deduced
P keys {#} {#filters} pairs(|L;|)
STK31[0-7]]| N2712 N296
STK30[0-7]]]
im1 STK29[0-7] = K31,30,29
= {96} AWar[5=8=15 =0
{12}
Zar, AZaz7
K31,30,29 N2732 N2'16
STK7[0-7] = Koy
iy 132} AWag[5=7=10= 13 =
= 15 = 0
{20} AZse, Z26
AXa6[11] = 810(ASTK25[6])
K31,30,20, K27 N2748 N2120
i=3 STK26[1 5, 7] = Kog
= {24} AWas[5=11=13 =15 =0
{16} AZss, Z2s
K31,30,29, K27, K26 N2760 N2112
i—4 STK26[3, 7] = Kos
- {8} AWsy [7 = 15] =0
{8} AZy3l4]
AZs3[4] = d9(ASTK23[4])
{4}
K31,30,29, K27, K26 N2776 Nat4
Kas
ETK,[0,3,8]||
STK1[0-7] = Ko 1 ETKy[4]
{44} AY[4 = 11] ETKy[11]
AY; [0 = 10] ETK[10]
i=5 AY1[3 =6 = 9] ETK,[6,9]
AYI[1® 14 = 4] ETKo[1]
AY3,Y>
AY>[2 =5 = 8]
AY>[7 =10] {12}
AY3[0] = 6_1(ASTK;5[0])
{4}
K31,30,29, K27, K26 N2784 N2132
Kas, Ko 1
i=6  STK[5] = Ka AYs, Y3
{4}
AY3[6=9=12] {8}
K31,30,29, K27, K26 N2788 N2136
Kas, Ko,1, K2
1=7 STK3(2,3,7] = K3 AY5[2]
{12}
AY5[2] = do(= STK5[2])
{4}
Total - - N2'40-94 39 round Enc.
Complexity analysis
T Data Memory Total time
14 962 9110 263 4 pyol40.4 _,’_22566—2”’12 — 9251.14
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J Integral Distinguishers of QARMAVv2

(a) Integral distinguisher for 7 (b) Integral distinguisher for 8
rounds of QARMAV2-64 (7 = rounds of QARMAV2-64 (F =
1). Data complexity: 2. 1). Data complexity: 2'°.

(c) Integral distinguisher for 9
rounds of QARMAvV2-64 (F =
1). Data complexity: 2**.

Figure 44: ZC-based integral distinguishers for QARMAV2-64 (7 = 1).
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(a) Integral distinguisher for 8
rounds of QARMAV2-64 (7 =
2). Data complexity: 25,

“E R
[s]

PIE
‘ _ _ E

S M Qe 7
E e

(c) Integral distinguisher for
10 rounds of QARMAv2-64
(7 = 2).

244,

Data complexity:

m “n

Ll e

| | B
‘ 3

N 2]
[ 5]
{

(b) Integral distinguisher for 9
rounds of QARMAv2-64 (7 =
2). Data complexity: 2'S.

Figure 45: ZC-based integral distinguishers for QARMAV2-64 (& = 2). Interpretation:
For the integral distinguisher, if all blue (white) cells at the input are fixed (active), and
the highlighted tweak cell is active, then the colored output cell will be balanced.
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L
)

® B

L
a
O D W

B

(a) Integral distinguisher for 10 rounds (b) Integral distinguisher for 11 rounds
of QARMAV2-128. Data complexity: of QARMAV2-128. Data complexity:
916 944

Figure 46: ZC-based integral distinguisher for 12 rounds of QARMAV2-128 (7 = 2). Data
complexity: 2. Interpretation: In the ZC distinguisher, blue (red) cells take any (resp.
an arbitrary nonzero) linear mask value. For the integral distinguisher, if all blue (white)
cells at the input are fixed (active), and the highlighted tweak cell is active, then the
colored output cell will be balanced.
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= B B

2529

Figure 47: ZC-based integral distinguisher for 12 rounds of QARMAV2-128 (7 = 2). Data
complexity: 2. Interpretation: In the ZC distinguisher, blue (red) cells take any (resp.
an arbitrary nonzero) linear mask value. For the integral distinguisher, if all blue (white)
cells at the input are fixed (active), and the highlighted tweak cell is active, then the
colored output cell will be balanced.
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K Integral Distinguishers of MANTIS

(a) Integral distinguisher for 7 rounds (b) Integral distinguisher for 8 rounds
of MANTIS. Data complexity: 25. of MANTIS. Data complexity: 2'6.
T
vﬂﬂ4

ll=lv

(O[] 3
5 nEn R DE
| 5 [14[3
(1281 4[5 5[4
; 1]
HE!IAE’HE!I*i’EE -
9] 5101

(c) Integral distinguisher for 9 rounds
of MANTIS. Data complexity: 244,

Figure 48: ZC-based integral distinguishers for MANTIS. Interpretation: For the integral
distinguisher, if all blue (white) cells at the input are fixed (active), and the highlighted
tweak cell is active, then the colored output cell will be balanced.
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L ID and ZC Distinguishers of PRESENT

0666008668688 ;| ;s

(o)
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(o2

Hsssssssssssss

(o)

S|S|S|S|S]|S]|S]|S|S|S|S|S|S|S|S]|S

(a) A cluster of ID distinguishers for 5 rounds  (b) A cluster of ZC distinguishers for 5 rounds
of PRESENT. of PRESENT.

(c) A cluster of ID distinguishers for 6 rounds  (d) A cluster of ZC distinguishers for 6 rounds
of PRESENT. of PRESENT.

Figure 49: 1D and ZC distinguishers for PRESENT.
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M ID and ZC Distinguishers of Ascon

Here, we present the ZC and ID distinguishers that our tool derives for Ascon. When
searching for the ZC or ID distinguisher, we set the objective function to maximize the
number of unknown bits at the input/output of distinguishers. This way, any single output
of the tool is indeed a cluster of distinguishers whose size depends on the number of
unknown bits at the input/output of the distinguisher. The more unknown bits, the more
distinguishers we have in the cluster. Figure 50, Figure 51, Figure 52, Figure 53, and
Figure 54 illustrate some of the outputs of our tool when searching for a 5-round ZC/ID
distinguisher for Ascon. We represent both forward and backward propagations in these
figures. The unknown bits (in terms of difference value or mask value) in the forward
and backward propagations are represented by | and |4, respectively. In addition, the
bit difference (or linear mask) 1 is represented by P and 4 in forward and backward
propagations, respectively. The result represented in Figure 50 can be derived with our
tool running on a regular laptop in a few minutes. However, as seen in Figure 50 it is
a cluster of 2155 ZC distinguishers. This should clarify the advantage of our searching
method compared to the previous works [ST17,CCJ*16], where every single ZC or ID
distinguisher should be derived separately when the input/output of the distinguishers are
fixed to some specific difference or linear masks.
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Figure 50: A cluster of 2155 ZC distinguishers for 5 rounds of Ascon.
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Figure 52: A cluster of 2155 ID distinguishers for 5 rounds of Ascon.
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Figure 54: An ID distinguisher for 5 rounds of Ascon.
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N Encoding Deterministic Behaviour of S-boxes

The S-box Analyzer is a SageMath [Sag22] module designed to efficiently encode the
S-boxes’ differential, linear, and integral properties in MILP, and SMT/SAT models. The
S-box Analyzer was applied to the differential, integral, and boomerang analysis of various
block ciphers in [HNE22, HE22], and is publicly available at:

https://github.com/hadipourh/sboxanalyzer

We expanded the S-box Analyzer to generate CP constraints in the MiniZinc language,
making it easier for others to use our bit-wise method for finding ID, ZC, and integral
distinguishers. Listing 1 briefly shows how to use the S-box Analyzer to derive CP
constraints for deterministic differential/linear transitions through an S-box.

# Import the S-box Analyzer and define the S-box
sage: from sboxanalyzer import *
sage: from sage.crypto.sboxes import MANTIS as sb

sage: sa = SboxAnalyzer (sb)

# Encode deterministic differential behaviour of S-box

sage: diff = sa.encode_deterministic_differential_behavior ()
sage: cpdiff = sa.generate_cp_constraints(diff)

Input: aOllallla2|la3; a0: msb

OQutput: bO||b1l||b2[|b3; bO: msb

sage: print(cpdiff)

if (a0 == 0 /\ a1 == 0 /\ a2 == 0 /\ a3 == 0) then (b0 = 0 /\ b1 =0 /\ b2 = 0 /\ b3 = 0)

elseif (a0 == 0 /\ al == 0 /\ a2 == 1 /\ a3 == 0) then (b0 = -1 /\ b1 = -1 /\ b2 = 0 /\ b3 = -1)
elseif (a0 == 0 /\ al == 0 /\ a2 == -1 /\ a3 == 0) then (b0 = -1 /\ b1 = -1 /\ b2 = 0 /\ b3 = -1)
elseif (a0 == 1 /\ al == 1 /\ a2 == 0 /\ a3 == 1) then (b0 = -1 /\ b1 = -1 /\ b2 =1 /\ b3 = -1)
elseif (a0 == 1 /\ a1l == 1 /\ a2 == 1 /\ a3 == 1) then (b0 = -1 /\ b1 = -1 /\ b2 =1 /\ b3 = -1)
elseif (a0 == 1 /\ al == 1 /\ a2 == -1 /\ a3 == 1) then (b0 = -1 /\ b1 = -1 /\ b2 =1 /\ b3 = -1)
else (b0 = -1 /\ b1 = -1 /\ b2 = -1 /\ b3 = -1)

endif

# Encode deterministic linear behaviour of S-box

sage: lin = sa.encode_deterministic_linear_behavior ()

sage: cplin = sa.generate_cp_constraints(lin)

Input: aOllallla2lla3; a0: msb

Output: bO||Ib1||b2]|Ib3; bO: msb

sage: print(cplin)

if (a0 == 0 /\ a1l == 0 /\ a2 == 0 /\ a3 == 0) then (b0 = 0 /\ bl =0 /\ b2 = 0 /\ b3 = 0)

elseif (a0 == 0 /\ al == 0 /\ a2 == 1 /\ a3 == 0) then (b0 = -1 /\ b1 = -1 /\ b2 = 0 /\ b3 = -1)
elseif (a0 == 0 /\ al == 0 /\ a2 == -1 /\ a3 == 0) then (b0 = -1 /\ b1 = -1 /\ b2 = 0 /\ b3 = -1)
elseif (a0 == 0 /\ a1 == 1 /\ a2 == 0 /\ a3 == 1) then (b0 =1 /\ bl = -1 /\ b2 =1 /\ b3 = -1)
elseif (a0 == 0 /\ al == 1 /\ a2 == 1 /\ a3 == 1) then (b0 = -1 /\ b1 = -1 /\ b2 =1 /\ b3 = -1)
elseif (a0 == 0 /\ al == 1 /\ a2 == -1 /\ a3 == 1) then (b0 = -1 /\ b1 = -1 /\ b2 =1 /\ b3 = -1)
else (b0 = -1 /\ bl = -1 /\ b2 = -1 /\ b3 = -1)

endif

Listing 1: Encoding deterministic behaviour of S-boxes in Sbox Analyzer
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