Algebraic Attack on FHE-Friendly Cipher HERA Using Multiple Collisions

Fukang Liu¹, Abul Kalam², Santanu Sarkar², Willi Meier³

¹Tokyo Institute of Technology, Tokyo, Japan
²Indian Institute of Technology Madras, Chennai, India
³FHNW, Windisch, Switzerland

FSE 2024

Overview

1 FHE-friendly Stream Cipher HERA

- Description of HERA
- Revisiting Designers' Analysis
- Observations
- 2 New Attacks on HERA
 - New Attack Framework
 - Offline Phase
 - Online Phase
 - Solving Equations

3 Summary

Background of HERA

- A stream cipher friendly to the CKKS FHE scheme (Asiacrypt 2021).
- SPN-based cipher with a (simple) randomized key schedule.

No third party cryptanalysis so far.

Description of HERA

•
$$(a_1, \ldots, a_{16}) = (1, \ldots, 16).$$

• Cubic S-box $S(x) = x^3$ over prime fields \mathbb{F}_p with $p > 2^{16}.$
• $M \in \mathbb{F}_p^{16 \times 16}$ is a fixed invertible matrix.
• $k = (k_1, \ldots, k_{16}) \in \mathbb{F}_p^{16}$ is the secret key.
• $(c_{0,1}, \ldots, c_{r,16}) \in \mathbb{F}_p^{16 \times (r+1)}$ are randomly generated constants.
• $z = (z_1, \ldots, z_{16}) \in \mathbb{F}_p^{16}$ is the keystream.

Description of HERA

- Providing $\lambda \in \{80, 128, 192, 256\}$ bits of security
- The length of nonce and cnt is related to λ :

$$\mathsf{IV} = \mathsf{nonce} ||\mathsf{cnt} \in \mathbb{F}_2^{\lambda + rac{\lambda}{2}}.$$

Procedure to generate the keystream:

1 Generate $(c_{0,1}, \ldots, c_{r,16}) \in \mathbb{F}_p^{16 \times (r+1)}$ seeded with IV.

2 Generate the keystream by running the encryption algorithm.

Revisiting Designers' Analysis

Straightforward linearization attack:

- $z_i = f_{IV}(k_1, \ldots, k_{16})$ where f_{IV} is of degree 3^r .
- Use sufficiently many IV to generate about $\binom{16+3^r}{3^r}$ equations $z_i = f_{\text{IV}}(k_1, \dots, k_{16})$.
- Solve the equations in (k₁,..., k₁₆) by simple Gaussian elimination (each monomial is renamed as a new variable).

Reason:

At most (^{16+3^r}) monomials for a polynomial in 16 variables of degree 3^r.

Revisiting Designers' Analysis

■ Complexity analysis:

Time complexity of the linearization attack on *r*-round HERA:

$$\mathcal{T}(r,\omega) = egin{pmatrix} 16+3^r \ 3^r \end{pmatrix}^\omega,$$

where $2 \le \omega \le 3$ is the algebra constant.

■ Secure parameters:

Select the minimal r such that

$$\mathcal{T}(r,2) = \binom{16+3^r}{3^r}^2 > 2^{\lambda}.$$

Revisiting Designers' Analysis

■ Parameters for HERA:

λ	80	128	192	256
r	4	5	6	7

Cost to break *r* rounds of HERA with different (r, ω) :

λ	80	128	192	256
r	4	5	6	7
brute force	p^{16}	p^{16}	p^{16}	p^{16}
$T_0(r, 2)$	2^{119}	2 ¹⁶⁷	2 ²¹⁷	2 ²⁶⁷
$T_0(r-1,2)$	2 ⁷⁶	2^{119}	2^{167}	2^{217}
$T_0(r, 2.8)$	2 ¹⁶⁷	2 ²³⁴	2 ³⁰³	2 ³⁷⁴
$T_0(r-1, 2.8)$	2^{107}	2^{167}	2 ²³⁴	2 ³⁰³
$T_0(r-2,2.8)$	2 ⁵⁹	2^{107}	2^{167}	2 ²³⁴
$T_0(r, 3)$	2 ¹⁷⁹	2 ²⁵¹	2 ³²⁵	2 ⁴⁰¹
$T_0(r-1,3)$	2^{114}	2 ¹⁷⁹	2 ²⁵¹	2 ³²⁵
$T_0(r-2,3)$	2 ⁶³	2^{114}	2 ¹⁷⁹	2 ²⁵¹

If we can can set up equations of degree 3^{r-1} for *r*-round HERA:

- **1** HERA can be broken under $\omega = 2$.
- **2** Security margin will be reduced to 1 round under $\omega \in \{2.8, 3\}$.

λ	80	128	192	256
r	4	5	6	7
brute force	p^{16}	p^{16}	p^{16}	p^{16}
$T_0(r, 2)$	2^{119}	2^{167}	2217	2 ²⁶⁷
$T_0(r-1,2)$	2 ⁷⁶	2 ¹¹⁹	2 ¹⁶⁷	2 ²¹⁷
$T_0(r, 2.8)$	2^{167}	2 ²³⁴	2 ³⁰³	2 ³⁷⁴
$T_0(r-1, 2.8)$	2^{107}	2 ¹⁶⁷	2 ²³⁴	2 ³⁰³
$T_0(r-2,2.8)$	2 ⁵⁹	2 ¹⁰⁷	2^{167}	2 ²³⁴
$T_0(r, 3)$	2 ¹⁷⁹	2 ²⁵¹	2 ³²⁵	2 ⁴⁰¹
$T_0(r-1,3)$	2^{114}	2 ¹⁷⁹	2 ²⁵¹	2 ³²⁵
$T_0(r-2,3)$	2 ⁶³	2 ¹¹⁴	2 ¹⁷⁹	2 ²⁵¹

A New Attack Framework for HERA

Main idea:

Set up a low-degree (< 3^r) equation in (k₁,..., k₁₆) from a keystream pair (z, z') rather than a single z.

■ Overall procedure:

- Offline phase: Find sufficiently many good input pairs (IV, IV') by the offline computation.
- **2** Online phase: For each input pair (IV, IV'), compute the corresponding output pair (z, z'). If (z, z') satisfy certain conditions, we can set up some low-degree equations in k.
- **3** Solving equations: After collecting many low-degree equations, we solve them with the linearization technique.

Analysis

■ How to define good IV pairs?

■ We aim to find a good pair (*c_r*, *c'_r*) generated from (IV, IV'), respectively, such that the corresponding (*c_r*, *c'_r*) can satisfy certain conditions, where

$$c_r = (c_{r,1}, \ldots, c_{r,16}), \ c'_r = (c'_{r,1}, \ldots, c'_{r,16}).$$

For the last-round S-box, we have $w_{r,i} = S(y_{r-1,i}) = y_{r-1,i}^3$ Case 1: if $w_{r,i} = w'_{r,i}$ we have $y_{r-1,i} = y'_{r-1,i}$ **Case 2**: if $\beta \neq 0 \in \mathbb{F}_p$ is known and $w_{r,i} = \beta w'_{r,i},$

we have

$$y_{r-1,i} = \beta^{\frac{1}{3}} y'_{r-1,i}.$$

■ As y_{r-1,i} and y'_{r-1,i} are polynomials in k of degree 3^{r-1}, in both cases, we can set up an equation in k of degree 3^{r-1} for r-round HERA.

(1)

Goal: check from (z, z') whether the following equation holds:

$$w_{r,i} = \beta w_{r,i}'.$$

Relation:

$$w_r = M^{-1}(z - c_r \cdot k) = M^{-1}(z) - M^{-1}(c_r \cdot k),$$

$$\to w_{r,i} = M^{-1}(z)[i] - M^{-1}(c_r \cdot k)[i]$$
(2)

where $c_r \cdot k$ denotes the element-wise multiplication.

 Question: w_{r,i} cannot be known without guessing k, how is it even possible to check

$$w_{r,i} = \beta w'_{r,i}$$

and compute β ?

$$w_{r,i} = M^{-1}(z)[i] - M^{-1}(c_r \cdot k)[i].$$

• Our solution: turn to checking conditions:

$$(c_{r,1},\ldots,c_{r,16}) = (\beta c'_{r,1},\ldots,\beta c'_{r,16}), \quad (3)$$

$$M^{-1}(z)[i] = \beta \times M^{-1}(z')[i], \quad (4)$$

which requires no knowledge of k.

 Offline phase: (c_r, c'_r) are generated from an XOF seeded with (IV, IV'), respectively, which dose not depend on k, and hence

$$(c_{r,1},\ldots,c_{r,16}) = (\beta c'_{r,1},\ldots,\beta c'_{r,16})$$

can be checked at the offline phase.

 Online phase: computing (z, z') requires to call the encryption algorithm and hence

$$M^{-1}(z)[i] = \beta \times M^{-1}(z')[i],$$

can only be checked at the online phase.

$$w_{r,i} = M^{-1}(z)[i] - M^{-1}(c_r \cdot k)[i].$$

Goal: compute β such that

$$w_{r,i} = \beta w_{r,i}'.$$

• **Relaxed conditions**: by guessing n_1 words, e.g., guessing (k_1, \ldots, k_{n_1}) , we only need conditions

$$(c_{r,n_1+1},\ldots,c_{r,16}) = (\beta c'_{r,n_1+1},\ldots,\beta c'_{r,16}),$$
 (5)

$$M^{-1}(z)[i] - \delta = \beta \times (M^{-1}(z')[i] - \delta'),$$
 (6)

where

$$\delta = \sum_{j=1}^{n_1} M^{-1}[i][j]c_{r,j}k_j, \quad \delta' = \sum_{j=1}^{n_1} M^{-1}[i][j]c_{r,j}'k_j.$$

Drawback: Overhead caused by guessing *n*₁ key variables:

$$p^{n_1} imes egin{pmatrix} 16 - n_1 + 3^{r-1} \ 3^{r-1} \end{pmatrix}^{\omega}.$$

.

Offline Phase

■ Goal: find (IV, IV') such that

$$(c_{r,n_1+1},\ldots,c_{r,16}) = (\beta c'_{r,n_1+1},\ldots,\beta c'_{r,16}),$$
 (7)

which is equivalent to finding the following collision

$$(1, \frac{c_{r,n_1+2}}{c_{r,n_1+1}}, \dots, \frac{c_{r,16}}{c_{r,n_1+1}}) = (1, \frac{c_{r,n_1+2}'}{c_{r,n_1+1}'}, \dots, \frac{c_{r,16}'}{c_{r,n_1+1}'}).$$
(8)

 #collisions: suppose 2^b different such collisions are required. Let

$$\ell = (15 - n_1) \times \lceil \log_2 p \rceil,$$

we need to test $2^{\frac{b+\ell+1}{2}}$ different IV.

Cost:

$$T_{\text{offline}} = 2^{\frac{b+\ell+1}{2}}.$$
 (9)

Online Phase

Procedure:

- Generate the corresponding (z, z') under each good (IV, IV').
- For each guess of (k_1, \ldots, k_{n_1}) , compute

$$\delta = \sum_{j=1}^{n_1} M^{-1}[i][j]c_{r,j}k_j, \quad \delta' = \sum_{j=1}^{n_1} M^{-1}[i][j]c'_{r,j}k_j.$$

and check the following condition

$$\exists i: \ M^{-1}(z)[i] - \delta = \beta \times (M^{-1}(z')[i] - \delta'), \qquad (10)$$

If Eq.(10) holds (with probability of about ¹⁶/_p), we set up an equation of degree 3^{r-1} until in total

$$\binom{16 - n_1 + 3^{r-1}}{3^{r-1}}$$

equations are collected.

Solving Equations

Solve the system of

$$\binom{16-n_1+3^{r-1}}{3^{r-1}}$$

equations in $(k_{n_1+1}, \ldots, k_{16})$ of degree 3^{r-1} with Gaussian elimination.

Cost of online phase + solving equations:

$$T_{\text{online}} = p^{n_1} \times 2^{b+1} + p^{n_1} \times {\binom{16 - n_1 + 3^{r-1}}{3^{r-1}}}^{\omega}.$$
 (11)

Additional Constraints

Additional constraints: due to the length of nonce and cnt, the following constraints should be satisfied:

$$\begin{cases} 3\lambda \ge b + \ell + 1\\ \frac{16}{p} \times 2^b \ge \begin{pmatrix} 16 - n_1 + 3^{r-1}\\ 3^{r-1} \end{pmatrix} \\ b + 1 \le \frac{\lambda}{2} \end{cases}$$
(12)

Results

Table: Summary of the time complexity of our successful attacks on various parameters of under $\omega \in \{2, 2.8, 3\}$.

λ	Rounds		$\lceil \log_2 p \rceil$											
			17	18	19	20	21	22	23	24	25	26	27	28
	6 (full)	2	2185	2187	-	-	-	-	-	-	-	-	-	-
192	5	2.8	2 ¹⁶⁷	2 ¹⁷⁵	2 ¹⁷⁹	2 ¹⁸⁰	2 ¹⁸⁷	-	-	-	-	-	-	-
	5	3	2 ¹⁷⁹	2 ¹⁷⁹	2183	2 ¹⁹¹	-	-	-	-	-	-	-	-
	7 (full)	2	2217	2224	2225	2226	2227	2 ²²⁸	2229	2 ²⁴³	2245	2247	2 ²⁴⁹	2 ²⁵¹
256	6	2.8	2 ²³⁴	2 ²³⁴	2 ²³⁴	2 ²³⁴	2 ²³⁴	2 ²³⁴	2 ²³⁴	2 ²³⁵	2 ²⁴³	2 ²⁴⁹	2 ²⁵⁰	2^{251}
	6	3	2 ²⁵¹	2 ²⁵¹	2 ²⁵¹	2 ²⁵¹	2 ²⁵¹	2 ²⁵¹	2 ²⁵¹	2 ²⁵¹	2 ²⁵¹	2 ²⁵¹	-	-

1 HERA with $\lambda \in \{80, 128\}$ is not affected by the attacks.

- 2 For $\lambda \in \{192, 256\}$, we can break some parameters under $\omega = 2$.
- **3** For $\lambda \in \{192, 256\}$, the security of some variants of HERA are reduced to only 1 round under $\omega \in \{2.8, 3\}$.

Future Research

Can we apply the new insight into HERA to the cryptanalysis of FHE-friendly cipher Rubato, which also takes a randomized key schedule, but has an extremely small number of rounds, e.g. 2 rounds?

Several obstacles:

- 1 larger prime fields ($p \approx 2^{26}$).
- 2 larger state (16, 36, 64 state words).
- 3 noise in the keystream.