Improved Meet-in-the-Middle Nostradamus Attacks on AES-like Hashing

Xiaoyang Dong^{1,3,5,6} Jian Guo² Shun Li^{4,2}^(S) Phuong Pham² **Tianyu Zhang**²

¹Tsinghua University, Beijing, China
 ²Nanyang Technological University, Singapore
 ³State Key Laboratory of Cryptology, Beijing, China
 ⁴University of Chinese Academy of Sciences, Beijing, China
 ⁵Zhongguancun Laboratory, Beijing, China
 ⁶Shandong Institute of Blockchain, Jinan, China

FSE 2024 Leuven, Belgium

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

< □ ▶ < 酉 ▶ < 重 ▶ < 重 ▶</p>
FSE 2024

Outline

Nostradamus Attacks

Origin and Evolution Attack Framework

2 Preliminaries

AES-like Hashing MITM Attacks

3 Modified MITM Nostradamus Framework Core idea Significance

4 Applications on AES-like Hashing

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

FSE 2024

1 E K

Nostradamus Attacks

Outline

Nostradamus Attacks

Origin and Evolution Attack Framework

2 Preliminaries

AES-like Hashing MITM Attacks

3 Modified MITM Nostradamus Framework

Core idea Significance

Applications on AES-like Hashing

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

▶ ◀ ≧ ▶ ◀
FSE 2024

▶ < ⊒ ▶

< 177 ▶

Nostradamus: Origin and Evolution

Chosen Target Forced Prefix (CTFP) Preimage Resistance¹

- CTFP resembles the setting of a commitment scheme.
- For a hash function H, it should be hard to find a hash value h_T , such that for any prefix P of a known length, the attacker can construct a suffix S that $H(P||S) = h_T$ efficiently.
- The generic CTFP preimage attack on Merkel-Damgård constructions is known as the Nostradamus attack.

Nostradamus: Origin and Evolution

Chosen Target Forced Prefix (CTFP) Preimage Resistance¹

- CTFP resembles the setting of a commitment scheme.
- For a hash function H, it should be hard to find a hash value h_T , such that for any prefix P of a known length, the attacker can construct a suffix S that $H(P||S) = h_T$ efficiently.
- The generic CTFP preimage attack on Merkel-Damgård constructions is known as the Nostradamus attack.

Evolution of Nostradamus Attacks

Offline Phase

Build a diamond structure with 2^k leaf nodes \rightarrow multi-collisions

- Node x_i: hash values
- Edge $x_i x_j$: a message block m such that $CF(x_i, m) = x_j$

Figure: A diamond structure with 2³ leaves

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

5/21

FSE 2024

Offline Phase

Build a diamond structure with 2^k leaf nodes \rightarrow multi-collisions

- Node x_i: hash values
- Edge $x_i x_j$: a message block m such that $CF(x_i, m) = x_j$

Constructing 2^k leaves

Fix n - k bits as constants and enumerate the rest k bits

n-k fixed bits

k free bits

Figure: A construction of the leaf nodes

Figure: A diamond structure with 2³ leaves

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

FSE 2024

Online Phase

Find a "link" to diamond structure \rightarrow preimage

- Compute the initial hash value $x_0 = CF(IV, P)$.
- Find M_{link} that links x_0 to any leaf node x_i of the stored diamond structure.

$$CF(x_0, M_{link}) = x_j, \quad 1 \le j \le 2^k$$

• Look up the pathway from x_j to h_T as M_j , obtain the suffix $S = M_{link} ||M_j|$.

Figure: Nostradamus attack process [BGLP22]

6/21

FSE 2024

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

Generic Bounds of Nostradamus

	Classic	Quantum
Offline	$\mathcal{O}(k^{1/2}\cdot 2^{(n+k)/2})$	$\mathcal{O}(k^{1/3}\cdot 2^{(n+2k)/3})$
Online	$\mathcal{O}(2^{n-k})$	$\mathcal{O}(2^{(n-k)/2})$
Balance cond.	k = n/3	k = n/7
Overall cplx.	$\mathcal{O}(n^{1/2}\cdot 2^{2n/3})$	$\mathcal{O}(n^{1/3}\cdot 2^{3n/7})$

²Zhiyu Zhang, Siwei Sun, Caibing Wang, and Lei Hu. Classical and Quantum Meet-in-the-Middle Nostradamus Attacks on AES-like Hashing. ToSC 2023 ∽ < Tianyu Zhang (NTU) Improved MITM Nostradamus Attacks on AES-like Hashing FSE 2024 7/21

Generic Bounds of Nostradamus

	Classic	Quantum
Offline	$\mathcal{O}(k^{1/2}\cdot 2^{(n+k)/2})$	$\mathcal{O}(k^{1/3}\cdot 2^{(n+2k)/3})$
Online	$\mathcal{O}(2^{n-k})$	$\mathcal{O}(2^{(n-k)/2})$
Balance cond.	k = n/3	k = n/7
Overall cplx.	$\mathcal{O}(n^{1/2} \cdot 2^{2n/3})$	$\mathcal{O}(n^{1/3}\cdot 2^{3n/7})$

Integration of Meet-In-The-Middle (MITM) Attack²

- Use MITM attack to accelerate the online phase
- Shift the optimum towards a more efficient overall time complexity

²Zhiyu Zhang, Siwei Sun, Caibing Wang, and Lei Hu. Classical and Quantum Meet-in-the-Middle Nostradamus Attacks on AES-like Hashing. ToSC 2023 ↔ < Tianyu Zhang (NTU) Improved MITM Nostradamus Attacks on AES-like Hashing FSE 2024 7/21

Preliminaries

Outline

Nostradamus Attacks

Origin and Evolution Attack Framework

2 Preliminaries

AES-like Hashing MITM Attacks

3 Modified MITM Nostradamus Framework Core idea Significance

Applications on AES-like Hashing

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

▶ 《 臺 ▶ 《 FSE 2024

▶ < ⊒ ▶

< A

AES-like Round function

Operators

- SubBytes: byte-wise substitution
- ShiftRows: byte-wise permutation, visualized as a circular left shift
- MixColumns: column-wise left multiplication of a 4-by-4 (MDS) matrix
- AddRoundKey: bit-wise XOR of the round key

Preliminaries MITM Attacks

Overview of MITM Attacks

Figure: A high-level overview of MITM attacks by Sasaki

- 1 Partition the compression function into two independent chunks
- 2 Distribute DoF to both chunks and compute to the matching point
- 3 Obtain candidates that pass the partial match filter

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

10 / 21

4 2 5 4 2

FSE 2024

Automatic search of MITM attacks

Automation by MILP

- Model propagation rules and objective in MILP
- Use optimizers to search for the optimal attack strategy

Conventional byte classification

- neutral byte: only known in the current chunk, its influence to the opposite chunk is constant (computational independence)
 - denotes a neutral byte for forward chunk
 - denotes a neutral byte for backward chunk
- constant byte: predefined and known in both chunks, denote by \blacksquare
- unknown byte: not known in either chunk, denote by \Box

11/21

FSE 2024

Improved MITM Nostradamus Attacks on AES-like Hashing

Outline

Nostradamus Attacks

Origin and Evolution Attack Framework

Preliminaries

AES-like Hashing MITM Attacks

3 Modified MITM Nostradamus Framework Core idea Significance

4 Applications on AES-like Hashing

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

FSE 2024

▶ < ⊒ ▶

< A

Complexity of MITM Nostradamus Attack in [ZSWH23]

	Classic	Quantum
Offline	$\mathcal{O}(k^{1/2}\cdot 2^{(n+k)/2})$	$\mathcal{O}(k^{1/3} \cdot 2^{(n+2k)/3})$
Online (generic)	$\mathcal{O}(2^{n-k})$	$\mathcal{O}(2^{n/2-k/2})$
Online (MITM)	$\mathcal{O}(2^{n-\tau^{C}})$	$\mathcal{O}(2^{n/2- au^{\mathbf{Q}}})$
Attack cond.	$k < n/3, \ au^{C} > n/3$	$k < n/7$, $ au^Q > n/7$

- τ^{C}/τ^{Q} : classic/quantum MITM attack advantage
- Distribute blue/red initial DoF in the target for a multi-target MITM attack
- Lower bound of the diamond structure size (in log 2): $k \ge B^{TAG} + R^{TAG}$

Extend the Multi-target Setting

Recall the format of diamond leaves: n - k fixed bits k free bits

Previous approach [ZSWH23]

- Allow only blue, red and gray bytes in target during search (preimage attack)
- Set the gray bytes as the fixed part
- Use the blue/red bytes to match the free part (multi-target)

Modification done in this work

- Search for a parital preimage attack instead of a preimage attack
- Introduce white bytes in target, and use all non-gray bytes to match the free part
- Modify the objective and expand the search space
- Lead to round breakthroughs on AES and Whirlpool

FSE 2024

Refined Complexity Analysis

	Classic	Quantum
Offline	$\mathcal{O}(k^{1/2}\cdot 2^{(n+k)/2})$	$\mathcal{O}(k^{1/3}\cdot 2^{(n+2k)/3})$
Online (generic)	$\mathcal{O}(2^{n-k})$	$\mathcal{O}(2^{n/2-k/2})$
Online (prev)	$\mathcal{O}(2^{n- au_{prev}^{C}})$	$\mathcal{O}(2^{n/2- au_{prev}^Q})$
Online (new)	$\mathcal{O}(2^{n-k_w-\tau_{new}^{\mathcal{C}}})$	$\mathcal{O}(2^{n/2-k_w/2- au_{new}^Q})$
Attack cond.	$k < n/3, \ k_w + \tau_{new}^{C} > n/3$	$k < n/7$, $k_w + \tau_{new}^{C} > n/7$

- $\tau^{\rm C}/\tau^{\rm Q}$: classic/quantum MITM attack advantage
- $k_w \leq W^{\text{TAG}}$: length of bits that are not matched in a partial preimage attack
- Lower bound of the diamond structure size (in log 2): $k \ge k_w + B^{TAG} + R^{TAG}$

FSE 2024

Modified MITM Nostradamus Framework Significance

Effect of Our Modification

Tianvu Zhang (NTU)

Offline $\mathcal{O}(k^{1/2} \cdot 2^{(n+k)/2})$ Online (prev) $\mathcal{O}(2^{n-\tau_{prev}^{C}})$ Online (new) $\mathcal{O}(2^{n-k_w-\tau_{new}^{C}})$

Previous

- $k = B^{TAG} = 8$ (1 byte)
- $Adv = \tau_{prev}^C = \min(d_B, d_R, m)$

16/21

N 4 E N

FSE 2024

Improved MITM Nostradamus Attacks on AES-like Hashing

Effect of Our Modification

Offline $\mathcal{O}(k^{1/2} \cdot 2^{(n+k)/2})$ Online (prev) $\mathcal{O}(2^{n-\tau^{C}_{prev}})$ Online (new) $\mathcal{O}(2^{n-k_w-\tau^{C}_{new}})$

Previous

- $k = B^{TAG} = 8$ (1 byte)
- $Adv = \tau_{prev}^{C} = \min(d_B, d_R, m)$

Modification $B^{ extsf{TAG}} o W^{ extsf{TAG}}$

- $k = k_w = W^{TAG} = 8$ (1 byte)
- $Adv = k_w + \tau_{new}^{C} = 8 + \min(d_B 8, d_R, m)$ $\geq \min(d_B, d_R, m) = \tau_{prev}^{C}$

Improved MITM Nostradamus Attacks on AES-like Hashing

16/21

イロト イヨト イモト イモト

Tianyu Zhang (NTU)

Applications on AES-like Hashing

Outline

Nostradamus Attacks

Origin and Evolution Attack Framework

2 Preliminaries

AES-like Hashing MITM Attacks

3 Modified MITM Nostradamus Framework Core idea

4 Applications on AES-like Hashing

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

FSE 2024

★ ∃ ► ★ ∃ ►

< 177 ▶

Applications on AES-like Hashing Classic

Result Summary (Classical)

Target	Setting	#Rounds	Time	C-Mem	qRAM	Source
	Classical	6	282.7	282.2	-	[ZSWH23]
AES-MMO	Classical	6	277	276	-	This work
	Classical	7	2 ⁸³	2 ⁸²	-	This work
	Classical	any	2 ^{88.1}	2 ^{87.8}	-	[KK06; BFH22]
	Quantum	7	2 ^{54.1}	214	2 ^{49.5} QRACM+2 ⁸ QRAQM	This work, [ZSWH23]
	Quantum	any	2 ^{56.4}	217	2 ^{56.3} QRACM	[BFH22]
	Quantum	7	2 ⁵⁸	2 ³⁰	2 ⁸ QRAQM	This work
	Quantum	any	2 ^{60.9}	2 ^{31.6}	O(n)	[DLPZ23]
	Classical	4	2 ³²⁰	2 ¹⁹²	-	[ZSWH23]
	Classical	6	2 ³³⁴	2 ³³³	-	This work
Whirlpool	Classical	any	2 ^{344.7}	2 ^{344.2}	-	[KK06; BFH22]
	Quantum	6	2 ^{216.7}	2 ⁶⁴	2 ^{215.3} QRACM+2 ¹⁶ QRAQM	[ZSWH23]
	Quantum	6	2 ²¹⁴	2 ⁶¹	2 ^{207.4} QRACM+2 ²⁴ QRAQM	This work
	Quantum	any	2 ^{221.3}	271	2 ^{220.1} QRACM	[BFH22]
	Quantum	6	2 ²³⁰	2117	2 ²⁴ QRAQM	This work
	Quantum	any	2 ^{238.3}	2 ^{121.2}	<i>O</i> (<i>n</i>)	[DLPZ23]

ъ

Tianyu Zhang (NTU)

◆□ ▶ < 酉 ▶ < ≧ ▶ < ≧ ▶</p>
FSE 2024

ッへで 18/21

Result Summary (Quantum)

Target	Setting	#Rounds	Time	C-Mem	qRAM	Source
	Classical	6	2 ^{82.7}	282.2	-	[ZSWH23]
	Classical	6	277	276	-	This work
	Classical	7	2 ⁸³	2 ⁸²	-	This work
	Classical	any	2 ^{88.1}	2 ^{87.8}	-	[KK06; BFH22]
AES-MMO	Quantum	7	2 ^{54.1}	2 ¹⁴	2 ^{49.5} QRACM+2 ⁸ QRAQM	This work, [ZSWH23]
	Quantum	any	2 ^{56.4}	217	2 ^{56.3} QRACM	[BFH22]
	Quantum	7	2 ⁵⁸	2 ³⁰	2 ⁸ QRAQM	This work
	Quantum	any	2 ^{60.9}	2 ^{31.6}	O(n)	[DLPZ23]
	Classical	4	2 ³²⁰	2 ¹⁹²	-	[ZSWH23]
	Classical	6	2 ³³⁴	2 ³³³	-	This work
Whirlpool	Classical	any	2 ^{344.7}	2 ^{344.2}	-	[KK06; BFH22]
	Quantum	6	2 ^{216.7}	2 ⁶⁴	2 ^{215.3} QRACM+2 ¹⁶ QRAQM	[ZSWH23]
	Quantum	6	2 ²¹⁴	2 ⁶¹	2 ^{207.4} QRACM+2 ²⁴ QRAQM	This work
	Quantum	any	2 ^{221.3}	271	2 ^{220.1} QRACM	[BFH22]
	Quantum	6	2 ²³⁰	2 ¹¹⁷	2 ²⁴ QRAQM	This work
	Quantum	any	2 ^{238.3}	2 ^{121.2}	<i>O</i> (<i>n</i>)	[DLPZ23]

3

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

FSE 2024

イロト イヨト イヨト

ッへで 19/21

References

[KK06]	John Kelsey and Tadayoshi Kohno. "Herding Hash Functions and the Nostradamus Attack". In: Advances in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, Ed. by Serge Vaudenay. Vol. 4004. Lecture Notes in Computer Science. Springer, 2006, pp. 183–200. DOI: 10.1007/11761679_12. URL: https://doi.org/10.1007/11761679%5C_12.
[BGLP22]	Zhenzhen Bao, Jian Guo, Shun Li, and Phuong Pham. "Evaluating the Security of Merkle-Damgård Hash Functions and Combiners in Quantum Settings". In: Network and System Security - 16th International Conference, NSS 2022, Denarau Island, Fiji, December 9-12, 2022, Proceedings. Ed. by Xingliang Yuan, Guangdong Bai, Cristina Alcaraz, and Suryadipta Majumdar. Vol. 13787. Lecture Notes in Computer Science. Springer, 2022, pp. 687–711. no1: 01.1007/978-3-031-23020-2_39. URL: https://doi.org/10.1007/978-3-031-23020-2%5C_39.
[BFH22]	Barbara Jiabao Benedikt, Marc Fischlin, and Moritz Huppert. "Nostradamus Goes Quantum". In: Advances in Cryptology - ASIACRYPT 2022 - 28th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part III. Ed. by Shweta Agrawal and Dongdai Lin. Vol. 13793. Lecture Notes in Computer Science. Springer, 2022, pp. 583–613. DOI: 10.1007/978-3-031-22969-5_20. URL: https://doi.org/10.1007/978-3-031-22969-5_5C_20.
[DLPZ23]	Xiaoyang Dong, Shun Li, Phuong Pham, and Guoyan Zhang. "Quantum Attacks on Hash Constructions with Low Quantum Random Access Memory". In: Advances in Cryptology - ASIACRYPT 2023 - 29th International Conference on the Theory and Application of Cryptology and Information Security, Guargzhou, China, December 4-8, 2023, Proceedings, Part III. Ed. by Jian Guo and Ron Steinfeld. Vol. 14440. Lecture Notes in Computer Science. Springer, 2023, pp. 3–33. Doi: 10.1007/978-981-99-8727-6_1. URL: https://doi.org/10.1007/978-981-99-8727-6\SC_1.
[ZSWH23]	Zhiyu Zhang, Siwei Sun, Caibing Wang, and Lei Hu. "Classical and Quantum Meet-in-the-Middle Nostradamus Attacks on AES-like Hashing". In: IACR Trans. Symmetric Cryptol. 2023.2 (2023), pp. 224–252. DOI: 10.46586/T0SC.V2023.I2.224-252. URL: https://doi.org/10.46586/tosc.v2023.i2.224-252.

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

FSE 2024

・ロト ・ 同ト ・ ヨト ・ ヨト

≣ ৩৫়ে 20/21

TYFL

Tianyu Zhang (NTU)

Improved MITM Nostradamus Attacks on AES-like Hashing

イロト イボト イヨト FSE 2024

3 21/21

Sac