
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 1, pp. 158–187. DOI:10.46586/tosc.v2024.i1.158-187

Improved Meet-in-the-Middle Nostradamus
Attacks on AES-like Hashing

Xiaoyang Dong1,3,5,6, Jian Guo2, Shun Li4,2(B), Phuong Pham2 and Tianyu
Zhang2

1 Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University, Beijing, China
xiaoyangdong@tsinghua.edu.cn

2 Nanyang Technological University, Singapore, Singapore
guojian@ntu.edu.sg,{pham0079,tianyu005}@e.ntu.edu.sg

3 State Key Laboratory of Cryptology, P.O.Box 5159, Beijing, 100878, China
4 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China

lishun@ucas.ac.cn
5 Zhongguancun Laboratory, Beijing, China

6 Shandong Institute of Blockchain, Jinan, China

Abstract. The Nostradamus attack was originally proposed as a security vulnerability
for a hash function by Kelsey and Kohno at EUROCRYPT 2006. It requires the
attacker to commit to a hash value y of an iterated hash function H. Subsequently,
upon being provided with a message prefix P , the adversary’s task is to identify
a suffix S such that H(P ∥S) equals y. Kelsey and Kohno demonstrated a herding
attack requiring O(

√
n · 22n/3) evaluations of the compression function of H, where n

represents the output and state size of the hash, placing this attack between preimage
attacks and collision searches in terms of complexity. At ASIACRYPT 2022, Benedikt
et al. transform Kelsey and Kohno’s attack into a quantum variant, decreasing the
time complexity from O(

√
n · 22n/3) to O( 3√n · 23n/7). At ToSC 2023, Zhang et al.

proposed the first dedicated Nostradamus attack on AES-like hashing in both classical
and quantum settings. In this paper, we have made revisions to the multi-target
technique incorporated into the meet-in-the-middle automatic search framework. This
modification leads to a decrease in time complexity during the online linking phase,
effectively reducing the overall attack time complexity in both classical and quantum
scenarios. Specifically, we can achieve more rounds in the classical setting and reduce
the time complexity for the same round in the quantum setting.
Keywords: Hash Function · Meet-in-the-middle Attack · AES-like · Nostradamus
Attack

1 Introduction
Cryptographic hash functions serve as fundamental cryptographic primitives, forming the
basis for numerous advanced cryptographic protocols like digital signatures, authenticated
encryption, secure multiparty computation, post-quantum public-key cryptography, and
more. To be considered secure, a cryptographic hash function must satisfy three essen-
tial security properties: collision resistance, preimage resistance, and second-preimage
resistance.

AES-like hashing design utilizes block ciphers or permutations with features similar
to AES, such as Whirlpool [BR+00], Grøstl [GKM+09], AES-MMO, Grindahl [KRT07],
ECHO [BBG+09], Haraka v2 [KLMR16], and others. These hash functions, collectively
known as AES-like hashing, offer promising alternatives in cryptographic applications.
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At EUROCRYPT 2006, Kelsey and Kohno [KK06] introduced a new security property
for hash functions called the chosen target forced-prefix (CTFP) preimage attack, also
known as the Nostradamus attack. In this attack, the attacker knows the length of the
prefix P and selects a public hash value hT . The challenger then provides a prefix P , and
the attacker is aiming to find a suffix S such that hT = H(P∥S). This attack resembles
a hash-function-based commitment scheme, where the attacker uses hT to commit a
prediction of an event P in the future. Kelsey and Kohno [KK06] proposed the herding
attack as the first Nostradamus attack, which is a generic attack applicable to any iterated
hash function. For an n-bit output hash function, the herding attack can find a CTFP
preimage with a short suffix in approximately O(22n/3) evaluations of the compression
function.

Quantum Cryptanalysis. Besides the well-known quantum attacks on public-key cryp-
tosystem RSA by Shor [Sho94], researchers have invented various quantum cryptanalysis
techniques for symmetric ciphers over the past decade, such as the quantum polynomial-
time attacks on 3-round Feistel [KM12], Even-Mansour construction [KM10], and various
MACs and authenticated encryption schemes [KLLN16a], and more [LM17, BLNS21,
BNS19a, DDW20, Hos22]. However, most attacks need to query the online quantum
encryption oracles (known as Q2 model), which is believed to be impractical. Therefore,
many researchers [BHN+19, HS, KLLN16b, HS18, BNS19b, Sch23, CNS17] try to use only
offline quantum computers to attack cryptosystems, where the plaintext-ciphertext pairs
collected in classical ways (known as Q1 model). Different from block ciphers and other
keyed primitives, the unkeyed hash functions can be implemented in offline quantum circuit
and quantum superposition attacks [CNS17, HSX17, NS20, HS20, DSS+20, HS21, SS22]
can be freely applied to hash functions.

At ASIACRYPT 2022, Benedikt et al. [BFH22] examined the security of iterated hash
functions against Nostradamus attacks by quantum attackers. They proposed generic
quantum Nostradamus attacks, which involve a herding attack in the quantum setting,
accelerating both offline and online phases when quantum random access memory (qRAM)
is available. However, it is generally acknowledged that the difficulty of fabricating large
qRAMs is enormous [GLM08, AGJ+15], so quantum algorithms that use less or no qRAM
(even with relatively high time complexity) are preferable [CNS17, NS20]. Therefore, Bao
et al. [BGLP22] and Dong et al. [DLPZ23] proposed the low-qRAM version quantum
herding attacks recently.

At ToSC 2023, Zhang et al. [ZSWH23] introduced the first dedicated Nostradamus
attack utilizing the meet-in-the-middle (MITM) approach in both classical and quantum
settings. Using an automatic tool, they successfully identified herding attack trails on
reduced-round AES-MMO and Whirlpool that outperformed generic attacks proposed by
Benedikt et al. [BFH22].

Multi-targets MITM and AES-like hashing. In 2010, Guo et al. [GLRW10] introduced a
meet-in-the-middle attack that extends the framework to incorporate multi-target scenarios.
This approach allows multiple available targets to provide additional degrees of freedom to
one computation chunk without affecting the other. At FSE 2011, Sasaki [Sas11] was the
first to employ MITM techniques to carry out preimage attacks on AES-like hash functions.
At ToSC 2019, Bao et al. [BDG+19] combined the multi-targets and MITM techniques to
carry out pseudo-preimage attacks on AES hashing modes based on AES and Kiasu-BC.

Our contributions. In contrast to collision and preimage attacks, the resistance against
the Nostradamus attack is seldom examined in iterated hash functions [KK06, BSU10,
ABDK09]. Building upon recent advancements in quantum Nostradamus attacks on hash
functions [BFH22, ZSWH23], we introduce a multi-target Meet-in-the-Middle Nostradamus
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Table 1: Summary of our improved MITM Nostradamus attacks against the round-reduced
AES-like hashing, compared with previous works

Target Setting #Rounds Time C-Mem qRAM Source

Classical 6 282.7 282.2 - [ZSWH23]
Classical 6 277 276 - Sect. 5.1
Classical 7 283 282 - Sect. 5.2
Classical any 288.1 287.8 - [KK06, BSU10]

AES-MMO Quantum 7 254.1 214 249.5 QRACM+28 QRAQM Sect. 5.3,[ZSWH23]
Quantum any 256.4 217 256.3 QRACM [BFH22]
Quantum 7 258 230 28 QRAQM Sect. 5.3
Quantum any 260.9 231.6 O(n) [DLPZ23]
Classical 4 2320 2192 - [ZSWH23]
Classical 6 2334 2333 - Sect. 5.4
Classical any 2344.7 2344.2 - [KK06, BSU10]

Whirlpool Quantum 6 2216.7 264 2215.3 QRACM+216 QRAQM [ZSWH23]
Quantum 6 2214 261 2207.4 QRACM+224 QRAQM Sect. 5.5
Quantum any 2221.3 271 2220.1 QRACM [BFH22]
Quantum 6 2230 2117 224 QRAQM Sect. 5.5
Quantum any 2238.3 2121.2 O(n) [DLPZ23]

attack on AES-like hashing. This approach has the potential to provide incremental
improvements to the results demonstrated by [ZSWH23]. By introducing the multi-
targets technique, we have been able to attain higher rounds compared to previous
results. Additionally, in line with Schrottenloher and Stevens’ approach [SS22], we have
transformed our attack into the quantum setting. Through this, we discovered that our
quantum attack’s time complexity can be enhanced while maintaining the same number of
rounds. Interestingly, our multi-target technique differs slightly from the approach in the
pseudo-preimage attack [BDG+19]. Essentially, we enhance the freedom within the target,
without limiting it to either forward or backward propagation.

At last, we propose enhanced meet-in-the-middle Nostradamus attack utilizing the
adapted multi-targets technique. Building upon previous research on automatic tools
for MITM attacks [BDG+21, DHS+21, BGST22, SS22, ZSWH23], we formulate a MILP
(Mixed-Integer-Linear-Programming) model to discover an enhanced MITM Nostradamus
attack targeting round-reduced AES-like hash functions. In classical settings, for both
AES-MMO and Whirlpool, we improve the herding attacks by up to 2 rounds. In quantum
settings, we significantly reduce the size qRAM, e.g., for 7-round AES-MMO, the qRAM is
reduced from “28 QRAQM + 249.5 QRACM” to “28 QRAQM”, and for 6-round Whirlpool
the qRAM is reduced from “216 QRAQM + 2215.3 QRACM” to “224 QRAQM”. The results
are summarized in Table 1.

Remark. Our results are presented in Table 1. It’s worth noting that certain time and
memory complexity values differ from those presented by [ZSWH23] for the same attacks.
We will elaborate on the reasons for these differences in Section 3.1.

Outline. Section 2 provides a brief introduction to the target primitives, the generic
Nostradamus attack, and the MITM preimage attack on AES-like hashing. The framework
and main techniques of our MITM Nostradamus attack are summarized in Section 3,
followed by the explanation of our MILP Model in Section 4. Results of classical and
quantum Nostradamus MITM attacks are given in Section 5. Section 6 concludes the
paper.
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Figure 1: The AES round function
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Figure 2: The Whirlpool round function

2 Preliminary
2.1 Hash functions based on AES and Whirlpool

AES is a block cipher family of 128-bit block and k-bit key for k ∈ {128, 192, 256}. The
state has 16 bytes and can be represented as a 4× 4 matrix. Given a Nrow ×Ncol bytes
of the state matrix, where Nrow = Ncol = 4, we order the byte cells as in Figure 1. Then
the state is encrypted by an iterative process which is repeated for 10, 12, and 14 rounds,
for AES-128, AES-192, and AES-256, respectively. An AES round function, as depicted in
Figure 1, is an Substitution-Permutation Network (SPN), and composed of four consecutive
operations: SubBytes (SB), ShiftRows (SR), MixColumn (MC), and AddRoundKey (AK).
The master key k is (partially) XORed to the state before the initial round function
application. This key is then utilized to generate r subkeys using the KeySchedule (KS)
function. As our attack model does not require the key, we omit its specific details.

• SubBytes involves a nonlinear substitution that employs the same S-box for each
byte of the internal state.

• ShiftRow is characterized by cyclically rotating the i-th row by i bytes to the left,
where i takes values from 0 to 3.

• MixColumn entails multiplying each column by a Maximum Distance Separable (MDS)
matrix over GF(28).

• AddRoundKey corresponds to performing an exclusive-OR operation with the round-
dependent key.

Whirlpool [BR+00], as illustrated in Figure 2, is a hash function that draws a strong
foundation from AES, albeit with an increased state size. Instead of ShiftRows (SR) and
MixColumns (MC), it employs ShiftColumns (SC) and MixRows (MR). Whirlpool adopts
an 8× 8-byte (512-bit) state and is composed of 10 naturally extended AES rounds. The
compression function output is generated using the MP mode, which is introduced below
and depicted in Figure 3.

To construct hash functions based on block ciphers, a domain extension is required
to apply the compression function iteratively. The widely employed domain extension in
practice is the Merkle-Damgård approach [Dam90, Mer90]. This method involves padding
the input message, denoted as M , such that the last block contains the original message
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length. The padded message is then divided into segments, M0∥M1∥ . . . ∥ML−1, with each
segment MN being the length of a single block. An initial value H0 is defined, and the
iteration HN = CF (HN−1, MN−1) is carried out for N = 1, 2, . . . L. Ultimately, HL is
produced as the hash value of M . The iteration function is built upon the DM mode, MMO
mode, MP mode, etc. Let EK denote a block cipher E with a key K. The construction
process for each mode is illustrated in Figure 3 and expressed in following formulas.

Ehi−1 hi

mi

(a) Davies-Meyer (DM)

Emi hi

hi−1

(b) Matyas-Meyer-Oseas (MMO)

Emi hi

hi−1

(c) Miyaguchi-Preneel (MP)

Figure 3: Hash modes

• DM mode: CF (HN−1, MN−1) = EMN−1(HN−1)⊕HN−1.

• MMO mode: CF (HN−1, MN−1) = EHN−1(MN−1)⊕MN−1.

• MP mode: CF (HN−1, MN−1) = EHN−1(MN−1)⊕MN−1 ⊕HN−1.

2.2 Nostradamus Problem and Herding Attack
When Kelsey and Kohno introduced the Nostradamus problem [KK06], they also presented
an elegant attack framework for general iterated hash functions, known as the “herding
attack”. The herding attack is composed of two phases. The offline phase involves
calculating numerous chaining values and message blocks that ultimately result in the
same hash value being committed. In the online phase, the goal is to identify the message
block that can establish a connection between the chaining value from the chosen prefix
and one of the chaining values acquired during the offline phase. The detailed algorithm
could be illustrated as following:

- Offline phase: As an example given in Figure 4(b), build a diamond structure with
2k leaves, k will be determined later to balance the time complexity of offline and
online phases. Diamond is built in a way to find multi-collisions, each node xi in the
diamond represents a hash state or hash value, each edge mj represents a message
block so that two nodes xi1 , xi2 are connected by the edge mj , and they satisfy the
relation CF (xi1 , mj) = xi2 . Kelsey and Kohno [KK06] present an algorithm which
commences by sampling the leaf nodes and then progressively constructs the tree
level by level. This is achieved by attempting various message blocks for each node
in order to find collisions. Their algorithm requires approximately 2(n+k)/2 function
evaluations. However, Blackburn et al. pointed out a flaw in the construction method
and its complexity as presented in [KK06], subsequently providing a more meticulous
analysis and construction method in [BSU10]. The approach presented in [BSU10]
requires approximately O(

√
k · 2(n+k)/2) message blocks and O(

√
k · 2(n+k)/2) CF

evaluations.

- Online phase: As shown in Figure 4(a), the online phase encompasses steps 2 to
4, commencing with the reception of the chosen prefix P . Initially, IV and P are
used to determine the intermediate hash state x. In step 3, the key aspect of this
online phase is to locate the connecting message Mlink from x to one of the 2k leaves
xj from the offline phase. This operation incurs a time cost of 2n−k. In step 4, the
objective is to search the stored diamond for the pathway from xj to hT , wherein
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the message blocks Mj are retrieved. The suffix that fulfills the commitment hT will
be composed as P∥Mlink∥Mj .

hT
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Figure 4: Herding Attack

The quantum version of the herding attack is proposed in [BFH22], with acceleration
occurring in both the offline and online phases. The quantum online phase is relatively
straightforward, as it leverages the Grover algorithm to expedite the process from O(2n−k)
to O(2(n−k)/2). On the other hand, the offline phase is quantized using the quantum
collision-finding algorithm, reducing the time complexity from O(2(n+k)/2) to O(2(n+2k)/3),
requiring quantum memory of k− 2

3 · 2(n+2k)/3. This results in an overall balanced time
complexity for the quantum herding attack of O(23n/7).

Recently, Bao et al. [BGLP22] designed a low-qRAM version of Benedikt et al.’s
quantum herding attack. However, Dong et al. [DLPZ23] spotted Bao et al.’s algorithm is
flawed and proposed a correct low-qRAM quantum herding attack based on CNS collision
finding algorithm [CNS17]. Their time complexity to build the 2k diamond structure is
k1/5 · 2(2n+4k)/5 with a classical memory k3/5 · 2(n+2k)/5. The time complexity to find the
Mlink is 2 n−r−k

2 (2r/2 + 2k) with r ≤ n. Hence, the total time complexity is

2
n−r−k

2 (2r/2 + 2k) + k1/5 · 2(2n+4k)/5. (1)

The classical memory complexity is bounded by the construction of the diamond structure,
i.e., k3/5 · 2(n+2k)/5. When k = n/13 and r = 2n/13, the optimal complexity is achieved
which results in O(26n/13) = O(20.46n) time complexity and O(23n/13) = O(20.23n) classical
memory.

2.3 The MITM Preimage Attack and Automation Framework
Brief Introduction. The MITM technique capitalizes on the loop structure determined
by PGV modes and splits the computation of an encryption-based hash function into two
chunks, forward and backward. The bytes involved in the encryption are categorized as:

• neutral bytes, values of which remain exclusive to the current chunk and exert no
influence on the other. The forward neutral bytes are visualized as a blue cell ,
while the backward are visualized as red cells .

• constant bytes, values of which are pre-determined and known in both chunks,
visualized as gray cells .
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Forward
chunk

Backward
chunk

Initial
structure

Forward
chunk Target

Splice

CutPartial match

Message/Key-schedule

ma ma ma mambmb mb

ML ma mb

Let the space for both neutral words ma and mb be 2¸, the time complexity is 2n≠¸, and memory
complexity is 2¸.

Figure 4: The advanced MITM pseudo-preimage attack on DM-mode [Sas11]

2. The neutral bytes for each chunk – the selection on the neutral bytes will determine
the freedom degrees.

3. The bytes for matching – the derivation on the bytes for match also depends on the
selection of neutral bytes and the computation rule of the attack target.

With the above configurations decided, the attack procedure goes as follows (Figure 4
illustrates the MITM pseudo-preimage attack integrating with these advanced techniques
on Davies-Meyer mode): Denote the neutral words for the forward chunk and backward
chunk by Nf and Nb, respectively:

1. Fix all other words except for the neutral words Nf and Nb in the initial structure
to arbitrary values.

2. For all possible values of Nf, forward compute from the starting point to the matching
point at the final state of the forward chunk to get a list Lf of candidate values
indexed by the value of Nf.

3. For all possible values of Nb, backward compute from the starting point to the
matching point at the final state of the backward chunk to get a list Lb of candidate
values indexed by the value of Nb.

4. Sorting the two lists Lf and Lb using hash tables, check whether there is a match/partial-
match between them.

5. In case of partial-matching used in the above step, for the surviving pairs, check for
a full match.

6. Repeat the whole procedure to find full state matches by changing the values of fixed
words.

3.1.3 The Complexity Analysis.

Denote the size of the internal state by n, the freedom degrees in the forward and backward
directions by d1 and d2 respectively, and the number of bits for the match by m.

8

Figure 5: The latest MITM pseudo preimage attack framework [Sas11], “Target” depicted
on the right side of the figure is to be regarded as “Multi-targets”, as under discussion in
this paper.

• arbitrary bytes, values of which are determined by both forward and backward
neutral bytes, thus can be computed independently in neither chunk, visualized as
white cells .

The setting enables the computational independence of the two chunks. The two
chunks meet in the middle at a shared intermediary state called the “matching point”,
where certain local constraints, namely partial-match constraints, are invoked to ensure
the correctness of the enclosed computation. A MITM attack will filter the candidates by
checking if the partial-match constraints are met before checking if it constitutes a valid
preimage.

Complexity. As documented in various sources [BDG+19, BDG+21, BGST22, DHS+21],
the standard MITM attack procedure encompasses the following steps:

1. Randomly assign values to the constant bytes.

2. Based on the values of the constant bytes, precompute the input for both chunks,
denoted by N+ for the forward chunk and N− for the backward chunk. Assume
|N+| = 2dB and |N−| = 2dR .

3. For N+, compute the forward chunk and store the value at the matching point in
table T+.

4. For N−, compute the backward chunk and store the value at the matching point in
table T−.

5. Filter T+ and T− subject to partial-match constraints M . Assume |M | = 2dM .

6. For an expected total of 2dB+dR−dM candidates, check if it constitutes a match on
full states.

7. Should a full match be identified, a preimage is determined. Otherwise, return to
Step 1, alter the arbitrary values, and repeat Steps 2 to 6.
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The computational complexity of this attack can be computed as demonstrated in
[BDG+19]:

2n−(dB+dR) · (2max(dB,dR) + 2dB+dR−dM) ≈ 2n−min(dB,dR,dM), (2)

and the memory complexity would be 2max(dB,dR), but it can be reduced to 2min(dB,dR) by
storing only the smaller table and computing the other chunk for matching.

Quantum Variant. The quantum Meet-in-the-Middle attack was initially introduced
by Schrottenloher and Stevens [SS22]. They managed to achieve a quadratic speedup
by utilizing quantum algorithm. We maintain the utilization of the same formula and
model as presented in prior works, specifically [SS22, ZSWH23]. In this framework, when
a meet-in-the-middle trail is defined by distinct blue, red, gray, and white cells, we can
derive the degrees of freedom dB, dR, dM. As outlined in Theorem 3 in [ZSWH23], the
time complexity of the quantum attack can be expressed as 2 1

2 (n−min{|dB−dR|,dB,dR,dM})

which would be elaborated below.
The meet-in-the-middle attack procedure could be regarded as two-layer loop search,

outer loop works on the constant bytes of the gray cells or step 1 of Procedure 2.3.
After these bytes are fixed to some value, the inner loop would start from step 2 to 6
of Procedure 2.3. Use Theorem 1, the quantum time complexity of inner loop can be
bounded by

2{2|N+|+ (π

4
√
|N−|+ 1)[ π√

2
max(1,

√
|N+|
|M |

) + 6]} ([SS22],Theorem 1)

quantum evaluations of the attacked block cipher. Assume there is a single solution, then
the iteration time of the outer loop will determined by the search space of constant bytes,
i.e., 2n/2√

|N+|·|N−|
. Combining the outer and inner loop, the final quantum time complexity

would be

2 2n/2√
|N+| · |N−|

· {2|N+|+ (π

4
√
|N−|+ 1)[ π√

2
max(1,

√
|N+|
|M |

) + 6]}

= 2 1
2 (n−min{|dB−dR|,dB ,dR,dM}).

Theorem 1 ([BHMT02], Theorem 4). Let A be a quantum algorithm that uses no
measurements, let χ : Z → {0, 1} be a boolean function that tests if an output of A is
“good”. There exists a quantum algorithm that given the initial success probability a > 0
of A, finds a good solution with certainty using a number of applications of A and A−1,
which is in Θ( 1√

a
) in the worst case.

To achieve a realistic speedup, it’s necessary to assume the availability of quantum
memory for storing the values of the forward or backward chunks at the corresponding
points to facilitate quantum lookup. In fact, quantum memory is also required for the
offline constructed diamond structure.

qRAM. Quantum random access memory (qRAM) can be conceptualized as the quantum
counterpart of classical random access memory (RAM). In the classical setting, RAM
facilitates constant-time access (both read and write operations) to memory elements,
regardless of storage size. qRAM also operates with constant-time access and is categorized
into two types: quantum-accessible classical memory (QRACM), enabling access to classical
data in quantum superpositions, and quantum-accessible quantum memory (QRAQM),
wherein the data is stored within quantum memory. Consider a scenario where we intend
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to store a list of data, denoted as D = (x0, x1, · · · , x2k−1), with each xi representing an
n-bit data. In this context, the qRAM for accessing the data D is established as a quantum
gate. This qRAM is defined through a unitary operator UqRAM (D), which is expressed as
follows:

UqRAM (D) : |i⟩ |y⟩ → |i⟩ |y ⊕ xi⟩ ,

Here, i takes values from the set {0, 1}k, and y represents an n-bit value.

3 Meet-in-the-Middle Nostradamus Attack

3.1 Previous MITM Nostradamus Framework
In [ZSWH23], the MITM Nostradamus attack constructs the diamond structure using
exactly the same method, requiring equivalent time and memory complexity for a given
number of leaves 2k. The shift occurs during the online phase, which transitions from
exhaustive search to a different approach—either random sampling in the classical setting
or Grover search in the quantum setting. Zhang et al. [ZSWH23] employ the MITM
framework to search for linking message blocks, progressing from the prefix to one of the
leaves. In brief, by using the prefix as the key and the leaves as the multiple images in
AES-like MMO/MP hashing function, the MITM online phase is then employed to locate a
single preimage. This approach yields improved time complexity, particularly when the
degrees of freedom in terms of forward, backward, and matching chunks are thoughtfully
chosen.

Specifically, the time complexity of the online phase is 2n−min{dB,dR,dM} (or respectively,
2 1

2 (n−min{|dB−dR|,dB,dR,dM})), where dB, dR, dM correspond to the degrees of freedom for
blue or forward chunks, red or backward chunks, and matching chunks in the classical
(quantum) setting. The general time complexity is 2n−k (2 1

2 (n−k)) in the classical (quantum)
setting. As a result, the values of dB, dR, dM, k need to be constrained in such a way that
the dedicated time complexity outperforms the general time complexity. When integrating
the MITM framework into the MILP model, these restrictions are replaced with their
respective constraints.

Time Complexity. Here, we will discuss time complexity calculation proposed by Zhang
et al. [ZSWH23]. Suppose Benedikt et al.’s quantum generic time complexity O( 3

√
k ·

2(n+2k)/3 + 2(n−k)/2) can be approximated to bq(n, k) = 3
√

k · 2(n+2k)/3 + 2(n−k)/2, the
omission of big O notation includes the exclusion of constant factors such as π/4 from
Grover’s algorithm. Zhang et al. reference the results of time complexity established by
Benedikt et al. and claim that, the generic Nostradamus attack’s time complexity on any
round of AES is 288.8 in the classical setting and 257.2 in the quantum setting. However,
we have found that these results were computed using further simplified formulas, namely,
O( 3
√

n · 23n/7) in the quantum setting, with k = n/7 substituted into the formula above.
However, when we evaluate bq(n, n/7), we find that it equals ( 3

√
n
7 + 1) · 23n/7, and for

the specific case of n = 128, bq(128, 128/7) results in 256.7. It’s worth noting that for the
function bq(n, k), using a smaller k can lead to a reduction in its value. This adjustment
helps in achieving a more balanced outcome between the two terms. As an illustration,
when k is set to 17, bq(128, 17) = 3

√
17 × 254 + 255.5 = 256.4. When they introduced a

7-round quantum Nostradamus attack on AES-MMO, the total time complexity was 256,
where 256 for the online phase and 250 for the offline phase. The time complexity is
remarkably close to our calculated balanced generic complexity of 256.4, as opposed to
their claim of 257.2. This raises concerns about the validity of their 7-round attack.
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Similarly, we can calculate the classical time complexity of a generic Nostradamus
attack, which is bc(n, k) = 2

√
k · 2(n+k)/2 + 2n−k. This achieves its smallest value of 288.1

when k = 42.
As for Whirlpool, the specific generic time complexity in the classical setting would

be calculated as bc(512, 169) = 2344.7 when k = 169, and the quantum complexity would
be bq(512, 71) = 2221.3 when k = 71.

In regards to the unit of time complexity, it is imperative to acknowledge that the time
complexity of the Nostradamus attack is gauged by the number of function evaluations,
specifically the time required to evaluate a particular instance of AES-like hashing in both
classical and quantum settings.

Memory Complexity. In both [BGLP22] and [ZSWH23], the memory complexity are
cited incorrectly. In the context of classical attacks, the algorithms introduced by [KK06]
and [BSU10] construct a diamond structure of size 2k. This approach comes with a memory
complexity of O(2(n+k)/2), as each node necessitates O(2(n−k)/2) messages that need to be
stored and sorted. For the quantum attack algorithm presented by [BFH22], a diamond
structure is constructed for half of the leaves in similar manner. Each node in this structure
invokes O(2(n−k)/3) hash evaluations to balance time complexity, resulting in a QRACM
complexity of O(2(n+2k)/3). This complexity aligns with the time complexity, irrespective
of constant factors. The accurate memory complexity is presented in Table 1.

Regarding the unit of memory complexity, it is noteworthy that the predominant factor
of the memory complexity is the memory used in the diamond structure part, responsible
for storing triplets (mj , r, CF (xi1 , mj)), as explicated in Section 2.2. Consequently, the
unit for memory complexity becomes the triplet length, or O(7n/3) bits.

3.2 Modified Multi-target MitM Nostradamus Framework
While reviewing the MITM trails presented in [ZSWH23], we have identified room for
improvement in their analysis of freedom. To capitalize on the potential of multiple targets
offered by the diamond structure, the authors of the study limit the cells in the target state
to red, blue, or gray. This categorization allows red and blue cells to serve as multi-target
parameters. In this particular scenario, the degrees of freedom of dB, dR are calculated
from dENC

B + dTAG
B , and dENC

R + dTAG
R . Here, dENC

B (dENC
R ) represents the count of blue (red) cells

in the initial state of the encryption computation path, i.e., #SR4 in Figure 6, while dTAG
B

(dTAG
R ) signifies the number of blue (red) cells in the target state, i.e., bottom state “original”

or “new” in Figure 6.
Let’s consider an extreme scenario where blue or red cells in the target state could

be freely substituted with an equivalent number of white cells. In other words, as il-
lustrated in Figure 6, modifying the target state in this manner doesn’t impact the
colors of any other state within the differential trail. In this case, the time com-
plexity transitions to 2n−dW −min{dENC

B ,dENC
R +dTAG

R ,dM} in the classical setting and equals to
2n−dTAG

B −min{dENC
B ,dENC

R +dTAG
R ,dM}, where dW represents the degree of freedom of white cells in

the target state. Notably, the complexity is less than or equal to the original complexity
2n−min{dENC

B +dTAG
B ,dENC

R +dTAG
R ,dM}. Therefore, introducing white cells could potentially lead to

the discovery of better differential trails for MITM attacks.
Our novel model takes into account a scenario where blue, red, gray, and white cells could

appear simultaneously in the target state, representing a generalized version of [ZSWH23].
If we denote k to be the number of targets employed for the MITM attack, which should be
less than or equal to dW , the time complexity would be 2n−k−min{dENC

B +dTAG
B ,dENC

R +dTAG
R ,dM} in

the classical setting and 2 1
2 (n−k−min{|dENC

B +dTAG
B −dENC

R −dTAG
R |,dENC

B +dTAG
B ,dENC

R +dTAG
R ,dM}) in the quantum

setting.
The size of the diamond structure would now be 2k+dTAG

B +dTAG
R , resulting in a time
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Figure 6: Substitute the target state in Figure 8 [ZSWH23] with an updated configuration

complexity of building the diamond structure as 2
n+k+dTAG

B +dTAG
R

2 , while the quantum time
would be 2

n+2(k+dTAG
B +dTAG

R )
3 . The parameter k is chosen within the range of 0 to dW to strike

a balance in the time complexity of the two phases.
Another important difference would be the elimination of the condition of

|dB − dR| ≥ min{dB, dR, dM},

since our viewpoint is that the necessity for the quantum attack to achieve quadratic
acceleration isn’t absolute. The sole criterion for assessing the validity of the quantum
attack is that its time complexity is lower than the corresponding generic bound.
Remark 1. In all the MITM differential trails we found for herding attacks on dedicated
ciphers like AES-MMO and Whirlpool, there are, in fact, no blue and red cells in the target
state, i.e., dTAG

B = dTAG
R = 0. Instead, the target state consists only of gray and white cells.

The reasons for the optimization results produced by automated tools require further
analysis.

In our analysis of the approach to identifying potential Nostradamus attacks on AES-like
hashing, it was observed that the parameter dTAG does not plays a significant role since the
presented paths showed dTAG

B = dTAG
R = 0. This is in contrast to previous models discussed

in [ZSWH23], where dTAG was considered indispensable due to multi-target requirement.
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Focusing solely on the online phase for searching linking messages in a classical setting,
the dedicated MitM approach exhibits a time complexity of 2n−min(dENC

B +dTAG
B ,dENC

R +dTAG
R ,dM),

which proves more efficient than the generic time complexity of 2n−(dTAG
B +dTAG

R ) under the
condition that min(dENC

B + dTAG
B , dENC

R + dTAG
R , dM) > dTAG

B + dTAG
R . This condition implies that

dENC
B > dTAG

R , dENC
R > dTAG

B , and dM > dTAG
B + dTAG

R . However, to identify a valid Nostradamus
attack when the generic time complexity T is known, two additional constraints must be
considered: 2n−min(dENC

B +dTAG
B ,dENC

R +dTAG
R ,dM) < T and 2

√
dTAG

B + dTAG
R · 2(n+dTAG

B +dTAG
R )/2 < T .

Remark 2. A valid MITM path for preimage attack may not necessarily result in a valid
Nostradamus attack, but the presence of a sufficient number of white bytes in the target
state within the path make it a potential candidate for a MITM preimage attack.

4 MILP Model
This section describes how the search for MITM Nostradamus attacks is automated with
Mixed-Integer Linear Programming (MILP). The source code of our model is available at
https://github.com/shahuiz/MITM-Nostradamus.

4.1 Automation Framework
An overview of the automatic search framework is provided before the modeling details are
illustrated. As the degree of freedom from the key schedule is not to be efficiently exploited
in the attack [ZSWH23], the framework is built on top of a conventional automated MITM
attack in a single-key setting with a twist on the optimization objective.

The special states in a MITM attack are identified using the following notations:

• ←→S ENC: the starting encryption state for forward and backward chunks.

• ←→S TAG: the target state for forward and backward chunks.

• −−→End: the terminating state of the forward chunk.

• ←−−End: the terminating state of the backward chunk.

• ←→M : the matching round operator between the two terminating states.

The positions of the aforementioned special states determine different patterns of
segmenting the closed loop. By default, the patterns are specified in a round-level accuracy.
The attack configuration parameter config is defined as the ordered tuple with the
following attributes:

• TOTAL: the total attacked rounds.

• START: the round index of ←→S ENC.

• MATCH: the round index of ←→M , −−→End, and ←−−End.

In our attack, initial degrees of freedom (DOFs) could be originated from the state as
well as the target. The bytes in ←→S ENC and ←→S TAG are thus partitioned into pairwise disjoint
subsets with different coloring (i.e. blue, red, gray, and white). The subsets are named after
the first letter of the coloring with source superscripted: BENC, RENC, GENC, WENC and BTAG,
RTAG, GTAG, WTAG. −→ι and ←−ι are used to denote the initial DOFs of forward and backward
computations. Additional constraints may be added during the attribute propagation of
each chunk to negate mutual impact and retain computational independence, which will be
reflected in the consumption of the initial DOFs. We use −→σ and ←−σ to track the consumed

https://github.com/shahuiz/MITM-Nostradamus
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DOFs. The remaining DOFs at the end of each computation are denoted as dB and dR.
Intuitively, we have:

−→ι = |BENC|+ |BTAG| , ←−ι = |RENC|+ |RTAG| (3)

dB = −→ι −−→σ , dR =←−ι −←−σ (4)

The degree of matching dM is determined by the choice of←→M and the byte distribution
of −−→End and ←−−End. If MATCH locates at the last round, ←→M is the XOR operator of the
feedforward step. Otherwise, ←→M is selected to be a MixColumns operator. We define the
number of bits in a byte as a constant denoted by NBYTE, which equals 8. In the classic
setting, the MITM attack would outperform brute force search (in the logarithm of 2) by
the factor of τC with the formula:

τC = NBYTE ·min(dB, dR, dM) (5)
In the quantum setting, the speed up τQ in comparison with a plain Grover’s search over
the preimage space is also determined by the imbalance between blue and red remaining
degrees:

τQ = NBYTE · min(|dB − dR|, dB, dR, dM)
2 (6)

The Guess-and-Determine (GnD) technique proposed in [BGST22] is incorporated
into the classic attack framework. In cases where some white cells ruined information
at the MixColumns operator, GnD provides an alternative to guess the byte to fulfill the
requirements for propagation and compensate with costs. In the search for extended-round
attacks on ciphers with large intermediate states, GnD proved its superiority when the
significance of successful propagation outweighed the cost. We use gB to count the guessed
blue bytes, gR the guessed red bytes, and gBR the guessed linear composition of both blue
and red bytes. The advantage that the GnD-integrated MITM attack brings in comparison
to brute force (in the logarithm of 2) is denoted by τ GnD with the formula:

τ GnD = NBYTE ·min(dB − gR, dR − gB, dM − gB − gR − gBR) (7)
A conventional single-key single-target MITM framework is concluded above. In our

proposed multi-target setting, the online MITM phase could be accelerated by searching
for a partial match instead of a full-state match. We use kw to denote the number of bits
that could be arbitrary during the partial match:

kw ≤ NBYTE · |WTAG| (8)
The offline phase of the Nostradamus MITM attack builds a diamond structure for the

herding attack, the height of which is denoted by kd (in the logarithm of 2). The value
of kd is determined by the number of partial targets obtained during the online MITM
phase. In the multi-target setting, both the arbitrary bits and the active bytes in the
target contributes to kd. Thus, we have:

kd = kw + NBYTE · (|BTAG|+ |RTAG|) (9)
The overall performance of the attack should be determined by the balance of offline and

online phases. The optimization objective will be discussed in both classic and quantum
settings. We denote the block length of the cipher as N .

Classic Objective C is formulated as follows:
C = max(N − kw − τ GnD, (N + kd)/2) (10)

In addition, to yield a meaningful attack that outperforms the corrected generic bound
given in section 3.1, we add:

kw + τ GnD > kd (11)
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Quantum Objective Q is formulated as follows:

Q = max((N − kw)/2− τQ, (N + 2 · kd)/3) (12)

Similarly, we also add:
kw/2 + τQ > kd/2 (13)

4.2 MILP Modeling
In this subsection, we dive into the details of how to model the attack with the MILP
language.

4.2.1 Encoding Scheme

We model the intermediate states with three boolean variables: b, r, and w.

• A blue byte is encoded as (b, r, w) = (1, 0, 0)

• A red byte is encoded as (b, r, w) = (0, 1, 0)

• A white byte is encoded as (b, r, w) = (0, 0, 1)

• A gray byte is encoded as (b, r, w) = (0, 0, 0)

We also use the notations bα, rα, wα to represent the value of b, r, w of byte α. The
encoding scheme enables us to efficiently obtain |BENC|, |RENC|, |BTAG|, |RTAG|, |WTAG| by
simply summing up the corresponding values of coordinates.

4.2.2 Propagation Rules

Taking the example of AES for illustration, it’s worth noting that Whirlpool follows similar
principles.

SubBytes The operator is an identity transformation. Such construction could be easily
obtained by the convex hull method, which is a common and well-referenced technique in
MILP-based automation.

XOR Due to the single-key setting, the XOR operators are only deployed at the last round,
where the output is mixed with the target. An XOR operator input 2 bytes and output 1
byte. The rule is described as follows:

• When the input involves a white byte, the output is white with no DOF consumption.

• When the input contains only gray bytes, the output is gray with no DOF consump-
tion.

• When the input contains only blue bytes, the output is either blue with no DOF
consumption or gray with 1 DOF consumption from the forward chunk.(−→σ = −→σ + 1)

• When the input contains only red bytes, the output is either red with no DOF
consumption or gray with 1 DOF consumption from the backward chunk.(←−σ =←−σ +1)

• When the input is a mix of red and blue bytes, the output is white:

The rule requires two extra binary variables at each output position to track the cost of
DOF and could be converted to constraints by the convex-hull method.
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MixColumns A MixColumns operator inputs and outputs a column. We denote the
cardinality of a column as NROW, which equals 4. We could compose the basic rule for the
MixColumns operator by introducing two extra integer-valued variables to track the cost
of DOF, which is detailed as follows:

• When the input contains a white byte, the output contains only white bytes with no
consumption of DOF.

• When the input contains only gray, the output contains only gray bytes with no
consumption of DOF.

• When the input is a mix of i blue bytes, j red bytes, k gray bytes (k < NROW), l white
bytes, the output will be a mix of a blue bytes, b red bytes, c gray bytes and d white
bytes, with a + c consumed DOF from the backward chunk and b + c consumed DOF
from the forward chunk. The relation is formulated as:

i + j + k = a + b + c + d = NROW, a + c ≤ NROW · (j + l), b + c ≤ NROW · (i + l) (14)

GnD-MC The construction of MixColumns operator with GnD integrated is organized as
follows. Conceptually, GnD is implemented as an independent operator, leading to the
propagation: A→ GnD → B → MC → C, where A, B, C represent intermediate states.
Through our optimized construction, we can bypass the intermediary state B and directly
transform A to C using a GnD-MC operator. To achieve this objective, we introduced 4
additional GnD switches for an input byte α, namely gw

α , gb
α, gr

α, gbr
α . The switches are

binary that satisfy:
wα = gw

α + gb
α + gr

α + gbr
α (15)

With the incorporation of only 4 additional GnD switches, we achieve the realization of
GnD-MC on top of basic MixColumns. Notably, this construction allows for convenient
toggling of GnD on and off as required.

In this setting, if α is non-white, then all GnD switches are 0. Otherwise, exactly one
GnD switch equals 1 while the rest are 0: gw

α = 1 means GnD is not activated and byte α
remains unknown, gb

α = 1 means byte α is guessed as blue for forward propagation, gr
α = 1

means byte α is guessed as red for backward propagation, and gbr
α = 1 means byte α is

guessed white for both forward and backward propagation. Hence, the column becomes a
mix of

∑
α gw

α white bytes,
∑

α gb
α + bα blue bytes,

∑
α gr

α + rα red bytes,
∑

α gbr
α white

bytes, and NROW−
∑

α(bα +rα +wα) gray bytes after GnD. With the new byte distribution,
we could call the basic model to properly address the propagation.

←→
M There are two types of matching equipped in our attack.

The XOR-match is used in the last round around the feedforward. It checks −−→End, ←−−End,
and the target TAG byte by byte, and mα = 1 if wα = 0 for −−→End, ←−−End, and TAG. The final
dM is the summation over all mαs:

dXOR
M =

∑
α

mα (16)

We adopt the MC-match at intermediate rounds around a MixColumns operator. It
checks −−→End and ←−−End and counts the non-white bytes column by column. For a column β,
if there exists tβ > NROW non-white bytes, then we have a degree of matching tβ − NROW at
column β. The final dM could be formulated as follows:

dMC
M =

∑
β

max(0, tβ − NROW) (17)
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5 Main Results on AES and Whirlpool
In this section, we use the notations as follows. The state before the SubByte operation of
the rth round is denoted as #SBr. Similarly, the state before ShiftRow or ShiftColumn
operation of rth round is denoted as #SRr or #SCr, the state before MixColumn or
MixRow operation of rth round is denoted as #MCr or #MRr, the state before adding
target is denoted as AT. And we denote the byte at the row i and column j of a state X
as XNROW·j+i, where NROW is 4 in the context of AES and 8 in the context of Whirlpool.

5.1 Improved 6-round attack on AES-MMO
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Figure 7: The 6-round attack on AES-MMO in classical setting

The attack starts with the precomputation of blue and red initial values. Recall
that during propagation, constraints are imposed on certain cells to preserve propagation
trails, represented by the consumption of DOF. An MITM attack fixes the value of such
beforehand and precomputes the initial values satisfying those constraints.

We have equivalently chosen #MC3 as the initial state for both forward and backward
chunks. And we have the input of the forward chunk BENC as {#MC3

0, #MC3
7, #MC3

10, #MC3
13}

and the input of the backward chunk RENC = #MC3\BENC.
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Precomputation of blue initial values. Given that there are no restrictions applied to
the forward chunk, we have the freedom to select the values of #MC3

0, #MC3
7, #MC3

10,
#MC3

13 and then propagate them to the corresponding states #MC1 and #SB2. The
input space of blue bytes has a size of 24×8 = 232.

Precomputation of red initial values. A total of 8 constraints are placed on the input
space of the backward chunk at the MixColumns operator in round 3. To illustrate, let’s
consider column 0: #MC3

1, #MC3
2, and #MC3

3 should have a constant impact on #SB4
1

and #SB4
3 to maintain the independence of the forward computation. As a result, the

constraints for column 0 can be outlined as follows, with c0 and c1 representing predefined
constants:

2 ·#MC3
1 + 3 ·#MC3

2 + 1 ·#MC3
3 = c0

1 ·#MC3
1 + 1 ·#MC3

2 + 2 ·#MC3
3 = c1

(18)

Likewise, constraints can be imposed on the remaining red bytes within #MC3 based
on predefined constants c2, c3, c4, c5, c6, and c7. Ultimately, this leads us to an input
space of size 24×8 = 232 for the backward chunk.

Match between the matching states. The forward and backward computations conclude
at #MC1 and #SB2, and the matching process will be conducted column by column. For
example, in column 0, we have obtained #MC1

1, #MC1
3, and #SB2

0 during the forward
computation, and #SB2

1, #SB2
2, and #SB2

3 during the backward computation. If a partial
match is present for column 0, it should adhere to the following:{

#MC1
1 = 9 ·#SB2

0 + 14 ·#SB2
1 + 11 ·#SB2

2 + 13 ·#SB2
3

#MC1
3 = 11 ·#SB2

0 + 13 ·#SB2
1 + 9 ·#SB2

2 + 14 ·#SB2
3

(19)

which leads to{
#MC1

1 − 9 ·#SB2
0 = 14 ·#SB2

1 + 11 ·#SB2
2 + 13 ·#SB2

3
#MC1

3 − 11 ·#SB2
0 = 13 ·#SB2

1 + 9 ·#SB2
2 + 14 ·#SB2

3
(20)

Likewise, for columns 1, 2, and 3, an additional 6 equations would be necessary to
maintain the partial match. This would result in a filter of probability 28×8 = 264.

Attack Procedure. The meet-in-the-middle Nostradamus attack procedure is executed
in the following manner:

1. Set the values of the 64-bit gray cells and 44-bit white cells in the target to zeros.
Construct the diamond structure with 220 leaves which follows the configuration
of the target, necessitating a time complexity of

√
20 × 2(128+20)/2 = 276.2 and a

memory complexity of approximately 0.83 × 276.2 (the coefficient 0.83 is derived
from [BSU10]), along with 220 memory to accommodate the diamond.

2. Select an untested set of predefined values for c0, · · · , c7 and initialize table L to
empty.

3. Feed the 232 possible inputs into the forward chunk and compute to #MC1
{1,3,4,6,9,11,12,14}

with the knowledge of prefixed gray cells in target and #SB2
{0,5,10,15}. For the first

column of #MC1, #SB2, we have Equation 20. It’s evident that the left side of
the two equations can be calculated independently from the forward chunks, while
the right side of the equations can be computed from the backward chunks. As a
result, we store the eight bytes of left side as indexes into L, with the stored values
representing #SR3

{0,1,2,3}.
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4. Feed the 232 possible inputs into the backward chunk and compute to #SB2. Compute
eight bytes of the right side of Equation 20 and search the index of L to find the full
state of #SR3. Check the 232+32−64 = 1 candidates for a full match. If a full match
is found, exit with the obtained preimage of the given target. Otherwise, repeat
procedures from step 2.

Complexity. The time complexity of the offline phase, as indicated in step 1, is approxi-
mately 276.2. For the online phase of the meet-in-the-middle preimage procedure, spanning
from step 2 to 4, the time complexity is 2128−20−32 = 276, memory complexity is 232. Con-
sequently, the overall time complexity of the MITM Nostradamus attack can be calculated
as 276.2 + 276, resulting in approximately 277. The associated memory complexity, on the
other hand, stands at 0.83× 276.161 + 220 + 232 ≈ 276.

5.2 7-round classical attack on AES-MMO
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Figure 8: The 7-round attack on AES-MMO in classical setting
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The configuration of the MITM attack on the 7-round AES-MMO is depicted in Figure 8.
We have equivalently chosen #SR4 as the initial state for both forward and backward chunks.
And we have the input of the forward chunk BENC as {#SR4

12, #SR4
13, #SR4

14, #SR4
15} and

the input of the backward chunk RENC = #SR4\BENC.

Precomputation of blue initial values. A total of 2 constraints are placed on the input
space of the forward chunk at the MixColumns operator in round 3. That is, #SB4

12,
#SB4

13, #SB4
14, and #SB4

15 should have a constant impact on #MC3
12 and #MC3

15. As a
result, the constraints can be outlined as follows, with c10 and c11 representing predefined
constants:

14 ·#SB4
12 + 11 ·#SB4

13 + 13 ·#SB4
14 + 9 ·#SB4

15 = c10

11 ·#SB4
12 + 13 ·#SB4

13 + 9 ·#SB4
14 + 14 ·#SB4

15 = c11
(21)

This leads to an input space of size 22×8 = 216 for the forward chunk.

Precomputation of red initial values. A total of 10 constraints are placed on the input
space of the backward chunk at the MixColumns operator in round 2 and round 4. In
round 2, #SB3

0, #SB3
2, #SB3

3, #SB3
4, #SB3

5 and #SB3
7 should have a constant impact

on #MC2
3 and #MC2

6 to maintain the independence of the forward computation. As a
result, the constraints can be outlined as follows, with c8 and c9 representing predefined
constants:

11 ·#SB3
0 + 9 ·#SB3

2 + 14 ·#SB3
3 = c8

13 ·#SB3
4 + 9 ·#SB3

5 + 11 ·#SB3
7 = c9

(22)

similarly in round 4, the constraints are:

2 ·#MC4
0 + 3 ·#MC4

1 + 1 ·#MC4
2 = c0

1 ·#MC4
0 + 1 ·#MC4

1 + 2 ·#MC4
2 = c1

1 ·#MC4
4 + 2 ·#MC4

5 + 1 ·#MC4
7 = c2

3 ·#MC4
4 + 1 ·#MC4

5 + 2 ·#MC4
7 = c3

2 ·#MC4
8 + 1 ·#MC4

10 + 1 ·#MC4
11 = c4

1 ·#MC4
8 + 2 ·#MC4

10 + 3 ·#MC4
11 = c5

2 ·#MC4
13 + 3 ·#MC4

14 + 1 ·#MC4
15 = c6

1 ·#MC4
13 + 1 ·#MC4

14 + 2 ·#MC4
15 = c7

(23)

This would lead to an input space of size 22×8 = 216 for the backward chunk.

Match between the matching states. The forward and backward computations conclude
at #MC1 and #SB2, and the matching process will be conducted in column 3. We
have obtained #MC1

13, #MC1
15, #SB2

14, and #SB2
15 during the forward computation, and

#SB2
12, #SB2

13 during the backward computation. If a partial match is present for column
3, it should adhere to the following:{

#MC1
13 = 9 ·#SB2

12 + 14 ·#SB2
13 + 11 ·#SB2

14 + 13 ·#SB2
15

#MC1
15 = 11 ·#SB2

12 + 13 ·#SB2
13 + 9 ·#SB2

14 + 14 ·#SB2
15

(24)

which leads to{
#MC1

13 − 11 ·#SB2
14 − 13 ·#SB2

15 = 9 ·#SB2
12 + 14 ·#SB2

13
#MC1

15 − 9 ·#SB2
14 − 14 ·#SB2

15 = 11 ·#SB2
12 + 13 ·#SB2

13
(25)

This would result in a filter of 28×2 = 216.
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Attack Procedure. The meet-in-the-middle Nostradamus attack procedure is executed
in the following manner:

1. Set the values of the 96-bit gray cells and one bit of any white cell (e.g., the first bit of
TAG1) in the target to zeros. Construct the diamond structure with 2128−96−1 = 231

leaves which follows the configuration of the target, necessitating a time complexity
of
√

31× 2(128+31)/2 = 282 and a memory complexity of approximately 0.83× 282,
along with 231 memory to accommodate the diamond.

2. Select an untested set of predefined values for c0, · · · , c11 and initialize table L to
empty.

3. Feed the 216 possible inputs into the forward chunk and compute to #MC1
{13,15} with

the knowledge of prefixed gray cells in target and #SB2
{14,15}. From Equation 25, it

is evident that the left side of the two equations can be calculated independently
from the forward chunks, while the right side of the equations can be computed from
the backward chunks. As a result, we store the two bytes of left side as indexes into
L, with the stored values representing #SR4

{12,13,14,15}.

4. Feed the 216 possible inputs into the backward chunk and compute to #SB2. Compute
two bytes of the right side of Equation 25 and search the index of L to find the
full state of #SR4. Check the 216+16−16 = 216 candidates for a full match. If a full
match is found, exit with the obtained preimage of the given target. Otherwise,
repeat procedures from step 2.

Complexity. The time complexity of the offline phase, as indicated in step 1, is ap-
proximately 282. For the online phase of the meet-in-the-middle preimage procedure,
spanning from step 2 to 4, the time complexity is 2128−31−16 = 281, memory complexity is
216. Consequently, the overall time complexity of the MITM Nostradamus attack can be
calculated as 282 + 281, resulting in approximately 283. The associated memory complexity,
on the other hand, stands at 0.83× 282 + 231 + 216 ≈ 282.

5.3 Improved 7-round attack on AES-MMO in quantum setting
The configuration of the quantum MITM attack on 7-round AES-MMO is shown in Figure 9.
The size of the offline diamond structure is chosen to be 214, which results in a time
complexity of the offline phase amounting to 3

√
14 · 2(128+2·14)/3 = 253.3, along with a

requirement for 14− 2
3 · 2(128+2·14)/3 = 249.5 QRACM qRAM and 214 classical memory to

store the diamond. The size of N+ and N− are 2(4−1−1)×8 = 216 and 2(12−8−3)×8 = 28.
Given the size of M as 28, when applying the quantum formula, the time complexity of the
MITM preimage attack becomes 2 128−14−8

2 = 253. Consequently, the combined complexity
of the quantum Nostradamus attack is calculated as 253.3 + 253, resulting in a total of
254.1. The memory complexity involves 249.5 QRACM qRAM, 214 classical memory, and
28 QRAQM qRAM for the quantum MITM approach.

Low-qRAM variant. We can use the algorithm presented in [DLPZ23] to suit the low
qRAM scenario. Constructing a diamond structure of size 2k = 26 entails a time complexity
of k1/5 · 2(2n+4k)/5 = 256.5, classical memory usage of k3/5 · 2(n+2k)/5 = 230, and an qRAM
requirement of O(n). When combined with the MITM attack with a time complexity of
2(128−8−6)/2 = 257 and 28 QRAQM qRAM, the resulting overall time complexity becomes
257 + 256.5 = 258, while classical memory remains at 230 + 26 ≈ 230, and qRAM at 28

QRAQM.
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Figure 9: The 7-round quantum attack on AES-MMO

Remark 3. When considering a quantum attack on the 7-round AES-MMO, it’s important to
note that achieving a better time complexity than what is presented in [ZSWH23] is not
feasible. While we can introduce white cells to expand the search space, we observe that
the degree of freedom is mainly constrained by factors such as blue cells, red cells, matching
bytes, and the difference |dB − dR|, which cannot exceed 1. In the quantum setting, the
online phase of the Nostradamus attack is determined by 2(n−k−min(|dB−dR|,dB,dR,dM))/2.
As a result, the time complexity of online phase is 2(128−k−8)/2 = 260−k/2. To achieve a
balance with offline diamond construction phase whose time complexity is 3

√
k · 2(128+2k)/3,

the optimal value for k is determined to be 14. Therefore, as long as the number of white
bytes exceeds 2, setting k to 14 ensures the optimal total time complexity. Therefore,
regardless of the number of degrees of freedom obtained from the TAG element, the
ultimate complexity for achieving balance must be precisely 14-bit degrees of freedom.
This results in a balanced value of 254.1.



Xiaoyang Dong, Jian Guo, Shun Li, Phuong Pham and Tianyu Zhang 179

5.4 6-round classical attack on Whirlpool
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Figure 10: The 6-round classical attack on Whirlpool

The configuration of the MITM attack on 6-round Whirlpool is shown in Figure 10. We
have equivalently chosen #SC3 as the initial state for both forward and backward chunks.
And we have the input of the forward chunk BENC as {#SC3

14, #SC3
35, #SC3

38, #SC3
59} and
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the input of the backward chunk RENC as 36 red cells in #SC3.

Precomputation of blue initial and to-be-guessed values. Given that there are no re-
strictions applied to the forward chunk, we have the freedom to select the values of #SC3

14,
#SC3

35, #SC3
38, #SC3

59 and the values of guessed bytes of #MR0
{7,14,22,23,30,31,38,39,47,54,62,63},

then propagate them to the corresponding states #MR1 and #SB2. The input space of
blue bytes has a size of 216×8 = 2128.

Precomputation of red initial values. A total of 20 constraints are placed on the input
space of the backward chunk at the MixColumns operator in round 3 and round 4. In round
3, #MR3

11, #MR3
19, #MR3

27, #MR3
35, #MR3

51 and #MR3
59 should have a constant impact

on #SB4
51. The constraints can be outlined as follows, with c0 representing predefined

constants:

5 ·#MR3
11 + 8 ·#MR3

19 + 1 ·#MR3
27 + 4 ·#MR3

35 + 1 ·#MR3
51 + 9 ·#MR3

59 = c0 (26)

While in round 4, the constraints are similarly put on c1, . . . , c19. This would lead to an
input space of size 2(36−20)×8 = 2128 for the backward chunk.

Match between the matching states. The forward and backward computations conclude
at #MR1 and #SB2, and the matching process will be conducted row by row. For
example, in row 0, we have obtained #MR1

8, #MR1
16, and #SB2

24, #SB2
48 during the

forward computation, and #SB2
0, #SB2

8, #SB2
16, #SB2

32, #SB2
40, and #SB2

56 during the
backward computation. If a partial match is present for column 0, it should adhere to the
following:

#MR1
8 = 175 ·#SB2

0 + 4 ·#SB2
8 + 62 ·#SB2

16 + 203 ·#SB2
24 + 194 ·#SB2

32
+194 ·#SB2

40 + 164 ·#SB2
48 + 14 ·#SB2

56
#MR1

16 = 14 ·#SB2
0 + 175 ·#SB2

8 + 4 ·#SB2
16 + 62 ·#SB2

24 + 203 ·#SB2
32

+194 ·#SB2
40 + 194 ·#SB2

48 + 164 ·#SB2
56

(27)

which leads to
#MR1

8 − 203 ·#SB2
24 − 164 ·#SB2

48 = 175 ·#SB2
0 + 4 ·#SB2

8 + 62 ·#SB2
16

+194 ·#SB2
32 + 194 ·#SB2

40 + 14 ·#SB2
56

#MR1
16 − 62 ·#SB2

24 − 194 ·#SB2
48 = 14 ·#SB2

0 + 175 ·#SB2
8 + 4 ·#SB2

16
+203 ·#SB2

32 + 194 ·#SB2
40 + 164 ·#SB2

56

(28)

where cir(4, 175, 14, 164, 194, 194, 203, 62) is the inverse matrix of Whirlpool linear diffusion
layer cir(1, 1, 4, 1, 8, 5, 2, 9).

Likewise, for rows 1, . . . , 7, an additional 14 equations would be necessary to maintain
the partial match. This would result in a filter of 216×8 = 2128.

Attack Procedure. The meet-in-the-middle Nostradamus attack procedure is executed
in the following manner:

1. Set the values of the 56-bit gray cells and 308 bits out of 456 white cells (e.g., 38
white bytes of the top 5 rows and 4-bit of TAG5) in the target to zeros. Construct
the diamond structure with 2456−308 = 2148 leaves which follows the configuration
of the target, necessitating a time complexity of

√
148 × 2(512+148)/2 = 2333.6 and

a memory complexity of approximately 0.83 × 2333.6, along with 2148 memory to
accommodate the diamond.
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2. Select an untested set of predefined values for c0, · · · , c19 and the 192-bit gray cells
in the #SC3, initialize table L to empty.

3. Feed the 2128 possible inputs into the forward chunk and compute to blue cells of
#MR1 and #SB2 with the knowledge of prefixed gray cells in target and guessed cells
in #MR0. For the first row of #MR1, #SB2, we have Equation 28. It’s evident that
the left side of the two equations can be calculated independently from the forward
chunks, while the right side of the equations can be computed from the backward
chunks. As a result, we store the 16 bytes of left side as indexes into L, with the
stored values representing #SC3

14,35,38,59 and #MR0
{7,14,22,23,30,31,38,39,47,54,62,63}.

4. Feed the 2128 possible inputs into the backward chunk and compute to #SB2.
Compute 16 bytes of the right side of Equation 28 and search the index of L to find
the full state of #SC3. Check the 2128+128−128 = 2128 candidates for the values of
guessed bytes of #MR0, the probability of making a correct guess is 2−12×8 = 2−96,
check the remaining 2128−96 = 232 candidates for a full match. If a full match
is found, exit with the obtained preimage of the given target. Otherwise, repeat
procedures from step 2.

Complexity. The time complexity of the offline phase, as indicated in step 1, is approxi-
mately 2333.6. For the online phase of the meet-in-the-middle preimage procedure, spanning
from step 2 to 4, the time complexity is 2512−148−32−128 ·(2128 +2128 +2128) = 2332, memory
complexity is 2128. Consequently, the overall time complexity of the MITM Nostradamus
attack can be calculated as 2333.6 + 2332, resulting in approximately 2334. The associated
memory complexity, on the other hand, is 0.83× 2333.6 + 2148 + 2128 ≈ 2333.

5.5 Improved 6-round attack on Whirlpool in quantum setting
The configuration of the quantum MITM attack on 6-round Whirlpool is shown in
Figure 11. The size of diamond is chosen to be 261, time complexity is 3

√
61 ·2(512+2×61)/3 =

2213.3 and memory complexity is 61− 2
3 · 2(512+2×61)/3 = 2207.4 QRACM qRAM. The size

of N+ and N− are 2(48−14−12−16)×8 = 248 and 2(16−1−12)×8 = 224. The size of M is 224,
the time complexity of the MITM attack is 2(512−61−24)/2 = 2213.5, then the overall time
complexity of the quantum Nostradamus attack is 2213.3 + 2213.5 = 2214. The memory
complexity involves 2207.4 QRACM qRAM, 261 classical memory, and 224 QRAQM qRAM
for the quantum MITM approach.

Low-qRAM variant. We can modify the algorithm presented in [DLPZ23] to suit the
low qRAM scenario. Constructing a diamond structure of size 2k = 229 entails a time
complexity of k1/5 · 2(2n+4k)/5 = 2229, classical memory usage of k3/5 · 2(n+2k)/5 = 2117,
and an qRAM requirement of O(n). When combined with the MITM attack with a time
complexity of 2(512−24−29)/2 = 2229.5 and 224 QRAQM qRAM, the resulting overall time
complexity becomes 2229+2229.5 = 2230, while classical memory remains at 2117+229 ≈ 2117,
and qRAM at 224.

6 Conclusion
In this paper, we have revised the multi-target technique integrated into the meet-in-the-
middle automatic search framework. This change results in a reduction of time complexity
during the online linking phase, consequently decreasing the overall attack time complexity
in both classical and quantum settings. Through adaptive revisions of the MILP model
used for searching meet-in-the-middle trails, we identify more efficient trails that not only
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Figure 11: The 6-round quantum attack on Whirlpool

enhance time complexity but also enable the realization of additional rounds within the
classical setting. We apply our attack in various scenarios: conducting a classical MITM
Nostradamus attack on a 7-round AES-MMO and a 6-round Whirlpool, and achieving an
enhanced quantum MITM Nostradamus attack on both a 7-round AES-MMO and a 6-round
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Whirlpool.
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