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Abstract. It is known that the sponge construction is tightly indifferentiable from
a random oracle up to around 2c/2 queries, where c is the capacity. In particular,
it cannot provide generic security better than half of the underlying permutation
size. In this paper, we aim to achieve hash function security beating this barrier. We
present a hashing mode based on two b-bit permutations named the double sponge.
The double sponge can be seen as the sponge embedded within the double block
length hashing paradigm, making two permutation calls in parallel interleaved with
an efficient mixing function. Similarly to the sponge, the permutation size is split as
b = r + c, and the underlying compression function absorbs r bits at a time. We prove
that the double sponge is indifferentiable from a random oracle up to around 22c/3

queries. This means that the double sponge achieves security beyond the birthday
bound in the capacity. In addition, if c > 3b/4, the double sponge beats the birthday
bound in the primitive size, to our knowledge being the first hashing mode based on
a permutation that accomplices this feature.
Keywords: double block length hashing · permutation-based hashing · sponge ·
lightweight cryptography · beyond birthday bound

1 Introduction
In recent years, there has been a growing interest in permutation-based hashing. Most
of the concerned modes revolve around the sponge construction [BDPV07]. The sponge
uses a global state of size b bits, also equal to the permutation size. The state size is split
into two parts: r, called the rate, and c, called the capacity, so that b = r + c. The rate
determines at which pace the messages are absorbed and the digest blocks extracted, while
the capacity is a security parameter. It has been shown that the sponge is indifferentiable
from a random oracle up to ≈ 2c/2 queries [BDPV08] in the framework of Maurer et
al. [MRH04] and Coron et al. [CDMP05]. This indifferentiability result implies that the
hash function based on an ideal primitive behaves like a random oracle. It thus provides
security guarantees regarding any one-stage generic attack [RSS11], at least up to 2c/2

queries (the scheme may achieve higher security against specific attacks, see, e.g., [LM22]).
The 2c/2 indifferentiability bound of the sponge construction is tight. In particular,

in order to obtain a sponge-based hash function with k bits of security, one must use a
permutation of size at least 2k + 1 bits. On the other hand, permutation-based keyed
applications achieve a higher level of security. A long line of research on keyed applications
of the sponge [BDPV07,BDPV11b,CDH+12,ADMV15,GPT15,MRV15,NY16,DMP22]
and duplex [BDPV11a, JLM14, SY15, MRV15, DMV17, DM19, JLM+19, CJN20, Men23]
has demonstrated that typical sponge-/duplex-based encryption, authentication, and
authenticated encryption can achieve around min{2c/M, 2k} security, where k is the key
size and M the online complexity (the number of keyed evaluations). Clever use of domain
separators can even push security to min{2c, 2k} (see, e.g., [Men23, Corollary 1]).
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The gap between 2c/2 security in keyless applications and 2c/M security in keyed
applications (assuming the key is long enough) is insignificant in case a general purpose
permutation such as Keccak-f[1600] [BDPV11b] is available. However, when only small
permutations are available, the situation changes drastically. Suppose, for the sake of
example, we have the ISO/IEC standardized permutation P256 of the PHOTON fam-
ily [GPP11] at our disposal (a comparable example can be given for ISO/IEC standardized
Spongent [BKL+11]). If the permutation is used in duplex-based authenticated encryption,
we obtain generic 2192 security provided that the online complexity is bounded by 264

blocks [Men23, Section 9]. In a keyless setting, however, in the plain sponge construction
this permutation yields 2127 security at best! The contrast becomes even more pronounced
for smaller permutations. For example, NIST Lightweight Cryptography [NIS19] finalist
Elephant [BCDM20] is a permutation-based authenticated scheme instantiated with three
different permutations of sizes respectively 160, 176, and 200 bits. Assuming that the
online complexity is bounded by 250 bytes (the limit as stated in the call for proposals of
the NIST Lightweight Cryptography competition), Elephant achieves 112, 127, and 127
bits of security in the random permutation model. On the other hand, the Elephant finalist
did not offer a hashing functionality, the reason simply being that the three permutations
were too small for hashing [BCDM20, Section 1].

This issue is not unique for the sponge: alternative hash functions such as the modes of
Grindahl [KRT07], the SHA-3 finalists Grøstl [GKM+11] and JH [Wu11], or the generalized
parazoa framework [AMP12] achieve security up to b/2 bits at best (see also Table 2 later
on).

This leads to a fundamental question as to whether it is possible to obtain more than
b/2 bits of security for a hash function based on a permutation of size b bits, i.e., to beat the
birthday bound in the underlying permutation size. Note that this is not just a theoretical
question: a construction of this type would allow to hash with smaller permutations, and
it would allow to reduce the gap between the required permutation sizes for keyed and
keyless permutation-based constructions for a given security level.

1.1 Compression Functions Based on Permutations
To answer this question, one direction is to search for a secure permutation-based com-
pression function. Indeed, to facilitate the design of hash functions, one can start from a
robust compression function upon which one applies a domain extender to turn it into
a hashing mode. Yet the question of finding “good” compression functions based on
permutations is much more challenging than for block ciphers, since as opposed to the
latter, permutations are non-compressing primitives. Stam’s conjecture [Sta08], later
proved by Steinberger [Ste10] and Steinberger et al. [SSY12], implies that for a compression
function compressing m bits, collision resistance of 2s requires at least s+m

b−s different
b-bit permutation calls per compression function call, which is hard to reach in practice.
In addition, most of the existing literature regarding permutation-based compression
functions [RS08,SS08,MP12] only focus on collision resistance and preimage resistance.
In particular, no compression function construction is known to guarantee security in the
indifferentiability framework. On top of that, looking at the sponge, it has an insecure
compression function, suggesting that achieving security at the compression function level
is overkill.

1.2 Double Block Length Hashing Based on a Block Cipher
Instead of focusing on designing a secure compression function, we rather take inspiration
from the double block length hashing design rationale, an idea that dates back to Meyer and
Schilling with the design of MDC-2 and MDC-4 [MS88]. It consists of using a state twice
as large as the primitive size with at least two primitive calls per compression function call.
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In block cipher-based hashing, the literature studying compression functions for double
block length hashing is vast [MS88,Sta08,Sta09,LM92,Hir06,Hir04,ÖS09,LS15,JÖS12,
Men12,LSS11a,LK11,FGL09,KP97,Men14,AFK+11,LSS11b]. All of these constructions
have been proven collision/preimage resistant, but none of them is indifferentiable (or only
with a weak bound), as shown in [Men13]. Thus a dedicated proof is required to prove
indifferentiability at the hash function level. Examples of proven indifferentiable hash
function constructions include Naito’s construction using Hirose’s compression function
without feed-forward [Nai17], MDPH [Nai19], used by the NIST lightweight cryptography
finalist Romulus [IKMP20], and EXEX-NI from Naito et al. [NSS21]. The latter scheme
uses an invertible (thus insecure) and efficient compression function, and the construction
is indifferentiable up to n− log(n) bits, where n denotes the block size. We will look into
the same direction, i.e., aim at finding an efficient double block length hashing scheme
based on permutations with an insecure compression function.

1.3 Our Contribution
In detail, we propose a double block length hashing mode based on two permutations
of size b = r + c bits, called the “double sponge”. The double sponge is described in
detail in Section 3 and depicted in Fig. 1. The scheme can be seen as two sponges whose
states are blended together after each absorption of a message block, using an efficient
mixing function. Similarly to most double block length hashing schemes, the double sponge
processes the same message block through two different permutation calls. As before,
its security and efficiency depend on the parameters r and c, which are called rate and
capacity, respectively, as before.

An indifferentiability proof of the double sponge up to a bound of 2c/3 bits is given in
Section 4. The simulator introduced for this proof is designed to be indistinguishable from
a random permutation up to 22c/3 queries, as we demonstrate in Lemma 4. The major
challenge in the design of the simulator is to guarantee that it provides answers matching
the ones of the random oracle. Indeed, as we target a security bound beyond 2c/2, inner
collisions may occur and the simulator has to deal with them. This problem is resolved
mostly by allowing the simulator to selectively define certain (but a limited number of)
queries in advance, and by defining sophisticated bad events taming the inner collisions.
The simulator is described in detail in Section 4.2, including an extensive rationale.

In Section 6, we describe a differentiability attack with respect to our simulator which
succeeds after approximately 2 2c+r

3 queries. The attack gets close to the security bound of
the double sponge, but admittedly leaves a (small) gap of 2 r

3 queries. This gap is likely
caused by restrictions we had to impose to avoid inner multi-collisions. Releasing this
conditions, i.e., allowing inner multi-collisions, would incur a more complex simulator
tree structure and new, even more sophisticated, bad events. In Section 7 we conclude
the work, and in particular discuss in more detail the (im-)possibilities to improve the
differentiability attack or the indifferentiability proof.

1.4 Comparison with Existing Hashing Modes
The double sponge allows to have a hash function using a b-bit permutation while it
was not possible with existing permutation-based constructions when the target level of
security κ is between 1

2 (b− 1) and 2
3 (b− 1). In particular, for κ = 112 (corresponding to

NIST Lightweight Cryptography requirements), one needs a double sponge with c ≥ 168
(as opposed to c ≥ 224 for the plain sponge). This concretely means that if one has at
their disposal only the ISO/IEC standardized 176-bit Spongent, or the 196-bit PHOTON
permutation, then one can use them with the DS and attain 112 bits of security. One
can even use smaller variants of these standardized primitives and still attain a decent
level of security, although slightly below κ = 112. Moreover, for certain parameter sets,
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Table 1: Comparison of the double sponge (DS) with several double block length hashing
modes. r and c denote respectively the rate and capacity used in the DS. n and k denote
respectively the block size and the key size of the block cipher-based hashing modes. The
security bound is in bits, and holds in the indifferentiability framework. In the security
bound of block cipher-based modes, logarithmic factors in n are omitted.

Mode # Primitives
per compression

Compression
rate (ρ)

Security
bound (κ)

State
size

Primitive size
Note Referenceinput output

Mennink’s in,
e.g., ChopMD 3 n n

2 4n 2n n k = n [Men13]

MDPH 2 k − n n 3n + k n + k n k > n [Nai19,GIM22]
EXEX-NI 2 k − n n n + k n + k n k ≥ 2n [NSS21]
DS 2 r 2c

3 2(r + c) r + c r + c This work

using a DS can improve the security, without sacrificing the number of bits compressed
per permutation call. More precisely, for a plain sponge with a rate of r bits and primitive
size b bits, when r ≤ b

5 , then using DS with a rate of 2r improves the security bound. Of
course, this security improvement does not come for free: our construction requires two
distinct permutations,1 a state twice as large, and additionally two multiplications by 2
and additions in GF(2b) per compression function evaluation.

1.4.1 Comparison with Double Block Length Hashing Modes

In Table 1, we compare DS with the most notable double block length hashing modes that
were proven to be indifferentiable from a random oracle: Mennink’s indifferentiable double
block length compression function in any suitable indifferentiable hashing mode [Men13],
MDPH [Nai19], and EXEX-NI [NSS21]. In this discussion we exclude Naito’s mode on top
of Hirose’s compression function [Nai17] and the MDC-4 [MS88] compression function in
any suitable hashing mode [Men13] as they give worse numbers. We also do not include
hashing modes that were only proven collision resistant; for this, we refer to the discussion
of Naito et al. [NSS21, Table 1]. It is important to note that block ciphers are compressing
primitives, and for MDPH and EXEX-NI we require the key size to be larger than the
block size (k > n and k ≥ 2n, respectively). Henceforth, in our comparison we consider
the primitive input size, which equals k + n for block cipher-based modes and r + c for the
DS.

If we restrict our focus to a fixed security bound κ and a fixed rate ρ, MDPH and
EXEX-NI require a primitive of size ρ + 2κ bits whereas DS requires a primitive of size
ρ+ 3

2 κ bits. Mennink’s construction is restricted to 2κ = ρ = n, in which case the primitive
input size is 4κ as opposed to 7

2 κ for DS.
The gain comes at a cost in state size. Again fixing κ and ρ, EXEX-NI requires a state

size of ρ + 2κ bits (that mode is specifically designed for having a low memory size) as
opposed to 2ρ + 3κ for DS. MDPH has a state size of ρ + 4κ, which is better than DS only
if ρ ≥ κ.

1.4.2 Comparison with Permutation-Based Hashing Modes

We replicate our analysis in Table 2, focusing this time on permutation-based hashing
modes that have a proven indifferentiability bound. We draw the comparison between
DS on the one hand and the sponge [BDPV07,BDPV08], Grøstl [GKM+11,AMP10], and
JH [Wu11,BMN10,MPS16] on the other hand. We do not include the Grindahl [KRT07,
AMP12] and PHOTON [GPP11,NO14] modes, as they have identical metrics to the sponge,
nor the general parazoa framework [AMP12].

1However, we discuss the possibilities of using a single permutation in Section 4.5.
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Table 2: Comparison of the double sponge (DS) with several permutation-based hashing
modes. r and c denote respectively the rate and capacity used in the plain sponge. The best
known attack and security bound are in bits, and the latter holds in the indifferentiability
framework.

Mode # Primitives
per compression

Compression
rate (ρ)

Security State
size

Primitive
size Referencebound (κ) attack (λ)

Sponge 1 r c
2

c
2 r + c r + c [BDPV07,BDPV08]

Grøstl 2 b b
4

b
2 3b b [GKM+11,AMP10]

JH 2 b
2

b
4

b
2

(∗)
b b [Wu11,BMN10,MPS16]

DS 2 r 2c
3

2c+r
3 2(r + c) r + c This work

(∗): [MPS16] mentions that the indifferentiability bound on JH is not tight and suggests
that it could possibly be improved further to b

2 bits.

It is important to note that for DS, as well as for Grøstl and JH, the proven security
bound κ is not tightly matching the best attack λ. Nevertheless, regardless of whether we
consider the the best known attack or the security bound, the DS outperforms the sponge
in terms of permutation size. In detail:

• for fixed security bound κ and a fixed rate ρ, the sponge requires a primitive of size
ρ + 2κ bits whereas DS requires a primitive of size ρ + 3

2 κ bits;

• for fixed security attack λ and a fixed rate ρ, the sponge requires a primitive of size
ρ + 2λ bits whereas DS requires a primitive of size ρ

2 + 3
2 λ bits.

The improvement of DS over the sponge comes at a cost in extra state size: DS operates
on a state of 2ρ + 3κ bits as opposed to ρ + 2κ for the sponge.

Grøstl is restricted to ρ = 4κ, in which case the permutation size is 4κ too, as opposed
to 11

2 κ. Thus, for the restricted regime of Grøstl, Grøstl outperforms the other schemes.
JH is restricted to 2κ = ρ = b

2 , in which case the permutation size is 4κ as opposed to 7
2 κ

for DS. If we consider instead the best known attack λ, JH is restricted to λ = ρ, in which
case both JH and the DS require a primitive of size 2λ bits. Therefore, there is little to no
difference between JH and DS. These results may not come as a surprise as both Grøstl
and JH have a large absorption rate, and cannot be proven secure beyond the birthday
bound in the permutation size.

2 Preliminaries
2.1 Notation
In the following, we use x := y to define x as being equal to y. Let {0, 1}∗ be the set of
binary strings of arbitrary length. Given X ∈ {0, 1}∗, X[a1 : a2] denotes the bits of X
between positions a1 and a2 (latter excluded). For b, r, c ∈ N with b := r + c, and |X| = b,
the outer part of X is outerr (X) := X[0 : r], and the inner part is innerc (X) := X[r : b].
For X, Y ∈ {0, 1}b, X

c= Y means that innerc (X) = innerc (Y ).
If S is a finite set, x

$←− S means that x is sampled uniformly at random from S.
Vectors are denoted with bold letters. If x is a vector with k coordinates, then for any
i ∈ {1, . . . , k}, xi is the ith element of x. We consider random oracles taking as input
arbitrary length messages and outputting random streams [BR93]. For a random oracle
RO and a message M , RO(M) ∈ {0, 1}∗ denotes the stream. If evt is an event, for any
i ∈ {1, . . . , q}, evti denotes that evt is triggered after i queries. Moreover, if P1 and
P2 are two probability distributions, for k ∈ {1, 2}, Prk (evt) denotes the probability
that evt is set with the distribution Pk. If S is a set of size 2, then for s ∈ S, s̄ is the
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unique element in S different from s. In the algorithms, the procedures are highlighted
in red, the comments are in blue and formatted using the C language syntax. Finally,
given a dictionary dict with keys in a set S, Img(dict) := {dict[x] | x ∈ S} \ {⊥},
Dom(dict) := {x ∈ S | dict[x] ̸= ⊥}.

2.2 The Sponge Construction

Since our construction is based on the plain sponge, we briefly discuss this construction in
an XOF mode based on a permutation P : {0, 1}b → {0, 1}b, where b ∈ N. Let c, r ∈ N
be such that b = r + c, M ∈ {0, 1}∗ be an input message, and IV ∈ {0, 1}b be any fixed
initialization vector. The sponge construction requires messages to be of length a multiple
of r bits, and such that the last message block is not zero. For that reason we require
an injective padding function pad which transforms the messages into r-bit blocks with
a non-zero last message block. An example of such padding consists of appending to M
a one and as many zeros as required to obtain a message of length divisible by r. The
sponge construction instantiated with the permutation P , and with domain and codomain
{0, 1}∗, is now defined as follows.

1. Initialization. M is padded and decomposed into r-bit blocks, and the state of the
sponge is initialized by IV ;

2. Absorbing phase. Every message block is XORed to the upper r bits of the state,
and each addition is interleaved with an application of P to the state;

3. Squeezing phase. Once all message blocks have been absorbed, the stream is extracted
by blocks of r bits by retrieving the upper r bits of the state. Every extraction is
again interleaved by the application of P.

This construction is formalized in Algorithm 1.

Algorithm 1: The sponge construction. The algorithm takes as input the message
to hash M and the number of bits of the stream to extract n. IV ∈ {0, 1}b is a fixed
initialization vector.

1 Function SpongeP(M, n): {0, 1}∗ × N→ {0, 1}∗

/* The state S is initialized and the message is padded and split into r-bit
blocks */

2 S ← IV ;
3 M1∥ · · · ∥Mk ← pad(M);

/* Absorbing phase */
4 for i = 1, . . . , k do
5 S ← P (S ⊕ (Mi∥0c));
6 end

/* Squeezing phase */
7 for i = 1, . . . , ⌈n/r⌉ do
8 Zi ← outerr (S);
9 S ← P (S);

10 end
11 return (Z1∥ . . . ∥Z⌈n/r⌉)[0 : n]
12 end
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2.3 Security Model
2.3.1 Indistinguishability

Let S0, S1 be two systems. Consider a distinguisher D which interacts with Sk, for
k

$←− {0, 1}. D is allowed to make at most q queries book-kept in the so-called query history,
and outputs an element in {0, 1}, reflecting with which system it believes to interact with.
The advantage of D is defined as

Advind (S0, S1) (D) =
∣∣Pr

(
DS0 = 1

)
−Pr

(
DS1 = 1

)∣∣ .

Moreover, Advind (S0, S1) (q) denotes the supremum of the set of Advind (S0, S1) (D),
over all distinguishers D making at most q queries to the system (note that the quantity q
might be refined when S0 and S1 give access to several oracles).

2.3.2 Indifferentiability

Indifferentiability is a special type of distinguishing game, where the adversary has access
to a keyless primitive. This framework was introduced by Maurer et al. [MRH04], and
refined in the context of hash functions by Coron et al. [CDMP05]. Let HP be the hash
function using an invertible ideal primitive P, and RO be a random oracle with the same
domain and co-domain as H. Let S := (Sfwd ,Sinv) be a simulator allowed to make at most
qS queries to RO such that both Sfwd and Sinv have the same domain and co-domain as
P. Let D be a distinguisher making at most qH construction queries and qP primitive
queries. The indifferentiability advantage of D with respect to the simulator S is defined
as follows:

Advindif
HP, S(D) = Advind ([HP , (P,P−1)], [RO, (Sfwd ,Sinv)]

)
(D) .

Moreover, Advindif
HP, S(qP , qH) denotes the supremum of the set of Advindif

HP, S(D), over all
distinguishers D making qP primitive queries and qH construction queries. Sometimes,
this notion is refined. For example, in our case, calling HP with a message M has a
practical cost which depends on the size of M (after padding, see Section 3.1), and the
desired number of bits of the stream to extract. Then, we define Advindif

HP, S(qP , σ) to be
the supremum of the set of Advindif

HP, S(D), over all distinguishers D making qP primitive
queries and construction queries that would require in total σ primitive queries in the
world [HP , (P,P−1)].

In the following we define RO-consistency, which captures the fact that the simulator
answers match theRO outputs. This is an essential property to guarantee indifferentiability
of the construction.

Definition 1. A simulator S for an iterated XOF construction is RO-consistent if
∀i ∈ N,∀M ∈ {0, 1}∗, whenever one can compute HS(M)[0 : i] from the query history to
the simulator, then it equals RO(M)[0 : i].

Note that the RO-consistency can be guaranteed under certain conditions, e.g., as long
as a bad event does not occur.

3 Double Sponge
In this section we describe our hashing mode, and prove its indifferentiability in Section 4.
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3.1 Description
Let b, r, c ∈ N, with b = r + c. On a high level view, the double sponge can be seen as two
sponges with a state mixing at each iteration. The construction operates on a state of
size 2b bits, and requires two cryptographic permutations Ptop and Pbot over b bits. One
absorption call enables to process r bits of the padded message, and during the squeezing
phase, r bits of the digest are extracted at a time. The top and bottom permutations
Ptop and Pbot will be considered distinct, independent, and uniformly random in the
indifferentiability proof. The mixing is performed by applying to the state a 2× 2 matrix
with coefficients over GF(2b), defined as follows:

MIX =
(

1 2
2 1

)
. (1)

Our construction is defined in Algorithm 2 and depicted in Fig. 1.

Algorithm 2: The double sponge construction based on P := (Ptop,Pbot). The
algorithm takes as input the message to hash M and the number of bits of the stream
to extract n. pad is an injective padding with the same restrictions as for the sponge
construction (Section 2.2). IV top and IV bot are two fixed initialization vectors.

1 Function HP(M, n): {0, 1}∗ × N→ {0, 1}∗

/* The state is initialized and the message is padded and split into r-bit
blocks */

2 (Stop, Sbot)← (IV top, IV bot);
3 M1∥ · · · ∥Mk ← pad(M);

/* Absorbing phase */
4 for i = 1, . . . , k do
5 (Stop, Sbot)← MIX

(
Ptop(Stop ⊕ (Mi∥0c)),Pbot(Sbot ⊕ (Mi∥0c))

)
;

6 end
/* Squeezing phase */

7 for i = 1, . . . , ⌈n/r⌉ do
8 Zi ← outerr

(
(Stop, Sbot)

)
;

9 (Stop, Sbot)← MIX
(
Ptop(Stop),Pbot(Sbot)

)
;

10 end
11 return (Z1∥ . . . ∥Z⌈n/r⌉)[0 : n]
12 end

IV top

r

c

M1

IV bot

r

c

M1

Ptop

MIX

M2

Pbot

M2

Ptop

MIX

Z1

Pbot

Ptop

MIX

Z2

Pbot

Figure 1: The double sponge. In this example, M1∥M2 is the padded message to hash.
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3.2 Design Rationale
For simplicity of the proof, the double sponge uses two independent permutations, but we
discuss in Section 4.5 a tweak of the double sponge to use the same permutation. The top
and bottom parts of the double sponge should be entangled at the compression function
level, as otherwise one can exploit the independency of the top and bottom parts, and find
attacks like the ones on the iterated concatenated combiners [Jou04]. For that reason, we
require the MIX matrix to be MDS, and such that the two coefficients in both rows are
not equal. Given these constraints, we opted for a simple choice, i.e., (1). Note that the
coefficient 2 in this matrix can be any non-zero coefficient in GF(2b) different from 1.

The message is absorbed at both the top and bottom parts of the state. This ensures
that it influences both top and bottom input permutation calls. It is not possible to absorb
two different message blocks during one compression function call, since from i top and
bottom queries, one can then build i2 different states (i.e., rooted nodes, see Section 3.3).
The probability of finding full-state collisions would increase to the birthday bound in
the capacity. Finally, it is not possible either to squeeze both the top and bottom parts,
because looking ahead, doing so makes the linear equation generated by the simulator
unsolvable, see point 2 of Section 4.2.

3.3 Graph Representation
In this section we provide a graph representation of the states of the double sponge
similarly to the sponge construction. Assume in the following that the permutation
outputs are lazily sampled, so that we only know a fraction of the permutation eval-
uations. The set of nodes is V = {0, 1}2b, and elements are represented using the
notation (Atop, Abot), where Atop ∈ {0, 1}b is called the top part and Abot ∈ {0, 1}b

the bottom part. For (Atop, Abot), (Btop, Bbot) ∈ V , and m ∈ {0, 1}r, we add the edge
(Atop, Abot) m−→ (Btop, Bbot) whenever

MIX
(
Ptop(Atop ⊕ (m∥0c)),Pbot(Abot ⊕ (m∥0c))

)
= (Btop, Bbot) ,

and the two underlying permutation evaluations are defined. A special subset of the
nodes is the set of rooted nodes, where (Atop, Abot) ∈ Rooted whenever (Atop, Abot) is
accessible from (IV top, IV bot). Given a rooted node (Atop, Abot), one can retrieve the
unique2 XOF call H(M)[i : i + r] which is associated to this state. Finally, we refer to
partial edges when there exists (Atop, Abot) ∈ Rooted, m ∈ {0, 1}r, and s ∈ {top, bot} such
that Ps(As ⊕ (m∥0c)) is known, but Ps̄(As̄ ⊕ (m∥0c)) is not known.

4 Indifferentiability of the Double Sponge
In this section, we prove that the double sponge is indifferentiable from an RO with a

bound of O
(

q
3
2

2c

)
, as stated in Theorem 1. In Section 4.5 we discuss an extension of our

result when using a single permutation.

Theorem 1. Let HP be the construction from Section 3, where P := (Ptop,Pbot). Let
q := σ + qP . If 30 < 2c and 3q < 2c. There exists a simulator S such that

Advindif
HP, S(qP , σ) ≤ 40q

3
2

2c − 3q
.

Moreover, S makes a total of at most 3qP random oracle queries, and its overall memory
storage and runtime are linear in qP .

2This call is unique as long as there is no collision on 2c + r bits between two rooted nodes.
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The proof of this theorem is given in the remainder of this section.

4.1 General Setting of the Proof and Outline
The adversary must distinguish between the real world WR := (HP ,P,P−1) and the ideal
world WI := (RO,Sfwd ,Sinv). To do so, it can perform construction queries by using the
procedure ConsQuery (), which takes as input a message M ∈ {0, 1}∗, and the index of
the stream k ∈ N, corresponding to RO(M)[k × r : k(r + 1)] in the ideal world or the
kth squeeze call after absorbing M in the real world. Forward (resp., inverse) queries are
made via the interface FwdPQuery () (resp., InvPQuery ()). Both take as input an element
s ∈ {top, bot} and the element to query in {0, 1}b. To prove indifferentiability, we use the
simulator described in Section 4.2 which defines on-the-fly permutation-consistent answers
and logs its responses in two dictionaries tabPtop and tabPbot . From these two tables, it
is able to keep track of the graph representation defined in Section 3.3. For simplicity of
the proof, we require that the simulator’s graph does not contain partial edges. In other
words, if (Atop, Abot) is a rooted node, and there exists m ∈ {0, 1}r, s ∈ {top, bot} such
that tabPs[As⊕ (m∥0c)] ̸= ⊥, then necessarily, tabPs̄[As̄⊕ (m∥0c)] ̸= ⊥. In the real world,
we assume that the primitive oracle decides outputs using lazy sampling. Thus, in order to
ease the comparison between the real world and the ideal world, we introduce world WIM2
illustrated in Fig. 3c (see Fig. 3 for a depiction of all worlds considered in this proof), which
implements the real world with a supplementary layer called GraphProc, ensuring that the
graph deducible from the query history of GraphProc does not contain partial edges either.
In worlds WIM2 and WI , we implicitly consider that the collateral permutation outputs
are given for free. Now, WIM2 and WI can be differentiated in two ways: consistency
with RO, and the statistical difference between the simulator’s answers with the ones of a
random primitive. Each of these points is addressed separately, thanks to the introduction
of another intermediate world WIM1 , as illustrated in Fig. 3b. A similar game splitting
was done among others in the indifferentiability proof of PHOTON [NO14]. Section 4.3
introduces bad events for the RO-consistency. Section 4.4 explains more rigorously the
intermediate worlds WIM1 and WIM2 . This part also splits the underlying probability
computation, which is addressed in detail in Section 5. This eventually leads to the proof’s
conclusion.

4.2 Simulator Definition
In this section we provide the high level definition of our simulator, with its formal
procedures provided in Algorithm 3.

4.2.1 On Forward Query

For any query FwdPQuery (top, X) or query FwdPQuery (bot, X), the simulator goes through
several phases, as explained in the following.

1. Collection of nodes to expand. The simulator first collects all rooted nodes after
absorption of a message block where it needs to provide RO-consistent answers. The goal
of this procedure is to guarantee that at the end of the query execution, no partial edges
exist on the simulator graph. Because the number of queries can go beyond 2c/2, it is not
unlikely that some rooted nodes collide on their top or bottom inner part, thus more than
one node may be collected during this step. Example 1 gives a minimal example of such a
case.

Example 1. Let (Atop, Abot), (Btop, Bbot) ∈ Rooted be two distinct nodes such that
Abot c= Bbot. Assume that the query is FwdPQuery

(
top, Atop ⊕ (m∥0c)

)
for m ∈ {0, 1}r,
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Algorithm 3: Simulator S main functions. UpdateGraph () takes care of updating the
set Rooted according to tabPtop and tabPbot . LinSolve () is described in paragraph 2
from Section 4.2.

1 Function Init ()
2 Rooted← {(IV top, IV bot)};
3 tabPtop ← EmptyDictionary ();
4 tabPbot ← EmptyDictionary ();
5 end
6 Function Sfwd (s, X): {top, bot} × {0, 1}b → {0, 1}b ∪ {⊥}
7 if tabPs[X] ̸= ⊥ then
8 return tabPs[X];
9 end

10 NodesToAnswer← NodeCollection (s, X);
11 if NodesToAnswer = ∅ then // Query is not on the graph

12 tabPs[X] $←− {0, 1}b \ Img(tabPs);
13 return tabPs[X];
14 end
15 DictOuterPartstop, DictOuterPartsbot ← LinSolve (NodesToAnswer);
16 if ∃s, DictOuterPartss = ⊥ then // Linear system solving failed
17 return ⊥;
18 end
19 PermConsistentOutputTop (DictOuterPartstop);
20 PermConsistentOutputBot (DictOuterPartsbot);
21 UpdateGraph ();
22 EnsureNoPartialEdges ();
23 return tabPs[X];
24 end
25 Function Sinv (s, Y ): {top, bot} × {0, 1}b → {0, 1}b

26 if ∃X ∈ {0, 1}b, tabPs[X] = Y then
27 return X;
28 end
29 X

$←− {0, 1}b \Dom(tabPs);
30 tabPs[X] = Y ;
31 UpdateGraph ();
32 EnsureNoPartialEdges ();
33 return X;
34 end

and let m′ := m⊕outerr

(
Abot ⊕Bbot). Then the simulator needs to complete an edge from

(Atop, Abot) with the message m, i.e., decide on tabPtop[Atop⊕ (m∥0c)] and tabPbot [Abot ⊕
(m∥0c)]. Nevertheless, since Abot ⊕ (m∥0c) = Bbot ⊕ (m′∥0c), the query will then also fix
tabPbot[Bbot ⊕ (m′∥0c)], so that to avoid a partial edge starting from (Btop, Bbot), the
simulator also needs to decide tabPtop[Btop ⊕ (m′∥0c)].

On a high level view, this procedure can be depicted using a depth-first search algo-
rithm. Indeed, consider a graph (maintained by the simulator, different from the graph
representation) where the nodes V ′ are

V ′ =
{

(Atop ⊕ (m∥0c), Abot ⊕ (m∥0c)) | m ∈ {0, 1}r ∧ (Atop, Abot) ∈ Rooted
}

,

i.e., the rooted nodes after absorbing all possible message blocks. Then for s ∈ {top, bot},
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Algorithm 4: Simulator sub-routine to collect the nodes.
1 Function NodeCollection (s, x): {top, bot} × {0, 1}b → Set
2 NodesToVisit←

{
(Atop ⊕ (m∥0c), Abot ⊕ (m∥0c)) | (Atop, Abot) ∈ Rooted

∧m ∈ {0, 1}r ∧As ⊕ (m∥0c) = x
}

;
3 NodesToAnswer← ∅;
4 while NodesToVisit ̸= ∅ do

/* Pick any node (Xtop, Xbot) ∈ NodesToVisit */;
5 Let (Xtop, Xbot) ∈ NodesToVisit ;
6 NodesToAnswer← NodesToAnswer ∪ {(Xtop, Xbot)};

/* Collect all rooted nodes which display an u-inner collision with
(Xtop, Xbot) */ ;

7 NodesToVisit← NodesToVisit∪
{

(Atop⊕ (m∥0c), Abot ⊕ (m∥0c)) | m ∈
{0, 1}r ∧ (Atop, Abot) ∈ Rooted ∧ ∃u ∈ {top, bot}, Au ⊕ (m∥0c) = Xu

}
;

8 NodesToVisit← NodesToVisit \NodesToAnswer;
9 end

10 return NodesToAnswer;
11 end

we add the edge (Xtop
1 , Xbot

1 ) s−→ (Xtop
2 , Xbot

2 ) whenever Xs
1 = Xs

2 . If the query was
FwdPQuery (s, X), let NodesToVisit = {(Y top, Y bot) ∈ V ′ | Y s = X}. The node collec-
tion phase then computes all the nodes accessible from NodesToVisit, and returns in
the set NodesToAnswer all of the nodes found.

To summarize, for every (Xtop, Xbot) ∈ NodesToAnswer, the simulator needs to
determine tabPtop[Xtop] and tabPbot[Xbot]. If the query does not impact any node (i.e.,
NodesToAnswer = ∅), the simulator simply returns a uniform permutation-consistent
answer. In Algorithm 3, the node collection procedure is invoked in line 10, and the full
procedure is described in Algorithm 4.

2. Linear system solving. Let (Xtop
1 , Xbot

1 ), (Xtop
2 , Xbot

2 ), . . . , (Xtop
m , Xbot

m ) be all nodes in
NodesToAnswer. By construction of the latter set, whenever m > 1, every (Xtop

i , Xbot
i )

is colliding on its top or bottom part to another (Xtop
j , Xbot

j ) in this set. Thanks to the last
message block not being equal to zero due to padding, and as long as no full-state collision
occurred, for any (Xtop, Xbot) ∈ NodesToAnswer, the simulator knows exactly what
RO calls are necessary to provide consistent answers, i.e., M ∈ {0, 1}∗, k ∈ N such that
in the real world, the knowledge of Ptop(Xtop) and Pbot(Xbot) gives H(M)[k : k + r]. Let
h1, . . . , hm ∈ {0, 1}r be the RO answers corresponding to the nodes in NodesToAnswer.
Then, the simulator aims at providing answers that satisfy

outerr

(
tabPtop[Xtop

1 ]⊕ 2tabPbot [Xbot
1 ]
)

= h1 ,

outerr

(
tabPtop[Xtop

2 ]⊕ 2tabPbot [Xbot
2 ]
)

= h2 ,

...
outerr

(
tabPtop[Xtop

m ]⊕ 2tabPbot [Xbot
m ]
)

= hm .

The answers are RO-consistent if and only if they satisfy the equations above. For every
i ∈ {1, . . . , m}, either Xtop

i or Xbot
i appears in at least two equations, and therefore it

is not always obvious whether the system of linear equations derived has a solution. In
examples 2 and 3 below, we assume that b > 2, and the Xs

i denote values in {0, 1}b where
the Xtop

i ’s (resp., Xbot
i ’s) are all distinct.
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Example 2. Assume that

NodesToAnswer = {(Xtop
1 , Xbot

1 ), (Xtop
1 , Xbot

2 ), (Xtop
1 , Xbot

3 )} .

Then, after associating variable atop
i (resp., abot

i ) to outerr

(
tabPtop[Xtop

i ]
)

(resp., outerr

(
2tabPbot [Xbot

i ]
)
), the system of consistency equations becomes

atop
1 ⊕ abot

1 = h1 ,

atop
1 ⊕ abot

2 = h2 ,

atop
1 ⊕ abot

3 = h3 .

Using a matrix notation, we obtain Ma = h, with

M =

 1 1 0 0
1 0 1 0
1 0 0 1

 , a =


atop

1
abot

1
abot

2
abot

3

 , h =

 h1
h2
h3

 .

The kernel of M is spanned by the vector ⟨(1, 1, 1, 1)⟩, so M has rank 3. Therefore for
every h ∈ ({0, 1}r)3, the equation has a solution (Note that the values as

i do not need to
be distinct).

Example 3. Assume that

NodesToAnswer = {(Xtop
1 , Xbot

1 ), (Xtop
1 , Xbot

2 ), (Xtop
2 , Xbot

1 ), (Xtop
2 , Xbot

2 )} .

With the same notation as in Example 2, the system of consistency equations becomes

atop
1 ⊕ abot

1 = h1 ,

atop
1 ⊕ abot

2 = h2 ,

atop
2 ⊕ abot

1 = h3 ,

atop
2 ⊕ abot

2 = h4 .

Using a matrix notation, we obtain Ma = h, with

M =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 , a =


atop

1
atop

2
abot

1
abot

2

 , h =


h1
h2
h3
h4

 .

This square matrix has a kernel of dimension 1, it is thus non-invertible. In other words,
for most vectors h, the linear system is unsolvable.

In Section 4.3, we define a BAD event such that its absence always guarantees solvable
linear systems with uniform solutions with fresh randomness. In this constrained setting,
the simulator fixes the variables appearing in more than one equation to random values.

Example 4. Going back to Example 2, the simulator chooses atop
1

$←− {0, 1}r and sets

abot
1 = h1 ⊕ atop

1 ,

abot
2 = h2 ⊕ atop

1 ,

abot
3 = h3 ⊕ atop

1 .

Because h contains fresh random values and atop
1 was sampled uniformly at random, the

elements as
k all follow the uniform distribution and are independent.
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The associated procedure is called in line 15 of Algorithm 3. It returns two ele-
ments DictOuterPartstop and DictOuterPartsbot which, upon success, map the ele-
ments Xs

i ∈ {0, 1}b to the associated r-bit constraint of tabPs[Xs
i ]. In more detail, for

top outputs, this constraint is outerr

(
tabPtop[Xtop

i ]
)

while for bottom outputs this is
outerr

(
2tabPbot [Xbot

i ]
)
. When the simulator fails to solve the linear system, it returns ⊥,

therefore allowing the adversary to distinguish easily.
We henceforth assume that the simulator was able to solve the linear system.

Algorithm 5: Simulator sub-routine to choose the permutation outputs.
/* DictOuterPartstop (resp. DictOuterPartsbot) is a dictionary where its elements

are of form (x ∈ {0, 1}b → z ∈ {0, 1}r), meaning that the outer part of tabPtop[x]
(resp., 2tabPbot [x]) is fixed to z */

1 Function PermConsistentOutputTop (DictOuterPartstop)
2 foreach xtop → ytop

r ∈ DictOuterPartstop do
3 ytop $←−

{
y ∈ {0, 1}b | outerr (y) = ytop

r

}
\ Img(tabPtop);

4 tabPtop[xtop] = ytop;
5 end
6 end
7 Function PermConsistentOutputBot (DictOuterPartsbot)
8 foreach xbot → ybot

r ∈ DictOuterPartsbot do
9 ybot $←−

{
y ∈ {0, 1}b | outerr (2y) = ybot

r

}
\ Img(tabPbot);

10 tabPbot [xbot ] = ybot ;
11 end
12 end

3. Choice of the permutation outputs. In this step, the simulator samples permutation-
consistent answers among the ones satisfying the constraint found in the previous step. The
procedure is invoked in lines 19 and 20 of Algorithm 3 and presented in Algorithm 5, but is
thoroughly explained in this paragraph. After the simulator fixed yr := outerr (tabPtop[x])
in the previous step, it samples the answer from the set

{y ∈ {0, 1}b | outerr (y) = yr} \ Img(tabPtop) (2)

and similarly for bottom answers with yr := outerr (2tabPbot [x]) and outerr (2y) = yr.
Note that at this stage, the simulator is always able to provide permutation-consistent
answers (i.e., the set appearing in (2) is never empty), since the total number of queries is
smaller than 2c.

4. Extension to several iterations. The simulator is not done yet. It is possible that
the newly created edges point towards nodes with one of their inner parts appearing
in the query history. In this case, the simulator needs to complete the partial edges
with RO-consistent answers. In the worse case where both parts appear in the query
history (modulo xoring by a message block), then the simulator has lost. The underlying
procedure, called EnsureNoPartialEdges () and presented in Algorithm 6, is similar to
steps 1, 2, and 3 combined, unless that the consistency equation has some of its variables
instantiated with particular values. One of the bad events defined in Section 4.3 ensures
that the simulator does not require more than two iterations of EnsureNoPartialEdges ()
per query.
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Algorithm 6: Function ensuring that there is no partial edge.
1 Function EnsureNoPartialEdges ()

/* Identify the nodes with an inner part in the query history */
2 PartialTop←

{
Atop ⊕ (m∥0c) | m ∈ {0, 1}r ∧ ∃Abot ∈ {0, 1}b : (Atop, Abot) ∈

Rooted ∧ tabPtop[Atop ⊕ (m∥0c)] = ⊥
∧ tabPbot [Abot ⊕ (m∥0c)] ̸= ⊥

}
;

3 PartialBot←
{

Abot ⊕ (m∥0c) | m ∈ {0, 1}r ∧ ∃Atop ∈ {0, 1}b : (Atop, Abot) ∈
Rooted ∧ tabPbot [Abot ⊕ (m∥0c)] = ⊥
∧ tabPtop[Atop ⊕ (m∥0c)] ̸= ⊥

}
;

4 if PartialTop = PartialBot = ∅ then // Nothing to take care of
5 return;
6 end

/* Node collection */
7 NodesToAnswer← {};
8 foreach Xtop ∈ PartialTop do
9 NodesToAnswer = NodesToAnswer ∪ NodeCollection

(
top, Xtop);

10 end
11 foreach Xbot ∈ PartialBot do
12 NodesToAnswer = NodesToAnswer ∪ NodeCollection

(
bot, Xbot);

13 end
/* Note that the linear system solving takes into account the already defined
permutation outputs */
DictOuterPartstop, DictOuterPartsbot ← LinSolve (NodesToAnswer);

14 if ∃s, DictOuterPartss = ⊥ then // Linear system solving failed
15 return;
16 end

/* Permutation consistency, graph update */
PermConsistentOutputTop (DictOuterPartstop);

17 PermConsistentOutputBot (DictOuterPartsbot);
18 UpdateGraph ();
19 EnsureNoPartialEdges () // Recursive call

20 end

4.2.2 On Inverse Query

On an inverse query, the simulator provides an answer uniformly at random among the
permutation-consistent ones. If this query happens to hit a rooted node, then the simulator
has to run the same procedure as the one described in step 4. It is noteworthy that the
probability that an inverse query hits the tree is the same as the probability that a fresh
node has one of its inner part appearing in the query history.

4.3 Bad Events and Discussion
Two main undesirable behaviors can occur when running the simulator algorithm. The
first one happens when the linear system derived does not have a solution. In this case,
regardless of the simulator’s answer, the adversary can differentiate easily between WI
and WIM1 , since the difference between these two worlds lies in the RO-consistency (see
Section 4.4). The second undesirable behavior is when the simulator runs over a large
number of iterations, i.e., step 4 is repeated many times. Besides the algorithm termination,
this is a problem in the sense that every subsequent permutation output decided by the
simulator is considered to be given for free, giving therefore a large factor in the upper
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bounds. In the following we define bad events which ensure that the simulator does not
run into these problems.

Atop

Abot

Btop

Bbot

C top

Cbot

c=
c=

(a) Double2Col.

Atop

Abot

Btop

Bbot

C top

Cbot

c= c=

(b) 3Col.

IV top

IV bot

Atop

Abot

Btop

Bbot

C top

Cbot

Dtop

Dbot

m1 m2 m3 m4

Ptop(Btop ⊕ (m3∥0c))

Pbot(Cbot ⊕ (m4∥0c))

(c) ThreeRounds.

IV top

IV bot

Atop

Abot

m

Ptop(Atop ⊕ (m1∥0c))

Pbot(Abot ⊕ (m2∥0c))

(d) BadNode.

IV top

IV bot

Atop

Abot

Btop

Bbot

C top

Cbot

Dtop

Dbot

m1

m2 m3

m4

Ptop(Atop ⊕ (m4∥0c))

Pbot(Bbot ⊕ (m3∥0c))

(e) AUX3.

Figure 2: Illustration of the main BAD events. In Figures 2a and 2b, the drawn nodes
are rooted. In Figures 2c to 2e, one color represents one iteration of the simulator and the
rectangles contain particular permutation outputs already known by the adversary before
the query.

4.3.1 Events on Edge Addition

We first start by defining bad events that can be triggered at any iteration, whenever an
edge is added to the graph.

i) Double2Col: there exist (Atop, Abot), (Btop, Bbot), (Ctop, Cbot) ∈ Rooted such that
(Atop, Abot) ̸= (Btop, Bbot), (Atop, Abot) ̸= (Ctop, Cbot), and

innerc

(
Atop) = innerc

(
Btop)

and innerc

(
Abot) = innerc

(
Cbot) .

This event is illustrated in Fig. 2a;
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ii) 3Col: there exist distinct (Atop, Abot), (Btop, Bbot), (Ctop, Cbot) ∈ Rooted such that

innerc

(
Atop) = innerc

(
Btop) = innerc

(
Ctop)

or innerc

(
Abot) = innerc

(
Bbot) = innerc

(
Cbot) .

This event is illustrated in Fig. 2b;

iii) BadNode: there exist i ∈ {1, . . . , q}, m, m1, m2 ∈ {0, 1}r, and (Atop, Abot),
(Btop, Bbot) ∈ Rooted, such that (i) before query i, (Btop, Bbot) ̸∈ Rooted, (ii) during
query i, the edge (Atop, Abot) m−→ (Btop, Bbot) is produced, (iii) both Btop ⊕ (m1∥0c)
and Bbot ⊕ (m2∥0c) were already in the top (resp., bottom) query history before the
edge was produced. This event is illustrated in Fig. 2d;

iv) BadNode_Strong: there exist i ∈ {1, . . . , q}, m, m′ ∈ {0, 1}r, and (Atop, Abot),
(Btop, Bbot) ∈ Rooted such that (i) before query i, (Btop, Bbot) ̸∈ Rooted, (ii) during
query i, the edge (Atop, Abot) m−→ (Btop, Bbot) is produced, (iii) both Btop ⊕ (m′∥0c)
and Bbot ⊕ (m′∥0c) were already in the top (resp., bottom) query history before
the edge was produced. In short, BadNode_Strong is set when a new edge is
added from (Btop, Bbot) to the graph without the simulator being able to guarantee
RO-consistency.

4.3.2 Second-Iteration Event

We define a bad event ThreeRounds specific to the second iteration of the algorithm,
i.e., the second (resp., third) call of EnsureNoPartialEdges () in step 4 for a forward
(resp. inverse) query. At a high level view, this event means that one single query triggers
the addition of three consecutive edges (Atop, Abot) m−→ (Btop, Bbot) m′

−−→ (Ctop, Cbot) m′′

−−→
(Dtop, Dbot), where (Atop, Abot) ∈ Rooted. For a forward query FwdPQuery (s, X), it means
that there exist i ∈ {1, . . . , q}, (Atop, Abot) ∈ Rooted, (Btop, Bbot), (Ctop, Cbot) ∈ {0, 1}2b,
m, m′, m′′ ∈ {0, 1}r such that at query i, the following sequence of events happens:

1. X = As ⊕ (m∥0c), so that the first iteration of NodeCollection () gives (Atop ⊕
(m∥0c), Abot ⊕ (m∥0c)) ∈ NodesToAnswer;

2. The edge (Atop, Abot) m−→ (Btop, Bbot) is added, making (Btop, Bbot) a rooted node;

3. Btop⊕(m′∥0c) or Bbot⊕(m′∥0c) was already in the top (resp., bottom) query history,
so that another iteration of NodeCollection () is necessary;

4. The edge (Btop, Bbot) m′

−−→ (Ctop, Cbot) is added, making (Ctop, Cbot) a rooted node;

5. Ctop ⊕ (m′′∥0c) or Cbot ⊕ (m′′∥0c) appears in the top (resp., bottom) query history,
so that another iteration of NodeCollection () is needed.

For an inverse query InvPQuery (s, Y ), additionally to the sequence of events above, the
response of the inverse query must beforehand hit one of the inner parts of (Atop, Abot).
ThreeRounds is illustrated in Fig. 2c.

4.3.3 Auxiliary Events

Finally, we introduce the following events, which allow to simultaneously eliminate rare
but undesirable cases, simplify the proof, and reduce the constant factors in the bounds.

i) AUX1: There exist i ∈ {1, . . . , q}, and distinct (Atop, Abot), (Btop, Bbot) ∈ {0, 1}2b

such that the query i adds (Atop, Abot) and (Btop, Bbot) to the set Rooted and such
that As c= Bs for some s ∈ {top, bot};
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ii) AUX2: There exist s ∈ {top, bot}, i ∈ {1, . . . , q}, X ∈ {0, 1}b, and distinct
(Atop, Abot), (Btop, Bbot) ∈ Rooted such that query i is of the form InvPQuery (s, X)
and the answer Y is such that Y

c= As and (Atop, Abot) displays an inner collision
with (Btop, Bbot) on their s part for s ∈ {top, bot};

iii) AUX3: There exists i ∈ {1, . . . , q} such that query i requires a second iteration
of the simulator during which the set NodesToAnswer in Algorithm 6 has a size
greater than 1. This event is illustrated in Fig. 2e.

4.3.4 Interpretation

Intuitively, Double2Col and 3Col ensure that the set NodesToAnswer is of size at
most 2 and that the linear system always has a solution for first iteration nodes. For
the subsequent iterations, we additionally need the event BadNode_Strong. However,
BadNode is implied by BadNode_Strong, and the former event is useful for the other
parts of the proof, thus we will only make use of BadNode. Note that Double2Col
and 3Col are suboptimal for the linear system solvability, e.g., in Example 2, the linear
system is solvable while 3Col is set. The real bad event here would be to have a cycle in
the graph defined in step 1, Section 4.2. Nevertheless, Double2Col and 3Col are very
useful for the probability computation of ThreeRounds, which allows to upper bound the
size of the tree. Note that when assuming ¬AUX3

i , ThreeRoundsi is the only scenario
where the simulator requires more than two iterations of NodeCollection () during query
i. Finally, AUX1, AUX2, and AUX3 are bad events that alleviate the proof complexity
and eliminate bad cases. In the following, let

BAD := Double2Col ∨ 3Col ∨BadNode ∨ThreeRounds ∨
∨
j

AUXj .

4.4 World Decomposition
Remember that the ideal world WI consists of (RO,Sfwd ,Sinv), and the real world WR
consists of (HP ,P,P−1). Our indifferentiability proof uses two intermediate worlds as
shown in Fig. 3. The first one, called WIM1 , gives access to (HS ,Sfwd ,Sinv), where S
relies on a random oracle. It is a natural intermediate step between the real and the
ideal world, since it allows to separate the RO-consistency (c.f., Definition 1) from the
simulator’s quality of randomness. Note that since the BAD event is defined on the
simulator S, the former therefore also applies in WIM1 . However, while the distance from
WI to WIM1 is now easier to analyze, this is not the case for the distance between WIM1
and WR. Indeed, in WR, the answers are returned using lazy sampling, so that the notion
of “iterations” does not exist in this world, thus preventing the usage of the bad event
ThreeRounds. For that reason, we introduce another intermediate world WIM2 , which
implements the real world with a supplementary layer mimicking the simulator’s node
collection phase and step 4 of Section 4.2. This layer is called GraphProc and is described
as follows: on a forward query or inverse query, an answer is drawn using lazy sampling.
Then, the procedure EnsureNoPartialEdges () is run, with PermConsistentOutputTop ()
and PermConsistentOutputBot () replaced by a permutation-consistent lazy sampling.

For x ∈ {I , IM1 , IM2 , R}, let DWx denote the fact that distinguisher D is in world Wx .
Recall that our goal is to bound Advindif

HP, S(D). By the triangle inequality:

Advindif
HP, S(D) =

∣∣Pr
(
DWI = 1

)
−Pr

(
DWR = 1

)∣∣
≤
∣∣Pr

(
DWI = 1

)
−Pr

(
DWIM2 = 1

)∣∣ (3a)
+
∣∣Pr

(
DWIM2 = 1

)
−Pr

(
DWR = 1

)∣∣ . (3b)
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SRO

D
(a) Ideal world WI .

SH

RO

D
(b) World WIM1 .

GraphProcH

P/P−1

D
(c) World WIM2 .

P/P−1H

D
(d) Real world WR.

Figure 3: Definition of the different worlds. P returns responses with lazy sampling.

For the distance in (3a):

(3a) =
∣∣∣Pr

(
DWI = 1 ∧BAD

)
+ Pr

(
DWI = 1 ∧ ¬BAD

)
−Pr

(
DWIM1 = 1 ∧ ¬BAD

)
+ Pr

(
DWIM1 = 1 ∧ ¬BAD

)
−Pr

(
DWIM2 = 1 ∧BAD

)
−Pr

(
DWIM2 = 1 ∧ ¬BAD

) ∣∣∣
≤
∣∣∣Pr

(
DWI = 1 ∧BAD

)
−Pr

(
DWIM2 = 1 ∧BAD

) ∣∣∣
+
∣∣∣Pr

(
DWI = 1 ∧ ¬BAD

)
−Pr

(
DWIM1 = 1 ∧ ¬BAD

) ∣∣∣
+
∣∣∣Pr

(
DWIM1 = 1 ∧ ¬BAD

)
−Pr

(
DWIM2 = 1 ∧ ¬BAD

) ∣∣∣
≤
∣∣∣Pr

(
DWI sets BAD

)
Pr
(
DWI = 1 | BAD

)
−

Pr
(
DWIM2 sets BAD

)
Pr
(
DWIM2 = 1 | BAD

) ∣∣∣ (4a)

+
∣∣∣Pr

(
DWI = 1 | ¬BAD

)
−Pr

(
DWIM1 = 1 | ¬BAD

) ∣∣∣ (4b)

+
∣∣∣Pr

(
DWIM1 = 1 | ¬BAD

)
−Pr

(
DWIM2 = 1 | ¬BAD

) ∣∣∣ . (4c)

The distance in (4a) can eventually be bounded as follows:

(4a) ≤ max
{

Pr
(
DWI sets BAD

)
, Pr

(
DWIM2 sets BAD

)}
. (5)

In conclusion, we find that Advindif
HP, S(D) of (3) is bounded by the sum of the terms in (5),



90 Permutation-Based Hashing Beyond the Birthday Bound

(4b), (4c), and (3b):

Advindif
HP, S(D) ≤ max

{
Pr
(
DWI sets BAD

)
, Pr

(
DWIM2 sets BAD

)}
(6a)

+
∣∣∣Pr

(
DWI = 1 | ¬BAD

)
−Pr

(
DWIM1 = 1 | ¬BAD

) ∣∣∣ (6b)

+
∣∣∣Pr

(
DWIM1 = 1 | ¬BAD

)
−Pr

(
DWIM2 = 1 | ¬BAD

) ∣∣∣ (6c)

+
∣∣∣Pr

(
DWIM2 = 1

)
−Pr

(
DWR = 1

) ∣∣∣ . (6d)

We will discuss these two probabilities and three distances below. In the following, let
q := σ + qP .

Bad events. We upper bound the BAD event probabilities in Lemma 2 (Section 5.1)
and obtain the upper bound

(6a) ≤ 249q3

(2c − 3q)2 + 21q

2c − 3q
.

Ideal world WI versus WIM1 as long as no BAD. Here, the adversary has access
to (RO,Sfwd ,Sinv) or (HS ,Sfwd ,Sinv), where in WIM1 , Sfwd and Sinv are built upon a
random oracle. Therefore, as long as the simulator is RO-consistent with respect to the
double sponge, the two worlds are indistinguishable. The RO-consistency is guaranteed
by the success of the linear system solving phase of the simulator. More formally, in
Lemma 3 (Section 5.2), we prove that as long as ¬BAD holds, this phase never fails. The
proof relies on a simple enumeration of all possible cases regarding the structure of the set
NodesToAnswer. Therefore,

(6b) = 0 .

WIM1 versus WIM2 as long as no BAD. Here, the adversary has access to (HS ,Sfwd ,Sinv)
or (HP ,P,P−1). Now, since the construction component is the same in both worlds, the
distinguisher can convert the construction queries into primitive queries. The game thus
reduces to a distinguishing game between (Sfwd ,Sinv) and (P,P−1). The full proof is in
Lemma 4 (Section 5.3), and it gives an upper bound

(6c) ≤ 3q
3
2

2c − 3q
.

WIM2 versus real world WR. Similarly to the real world, world WIM2 implements a
double sponge using a permutation, the only difference lies in the timing at which the
permutation samplings are performed. A permutation with answers being lazily sampled
is equivalent to a permutation drawn at the beginning of the game. These two worlds are
thus equivalent, and hence

(6d) = 0 .

From (6), we eventually obtain

Advindif
HP, S(qP , σ) ≤ 249q3

(2c − 3q)2 + 21q

2c − 3q
+ 3q

3
2

2c − 3q

≤ 19q
3
2

2c − 3q
+ 21q

2c − 3q

≤ 40q
3
2

2c − 3q
,
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which concludes Theorem 1.

4.5 Extension to Single Permutation
One natural question arises on whether it is possible to extend the double sponge construc-
tion by replacing Ptop and Pbot by the same permutation, but with different initialization
vectors IV top and IV bot . From a proof perspective, such an extension would significantly
complicate the analysis, and particularly increase drastically the number of cases to be
considered. On the other hand, using a single permutation is desirable in practice. Thus,
as a trade-off, we propose the following modification to the double sponge construction:
we replace the permutations Ptop and Pbot by respectively P(0∥·)[1 : b] and P(1∥·)[1 : b].
In that setting, the impact on the simulator definition, bad event analysis, and statistical
distance computation is relatively mild.

The presence of domain separator bits allows the simulator to determine whether
it needs to consider the top or bottom part of the nodes during a forward query. As
a result, the procedure NodeCollection () does not change, apart from a parsing ad-
justment. The procedure LinSolve () does not need any changes. The procedures
PermConsistentOutputTop () and PermConsistentOutputBot () can be merged into a
single procedure. Next, if (Xtop, Xbot) is a newly produced node (after absorption of a
message block), then the updated version of EnsureNoPartialEdges () runs a new iteration
only when either 0∥Xtop or 1∥Xbot appears in the query history. Note that having 1∥Xtop

or 0∥Xbot in the query history does not require one other iteration, since if Xtop (resp.,
Xbot) appears later as a bottom (resp., top) node, it will be generated from a fresh source
of randomness. Finally, the algorithm run by the simulator on an inverse query does not
change.

Regarding the upper bounding of distances, only the bad event analysis (equation (6a))
and the quality of randomness of the simulator (equation (6c)) are affected. In the bad
event analysis, the nodes are now linear combinations of truncated permutation outputs
instead of permutation outputs, but this modification does not affect the upper bounds
derived in the analysis.3 On the other hand, we need an additional bad event which states
that one query to the simulator results in the addition of two rooted nodes (Atop, Abot)
and (Btop, Bbot) such that Atop c= Bbot . This is a rare event, and the auxiliary bad events
ensure that the simulator generates no more than three nodes in a single query. Therefore,
this event occurs with a probability of form O

(
q
2c

)
. Thus, modulo the loss of one bit and

small constant factors, the bad event upper bounding does not change significantly. Now,
regarding the quality of randomness of the simulator, the permutation’s randomness is
exhausted twice as fast, resulting in further constant factor losses.

5 Probability Computation
In this section, we establish upper bounds for the three terms from equations (6a), (6b),
and (6c) in Sections 5.1, 5.2, and 5.3 respectively.

5.1 BAD Event Probability Analysis
Before stating an upper bound on the BAD probabilities in Lemma 2, we define the
trimmed tree in Definition 2, and state a result on the size of the latter. This result ensures
the algorithm termination and allows to upper bound the number of queries given for free
by the simulator.

Definition 2. The trimmed tree is a subset of Rooted defined in an inductive way:
3To be precise, the bounding in equation (9) still holds.
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• Initialization: Trimmed← {(IV top, IV bot)};

• On query i, whenever (Atop, Abot) m−→ (Btop, Bbot) is added to the graph with
(Atop, Abot) ∈ Trimmed; if (Btop, Bbot) does not trigger BAD, then Trimmed ←
Trimmed ∪ {(Btop, Bbot)}.

In other words, the trimmed tree is the set of rooted nodes deprived of the ones (and their
descendants) that would trigger BAD if added.

Lemma 1. For any i ∈ {0, . . . , q}, the size of the trimmed tree after i queries is upper
bounded by 3i + 1.

Proof. First observe that the nodes returned by NodeCollection () must display a collision
on their top or bottom part with another node in the same set. Therefore, having more
than two nodes returned implies that there is either a 3-collision or a double collision among
the rooted nodes, which correspond to respectively 3Col and Double2Col. Therefore, as
long as no BAD happens, NodeCollection () returns at most two nodes each time.

Now, the trimmed tree is initialized with a single node (IV top, IV bot), thus has size of
1. Then, at query i, if the procedure NodeCollection () is run using Trimmed instead of
Rooted, we know from the above observation that |NodesToAnswer| is at most 2. In
addition, because of ThreeRounds, the nodes produced after more than two iterations
are not added to the trimmed tree. Finally, AUX3 guarantees that at most one node has
two consecutive edges added. We conclude that in total, at most 3 nodes are added to the
trimmed tree per query.

Lemma 2. For any distinguisher D making qP primitive queries and construction queries
which would correspond to a total of σ primitive queries in world WR, if 30 < 2c, one has

Pr
(
DWI sets BAD

)
≤ 249q3

P
(2c − 3qP)2 + 21qP

2c − 3qP
,

Pr
(
DWIM2 sets BAD

)
≤ 249q3

(2c − 3q)2 + 21q

2c − 3q
,

where q := σ + qP .

Proof. For an event E, we denote by PrI (E) (resp., PrIM2 (E)) the probability that E
occurs in world WI (resp., WIM2 ). Let q be the total number of primitive queries made,
so that q = qP in world WI , and q ≤ σ + qP in world WIM2 . Let

S2Col :=
{

(Atop, Abot) ∈ Trimmed | ∃(Btop, Bbot) ∈ Trimmed \ {(Atop, Abot)},
s ∈ {top, bot} s.t., As c= Bs

}
,

N2Col := |S2Col| .

In other words, N2Col counts the number of nodes displaying an inner collision on their
top or bottom part in the trimmed tree. Note that, in particular, N2Col cannot be larger
than 3q + 1.
Remark 1. As long as BAD is not set, S2Col can be split as the disjoint union of S2Col(top)
and S2Col(bot) defined as follows for s ∈ {top, bot}.

S2Col(s) =
{

(Atop, Abot) ∈ Trimmed |

∃(Btop, Bbot) ∈ Trimmed \ {(Atop, Abot)} s.t., As c= Bs} .

As long as BAD does not occur, the size of S2Col is the sum of the two set sizes.
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Now, by basic probability theory, for x ∈ {I , IM2},

Prx (BAD) ≤
3q+1∑
m=0

Prx (BAD | N2Col = m) ·Prx (N2Col = m) (7)

≤
3q+1∑
m=0

q∑
i=1

Prx (BADi | N2Col = m ∧ ¬BADi−1) ·Prx (N2Col = m) , (8)

where we remind that BADi denotes that BAD is set after i queries.
We start by the conditioned probabilities Prx (BADi | N2Col = m ∧ ¬BADi−1) for

x ∈ {I , IM2} and any i ∈ {1, . . . , q} and m ∈ {0, . . . , 3q + 1}. An important observation is
that, because of ¬BADi−1, the trimmed tree recoverable from the first i− 1 queries and
the actual tree coincide. Therefore, from N2Col = m and ¬3Coli−1 ∧ ¬Double2Coli−1,
we know that the tree has exactly m/2 colliding pairs on their inner top or bottom part.
Remark 2. In world WIM2 , the responses are drawn uniformly at random from a set of size
at least 2b − 3i, while in the ideal world WI , the inner parts of the responses are sampled
uniformly at random in a set of size at least 2c− 3i. Therefore, for any forward query with
answer Y , y ∈ {0, 1}b, and x ∈ {I , IM2},

Prx

(
Y

c= y
)
≤ 1

2c − 3q
. (9)

Looking ahead, the probability computation will give the same upper bound in both
worlds.

Since BAD groups several sub-events, we split accordingly the probability computation,
and when it is meaningful each sub-event is studied as many times as the number of
iterations of the simulator that we consider. For instance, remember that Double2Coli is
an event that can occur when an edge is added. It is split into (Double2Coli[k])k∈N\{0},
where Double2Coli[k] means that the kth iteration of the simulator during the query i
sets Double2Col. Note that the order in which we consider the bad events matters. In
more detail, if we compute the probability of event E, then F, and then G, in the last
computation ¬E ∧ ¬F is implicitly assumed.

The remainder of the proof is organized as follows. Sections 5.1.1 to 5.1.3 are dedicated
to forward queries events, where each section concerns one iteration of the simulator.
Section 5.1.4 looks at inverse queries events. Finally, Section 5.1.5 gathers the found upper
bounds and plugs them into (8).

5.1.1 First Iteration Events, Forward Query

The first iteration on a forward query is the easiest case, since the newly created edges
provide the maximal possible randomness. Because of ¬BADi−1, and from the re-
mark at the beginning of the proof of Lemma 1, the node collection phase returns
at most two nodes (after absorption). In the following, we focus on the hardest case
where |NodesToAnswer| = 2, so that NodesToAnswer := {(Xtop

1 , Xbot
1 ), (Xtop

2 , Xbot
2 )},

where Xs
1 = Xs

2 for s ∈ {top, bot}. Thus, three permutation outputs need to be fixed.
For k ∈ {1, 2} and s ∈ {top, bot}, let Y s

k be the random variable equal to tabPs[Xs
k].

After the first iteration, the graph has two more rooted nodes that we denote by
(Atop, Abot), (Btop, Bbot). Now we can look at the probability that (Atop, Abot) and/or
(Btop, Bbot) triggers BAD using the condition N2Col = m.

1. AUX1. This event implies that

Y top
1 + 2Y bot

1
c= Y top

2 + 2Y bot
2

or 2Y top
1 + Y bot

1
c= 2Y top

2 + Y bot
2 ,
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where we know that Y top
1 = Y top

2 or Y bot
1 = Y bot

2 , but the other elements are distinct. By
Remark 2, in both worlds, this event happens with probability at most 2

2c − 3q
.

Now, ¬AUX1
i allows to study separately the probability that the node (Atop, Abot)

(resp., (Btop, Bbot)) triggers a first iteration event. Since the probabilities are the same, in
the following we focus only on (Atop, Abot).

2. AUX2. The event AUX2 only concerns inverse queries, thus it does not apply here.

3. AUX3. The event AUX3 only concerns the second iteration, thus it does not apply
here.

4. 3Col. This event means that there exist distinct (N top
1 , Nbot

1 ), (N top
2 , Nbot

2 ) ∈ Rooted
such that

Atop c= N top
1

c= N top
2

or Abot c= Nbot
1

c= Nbot
2 .

Because of the condition N2Col = m, there are m/2 tuples {(N top
1 , Nbot

1 ), (N top
2 , Nbot

2 )}.
From Remark 1, we know that the latter are disjointly split into S2Col(bot) and S2Col(top).
Therefore the probability is upper bounded by m

2(2c − 3q) .

5. Double2Col. There are two possibilities:

• The inserted node displays a double collision. In other words, there exist (N top
1 , Nbot

1 ),
(N top

2 , Nbot
2 ) ∈ Rooted (not necessarily distinct) such that

Atop c= N top
1

and Abot c= Nbot
2 .

Let (M top
1 , Mbot

1 ) := MIX−1(N top
1 , Nbot

1 ), and (M top
2 , Mbot

2 ) := MIX−1(N top
2 , Nbot

2 ).
Then, this case reduces to

Y top
1

c= M top
1

and Y bot
1

c= Mbot
2 . (10)

Now, because of ¬BADi−1, there are at most (3(i − 1) + 1)2 ≤ (3i)2 tuples
(N top

1 , Nbot
1 ), (N top

2 , Nbot
2 ) ∈ Rooted, and for each tuple, (10) is satisfied with proba-

bility at most
(

1
2c − 3q

)2
. Therefore, this event happens with probability at most(

3i

2c − 3q

)2
.

• The inserted node is part of a double collision: in other words there exist (N top
1 , Nbot

1 ),
(N top

2 , Nbot
2 ) ∈ Rooted such that

{
N top

1
c= Atop ,

Nbot
1

c= Nbot
2 ,

or
{

N top
1

c= N top
2 ,

Nbot
1

c= Abot .

Similarly to 3Col, this gives a probability of m

2c − 3q
.
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6. BadNode. This event means that there exist xtop ∈ Dom(tabPtop) and xbot ∈
Dom(tabPbot) such that

Atop c= xtop

and Abot c= xbot .

For every fixed tuple (xtop, xbot), this happens with probability at most
(

1
2c − 3q

)2
, and

there are at most 9i2 such tuples. Therefore we obtain the upper bound
(

3i

2c − 3q

)2
.

Now we are done with the first iteration events. We can then compute the same
probabilities for second-iteration events (if a second iteration is required) and compute the
probability that a third iteration is needed.

5.1.2 Second-Iteration Events, Forward Query

Thanks to ¬BadNode for the first iteration nodes, neither (Atop, Abot) nor (Btop, Bbot)
have the inner part of both their top and bottom part in the query history. Nevertheless,
it is possible that only their top or bottom part displays an inner collision with the query
history, and this is not a bad event. Since the size of the top (resp., bottom) query history
is upper bounded by 3i, and four different cases can happen, i.e., with node (Atop, Abot) or
(Btop, Bbot), on top or bottom part, this event happens with probability at most 12i

2c − 3q
.

In the following, we first get rid of the case where the simulator or GraphProc has to take
care of more than one node.

1. AUX3. This event can be achieved in two different ways:
• Both (Atop, Abot) and (Btop, Bbot) have their upper or lower part appearing in the

query history. The probability analysis is similar to the one made at the first

paragraph of Section 5.1.2, and we obtain an upper bound of
(

6i

2c − 3q

)2
;

• (Atop, Abot) (or (Btop, Bbot)) has its upper or lower part appearing in the query
history and displays an inner collision with another rooted rode. For s ∈ {top, bot},
let

ξs =
{

j ∈ {1, . . . , q} | (Atop
j , Abot

j ) ∈ S2Col(s) ∨ (Btop
j , Bbot

j ) ∈ S2Col(s)
}

, (11)

where we abuse notation for (Atop
j , Abot

j ) and (Btop
j , Bbot

j ) to refer to the nodes
produced during the first iteration of query j. Then, as long as BAD does not occur,
ξtop and ξbot are disjoint and the size of ξtop ∪ ξbot is at most m. Now, this case of
AUX3 happens with a non-zero probability if and only if i ∈ ξs for s ∈ {top, bot},
in which case the probability can be upper bounded by 6i

2c − 3q
.

We henceforth assume ¬AUX3
i , so that the procedure NodeCollection () returns

only one node (Xtop, Xbot). In the ideal world, the simulator has no problem to solve
the consistency equation, and inserts to the graph one more node (Ctop, Cbot). Now,
(Ctop, Cbot) does not contain as much randomness as the first iteration nodes, since one of
the permutation calls is already fixed. However, we are going to make use of the fact that
second iteration edges are rarely produced. W.l.o.g., we can assume that Xtop appeared in
the query history, and let ytop := tabPtop[Xtop], and Y bot := tabPbot [Xbot ]; in particular,
the only fresh random value is Y bot . In the following we compute the probability that this
node triggers BAD using the condition N2Col = m.
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2. AUX1. This event implies that (Ctop, Cbot) collides with (Atop, Abot) or (Btop, Bbot),
thus

ytop + 2Y bot c= Y top
k + 2Y bot

k

or 2ytop + Y bot c= 2Y top
k + Y bot

k

for some k ∈ {1, 2}, where we remind that Y s
k is the random variable equal to tabPs[Xs

k],
fixed during the first node collection. This event happens with probability at most 4

2c − 3q
.

3. AUX2. The event AUX2 only concerns inverse queries, thus it does not apply here.

4. 3Col. This event means that there exist (N top
1 , Nbot

1 ), (N top
2 , Nbot

2 ) ∈ Rooted distinct
such that

Ctop c= N top
1

c= N top
2

or Cbot c= Nbot
1

c= Nbot
2 ,

or in more detail,

ytop + 2Y bot c= Nbot
1

c= Nbot
2

or 2ytop + Y bot c= N top
1

c= N top
2 .

Similarly to the first iteration nodes, this event happens with probability at most m

2(2c − 3q) .

5. Double2Col. Again, there are two possibilities:

• (Ctop, Cbot) displays a double collision: there exist (N top
1 , Nbot

1 ), (N top
2 , Nbot

2 ) ∈
Rooted (not necessarily distinct) such that

Ctop c= N top
1

and Cbot c= Nbot
2 .

Denoting (M top
1 , Mbot

1 ) = MIX−1(N top
1 , Nbot

1 ), and (M top
2 , Mbot

2 ) =
MIX−1(N top

2 , Nbot
2 ), this reduces to

ytop c= M top
1

and Y bot c= Mbot
2 . (12)

Now, the first term of the equation does not provide any randomness. Nevertheless,
Double2Col with a second iteration node implies that the following two sub-events
happened:

– E1: The node (Atop, Abot) or (Btop, Bbot) has the inner part of its top part
already in the query history. By the first paragraph of Section 5.1.2, the
probability is upper bounded by 6i

2c − 3q
;

– E2: There exists Mbot
2 as above such that Y bot satisfies the second equation of

(12). This happens with probability at most 3i

2c − 3q
.
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E1 and E2 are independent, and we need to consider the symmetric case where
the bottom part of (Atop, Abot) or (Btop, Bbot) was already in the query history.

Therefore this case of Double2Col happens with probability at most
(

6i

2c − 3q

)2
.

• (Ctop, Cbot) is part of a double collision: there exists (N top
1 , Nbot

1 ), (N top
2 , Nbot

2 ) ∈
Rooted (not necessarily distinct) such that{

N top
1

c= Ctop ,

Nbot
1

c= Nbot
2 ,

or
{

N top
1

c= N top
2 ,

Nbot
1

c= Cbot .

Similarly to the first iteration nodes, this gives a probability of at most m

2c − 3q
.

6. BadNode. Since BadNodei on the node (Ctop, Cbot) implies ThreeRoundsi, we
can skip this probability computation.

5.1.3 Third Iteration Events, Forward Query

Now, to guarantee ¬ThreeRoundsi, we need that (Ctop, Cbot) (if it exists) does not have
any of its inner parts appearing in the query history. Again, this event implies the following
two sub-events:

• An inner part of a first iteration node appears in the query history: by the first
paragraph of Section 5.1.2, this event happens with probability at most 12i

2c − 3q
;

• An inner part of a second iteration node appears in the query history: since ¬AUX3
i

guarantees that at most one node was produced during the second iteration, this
event happens with probability at most 6i

2c − 3q
.

Both of these events are independent, therefore ThreeRoundsi happens with proba-

bility at most 2
(

6i

2c − 3q

)2
.

5.1.4 The Case of Inverse Queries

This case is similar to the second-iteration events, since inverse queries rarely hit the
tree, i.e., they hit one of the inner parts of the tree with probability at most 6i

2c − 3q
.

Moreover, the event AUX2 is set with probability at most m

2c − 3q
. Assuming then

¬AUX2, NodesToAnswer contains only one node and the behavior of the simulator
and GraphProc is the same as if a second iteration node was produced with one of its top
part in the query history, and the probability computation is the same. Consequently,

Pr (BADi | N2Col = m ∧ ¬BADi−1 ∧ query i is inverse) ≤
Pr (BADi | N2Col = m ∧ ¬BADi−1 ∧ query i is forward) .
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5.1.5 Conclusion

From Sections 5.1.1 to 5.1.4, we know that

Prx (BADi | N2Col = m ∧ ¬BADi−1)

≤

180
(

i
2c−3q

)2
+ 6

2c−3q + 9m
2(2c−3q) if i ̸∈ ξtop ∪ ξbot ,

180
(

i
2c−3q

)2
+ 6

2c−3q + 9m
2(2c−3q) + 6q

2c−3q otherwise ,
(13)

where we remind that ξs is the number of queries such that there exists a node produced
during the first iteration in S2Col(s) (see (11)). The conditions under which we study the
corresponding BAD events guarantee that ξtop and ξbot are disjoint, and |ξtop|+ |ξbot | = m.
Therefore, this gives

Prx (BAD | N2Col = m) ≤
q∑

i=1

(
180

(
i

2c − 3q

)2
+ 6

2c − 3q
+ 9m

2(2c − 3q)

)
+

∑
i∈ξtop∪ξbot

6q

2c − 3q

≤ 60q3

(2c − 3q)2 + 90q2

(2c − 3q)2 + 30q

(2c − 3q)2 + 6q

2c − 3q
+

21mq

2(2c − 3q) .

Now, plugging this equation into (7) gives

Prx (BAD) ≤ 60q3

(2c − 3q)2 + 90q2

(2c − 3q)2 + 30q

(2c − 3q)2 + 6q

2c − 3q
+

3q+1∑
m=0

Prx (N2Col = m) 21mq

2(2c − 3q)

≤ 60q3

(2c − 3q)2 + 90q2

(2c − 3q)2 + 30q

(2c − 3q)2 + 6q

2c − 3q
+

21q

2(2c − 3q)E (N2Col) . (14)

It now remains to compute E (N2Col). For i ∈ {1, . . . , |Trimmed|}, denote by (N top
i , Nbot

i )
the ith element in Trimmed. Moreover, we define the Bernoulli variable Vi equal to 1 if
and only if (N top

i , Nbot
i ) ∈ S2Col. Then,

E (N2Col) = E

|Trimmed|∑
i=1

Vi

 =
|Trimmed|∑

i=1
E (Vi)

=
|Trimmed|∑

i=1
2Pr

(
∃j < i, s ∈ {top, bot} such that Ns

i
c= Ns

j

)

≤ 2
|Trimmed|∑

i=1

2(i− 1)
2c − 3q

= 4
2c − 3q

|Trimmed| (|Trimmed| − 1)
2

≤ 18q2

2c − 3q
+ 6q

2c − 3q
, (15)
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where the last inequality uses |Trimmed| ≤ 3q + 1. Finally, plugging (15) into (14), we
obtain

Prx (BAD) ≤ 60q3

(2c − 3q)2 + 90q2

(2c − 3q)2 + 30q

(2c − 3q)2 + 6q

2c − 3q
+

21q

2(2c − 3q)

(
18q2

2c − 3q
+ 6q

2c − 3q

)
≤ 249q3

(2c − 3q)2 + 153q2

(2c − 3q)2 + 30q

(2c − 3q)2 + 6q

2c − 3q

≤ 249q3

(2c − 3q)2 + 30q

(2c − 3q)2 + 19q

2c − 3q
.

If we assume that 30 < 2c, then we obtain the upper bound

Prx (BAD) ≤ 249q3

(2c − 3q)2 + 21q

2c − 3q
.

When x = I , q = qP , while when x = IM2 , q ≤ σ + qP , hence the result.

5.2 World WI Versus World WIM1 as Long as no BAD
Lemma 3 argues that as long as no BAD happens, the ideal and intermediate worlds are
indistinguishable.

Lemma 3. For any distinguisher D,∣∣Pr
(
DWI = 1 | ¬BAD

)
−Pr

(
DWIM1 = 1 | ¬BAD

)∣∣ = 0 .

Proof. The only difference between the worlds WI and WIM1 lies in the consistency of
the responses. In more detail, as long as the simulator is RO-consistent with respect
to H (c.f., Definition 1), then WI and WIM1 are perfectly indistinguishable. We stress
that for s ∈ {top, bot}, an s inverse query hitting the tree does not necessarily break the
consistency, since the simulator uses the s̄ part to guarantee consistency. Therefore, the
RO-consistency boils down to ensuring that the procedure LinSolve () never returns ⊥,
which we argue in the following.

From the remark at the beginning of the proof of Lemma 1, we know that as long
as no BAD happens, |NodesToAnswer| ≤ 2 for any iteration of the simulator. When
|NodesToAnswer| = 1, if BadNode is not set, the linear system comprises only one
equation with at least one unknown, thus the simulator can always output consistent
answers. Therefore we henceforth consider the case where |NodesToAnswer| = 2.
W.l.o.g., assume that NodesToAnswer = {(Xtop

1 , Xbot
1 ), (Xtop

2 , Xbot
2 )} where Xtop

1 =
Xtop

2 . Now, the form of the underlying linear system depends on the direction of the query
and the iteration run by the simulator. In the following we study each case.

Forward query, first iteration. The consistency equation is of the form

atop
1 ⊕ abot

1 = h1 ,

atop
1 ⊕ abot

2 = h2 , (16)

where atop
1 is the variable corresponding to outerr

(
tabPtop[Xtop

1 ]
)

= outerr

(
tabPtop[Xtop

2 ]
)

,
abot

1 to outerr

(
tabPbot [2Xbot

1 ]
)
, and abot

2 to outerr

(
tabPbot [2Xbot

2 ]
)
. This equation has a

solution, since the simulator can choose atop
1

$←− {0, 1}r, and infer abot
1 , abot

2 .
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Inverse query, first iteration. In this case, since BAD (and in particular AUX2) does
not happen, |NodesToAnswer| ≤ 1.

Second iteration. Because of ¬AUX3, |NodesToAnswer| ≤ 1.

Therefore, the simulator can always produce consistent answers.

5.3 World WIM1 Versus World WIM2 as Long as no BAD
In this section we upper bound the distinguisher’s advantage between WIM1 and WIM2
without BAD.
Lemma 4. For any distinguisher D making qP primitive queries and construction queries
which would correspond to a total of σ primitive queries in world WR, one has∣∣Pr

(
DWIM1 = 1 | ¬BAD

)
−Pr

(
DWIM2 = 1 | ¬BAD

)∣∣ ≤ 3q
3
2

2c − 3q
,

where q := σ + qP .

The proof is deferred to Section 5.3.3. First, we introduce a distinguishing game useful
for the proof in Section 5.3.1, and upper bound the statistical distance between the two
underlying distributions in Section 5.3.2.

5.3.1 A Simpler Distinguishing Game

We first introduce a simple distinguishing game whose statistical distance computation is
crucial for the proof of Lemma 4. In the following, let ϕ : {0, 1}b → {0, 1}b be a bijection.

World W1. In this world, the elements in {0, 1}b are partitioned into 2r buckets
(Bk)k=0,...,2r−1 in the following way:

∀x ∈ {0, 1}b, x ∈ Bk ⇐⇒ outerr (ϕ(x)) = k .

Each bucket contains 2c elements. Then, on a forward query, an element k ∈ {0, 1}r is
drawn uniformly at random, and the answer is the result of a sampling without replacement
in bucket Bk. On an inverse query with y ∈ {0, 1}b, a permutation-consistent element with
lazy sampling is returned, and y is withdrawn from bucket Bouterr(y).

World W2. This world implements a random permutation over {0, 1}b, where the elements
are returned using lazy sampling.

Intuitively, W2 corresponds to the permutations Ptop and Pbot , and we will argue later
that W1 is an abstraction of the simulator way of sampling the responses.

5.3.2 Upper Bounding the Statistical Distance Using the χ2 Method

Lemma 5 upper bounds the statistical distance between W1 and W2. The proof uses the
χ2 method by Dai et al. [DHT17] that we describe in the following. Let Ω := {0, 1}b

be a sample space, and consider two probability distributions P1 and P2 with values in
Ωq. Let x := (x1, . . . , xq) be a random vector following P1, and for any i ∈ {1, . . . , q}, let
xi := (x1, . . . , xi). The χ2 divergence is defined as follows:

χ2(xi−1) :=
∑
x∈Ω,

Pr2(xi=x|xi−1) ̸=0

(
Pr1

(
xi = x | xi−1)−Pr2

(
xi = x | xi−1) )2

Pr2 (xi = x | xi−1) .
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Moreover, assume that the support of P1 is included in the support of P2. Then the χ2

method upper bounds the statistical distance between P1 and P2 as follows:

Advind (P1, P2) (q) ≤
(

1
2

q∑
i=1

E
(
χ2 (xi−1))) 1

2

, (17)

where we abuse notation for Advind (P1, P2) (q).
Lemma 5. For any q ≤ 2c,

Advind (W1, W2) (q) ≤ 1
2

q
3
2

2c − q
.

Proof. In the following, if x is a vector of length k > 1 with values in {0, 1}b, let

PCons(x) := {y ∈ {0, 1}b | ∀i ∈ {1, . . . , k}, y ̸= xi} .

Because the inverse queries in W1 and W2 trigger the same sampling procedure (thus a
zero term in the chi-squared divergence), we can w.l.o.g., focus on forward queries. Denote
by P1 (resp., P2) the associated distribution in W1 (resp., W2). In both cases, let tabP be
the dictionary that logs the query history, i.e., if tabP[x] = y, then a forward query with x
gives y, and vice versa for inverse queries. For i ∈ {1, . . . , q}, let xi−1 be a random vector
of i− 1 elements sampled according to P1. Let x ∈ PCons(xi−1), we then define S(x) as
follows:

S(x) = |{y ∈ Img(tabP) | outerr (y) = outerr (ϕ(x))}| .

i.e., the number of elements that have already been withdrawn from bucket Bouterr(ϕ(x)).
Now, in order to obtain x in W1, the adversary must first sample outerr (ϕ(x)), and then
draw the appropriate element in a bucket of size 2c − S(x). Thus

Pr1
(
xi = x | xi−1) = 1

2r

1
2c − S(x) ,

Pr2
(
xi = x | xi−1) = 1

2b − (i− 1) .

Therefore, using that 0 ≤ S(x) ≤ i− 1 ≤ q ≤ 2c,∣∣∣∣∣Pr1
(
xi = x | xi−1)−Pr2

(
xi = x | xi−1)

Pr2 (xi = x | xi−1)

∣∣∣∣∣
=
∣∣∣∣2b − (i− 1)− 2b + 2rS(x)

2b − 2rS(x)

∣∣∣∣
=
∣∣∣∣2rS(x)− (i− 1)

2b − 2rS(x)

∣∣∣∣
≤ i− 1

2c − q
.

Using the obtained equation, we can compute the χ2 divergence:

χ2(xi−1) =
∑

x∈PCons(xi−1)

Pr2
(

xi = x | xi−1
)(Pr1

(
xi = x | xi−1

)
− Pr2

(
xi = x | xi−1

)
Pr2 (xi = x | xi−1)

)2

≤
∑

x∈PCons(xi−1)

Pr2
(

xi = x | xi−1
)( i − 1

2c − q

)2

=
(

i − 1
2c − q

)2
.
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Now, we can apply the χ2 technique to obtain

Advind (W1, W2) (q) ≤
(

1
2

q∑
i=1

E
(
χ2 (xi−1))) 1

2

≤

(
1
2

q∑
i=1

(
i− 1
2c − q

)2
) 1

2

≤ 1
2

q
3
2

2c − q
.

Remark 3. This distinguishing problem is similar to the one of Bhattacharya and Nandi’s
work [BN18, Theorem 2]. They have an upper bound of the form

O
(

q

2 b+c
2

)
.

However, in their setting the adversary only makes forward queries. In our case, allowing
inverse queries introduces a supplementary bias in the distribution that can be upper

bounded by q
3
2

2c
.

5.3.3 Proof of Lemma 4

Using Lemma 5, we can now prove Lemma 4. Consider D which aims at distinguishing
WIM1 and WIM2 without BAD. We decompose the qP primitive queries into qtop

P top
queries and qbot

P bottom queries, so that qP = qtop
P + qbot

P . From D, we build another
distinguisher D1 which converts all of the construction queries into the appropriate primitive
queries, so that D1 makes at most σ/2+qtop

P (resp., σ/2+qbot
P ) top (resp., bottom) primitive

queries. Since the construction component is the same in both worlds, doing this provides
at least the same amount of information to the adversary. Define Wa as WIM1 without
the component H, and similarly, let Wd comprise WIM2 without the component H. Then,
we have∣∣Pr

(
DWIM1 = 1 | ¬BAD

)
−Pr

(
DWIM2 = 1 | ¬BAD

)∣∣ ≤∣∣∣Pr
(
DWa

1 = 1 | ¬BAD
)
−Pr

(
DWd

1 = 1 | ¬BAD
)∣∣∣ .

Now, we remark that the simulator embeds two distinct primitives, each one simulating the
top or bottom permutation. Given the current simulator definition, it is not clear whether
these two primitives are independent. Indeed, a top (resp., bottom) query can trigger a
bottom (resp., top) output being defined, and the outer parts are chosen according to an
equation involving top and bottom outer parts. To address these points, we introduce two
intermediate worlds Wb and Wc, as illustrated in Fig. 4.

World Wb. Wb differs from Wa in the way the dictionaries DictOuterPartstop and
DictOuterPartsbot are generated. Namely, the function LinSolve () is replaced by a
uniform sampling of the outer parts. Given this description, it is now clear that the two
primitives have independent sampling procedures. In Fig. 4b, they are represented by the
components Gtop and Gbot which take as parameter a bit β ∈ {0, 1}, and for every fresh
query, Gs operates as follows:

• If β = 0 or the query is in the inverse direction, it returns a permutation-consistent
answer uniformly at random;
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S

RO

D1

top bot

(a) Wa

Gtop Gbot

GraphProc

D1

top bot

D2

(b) Wb

Ptop Gbot

GraphProc

D1

top bot

D2

(c) Wc

Ptop Pbot

GraphProc

D1

top bot

D2

(d) Wd

Figure 4: World decomposition for the proof of Lemma 4. Wa and Wd correspond
respectively to WIM1 and WIM2 (without the construction oracle). D2 is a distinguisher
built from D1 when distinguishing Wb, Wc, and Wd.

• Otherwise it samples h
$←− {0, 1}r, and returns a permutation-consistent answer y

uniformly at random with the restriction that

h =
{

outerr (y) if s = top ,

outerr (2y) if s = bot .

The component GraphProc invokes the procedures Gtop and Gbot with β = 0 whenever
the node collection phase returns an empty set (corresponding to line 11 of Algorithm 3).
Looking ahead, Gtop and Gbot with β always equal to 1 correspond to W1 defined in
Section 5.3.1.

Now, recall that in Wa the outer parts returned by LinSolve () come from RO calls
combined with uniform sampling. In particular, because no BAD event occurs, these
values are all freshly random, so that Wb is just a rearrangement of Wa. Therefore,∣∣∣Pr

(
DWa

1 = 1 | ¬BAD
)
−Pr

(
DWb

1 = 1 | ¬BAD
)∣∣∣ = 0 .

New distinguisher. From D1 we build yet another distinguisher D2 which obtains for
free all of the subsequent queries defined by the simulator or the primitives Gtop and
Gbot . In other words, D2 runs the component GraphProc on its own (see Fig. 4). Since no
BAD happens, D2 makes at most 3(σ/2 + qtop

P ) (resp., 3(σ/2 + qbot
P )) top (resp., bottom)

primitive queries, and clearly,∣∣∣Pr
(
DWb

1 = 1 | ¬BAD
)
−Pr

(
DWd

1 = 1 | ¬BAD
)∣∣∣ ≤∣∣∣Pr

(
DWb

2 = 1 | ¬BAD
)
−Pr

(
DWd

2 = 1 | ¬BAD
)∣∣∣ .

World Wc. In this world, the left sampler Gtop is replaced by an ideal permutation.
Since Gtop and Gbot are independent and D2 runs GraphProc by itself, we obtain∣∣∣Pr

(
DWb

2 = 1 | ¬BAD
)
−Pr

(
DWc

2 = 1 | ¬BAD
)∣∣∣ ≤

Advind (Gtop,Ptop) (3(σ/2 + qtop
P )) .

Likewise, in Wd, the right sampler Gbot is replaced by an ideal permutation, and we
obtain∣∣∣Pr

(
DWc

2 = 1 | ¬BAD
)
−Pr

(
DWd

2 = 1 | ¬BAD
)∣∣∣ ≤

Advind (Gbot ,Pbot) (3(σ/2 + qbot
P )) .
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Conclusion. Using the triangle inequality and the results above,∣∣Pr
(
DWIM1 = 1 | ¬BAD

)
−Pr

(
DWIM2 = 1 | ¬BAD

)∣∣ ≤
Advind (Gtop,Ptop) (3(σ/2 + qtop

P )) + Advind (Gbot ,Pbot) (3(σ/2 + qbot
P )) .

We remark that the chi-squared divergence of Gtop/Ptop (resp. Gbot/Pbot) is always smaller
than the one of W1/W2 from Section 5.3.1. Indeed, in the distinguishing game Gs/Ps,
when β = 1, the conditional probabilities are the same ones as in the game W1/W2, while
when β = 0, the conditional probabilities in Gtop and Ptop are equal, giving a zero term in
the chi-squared divergence. Therefore, we can use the result of Lemma 5, and obtain

Advind (Gtop,Ptop) (3(σ/2 + qtop
P )) ≤ 1

2
(3(σ/2 + qtop

P )) 3
2

2c − (3(σ/2 + qP)) ,

Advind (Gbot ,Pbot) (3(σ/2 + qbot
P )) ≤ 1

2
(3(σ/2 + qbot

P )) 3
2

2c − (3(σ/2 + qP)) ,

Finally, defining q := σ + qP , this gives∣∣Pr
(
DWIM1 = 1 | ¬BAD

)
−Pr

(
DWIM2 = 1 | ¬BAD

)∣∣ ≤ 3q
3
2

2c − 3q
,

which concludes the proof.

6 Tightness of the Bound
In this section, we argue about the tightness of the bound of Theorem 1 by providing
two attacks. The first one, described in Section 6.1, has an advantage of O

(
q2

22c+r

)
. This

attack is not specific to our simulator, since it can be used to mount collision and second
preimages (which can then be used to differentiate). The second attack, as explained
in Section 6.2, has an advantage of Ω

(
q3

22c+r

)
and only works against our simulator of

Section 4.2.

6.1 Simple Birthday Attack
The birthday attack is similar to the best-known differentiability attack of the sponge
construction [BDPV07]. It consists of finding a full-state collision in the nodes, i.e., find
(Atop, Abot), (Btop, Bbot) ∈ Rooted, m ∈ {0, 1}r such that

(Atop, Abot) = (Btop ⊕ (m∥0c), Bbot ⊕ (m∥0c)) . (18)

To do so, the distinguisher performs q top and bottom queries to expand rooted paths, so
that it obtains a set of rooted nodes {(N top

i , Nbot
i )}i=1,...,q, and searches for (Atop, Abot),

(Btop, Bbot) in this list that satisfy (18). The probability to find such nodes is then

≈ q2

22c+r
. Once this is done, the distinguisher adds one edge from (Atop, Abot) with

a zero message. Consequently, an edge from (Btop, Bbot) with the message m is also
added. The distinguisher can then retrieve the unique messages and indexes MA, kA and
MB , kB associated to (Atop, Abot) and (Btop ⊕ (m∥0c), Bbot ⊕ (m∥0c)). Finally, it queries
ConsQuery (MA, kA) and ConsQuery (MB , kB) and checks whether the two responses are
equal. If this is the case, then the distinguisher returns WR, otherwise it returns WI .
Indeed, consistency is always satisfied in the real world, while in the ideal world, with
high probability the two RO calls are distinct. This attack succeeds with high probability
when q = 2c+r/2. Note that this attack works against any simulator, and therefore one
cannot get better than c + r/2 bits of security.
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6.2 A Simulator-Specific Attack
We show a differentiability attack with an advantage of ≈

(
1− 1

2r

)
q3

22c+r . Consider the
following distinguisher D:

1. D first starts by making q forward top and bottom primitive queries and obtains for
i ∈ {1, . . . , q} the queries Xtop

i → Y top
i and Xbot

i → Y bot
i ;

2. Then it makes q top and bottom primitive queries to expand rooted paths. The
top queries are of the form (Atop

j + (m||0c)), and the bottom queries of form (Abot
j +

(m||0c)), where (Atop
j , Abot

j ) $←− Rooted, and m
$←− {0, 1}r. After this step, D obtains

q rooted notes, and for any i ∈ {1, . . . , q}, the ith node is denoted by (Atop
i , Abot

i );

3. The distinguisher checks whether the event BadNode_Strong is set, i.e., there
exist m ∈ {0, 1}r, i, j, k ∈ {1, . . . , q} such that Atop

i = Xtop
j ⊕ (m∥0c) and Abot

i =
Xbot

k ⊕ (m∥0c);

4. If such a collision is found, the distinguisher makes the construction query associated
to (Atop

i ⊕ (m∥0c), Abot
i ⊕ (m∥0c)), and returns 1 if the answer is consistent and 0

otherwise;

5. Otherwise, if BadNode_Strong is not set, D returns 0.

In the following, we abbreviate BadNode_Strong to BNS. D makes at most 4q primitive
queries and one construction query. In the real world, the answers are always consistent,
and in the ideal world, the answer is consistent with probability 1

2r , therefore

Pr
(
DWR = 1 | BNS

)
= 1 ,

Pr
(
DWI = 1 | BNS

)
= 1

2r
.

Moreover, in WR and WI , the probability that one fresh edge sets BNSi is ≈ q2

22c+r , thus

Pr
(
DWI sets BNS

)
≈ Pr

(
DWR sets BNS

)
≈ q3

22c+r
.

Therefore, noting that D outputs 0 when BNS is not set,

Pr
(
DWR = 1

)
= Pr

(
DWR = 1 | BNS

)
Pr
(
DWR sets BNS

)
≈ q3

22c+r
,

Pr
(
DWI = 1

)
= Pr

(
DWI = 1 | BNS

)
Pr
(
DWI sets BNS

)
≈ 1

2r

q3

22c+r
.

So that

Advindif
HPtop,Pbot, S(D) =

∣∣Pr
(
DWR = 1

)
−Pr

(
DWI = 1

)∣∣
≈ q3

22c+r

(
1− 1

2r

)
.

Setting q = 2 2c+r
3 thus gives a high probability success. This means that our simulator

cannot give a security bound better than q3

22c+r .
Note that there is a (small) gap of r/3 bits of security between this attack and our

proof. This means that either the attack can be improved or (more likely) our simulator
has a better security bound. However proving a better security bound would be extremely
challenging. Indeed, in our proof, we do allow inner collisions (as we aim for security
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beyond the birthday bound), but restrict ourselves to nodes which do not have more than
one single collision on their inner part. This was possible thanks to the introduction of
dedicated bad events (namely Double2Col and 3Col) which are set after approximately
22c/3 queries. In order to obtain beyond 2c/3 bits of security, we would have to release
this restriction, thus allow higher degree collisions, and possibly allow partial edges to be
added to the graph. This would incur a complex tree structure and new, sophisticated
bad events. Furthermore, a better bound on the simulator’s quality of randomness must
also be established.

7 Conclusion
In this work, we propose a new permutation-based hashing mode that achieves security
beyond the birthday bound in the capacity. It also achieves security beyond the birthday
bound in the permutation size if c > 3b/4.

We proved 2c/3 bits of security in the powerful indifferentiability framework, while
Section 6.2 upper-bounds the achievable security bound with respect to our simulator to
2c/3 + r/3 bits. As explained in Section 6.2, reaching a tight bound with respect to our
simulator is extremely hard. This is because inner collisions of degree more than two are
difficult to deal with. It should be noted that the attack of Section 6.2 is for our specific
simulator; it may be that there exists a simulator which defeats this attack.4 However,
the challenges involved in describing such simulator and proving its security make it a
difficult undertaking. Indeed, in this case the higher-degree inner collisions would not only
become intractable from a proof side (as already explained in Section 6.2), but also from
the simulator side, as the latter has to keep track of them.
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