

Building PRFs from TPRPs: Beyond the Block and the Tweak Length **Bounds**

Wonseok Choi¹ Jooyoung Lee² Yeongmin Lee²

Purdue University, West Lafayette, IN, USA

KAIST, Daejeon, Korea

March 27th, 2024

[Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds](#page-48-0)

Outline

- **[Xor of Two Permutatitions](#page-2-0)**
- 2 [Tweakable Block Ciphers](#page-11-0) ■ [Tweakable Block Ciphers](#page-11-0)
- 3 [Building PRFs from TPPRs](#page-15-0) [Building PRFs from TPRPs](#page-15-0)
- 4 [Mirror Theory](#page-33-0) **[Mirror Theory](#page-33-0)**
- 5 [Applications](#page-42-0) **[Applications](#page-42-0)**

Luby-Rackoff Problem

- Feistel and Coppersmith: designed IBM's Lucifer cipher using Feistel networks
- **Luby and Rackoff: analyzed Feistel network when the round** function is a secure pseudorandom function (PRF) ■ 3 rounds: a pseudorandom permutation (PRP),
	- 4 rounds: a strong pseudorandom permutation
- **Luby-Rackoff problem: how to make secure PRPs from secure** PRFs?

Luby-Rackoff Problem

- **Feistel and Coppersmith: designed IBM's Lucifer cipher using** Feistel networks
- **Luby and Rackoff: analyzed Feistel network when the round** function is a secure pseudorandom function (PRF)
	- 3 rounds: a pseudorandom permutation (PRP),
	- 4 rounds: a strong pseudorandom permutation
- **Luby-Rackoff problem: how to make secure PRPs from secure** PRFs?

Luby-Rackoff Problem

- **Feistel and Coppersmith: designed IBM's Lucifer cipher using** Feistel networks
- **Luby and Rackoff: analyzed Feistel network when the round** function is a secure pseudorandom function (PRF)
	- 3 rounds: a pseudorandom permutation (PRP),
	- 4 rounds: a strong pseudorandom permutation
- **Luby-Rackoff problem: how to make secure PRPs from secure** PRFs?

Luby-Rackoff Backward Problem

A block cipher is typically modeled as a PRP

Meanwhile, hashes, message authenticate codes (MACs), or authenticated encryptions (AEs) prefer to use PRFs — at least implicitly in their security proofs!

Luby-Rackoff backward problem: how to make secure PRFs from secure PRPs?

Luby-Rackoff Backward Problem

- A block cipher is typically modeled as a PRP
- Meanwhile, hashes, message authenticate codes (MACs), or authenticated encryptions (AEs) prefer to use PRFs — at least implicitly in their security proofs!
- **Luby-Rackoff backward problem: how to make secure PRFs from** secure PRPs?

Luby-Rackoff Backward Problem

- A block cipher is typically modeled as a PRP
- Meanwhile, hashes, message authenticate codes (MACs), or authenticated encryptions (AEs) prefer to use PRFs — at least implicitly in their security proofs!
- Luby-Rackoff backward problem: how to make secure PRFs from secure PRPs?

Security of Pseudorandom Function

■ C : $K \times \mathcal{X} \rightarrow \mathcal{Y}$: a keyed function

 \blacksquare The advantage of A in breaking the PRF-security of C

$$
\begin{aligned} \text{Adv}_{C}^{\text{prf}}(\mathcal{A}) &= \Big| \Pr\Big[K \leftarrow_{\$} \mathcal{K} : \mathcal{A}^{C(K,\cdot)} = 1\Big] \\ &- \Pr\Big[F \leftarrow_{\$} \text{Func}(\mathcal{X}, \mathcal{Y}) : \mathcal{A}^{F(\cdot)} = 1\Big] \Big| \end{aligned}
$$

 $\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{C}}(q)$: the maximum of $\mathsf{Adv}^{\mathsf{prf}}_{\mathsf{C}}(\mathcal{A})$ over all the distinguishers against C making at most *q* queries

Xor of Two Permutations

How to build secure PRFs from secure PRPs?

Figure 1: XoP based on two (keyed) PRPs: P and Q

■ Those are at most *n*-bit secure

Wonseok Choi Purdue University

[Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds](#page-0-0)

Xor of Two Permutations

How to build secure PRFs from secure PRPs?

Figure 1: XoP based on two (keyed) PRPs: P and Q

■ Those are at most *n*-bit secure

[Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds](#page-0-0)

Tweakable Block Ciphers

■ Tweakable block ciphers (TBC) [LRW02] are a generalization of standard block ciphers that accept extra inputs called tweaks

TWEAK:

provides inherent variability to the block cipher

■ makes it easy to design various higher level cryptographic schemes

Tweakable Block Ciphers

■ Tweakable block ciphers (TBC) [LRW02] are a generalization of standard block ciphers that accept extra inputs called tweaks

- **TWEAK:**
	- \blacksquare provides inherent variability to the block cipher
	- \blacksquare makes it easy to design various higher level cryptographic schemes

Tweakable Unifrom Random Permutaions

Keyed TBC should behave like an independent random permutation for each tweak as a tweakable permutation (TPRP)

■ The ideal counterpart of a TPRP is called a tweakable uniform random permutation (TURP)

Tweakable Unifrom Random Permutaions

Keyed TBC should behave like an independent random permutation for each tweak as a tweakable permutation (TPRP)

The ideal counterpart of a TPRP is called a tweakable uniform **I** random permutation (TURP)

How to build PRFs from TPRPs? (1)

- It is easy to achieve *n*-bit PRF security using a TPRP *P P*˜(*tweak*, *message*) = *output* where *n* is the bit size of message-output space
- By fixing a message and varying tweak inputs, we have an optimally secure PRF, i.e., $F(X) = P(X, C)$
- **However, the input domain is limited up to** *n***-bit string**
- **I** Ideally, a TPRP-based PRF may achieve $(n + t)$ -bit security, while taking $(n + t)$ -bit inputs (STILL OPEN)

How to build PRFs from TPRPs? (1)

- It is easy to achieve *n*-bit PRF security using a TPRP *P P*˜(*tweak*, *message*) = *output* where *n* is the bit size of message-output space
- By fixing a message and varying tweak inputs, we have an optimally secure PRF, i.e., $F(X) = \tilde{P}(X, C)$
- However, the input domain is limited up to *n*-bit string
- **I** Ideally, a TPRP-based PRF may achieve $(n + t)$ -bit security, while taking $(n + t)$ -bit inputs (STILL OPEN)

How to build PRFs from TPRPs? (1)

- It is easy to achieve *n*-bit PRF security using a TPRP \tilde{P} *P*˜(*tweak*, *message*) = *output* where *n* is the bit size of message-output space
- By fixing a message and varying tweak inputs, we have an optimally secure PRF, i.e., $F(X) = P(X, C)$
- However, the input domain is limited up to *n*-bit string
- Ideally, a TPRP-based PRF may achieve $(n + t)$ -bit security, while taking $(n + t)$ -bit inputs (STILL OPEN)

How to build PRFs from TPRPs? (2) How about using two TPRP \tilde{P} , \tilde{Q} ?

For simplicity, we only consider $t = n$ here For more general arguments, see our paper!

■ We first consider XoP-like construction, which we call MXoP: ■ MXoP $(X \parallel Y) = P(Y, X) \oplus Q(Y, X)$ $X, Y \in \{0, 1\}^n$

Indeed, this is the same as multiple instances of $X \circ P$ by regarding *Y* as a secret key of each instance

 \blacksquare the security can be reduced to that of multi-user PRF security of XoP, i.e., *n*-bit security

How to build PRFs from TPRPs? (2)

- How about using two TPRP \tilde{P} , \tilde{Q} ?
- For simplicity, we only consider $t = n$ here
	- For more general arguments, see our paper!
- We first consider XoP-like construction, which we call MXoP: ■ MXoP $(X \parallel Y) = P(Y, X) \oplus Q(Y, X)$ $X, Y \in \{0, 1\}^n$
- Indeed, this is the same as multiple instances of $X \circ P$ by regarding *Y* as a secret key of each instance
- \blacksquare the security can be reduced to that of multi-user PRF security of XoP, i.e., *n*-bit security

How to build PRFs from TPRPs? (2)

- How about using two TPRP \tilde{P} , \tilde{Q} ?
- For simplicity, we only consider $t = n$ here
	- For more general arguments, see our paper!
- We first consider XoP-like construction, which we call MXoP: ■ MXoP(*X* \parallel *Y*) = $\tilde{P}(Y, X) \oplus \tilde{Q}(Y, X)$ $X, Y \in \{0,1\}^n$

Indeed, this is the same as multiple instances of $X \circ P$ by regarding *Y* as a secret key of each instance

 \blacksquare the security can be reduced to that of multi-user PRF security of XoP, i.e., *n*-bit security

How to build PRFs from TPRPs? (2)

- How about using two TPRP \tilde{P} , \tilde{Q} ?
- For simplicity, we only consider $t = n$ here
	- For more general arguments, see our paper!
- We first consider XoP-like construction, which we call MXoP: ■ MXoP(*X* \parallel *Y*) = $\tilde{P}(Y, X) \oplus \tilde{Q}(Y, X)$ $X, Y \in \{0,1\}^n$
- Indeed, this is the same as multiple instances of XoP by regarding *Y* as a secret key of each instance
- \blacksquare the security can be reduced to that of multi-user PRF security of XoP, i.e., *n*-bit security

How to build PRFs from TPRPs? (2)

- How about using two TPRP \tilde{P} , \tilde{Q} ?
- For simplicity, we only consider $t = n$ here
	- For more general arguments, see our paper!
- We first consider XoP-like construction, which we call MXoP: ■ MXoP(*X* \parallel *Y*) = $\tilde{P}(Y, X) \oplus \tilde{Q}(Y, X)$ $X, Y \in \{0,1\}^n$
- Indeed, this is the same as multiple instances of XoP by regarding *Y* as a secret key of each instance
- \blacksquare the security can be reduced to that of multi-user PRF security of XoP, i.e., *n*-bit security

More on MXoP

■ The most recent result from Dinur [Eurocrypt'24], MXoP can be secure up to 2³*n*/² queries, i.e., the adversarial advantage can be bounded by *q*/2 3*n*/2

Previously, the most tight bound of MXoP was *q* ²/2 2*n*

By fixing a half of bits of messages, the previous bound is also reduced to *q*/2 3*n*/2 , with 3*n*/2-bit input space

■ We call this construction MXoP_{n/2}, where *n*/2 indicates we fix *n*/2-bit of messages

More on MXoP

■ The most recent result from Dinur [Eurocrypt'24], MXoP can be secure up to 2³*n*/² queries, i.e., the adversarial advantage can be bounded by *q*/2 3*n*/2

Previously, the most tight bound of MXoP was *q* ²/2 2*n*

By fixing a half of bits of messages, the previous bound is also reduced to *q*/2 3*n*/2 , with 3*n*/2-bit input space

■ We call this construction MXoP_{n/2}, where *n*/2 indicates we fix *n*/2-bit of messages

More on MXoP

- The most recent result from Dinur [Eurocrypt'24], MXoP can be secure up to 2³*n*/² queries, i.e., the adversarial advantage can be bounded by *q*/2 3*n*/2
- Previously, the most tight bound of MXoP was *q* ²/2 2*n*
- By fixing a half of bits of messages, the previous bound is also reduced to *q*/2 3*n*/2 , with 3*n*/2-bit input space
	- We call this construction $MXoP_{n/2}$, where $n/2$ indicates we fix *n*/2-bit of messages

■ We propose a new function family to achieve more strong security, dubbed XoTP

```
■ XoTP(X \parallel Y) = \tilde{P}(Y, X) \oplus \tilde{Q}(X, Y)X, Y \in \{0, 1\}^n
```
■ $X \circ \mathsf{TP}_c(X \parallel Y \parallel W) = \tilde{P}(W \parallel Y, C \parallel X) \oplus \tilde{Q}(W \parallel X, C \parallel Y)$

■ where *C* can be any fixed (or not fixed) *c*-bit constant, *X*, *Y* ∈ {0, 1}^{*n*−*c*}, and *W* ∈ {0, 1}^{*c*}

■ We propose a new function family to achieve more strong security, dubbed XoTP

■ XoTP(X || Y) =
$$
\tilde{P}(Y, X) \oplus \tilde{Q}(X, Y)
$$

■ X, Y ∈ {0, 1}ⁿ

■ $X \circ \mathsf{TP}_c(X \parallel Y \parallel W) = \tilde{P}(W \parallel Y, C \parallel X) \oplus \tilde{Q}(W \parallel X, C \parallel Y)$

■ where *C* can be any fixed (or not fixed) *c*-bit constant, *X*, *Y* ∈ {0, 1}^{*n*−*c*}, and *W* ∈ {0, 1}^{*c*}

■ We propose a new function family to achieve more strong security, dubbed XoTP

■
$$
XoTP(X || Y) = \tilde{P}(Y, X) \oplus \tilde{Q}(X, Y)
$$

■ $X, Y \in \{0, 1\}^n$

■ $XoTP_c(X \parallel Y \parallel W) = \tilde{P}(W \parallel Y, C \parallel X) \oplus \tilde{Q}(W \parallel X, C \parallel Y)$

■ where *C* can be any fixed (or not fixed) *c*-bit constant, *X*, *Y* ∈ {0, 1}^{*n*−*c*}, and *W* ∈ {0, 1}^{*c*}

■ We propose a new function family to achieve more strong security, dubbed XoTP

■
$$
XoTP(X || Y) = \tilde{P}(Y, X) \oplus \tilde{Q}(X, Y)
$$

■ $X, Y \in \{0, 1\}^n$

■ $X \circ \text{TP}_c(X \parallel Y \parallel W) = \tilde{P}(W \parallel Y, C \parallel X) \oplus \tilde{Q}(W \parallel X, C \parallel Y)$

■ where *C* can be any fixed (or not fixed) *c*-bit constant, *X*, *Y* ∈ {0, 1}^{*n*−*c*}, and *W* ∈ {0, 1}^{*c*}

Security of XoTP

■ The adversarial advantage in breaking the PRF-security of XoTP*^c* is upper bounded by

$$
O\left(\min\left\{\frac{q}{2^{n+2c}},\frac{q^2}{2^{3n}}\right\}\right)
$$

In particular, when $c = n/3$, we obtain a $5n/3$ -bit to *n*-bit random function which is 5*n*/3-bit secure

Wonseok Choi Purdue University

[Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds](#page-0-0)

Security of XoTP

■ The adversarial advantage in breaking the PRF-security of XoTP*^c* is upper bounded by

$$
O\left(\min\left\{\frac{q}{2^{n+2c}},\frac{q^2}{2^{3n}}\right\}\right)
$$

In particular, when $c = n/3$, we obtain a $5n/3$ -bit to *n*-bit random function which is 5*n*/3-bit secure

[Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds](#page-0-0)

Security Comparison

Figure 2: The threshold number of queries *q* as a function of tweak size *t*. The dashed line is the bound for MXoP $_{\mathsf{min}\{\frac{t}{2},n\}},$ and the solid line is the bound for XoTP *^t* . The graph don't include the recent Dinur's result. 3

Mirror Theory

\blacksquare Lower bound the number of solutions to a system

 $V_P = \{P_1, \ldots, P_a\}, V_Q = \{Q_1, \ldots, Q_a\}$: unknowns

 \blacksquare {*z*₁, . . . , *z*_{*q*}}: constants

$$
\vdots \begin{cases} P_1 \oplus Q_1 = z_1, \\ P_2 \oplus Q_2 = z_2, \\ \vdots \\ P_q \oplus Q_q = z_q. \end{cases}
$$

Expected number of solutions (roughly saying): whenever one picks the values of P_i and Q_i , Pr $[P_i \oplus Q_i = z_i] \approx 1/2^n$

$$
\frac{\text{\# of choices of } P_i \times \text{\# of choice of } Q_i}{2^{nq}} = \frac{(2^n)_q (2^n)_q}{2^{nq}}
$$

Mirror Theory

 \blacksquare Lower bound the number of solutions to a system

$$
\blacksquare \mathcal{V}_P = \{P_1, \ldots, P_q\}, \mathcal{V}_Q = \{Q_1, \ldots, Q_q\} \text{: unknowns}
$$

 \blacksquare {*z*₁, . . . , *z*_{*q*}}: constants

$$
\Gamma : \begin{cases} P_1 \oplus Q_1 = z_1, \\ P_2 \oplus Q_2 = z_2, \\ \vdots \\ P_q \oplus Q_q = z_q. \end{cases}
$$

Expected number of solutions (roughly saying): whenever one picks the values of P_i and Q_i , Pr $[P_i \oplus Q_i = z_i] \approx 1/2^n$

$$
\frac{\text{\# of choices of } P_i \times \text{\# of choice of } Q_i}{2^{nq}} = \frac{(2^n)_q (2^n)_q}{2^{nq}}
$$

Mirror Theory

 \blacksquare Lower bound the number of solutions to a system

$$
\blacksquare \mathcal{V}_P = \{P_1, \ldots, P_q\}, \mathcal{V}_Q = \{Q_1, \ldots, Q_q\} \text{: unknowns}
$$

 \blacksquare {*z*₁, . . . , *z*_{*q*}}: constants

$$
\Gamma : \begin{cases} P_1 \oplus Q_1 = z_1, \\ P_2 \oplus Q_2 = z_2, \\ \vdots \\ P_q \oplus Q_q = z_q. \end{cases}
$$

Expected number of solutions (roughly saying): whenever one \sim picks the values of P_i and Q_i , $\Pr\left[P_i\oplus Q_i=z_i\right]\approx 1/2^n$

of choices of
$$
P_i \times \#
$$
 of choice of Q_i

$$
\frac{(2^n)_{q}(2^n)_{q}}{2^{nq}}
$$

Graph Representation

Γ : $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $P_1 \oplus Q_1 = z_1,$ $P_2 \oplus Q_2 = z_2,$. . . $P_q \oplus Q_q = z_q.$

can be represented by a simple graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

 $V = V_P ⊔ V_Q$

- P_i and Q_i are connected by a *z*_{*i*}-labeled edge for $i = 1, \ldots, q$
- ϵ_{max} : the size of the largest component (= 2)

Wonseok Choi Purdue University

[Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds](#page-0-0)

Example: Graph Representation

Wonseok Choi Purdue University

[Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds](#page-0-0)

Mirror Theory for ξ*max* = 2 with Relaxed Constraints I

■ Variables from TPRPs are not necessarily distinct

Recall that ~ 1

$$
\Gamma: \begin{cases} P_1 \oplus Q_1 = Z_1 \\ \vdots \\ P_q \oplus Q_q = Z_q \end{cases}
$$

\n- \n**Divide**
$$
[q] = \mathcal{P}^{(1)} \sqcup \cdots \sqcup \mathcal{P}^{(a)} = \mathcal{Q}^{(1)} \sqcup \cdots \sqcup \mathcal{Q}^{(b)}
$$
\n
\n- \n**If** $P_1, P_2 \in \mathcal{P}^{(1)}$, it implies that P_1 and P_2 comes from the same tweak (1st tweak), i.e., $P_1 \neq P_2$ \n
\n

Mirror Theory for ξ*max* = 2 with Relaxed Constraints II

$$
i \stackrel{P}{\sim} j \Leftrightarrow \exists k \text{ such that } i, j \in \mathcal{P}^{(k)} \Rightarrow P_i \neq P_j
$$

$$
i \stackrel{Q}{\sim} j \Leftrightarrow \exists k \text{ such that } i, j \in \mathcal{Q}^{(k)} \Rightarrow Q_i \neq Q_j
$$

h(Γ, $\stackrel{P}{\sim}$, $\stackrel{Q}{\sim}$): the number of solutions to Γ subject to $\stackrel{P}{\sim}$ and $\stackrel{Q}{\sim}$ **Let**

$$
\mathcal{P}_i \stackrel{\text{def}}{=} \left\{ j < i \middle| j \stackrel{P}{\sim} i \right\}, \qquad \mathcal{Q}_i \stackrel{\text{def}}{=} \left\{ j < i \middle| j \stackrel{Q}{\sim} i \right\}
$$

[Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds](#page-0-0)

Mirror Theory for ξ*max* = 2 with Relaxed Constraints: Theorem

Theorem

Let
$$
\max_{i \in [a], j \in [b]} \{ |\mathcal{P}^{(i)}|, |\mathcal{Q}^{(j)}| \} \le \frac{2^n}{13}
$$
. One has

$$
h(\Gamma,\stackrel{P}{\sim},\stackrel{Q}{\sim})\geq\left(1-\sum_{i=1}^q\left(\frac{2\left|\mathcal{P}_i\cap\mathcal{Q}_i\right|}{2^{2n}}+\frac{20\left|\mathcal{P}_i\right|\left|\mathcal{Q}_i\right|}{2^{3n}}\right)-\frac{6(n+1)^3}{2^{2n}}\right)\times\prod_{i=1}^q\left(\frac{(2^n-\left|\mathcal{P}_i\right|)(2^n-\left|\mathcal{Q}_i\right|)}{2^n}\right).
$$

Wonseok Choi Purdue University

[Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds](#page-0-0)

History of Mirror Theory

 $\overline{+}$ $q \cdot \xi_{\text{max}} \leq O(2^n)$

[‡] The number of components of size ≥ 3 is smaller than 2^²

Table 1: History of Mirror theory since [\[Pat10\]](#page-0-1).

Application I

- Hash-then-PRF paradigm for constructing MACs
	- a variable-length message is mapped onto a fixed-length value through a hash function,
	- \blacksquare and then a PRF is applied to the hashed message, obtaining a tag
- TBC-based constructions: using two TBC calls at the finalization step
	- PMAC-TBC1k [\[Nai15\]](#page-0-1), PMACx [\[LN17\]](#page-0-1): *n*-bit security
	- ZMAC [lwa+17]: min $\left\{n, \frac{n+t}{2}\right\}$ -bit security
- XoTP_{ℓ} combined with a $(t + n \ell)$ -bit hash function $(n < t < 6n)$: provide $\frac{2t+3n}{5}$ -bit security with $\ell = \frac{t-n}{5}$

Application I

- Hash-then-PRF paradigm for constructing MACs
	- **a** variable-length message is mapped onto a fixed-length value through a hash function,
	- **and then a PRF is applied to the hashed message, obtaining a tag**
- TBC-based constructions: using two TBC calls at the finalization step
	- PMAC-TBC1k [\[Nai15\]](#page-0-1), PMACx [\[LN17\]](#page-0-1): *n*-bit security
	- ZMAC [lwa+17]: min $\{n, \frac{n+t}{2}\}$ -bit security
- XoTP_{ℓ} combined with a $(t + n \ell)$ -bit hash function $(n < t < 6n)$: provide $\frac{2t+3n}{5}$ -bit security with $\ell = \frac{t-n}{5}$

Application II

■ CTR-type encryption mode with

- a nonce as a tweak input and
- a block counter as a block cipher input
- secure up to $\frac{\sigma l}{2^n}$
	- *l*: the maximum message length
	- \blacksquare σ : the total number of message blocks
- Construct a CTR-type encryption mode of rate $\frac{1}{2}$ from XoTP_{$\frac{1}{3}$}:

 $n + \frac{2t}{3}$ bits are available for nonces and counters

secure up to $O\left(\frac{\sigma}{\sigma}\right)$ \setminus

A numerical example: SKINNY-64-192 (with 128-bit key) \Rightarrow $XoTP_{21}$: 106-bit input space and security

Application II

■ CTR-type encryption mode with

- a nonce as a tweak input and
- a block counter as a block cipher input

secure up to $\frac{\sigma}{2^n}$

- *l*: the maximum message length
- \blacksquare σ : the total number of message blocks

Construct a CTR-type encryption mode of rate $\frac{1}{2}$ from XoTP $_\frac{t}{3}$: 3

$$
n + \frac{2t}{3}
$$
 bits are available for nonces and counters

• secure up to
$$
O\left(\frac{\sigma}{2^{n+\frac{2t}{3}}}\right)
$$

A numerical example: SKINNY-64-192 (with 128-bit key) \Rightarrow $XoTP_{21}$: 106-bit input space and security

Conclusion

New results

- Beyond the block and the tweak length secure construction: XoTP
- **Mirror theory with relaxed contraint**

- \blacksquare Tight analysis of XoTP
- **Propose more constructions (e.g. highly secure encryption** scheme even *n* is small) from a relaxed Mirror theory of $\xi_{\text{max}} > 2$

Conclusion

New results

- \blacksquare Beyond the block and the tweak length secure construction: XoTP
- **Mirror theory with relaxed contraint**

Future research

- Tight analysis of XoTP
- Propose more constructions (e.g. highly secure encryption scheme even *n* is small) from a relaxed Mirror theory of $\xi_{\text{max}} > 2$

Thank you for your attention!

Conclusion

New results

- \blacksquare Beyond the block and the tweak length secure construction: XoTP
- **Mirror theory with relaxed contraint**

Future research

- \blacksquare Tight analysis of XoTP
- Propose more constructions (e.g. highly secure encryption scheme even *n* is small) from a relaxed Mirror theory of $\xi_{\text{max}} > 2$

Thank you for your attention!