Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	

Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds

Wonseok Choi¹ Jooyoung Lee² Yeongmin Lee²

Purdue University, West Lafayette, IN, USA

KAIST, Daejeon, Korea

March 27th, 2024

Wonseok Choi

Purdue University

Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds

Xor of Two Permutations		Mirror Theory	Applications	

Outline

- 2 Tweakable Block Ciphers Tweakable Block Ciphers
- Building PRFs from TPPRs
 Building PRFs from TPRPs
- 4 Mirror Theory ■ Mirror Theory
- 5 Applications Applications

Luby-Rackoff Problem

- Feistel and Coppersmith: designed IBM's Lucifer cipher using Feistel networks
- Luby and Rackoff: analyzed Feistel network when the round function is a secure pseudorandom function (PRF)
 3 rounds: a pseudorandom permutation (PRP),
 - 4 rounds: a strong pseudorandom permutation
- Luby-Rackoff problem: how to make secure PRPs from secure PRFs?

Luby-Rackoff Problem

- Feistel and Coppersmith: designed IBM's Lucifer cipher using Feistel networks
- Luby and Rackoff: analyzed Feistel network when the round function is a secure pseudorandom function (PRF)
 - 3 rounds: a pseudorandom permutation (PRP),
 - 4 rounds: a strong pseudorandom permutation
- Luby-Rackoff problem: how to make secure PRPs from secure PRFs?

Luby-Rackoff Problem

- Feistel and Coppersmith: designed IBM's Lucifer cipher using Feistel networks
- Luby and Rackoff: analyzed Feistel network when the round function is a secure pseudorandom function (PRF)
 - 3 rounds: a pseudorandom permutation (PRP),
 - 4 rounds: a strong pseudorandom permutation
- Luby-Rackoff problem: how to make secure PRPs from secure PRFs?

Luby-Rackoff Backward Problem

A block cipher is typically modeled as a PRP

Meanwhile, hashes, message authenticate codes (MACs), or authenticated encryptions (AEs) prefer to use PRFs — at least implicitly in their security proofs!

Luby-Rackoff backward problem: how to make secure PRFs from secure PRPs?

Luby-Rackoff Backward Problem

- A block cipher is typically modeled as a PRP
- Meanwhile, hashes, message authenticate codes (MACs), or authenticated encryptions (AEs) prefer to use PRFs — at least implicitly in their security proofs!
- Luby-Rackoff backward problem: how to make secure PRFs from secure PRPs?

Luby-Rackoff Backward Problem

- A block cipher is typically modeled as a PRP
- Meanwhile, hashes, message authenticate codes (MACs), or authenticated encryptions (AEs) prefer to use PRFs — at least implicitly in their security proofs!
- Luby-Rackoff backward problem: how to make secure PRFs from secure PRPs?

Security of Pseudorandom Function

C : $\mathcal{K} \times \mathcal{X} \to \mathcal{Y}$: a keyed function

■ The advantage of A in breaking the PRF-security of C

$$\begin{aligned} \mathbf{Adv}_{\mathsf{C}}^{\mathsf{prf}}(\mathcal{A}) = & \left| \mathsf{Pr} \left[\mathcal{K} \leftarrow_{\$} \mathcal{K} : \mathcal{A}^{\mathsf{C}(\mathcal{K}, \cdot)} = 1 \right] \\ & - \mathsf{Pr} \left[\mathsf{F} \leftarrow_{\$} \mathsf{Func}(\mathcal{X}, \mathcal{Y}) : \mathcal{A}^{\mathsf{F}(\cdot)} = 1 \right] \end{aligned}$$

■ Adv^{prf}_C(q): the maximum of Adv^{prf}_C(A) over all the distinguishers against C making at most q queries

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	
Xor of Two Permutatitions					

Xor of Two Permutations

How to build secure PRFs from secure PRPs?

Figure 1: XoP based on two (keyed) PRPs: P and Q

Those are at most n-bit secure

Wonseok Choi

Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	
Xor of Two Permutatitions					

Xor of Two Permutations

How to build secure PRFs from secure PRPs?

Figure 1: XoP based on two (keyed) PRPs: P and Q

Those are at most n-bit secure

Wonseok Choi

Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds

Tweakable Block Ciphers

Tweakable block ciphers (TBC) [LRW02] are a generalization of standard block ciphers that accept extra inputs called tweaks

TWEAK:

provides inherent variability to the block cipher

makes it easy to design various higher level cryptographic schemes

Tweakable Block Ciphers

Tweakable block ciphers (TBC) [LRW02] are a generalization of standard block ciphers that accept extra inputs called tweaks

- TWEAK:
 - provides inherent variability to the block cipher
 - makes it easy to design various higher level cryptographic schemes

Tweakable Unifrom Random Permutaions

 Keyed TBC should behave like an independent random permutation for each tweak as a tweakable permutation (TPRP)

The ideal counterpart of a TPRP is called a tweakable uniform random permutation (TURP)

Tweakable Unifrom Random Permutaions

 Keyed TBC should behave like an independent random permutation for each tweak as a tweakable permutation (TPRP)

The ideal counterpart of a TPRP is called a tweakable uniform random permutation (TURP)

- It is easy to achieve *n*-bit PRF security using a TPRP P
 P(tweak, message) = output
 where *n* is the bit size of message-output space
- By fixing a message and varying tweak inputs, we have an optimally secure PRF, i.e., $F(X) = \tilde{P}(X, C)$
- However, the input domain is limited up to *n*-bit string
- Ideally, a TPRP-based PRF may achieve (n + t)-bit security, while taking (n + t)-bit inputs (STILL OPEN)

Wonseok Choi

Purdue University

Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds

- It is easy to achieve n-bit PRF security using a TPRP P
 - $\tilde{P}(tweak, message) = output$
 - where n is the bit size of message-output space
- By fixing a message and varying tweak inputs, we have an optimally secure PRF, i.e., $F(X) = \tilde{P}(X, C)$
- However, the input domain is limited up to n-bit string
- Ideally, a TPRP-based PRF may achieve (n + t)-bit security, while taking (n + t)-bit inputs (STILL OPEN)

- It is easy to achieve n-bit PRF security using a TPRP P
 - $\tilde{P}(tweak, message) = output$
 - where n is the bit size of message-output space
- By fixing a message and varying tweak inputs, we have an optimally secure PRF, i.e., $F(X) = \tilde{P}(X, C)$
- However, the input domain is limited up to n-bit string
- Ideally, a TPRP-based PRF may achieve (n + t)-bit security, while taking (n + t)-bit inputs (STILL OPEN)

How to build PRFs from TPRPs? (2) ■ How about using two TPRP *P*, *Q*?

For simplicity, we only consider t = n here

- For more general arguments, see our paper!
- We first consider XoP-like construction, which we call MXoP:
 MXoP(X || Y) = P̃(Y, X) ⊕ Q̃(Y, X)
 X, Y ∈ {0,1}ⁿ
- Indeed, this is the same as multiple instances of XoP by regarding Y as a secret key of each instance
- the security can be reduced to that of multi-user PRF security of XoP, i.e., *n*-bit security

- How about using two TPRP \tilde{P} , \tilde{Q} ?
- For simplicity, we only consider t = n here
 - For more general arguments, see our paper!
- We first consider XoP-like construction, which we call MXoP:
 MXoP(X || Y) = P̃(Y, X) ⊕ Q̃(Y, X)
 X, Y ∈ {0,1}ⁿ
- Indeed, this is the same as multiple instances of XoP by regarding Y as a secret key of each instance
- the security can be reduced to that of multi-user PRF security of XoP, i.e., *n*-bit security

- How about using two TPRP \tilde{P} , \tilde{Q} ?
- For simplicity, we only consider t = n here
 - For more general arguments, see our paper!
- We first consider XoP-like construction, which we call MXoP:
 MXoP(X || Y) = P̃(Y, X) ⊕ Q̃(Y, X)
 X, Y ∈ {0,1}ⁿ
- Indeed, this is the same as multiple instances of XoP by regarding Y as a secret key of each instance
- the security can be reduced to that of multi-user PRF security of XoP, i.e., *n*-bit security

- How about using two TPRP \tilde{P} , \tilde{Q} ?
- For simplicity, we only consider t = n here
 - For more general arguments, see our paper!
- We first consider XoP-like construction, which we call MXoP:
 MXoP(X || Y) = P̃(Y, X) ⊕ Q̃(Y, X)
 X, Y ∈ {0,1}ⁿ
- Indeed, this is the same as multiple instances of XoP by regarding Y as a secret key of each instance
- the security can be reduced to that of multi-user PRF security of XoP, i.e., *n*-bit security

- How about using two TPRP \tilde{P} , \tilde{Q} ?
- For simplicity, we only consider t = n here
 - For more general arguments, see our paper!
- We first consider XoP-like construction, which we call MXoP:
 MXoP(X || Y) = P̃(Y, X) ⊕ Q̃(Y, X)
 X, Y ∈ {0,1}ⁿ
- Indeed, this is the same as multiple instances of XoP by regarding Y as a secret key of each instance
- the security can be reduced to that of multi-user PRF security of XoP, i.e., *n*-bit security

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs ○○●○○○	Mirror Theory	Applications	
Building PRFs from TPRPs					

More on MXoP

The most recent result from Dinur [Eurocrypt'24], MXoP can be secure up to 2^{3n/2} queries, i.e., the adversarial advantage can be bounded by q/2^{3n/2}

Previously, the most tight bound of MXoP was $q^2/2^{2n}$

By fixing a half of bits of messages, the previous bound is also reduced to $q/2^{3n/2}$, with 3n/2-bit input space

• We call this construction $MXoP_{n/2}$, where n/2 indicates we fix n/2-bit of messages

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs ○○●○○○	Mirror Theory	Applications	
Building PRFs from TPRPs					

More on MXoP

- The most recent result from Dinur [Eurocrypt'24], MXoP can be secure up to 2^{3n/2} queries, i.e., the adversarial advantage can be bounded by q/2^{3n/2}
- Previously, the most tight bound of MXoP was $q^2/2^{2n}$
- By fixing a half of bits of messages, the previous bound is also reduced to $q/2^{3n/2}$, with 3n/2-bit input space
 - We call this construction $MXoP_{n/2}$, where n/2 indicates we fix n/2-bit of messages

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs ○○●○○○	Mirror Theory 0000000	Applications	
Building PRFs from TPRPs					

More on MXoP

- The most recent result from Dinur [Eurocrypt'24], MXoP can be secure up to 2^{3n/2} queries, i.e., the adversarial advantage can be bounded by q/2^{3n/2}
- Previously, the most tight bound of MXoP was $q^2/2^{2n}$
- By fixing a half of bits of messages, the previous bound is also reduced to $q/2^{3n/2}$, with 3n/2-bit input space
 - We call this construction $MXoP_{n/2}$, where n/2 indicates we fix n/2-bit of messages

We propose a new function family to achieve more strong security, dubbed XoTP

■ XoTP(X || Y) =
$$\tilde{P}(Y, X) \oplus \tilde{Q}(X, Y)$$

■ X, Y ∈ {0,1}ⁿ

 $\blacksquare \operatorname{XoTP}_{c}(X \parallel Y \parallel W) = \tilde{P}(W \parallel Y, C \parallel X) \oplus \tilde{Q}(W \parallel X, C \parallel Y)$

where *C* can be any fixed (or not fixed) *c*-bit constant,

■ $X, Y \in \{0, 1\}^{n-c}$, and $W \in \{0, 1\}^{c}$

■ And yes, XoTP_c still outperfroms MXoP_c even together with the recent breakthrough of Dinur!

We propose a new function family to achieve more strong security, dubbed XoTP

■ XoTP(X || Y) =
$$\tilde{P}(Y, X) \oplus \tilde{Q}(X, Y)$$

■ X, Y ∈ {0,1}ⁿ

■ XoTP_c(X || Y || W) = $\tilde{P}(W || Y, C || X) \oplus \tilde{Q}(W || X, C || Y)$ ■ where *C* can be any fixed (or not fixed) *c*-bit constant, ■ X, Y ∈ {0,1}^{n-c}, and W ∈ {0,1}^c

■ And yes, XoTP_c still outperfroms MXoP_c even together with the recent breakthrough of Dinur!

We propose a new function family to achieve more strong security, dubbed XoTP

■ XoTP(X || Y) =
$$\tilde{P}(Y, X) \oplus \tilde{Q}(X, Y)$$

■ X, Y ∈ {0,1}ⁿ

 $\blacksquare \text{ XoTP}_{c}(X \parallel Y \parallel W) = \tilde{P}(W \parallel Y, C \parallel X) \oplus \tilde{Q}(W \parallel X, C \parallel Y)$

■ where *C* can be any fixed (or not fixed) *c*-bit constant,

■ $X, Y \in \{0, 1\}^{n-c}$, and $W \in \{0, 1\}^{c}$

And yes, XoTP_c still outperfroms MXoP_c even together with the recent breakthrough of Dinur!

We propose a new function family to achieve more strong security, dubbed XoTP

■ XoTP
$$(X \parallel Y) = \tilde{P}(Y, X) \oplus \tilde{Q}(X, Y)$$

■ X, Y ∈ {0,1}ⁿ

 $\blacksquare \text{ XoTP}_{c}(X \parallel Y \parallel W) = \tilde{P}(W \parallel Y, C \parallel X) \oplus \tilde{Q}(W \parallel X, C \parallel Y)$

■ where *C* can be any fixed (or not fixed) *c*-bit constant,

- $X, Y \in \{0, 1\}^{n-c}$, and $W \in \{0, 1\}^{c}$
- And yes, XoTP_c still outperfroms MXoP_c even together with the recent breakthrough of Dinur!

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs 0000●0	Mirror Theory	Applications	
Building PRFs from TPRPs					

Security of XoTP

The adversarial advantage in breaking the PRF-security of XoTP_c is upper bounded by

$$O\left(\min\left\{\frac{q}{2^{n+2c}},\frac{q^2}{2^{3n}}\right\}\right)$$

In particular, when c = n/3, we obtain a 5n/3-bit to *n*-bit random function which is 5n/3-bit secure

Wonseok Choi

Purdue University

Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs 0000●0	Mirror Theory	Applications	
Building PRFs from TPRPs					

Security of XoTP

The adversarial advantage in breaking the PRF-security of XoTP_c is upper bounded by

$$O\left(\min\left\{\frac{q}{2^{n+2c}},\frac{q^2}{2^{3n}}\right\}\right)$$

In particular, when c = n/3, we obtain a 5n/3-bit to *n*-bit random function which is 5n/3-bit secure

Wonseok Choi

Purdue University

Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs 00000●	Mirror Theory	Applications	Conclusion O
Building PRFs from TPRPs					

Security Comparison

Figure 2: The threshold number of queries *q* as a function of tweak size *t*. The dashed line is the bound for $MXoP_{\min\{\frac{t}{2},n\}}$, and the solid line is the bound for $XoTP_{\frac{t}{2}}$. The graph don't include the recent Dinur's result.

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	
Mirror Theory					

Mirror Theory

Lower bound the number of solutions to a system

■ $V_P = \{P_1, ..., P_q\}, V_Q = \{Q_1, ..., Q_q\}$: unknowns

• $\{z_1, \ldots, z_q\}$: constants

$$: \begin{cases} P_1 \oplus Q_1 = z_1, \\ P_2 \oplus Q_2 = z_2, \\ \vdots \\ P_q \oplus Q_q = z_q. \end{cases}$$

Expected number of solutions (roughly saying): whenever one picks the values of P_i and Q_i , $\Pr[P_i \oplus Q_i = z_i] \approx 1/2^n$

 $\frac{\text{\# of choices of } P_i \times \text{\# of choice of } Q_i}{2^{nq}} = \frac{(2^n)_q (2^n)_q}{2^{nq}}$

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	

Mirror Theory

Lower bound the number of solutions to a system

■
$$V_P = \{P_1, ..., P_q\}, V_Q = \{Q_1, ..., Q_q\}$$
: unknowns

• $\{z_1, \ldots, z_q\}$: constants

$$-:\begin{cases} P_1 \oplus Q_1 = z_1, \\ P_2 \oplus Q_2 = z_2, \\ \vdots \\ P_q \oplus Q_q = z_q. \end{cases}$$

Expected number of solutions (roughly saying): whenever one picks the values of P_i and Q_i , $\Pr[P_i \oplus Q_i = z_i] \approx 1/2^n$

$$\frac{\text{\# of choices of } P_i \times \text{\# of choice of } Q_i}{2^{nq}} = \frac{(2^n)_q (2^n)_q}{2^{nq}}$$

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	

Mirror Theory

Lower bound the number of solutions to a system

■
$$V_P = \{P_1, ..., P_q\}, V_Q = \{Q_1, ..., Q_q\}$$
: unknowns

• $\{z_1, \ldots, z_q\}$: constants

$$: \begin{cases} P_1 \oplus Q_1 = z_1, \\ P_2 \oplus Q_2 = z_2, \\ \vdots \\ P_q \oplus Q_q = z_q. \end{cases}$$

Expected number of solutions (roughly saying): whenever one picks the values of P_i and Q_i , $\Pr[P_i \oplus Q_i = z_i] \approx 1/2^n$

$$\frac{\text{\# of choices of } P_i \times \text{\# of choice of } Q_i}{2^{nq}} = \frac{(2^n)_q (2^n)_q}{2^{nq}}$$

Wonseok Choi

Purdue University

Building PRFs from TPRPs: Beyond the Block and the Tweak Length Bounds

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	
Mirror Theory					

Graph Representation

 $\Gamma: \begin{cases} P_1 \oplus Q_1 = z_1, \\ P_2 \oplus Q_2 = z_2, \\ \vdots \\ P_q \oplus Q_q = z_q. \end{cases}$

• can be represented by a simple graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

$$\mathcal{V} = \mathcal{V}_P \sqcup \mathcal{V}_Q$$

- P_i and Q_i are connected by a z_i -labeled edge for i = 1, ..., q
- ξ_{max} : the size of the largest component (= 2)

Wonseok Choi

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	
Mirror Theory					

Example: Graph Representation

Mirror Theory for $\xi_{max} = 2$ with Relaxed Constraints I

Variables from TPRPs are not necessarily distinct

Recall that

$$\Gamma: \begin{cases} P_1 \oplus Q_1 = Z_1 \\ \vdots \\ P_q \oplus Q_q = Z_q \end{cases}$$

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	

Mirror Theory for $\xi_{max} = 2$ with Relaxed Constraints II

$$\mathcal{P}_{i} \stackrel{\text{def}}{=} \left\{ j < i \, \middle| \, j \stackrel{P}{\sim} i \right\}, \qquad \mathcal{Q}_{i} \stackrel{\text{def}}{=} \left\{ j < i \, \middle| \, j \stackrel{Q}{\sim} i \right\}$$

Wonseok Choi

п

Purdue University

 $\stackrel{Q}{\sim}$

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory 00000●0	Applications 00	
Mirror Theory					

Mirror Theory for $\xi_{max} = 2$ with Relaxed Constraints: Theorem

Theorem

Let
$$\max_{i \in [a], j \in [b]} \left\{ \left| \mathcal{P}^{(i)} \right|, \left| \mathcal{Q}^{(j)} \right| \right\} \le \frac{2^n}{13}$$
. One has

$$egin{aligned} h(\Gamma,\overset{P}{\sim},\overset{Q}{\sim}) &\geq \left(1-\sum_{i=1}^q \left(rac{2\left|\mathcal{P}_i\cap\mathcal{Q}_i
ight|}{2^{2n}}+rac{20\left|\mathcal{P}_i
ight|\left|\mathcal{Q}_i
ight|}{2^{3n}}
ight)-rac{6(n+1)^3}{2^{2n}}
ight) \ & imes\prod_{i=1}^q \left(rac{(2^n-|\mathcal{P}_i|)(2^n-|\mathcal{Q}_i|)}{2^n}
ight). \end{aligned}$$

Wonseok Choi

Purdue University

History of Mirror Theory

Publication	Application	ξ_{\max}	$\log q_{\max}$	Reference
eprint 10/287	XoP	2	n	[Pat10]
Crypto '18	DWCDM	3	2n/3	[Ďat+18]
Eurocrypt '19	CWC+	Any [†]	2 <i>n</i> /3	[DNT19]
JoC '20	CLRW2	Any [†]	3 <i>n</i> /4	[JN20]
Eurocrypt '20	DBHtS	Any‡	3 <i>n</i> /4	[KLL20]
IEEE Trans. IT '22	XoP	2	n	[DNS22]
Eurocrypt '23	Benes	< 2 ^{n/4}	$n-2\log\xi_{\max}$	[Cog+23]
—	XoTP1,2	2	≫n	Ťhis work

[†] $q \cdot \xi_{\max} \leq O(2^n)$

[‡] The number of components of size \geq 3 is smaller than 2^{*n*/2}

Table 1: History of Mirror theory since [Pat10].

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	

Application I

- Hash-then-PRF paradigm for constructing MACs
 - a variable-length message is mapped onto a fixed-length value through a hash function,
 - and then a PRF is applied to the hashed message, obtaining a tag
- TBC-based constructions: using two TBC calls at the finalization step
 - PMAC-TBC1k [Nai15], PMACx [LN17]: n-bit security
 - **ZMAC** [lwa+17]: min $\{n, \frac{n+t}{2}\}$ -bit security
- XoTP_ℓ combined with a $(t + n \ell)$ -bit hash function (n < t < 6n): provide $\frac{2t+3n}{5}$ -bit security with $\ell = \frac{t-n}{5}$

Wonseok Choi

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	
Applications					

Application I

- Hash-then-PRF paradigm for constructing MACs
 - a variable-length message is mapped onto a fixed-length value through a hash function,
 - and then a PRF is applied to the hashed message, obtaining a tag
- TBC-based constructions: using two TBC calls at the finalization step
 - PMAC-TBC1k [Nai15], PMACx [LN17]: n-bit security
 - **ZMAC** [lwa+17]: min $\{n, \frac{n+t}{2}\}$ -bit security
- XoTP_ℓ combined with a $(t + n \ell)$ -bit hash function (n < t < 6n): provide $\frac{2t+3n}{5}$ -bit security with $\ell = \frac{t-n}{5}$

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	
Applications					

Application II

CTR-type encryption mode with

- a nonce as a tweak input and
- a block counter as a block cipher input
- secure up to $\frac{\sigma I}{2^n}$
 - I: the maximum message length
 - σ : the total number of message blocks
- Construct a CTR-type encryption mode of rate $\frac{1}{2}$ from XoTP $\frac{1}{2}$:

• $n + \frac{2t}{3}$ bits are available for nonces and counters

• secure up to $O\left(\frac{\sigma}{2^{n+\frac{2t}{3}}}\right)$

A numerical example: SKINNY-64-192 (with 128-bit key) \Rightarrow XoTP₂₁: 106-bit input space and security

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	
Applications					

Application II

CTR-type encryption mode with

- a nonce as a tweak input and
- a block counter as a block cipher input

secure up to $\frac{\sigma l}{2^n}$

- *I*: the maximum message length
- \bullet σ : the total number of message blocks

■ Construct a CTR-type encryption mode of rate ¹/₂ from XoTP ¹/₅:

•
$$n + \frac{2t}{3}$$
 bits are available for nonces and counters

• secure up to
$$O\left(\frac{\sigma}{2^{n+\frac{2t}{3}}}\right)$$

A numerical example: SKINNY-64-192 (with 128-bit key) \Rightarrow XoTP₂₁: 106-bit input space and security

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	Conclusion
Conclusion					

Conclusion

New results

- Beyond the block and the tweak length secure construction: XoTP
- Mirror theory with relaxed contraint

Future research

- Tight analysis of XoTP
- Propose more constructions (e.g. highly secure encryption scheme even *n* is small) from a relaxed Mirror theory of $\xi_{max} > 2$

Thank you for your attention!

Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	Conclusion
Conclusion					

Conclusion

New results

- Beyond the block and the tweak length secure construction: XoTP
- Mirror theory with relaxed contraint

Future research

- Tight analysis of XoTP
- Propose more constructions (e.g. highly secure encryption scheme even *n* is small) from a relaxed Mirror theory of ξ_{max} > 2

Thank you for your attention!

	Xor of Two Permutations	Tweakable Block Ciphers	Building PRFs from TPPRs	Mirror Theory	Applications	Conclusion
Conclusion	Conclusion					

Conclusion

New results

- Beyond the block and the tweak length secure construction: XoTP
- Mirror theory with relaxed contraint

Future research

- Tight analysis of XoTP
- Propose more constructions (e.g. highly secure encryption scheme even *n* is small) from a relaxed Mirror theory of ξ_{max} > 2

Thank you for your attention!