
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 1, pp. 5–34. DOI:10.46586/tosc.v2024.i1.5-34

XDRBG: A Proposed Deterministic Random Bit
Generator Based on Any XOF

John Kelsey1,2, Stefan Lucks3 and Stephan Müller4

1 National Institute of Standards and Technology (NIST), Gaithersburg, USA
2 COSIC, KU Leuven, Leuven, Belgium

3 Bauhaus-Universität, Weimar, Germany
4 atsec information security corp, Austin, USA

Abstract. A deterministic random bit generator (DRBG) generates pseudorandom
bits from an unpredictable seed, i.e., a seed drawn from any random source with
sufficient entropy. The current paper formalizes a security notion for a DRBG,
in which an attacker may make any legal sequence of requests to the DRBG and
sometimes compromise the DRBG state, but should still not be able to distingush
DRBG outputs from ideal random bits. The paper proposes XDRBG, a new DRBG
based on any eXtendable Output Function (XOF) and proves the security of the XDRBG
in the ideal-XOF model. The proven bounds are tight, as demonstrated by matching
attacks. The paper also discusses the security of XDRBG against quantum attackers.
Finally, the paper proposes concrete instantiations of XDRBG, employing either the
SHAKE128 or the SHAKE256 XDRBG. Alternative instantiations suitable for lightweight
applications can be based on ASCON.
Keywords: pseudorandom bit generation · forward security · backward security ·
extendable output function (XOF)

1 Introduction
Generating random bits is a critical function in almost any secure cryptographic system.
Usually, the process for generating these random bits is broken into two parts: First, an
entropy source provides some unpredictable input string as a seed. Second, a cryptographic
algorithm called a deterministic random bit generator (DRBG) in [BK15] and this work,
and called a PRNG (pseudorandom number generator), cryptographic PRNG, PRG1 or
DRNG (deterministic random number generator) elsewhere, produces the output bits. See
[Mec18, MMHH23, Fer19, AMD23, KSF99] for widely-used examples of a DRBG.

Informally, a DRBG is seeded by providing it with an input string with some guaranteed
amount of min-entropy. It then must must provide output bits on demand, which (if the
DRBG was properly seeded) are computationally indistinguishable from ideal random
bits. Further, because the internal state of a DRBG might be compromised, output bits
generated before a compromise must remain indistinguishable from ideal random bits
(called “backtracking resistance" in [BK15]), and the DRBG must recover from a state
compromise once provided sufficient new entropy (called “prediction resistance” in [BK15]).

DRBGs are almost always constructed from other cryptographic primitives, such as
hash functions, block ciphers, or stream ciphers2.

1PRG is also sometimes used for a different primitive that expands a seed to a long string without
providing other features expected of DRBGs.

2Thus, the DRBGs in [BK15] are based on AES [Nat01], SHA2 [Nat15a], or SHA3 [Nat15b], and the
DRBG currently used in Linux is based on ChaCha20 [NL18].

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-06-01 Revised: 2023-11-23 Accepted: 2024-01-23 Published: 2024-03-01

https://doi.org/10.46586/tosc.v2024.i1.5-34
http://creativecommons.org/licenses/by/4.0/

6 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

In this paper, we propose a new DRBG that follows the interface and requirements of
two widely-used standards: NIST’s SP 800-90A [BK15] and BSI’s AIS 20/31 [Kil11, Pet23].

In [BDPA07], sponge functions were proposed as a new way of constructing hash
functions. These functions use a large fixed permutation or function to process data,
but unlike traditional hash functions, they can generate arbitrary-length outputs. The
resulting broad class of cryptographic primitive (which might also be realized using other
constructions) was named a XOF (eXtended Output Function) in [Nat15b]. Informally, a XOF
works like a cryptographic hash function, but allows for an arbitrary-length output string.
The calls XOF(x, n) and XOF(x, n + u) will yield identical results in their first n bits. A XOF
can reasonably be modeled as a random oracle with an extremely long output for each
query, which is then truncated to the desired output length. See [BDPVA08] for a security
analysis of XOFs based on sponge functions such as SHAKE128 and SHAKE256. In recent years,
many new sponge-based hash functions have been proposed; typically these also support
XOF functionality. For example, see [RS16, AMMS16, BKL+19, DEM+20, DEMS22].

In this work, we: (1) Describe XDRBG, a new DRBG based on any XOF. (2) Propose a
security notion appropriate for DRBGs. (3) Prove XDRBG secure under this security notion.
The proof treats the XOF at hand as a random oracle. (4) Demonstrate classical attacks
matching our security bounds. (5) Describe the quantum security of XDRBG. (6) Propose
concrete parameters and instantiations for XDRBG. (7) Discuss some remaining open
questions.

Relationship with Prior Work. Bertoni et al. describe a generic construction for crypto-
graphic random bit generation based on a sponge construction in [BDPV10]. Additional
proposals along these lines were made by Gaži and Tessaro[GT16a, GT16b], Hutchinson
[Hut16a, Hut16b], and Coretti et al. [CDKT19]. While XDRBG is broadly similar to these
designs (and has been strongly influenced by the designs of Bertoni et al. and Coretti et
al.), our design differs from these earlier works in some important ways:

1. XDRBG supports the interface defined for DRBGs in [BK15]. Unlike the designs of
Bertoni et al. and Coretti et al., XDRBG supports distinct Instantiate and Reseed
calls, variable-length outputs from Generate calls, and untrusted additional inputs
provided by the caller.

2. XDRBG is intended to be usable with any XOF, with the DRBG making queries to
the XOF using a standard interface, and without making any assumptions about its
internal workings. Thus, our next DRBG state is part of the output from the XOF
instead of remaining in the capacity of the underlying sponge, and is re-input in
subsequent XOF queries by the DRBG. Similarly, we model the XOF as an ideal object,
rather than considering its underlying structure.

3. XDRBG is targeted for use in the realm of cryptographic random bit generation under
SP 800-90 [BK15, TBK+18, BKM+22] and AIS 20/31 [Kil11, Pet23], where entropy
sources are independently evaluated and validated. Thus we assume the availability of
known amounts of entropy on demand, with entropy sources that are non-adversarial
and whose entropy distributions are oracle-independent. (I.e., we adopt the model of
[DGH+04] and later [WS19], rather than the model of [CDKT19].) We suspect that
the techniques of [CDKT19] could be used to show that the XOF in XDRBG works as
a seedless extractor (XDRBG is quite similar to their sponge-based PRNG), but we
leave this for future work.

John Kelsey, Stefan Lucks and Stephan Müller 7

2 Preliminaries
2.1 Entropy
A DRBG samples a seed from a random source. The mathematical model for a random
source is a distribution, and, for the purpose of the current paper, the all-essential property
of a distribution is its min-entropy.

Let Dh be a distribution over strings {0, 1}∗. We write S ←$ Dh if the string S is chosen
according to Dh. In that context, the superscript h indicates a lower bound h ≤ Hmin(Dh)
for the min-entropy

Hmin(Dh) = − log2

(
max

S←$Dh,T∈{0,1}∗
(Pr[S = T])

)
,

rather than the more traditional Shannon entropy −
∑

T∈{0,1}∗(Pr[S = T] ∗ log2(Pr[S =
T])). Firstly, the min-entropy of a distribution is always a lower bound for the Shannon
entropy of that distribution. Thus, by requiring at least h bits of min-entropy, we will
always get at least h bits of Shannon entropy. Secondly, in our context the min-entropy is
more intuitive: it describes the upper bound for the attacker’s chance to guess the seed.

Below, we will consider two thresholds for the min-entropy:

• Hinit: Whenever the XDRBG is instantiated the seed is drawn from a source with at
least Hinit bits of min-entropy.

• Hrsd: When the reseed command is called, the seed is drawn from a source with at
least Hrsd bits of min-entropy.

2.2 Interface for DRBG
Following [BK15], we define three DRBG operations:

1. V ← Instantiate(S, α) creates a DRBG state V , using seed material S and a string
for optional personalization and other optional data3 α. The seed S must be drawn
from an entropy source with min-entropy Hinit.

2. V ← Reseed(V ′, S, α) creates a DRBG state V from a previous state V ′, the seed S
and the string α. The seed S must be drawn from an entropy source with min-entropy
Hrsd.

3. (V, Σ)← Generate(V ′, ℓ, α) generates a new DRBG state V and an ℓ-bit output
string Σ from the old state V ′ and the string α. Σ is required to be indistinguishable
from random bits.

In NIST SP 800-90A [BK15], DRBGs are defined with a particular interface which
assumes the DRBG can draw bits from the entropy source directly. Each DRBG has a
state of its own, identified with a state handle.

For clarity, we prefer a somewhat simpler interface. Instead of using state handles to
keep track of DRBG states, we simply pass in the DRBG state (a bit string in XDRBG) to
the DRBG function as a parameter. Each DRBG function returns an updated DRBG
state. Additionally, when entropy is provided to the DRBG, we draw entropy from the
source and pass it in to the DRBG function as a parameter. Note that the cryptographic
object being described is unchanged–only the description is different.

At first glance, Instantiate and Reseed may seem redundant, but there is actually
an important difference between them. Instantiate(S, α) discards the previous state

3Throughout the paper, we use α (or αj , αd,i, etc.) for those strings.

8 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

and the new state only depends on the seed and the optional string α. Reseed(V, S, α)
refreshes the state based on the previous state, the seed, and the optional string α. This is
reflected by the operations we defined above: Instantiate does not take a DRBG state
as input, while Reseed does take a DRBG state as input; both return a resulting DRBG
state. This distinction also matters for the security analysis of the DRBG, and the amount
of entropy required by each function call, as discussed below.

2.3 Security Level
For typical instantiations of the XDRBG, we will discuss their classical and quantum security
level, which specify approximately how much computation is needed to distinguish the
outputs of the DRBG from random bits. More precisely, if the attacker makes Q XOF
queries, which implies Q to be a lower bound for the attacker’s workload, then we claim
L-bit classical security if the attacker’s chance to decide the DRBG output from random
is at most 1

2 + ϵ for small ϵ and Q ≪ 2L, say, ϵ ≤ 2L/16 and Q ≤ 27L/8. For quantum
security, we will assume a straightforward application of Grover’s algorithm for an attack,
in which case a classical security level of L bits implies a quantum security level of L/2 bit,
because Grover’s algorithm must iterate at least about L/2 times to succeed with high
probability.

2.4 Forward and Backward Security
Informally, forward security (called backtracking resistance in [BK15]) requires that earlier
DRBG outputs remain secure when a later DRBG state is compromised. This is a property
of the DRBG algorithm. Likewise, backward security (called prediction resistance in
[BK15]) requires a DRBG to be able to recover from a compromise of its state. This
requires a reseed method (or calling instantiate again) to provide additional entropy. A
DRBG without access to any new seed material (e.g., from an entropy source) simply
cannot achieve backward security.

AIS 20/31 defines two similar properties: enhanced backward secrecy and enhanced
forward secrecy. Enhanced backward secrecy is approximately equivalent to backtracking
resistance (aka, forward security); enhanced forward secrecy is approximately equivalent
to prediction resistance (aka, backward security).

2.5 Multitarget Attack on Instantiate
Given many devices, each instatiated once, or a few or even one single device instantiated
many times, the following multitarget attack becomes possible.

Suppose at each startup the DRBG is instantiated with a seed S containing k bits
of entropy. Assume S ∈ {0, 1}k to be uniformly distributed. Assume that after each
instantiation at least k bits of output are produced. After I such instantiations, an attacker
can recover one DRBG state with a 2k/I search. The attacker simply guesses 2k/I possible
values of S, and for each one instantiates the DRBG with S, generates an output, and
checks it against the I output values.

This is within the normal security bounds of any k-bit scheme. Nevertheless, it can
substantially weaken some applications. For example, consider a single device with a
256-bit ECDSA [Nat13] key, supporting 128-bit security. Suppose the device instantiates
its DRBG with k = 128 random bits at each startup, and that it is restarted and produces
an ECDSA signature I = 232 times in its lifetime. In spite of formally supporting 128-bit
security, this device is actually vulnerable to a 296-time attack which will recover its signing
key!

Let R1 be an upper bound on the number of times the DRBG will be instantiated. As
long as at least k + log2(R1) bits of min-entropy is provided for the seed when instantiating

John Kelsey, Stefan Lucks and Stephan Müller 9

the DRBG, the multitarget attack is blocked. As will turn out below, k bits of min-entropy
suffice for reseeding.

The requirements for DRBG instantiation in [BK15] include a nonce along with the
entropy input. The proposed new requirements for DRBG instantiation in [BKM+22]
replace the nonce requirement with a requirement for additional entropy. Both the old
and new requirements effectively block this multitarget attack in the case that a given
user does not instantiate their DRBG more than 264 times.

2.6 Extendable Output Functions (XOFs)
Formally, a XOF is a function {0, 1}∗ → {0, 1}∗, which we model as a random oracle.
To avoid returning an infinite sequence, the XOF gets an integer as a second parameter4:
XOF : {0, 1}∗×N→ {0, 1}∗. Now XOF(x, ℓ) returns the first ℓ bits from the infinite sequence.
Thus, for every x ∈ {0, 1}∗, the first min(ℓ, ℓ′) bits of XOF(x, ℓ) and XOF(x, ℓ′) are the same,
and, for all x′ ≠ x, the sequences XOF(x, ℓ) and XOF(x′, ℓ′) are two independent random
sequences of ℓ and ℓ′ bits, respectively. The algorithm below describes how our ideal XOF
might be implemented by lazy sampling.

Algorithm 1 XOF definition.
1: function init
2: T ← {}

(# T holds a map {0, 1}∗ → {0, 1}∗. Initially, T is empty. #)
3: function XOF(x, ℓ)
4: if x ∈ T then
5: if |T [x]| < ℓ then
6: s′ ←$ {0, 1}ℓ−|T [x]|

7: T [x]← T [x] ∥ s′

8: else
9: T [x]←$ {0, 1}ℓ

(# Now x ∈ T , and |T [x]| ≥ ℓ #)
10: return(T [x] truncated to ℓ bits)

Of course, any real XOF does not provide unlimited ideal security. A typical XOF
will allow an attacker to make a sequence of queries, and then the attacker will try to
differentiate the XOF from an ideal XOF. Write W for the sum of the lengths of all inputs
and outputs (in bit) made by the attacker. We say, a XOF supports k-bit security, if for
every attacker, the advantage in distinguishing the XOF from random is at most W/2k.

FIPS 202 [Nat15b] defines two sponge-based XOFs: SHAKE128 and SHAKE256. Both
employ a cryptographic 1600-bit permutation; SHAKE128 employs an internal state (the
capacity) of 256 bits and SHAKE256 512 bits.

A sponge-based XOF with a capacity of c bits can maintain about c/2 bit security against
classical attackers [BDPVA08] and about c/3 bit security against quantum attackers
[Cza21].5 In that context, the term security has to be understood as indifferentiability
from a random oracle, when the underlying cryptographic permutation is modelled as a
random permutation.

Accordingly, SHAKE128 can claim 128 bit security against classical and 85 bit security
against quantum attackers, and SHAKE256 can claim 256 bit security against classical and

4In some applications of a XOF, the output length is not known at the time its inputs are provided;
these must support a somewhat more complicated interface.

5Cautionary note: To the best of our knowledge, the claimed c/3 bits of quantum security for a sponge
with c bit capacity has so far only been published at an eprint server [Cza21], but not yet at a peer-reviewed
conference or journal. In this paper, we assume the claim to be correct.

10 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

171 bit security against quantum attackers.

3 XDRBG Definition
XDRBG is a DRBG based on an underlying XOF. One could also view XDRBG as a mode of
operation for a XOF to realize a DRBG. Note that unlike most prior designs of this kind,
XDRBG does not assume anything about the internal structure of the XOF.

Conventions and Notation.

1. When we encode an integer as a bitstring, we always assume network byte order,
and write Xn to represent encoding X as an n-bit integer.

2. For each instantiation of the XDRBG we will claim two approximate security levels:
one with respect to classical attackers, and a second one with respect to quantum
attackers employing Grover’s algorithm. A security level of k bits implies that the
given attacker, when restricted to time t < 2k, succeeds with at most t/2k probability.

The classical (quantum) security level of an instantiation of the XDRBG, employing a
given XOF, is the minimum of the classical (quantum) security level of the XDRBG in
the ideal-XOF model and the classical (quantum) security level of the XOF at hand.

3. The internal state of XDRBG is a single bitstring, V of fixed size |V |.

4. All XDRBG functions support an additional input α to personalize the DRBG; α can
be empty. We assume a function encode, which encodes its sequence of inputs into
a string in an unambiguous way, so that there can be no (S, α, n) ̸= (S′, α′, n′) with
encode(S, α, n) = encode(S′, α′, n′). We write |encode| = |encode(S, α, n)| −
|S| − |α| for the stretch of the encoding. See appendix B for our recommended
encoding function.

Within our proofs, we also assume a function6 parse. If S can be written as
S = encode(s1, s2, i), the function returns parse(S, 1) = s1, parse(S, 2) = s2, and
parse(S, 3) = i. Further, we use the convention that parse(S,−1) gives the last
entry in the tuple that was encoded. When there is no tth element in the tuple
that was encoded to construct the string S, parse(S, t) returns a failure symbol ⊥.

5. Output lengths are specified in bits. As discussed in Section 7, we recommend an
upper limit on the output from each Generate call, called maxout.

6. Instantiate and Reseed calls require entropy to result in a secure DRBG state.
We thus define two parameters specifying how much min-entropy must be provided.
Each Instantiate requires at least Hinit bits of min-entropy; each Reseed requires
at least Hrsd bits of min-entropy.

The security analysis of XDRBG can continue without defining the size of the state (|V |)
or the entropy bounds Hrsd and Hinit. Concrete recommendations for these parameters
– and a possible maxout limit for generate requests – appear in Section 7.

6This function is not implemented as part of XDRBG, but its existence is required for XDRBG to be
secure–the encoded inputs must be unambiguously parseable.

John Kelsey, Stefan Lucks and Stephan Müller 11

Algorithm 2 XDRBG Definition
The function encode : {0, 1}∗ × {0, 1}∗ × {0, 1, 2} → {0, 1}∗ takes two strings and
an integer and returns a string. We require encode(s1, s2, i) ̸= encode(s′1, s′2, i′) for
(s1, s2, i) ̸= (s′1, s′2, i′) ∈ {0, 1}∗ × {0, 1}∗ × {0, 1, 2}.

1: function instantiate(seed, α)
(# Returns |V |-bit state; source for seed: ≥ Hinit bits min-entropy. #)

2: V ← XOF(encode(seed, α, 0), |V |)
3: return(V)
4: function reseed(V ′, seed, α)

(# Returns |V |-bit state; source for seed: ≥ Hrsd bits min-entropy. #)
5: V ← XOF(encode((V ′ ∥ seed), α, 1), |V |)
6: return(V)
7: function generate(V ′, ℓ, α)

(# Returns |V |-bit state and ℓ-bit string Σ. #)
8: T ← XOF(encode(V ′, α, 2), ℓ + |V |)
9: V ← first |V | bits of T

10: Σ← last ℓ bits of T
11: return(V, Σ)

Design Rationale. The goal of XDRBG is to provide an efficient and comprehensible DRBG
based on any XOF. A simple, comprehensible design makes implementation, cryptanalysis,
proving security, and checking the proof all easier. These considerations led us to define
XDRBG so that: (1) Each call to a DRBG function (Instantiate, Reseed, or Generate)
results in a single XOF query, and (2) The first |V | bits of the XOF output always become
the new state V . (In Generate calls, the remaining bits of the XOF output become the
DRBG output, Σ.) XDRBG assumes only access to the normal XOF interface, not access to
any internal state of the XOF.

4 The DRBG Security Game
In order to reason about the security of our DRBG, we first need to define what it means
for a DRBG to be secure. Informally, our security goals can be summarized as follows:
The attacker must not be able to distinguish the outputs from the DRBG from perfect
random bits. This must be true for any sequence of instantiate, generate and reseed calls
to different devices. The only exception is output generated in the time following a state
compromise and before the next intake of fresh entropy (i.e., before either reseeding or
instantiating the DRBG).

For clarity of explanation, we will use the following terms in discussing the game:

• When the challenger or attacker interact with the XOF, this is a query.
(Example: The challenger makes a XOF query.)

• When the challenger interacts with a DRBG instance, this is a call.
(Example: The challenger makes an Instantiate call.)

• When the attacker interacts with the challenger, this is a request.
(Example: The attacker makes a R_OUT request.)

Thus, when the attacker makes a R_OUT request, this causes the challenger to make a
Generate call to the DRBG, which then causes the challenger to make a XOF query.

12 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

4.1 Intuition for the Game
Broadly spoken, the goal of the security game is to capture all the legal ways an attacker
might interact with devices implementing SP 800-90A type DRBGs. Previous security
analyses of DRBGs have not captured the full range of these interactions, including attacker
choice of additional inputs, and forcing many instantiations on the same device.

In the security game, the attacker can request any device to generate outputs, to reseed,
or to instantiate. The challenger simulates all devices using access to the XOF and responds
to each of the attacker’s requests. The only constraint is that the first request to each
device must be instantiate. The attacker is free to choose the additional input (α) for
the requests. After every request, the attacker can learn the DRBG state of a device by
compromising it. A device must recover from a compromise when an instantiate or reseed
call is made.

The attacker can force a given device to repeatedly be instantiated. This captures the
multitarget instantiation attack on a single device described above, as well as any other
weaknesses in the instantiation process the DRBG might suffer from. By allowing the
attacker to repeatedly compromise the state of the device and to reseed it, we capture
any flaws in either the reseed process or in the backtracking or prediction resistance of
the DRBG. Similarly, the attacker can provide additional inputs to different devices in an
attempt to cause different devices’ DRBG states to collide, or to try to force a device’s
future state to collide with one of its past states.

Consider the set of all DRBG outputs state, from all devices. The attacker’s goal is to
distinguish that set of outputs from a set of independent uniformly distributed random
bits. Whenever a device state is compromised, i.e., has become known to the attacker, the
attacker can compute the device’s DRBG outputs on its own, and thus trivially distinguish
them from random bits. Our game handles this by having compromised devices always
provide the outputs from the DRBG, while the bits from an uncompromised device will be
ideal random bits or DRBG bits depending on the value of the random bit b. We can thus
exclude bits from a compromised device from the distinguishing goal, since they will be
identical whether b = 0 or b = 1.

4.2 Game Definition and Rationale
To capture the above intuition formally, we specify a security game, see Algorithm 3. It
can be seen as an extension of the proof model used in [WS19]. Our game incorporates a
wider range of possible attacks, and closely tracks with the assumptions and requirements
of the SP 800-90 series and AIS 20/31:

1. At the beginning of the game, the challenger generates a random bit b. If b = 0, all
R_OUT requests will be answered by outputs from the DRBG; if b = 1, some of those
requests will be answered with ideal random bits, instead. All other requests are
answered in exactly the same way regardless of b.

2. We assume D devices the adversary can make requests to. The sum of all requests
sent to all devices is exactly R. (An adversary making R′ < R requests can always
be modelled by an adversary making exactly R requests while ignoring any responses
after the first R′ requests.)

3. An adversarial request is a quintuple (req, d, i, αd,i, leak):

• req ∈ {R_INST, R_RESEED, R_OUT(ℓ)} defines the call the device needs to make
to handle the request.

• d ∈ {1, . . . , D} is the index of the device the request goes to.
• i is a counter: (req, d, i, αd,i, leak) is the i-th request to device d.

John Kelsey, Stefan Lucks and Stephan Müller 13

Algorithm 3 DRBG Security Game:
The attacker can access up to D devices and makes R requests in total. The challenger
responds to valid requests. The attacker can directly query the XOF up to Q times at
any time during the game, not counting the challenger’s own XOF queries, made when
addressing the R requests. (That is, the attacker get adaptive access to the XOF.) The
attacker wins if the final message from the challenger is 1.

1: function Challenger(D, Q, R)
(# Start the game: randomly choose the secret bit b. #)

2: b←$ {0, 1}
(# Initiate tracker for requests. #)

3: for d ∈ {1, . . . , D}, i ∈ {1, . . . R} do
4: Done(d, i) = false

(# Attacker first commits to distributions and then is granted access to XOF. #)
5: for i ∈ {1, . . . , D}, j ∈ {1, . . . R}, h ∈ {Hinit, Hrsd} do
6: Attacker chooses distributions Dh

i,j , as elaborated in the text.
7: Challenger grants direct access to XOF for attacker, for up to Q queries.

(# Attacker makes R requests. Handle valid requests, ignore invalid ones. #)
8: for step ∈ {1, . . . , R} do
9: Attacker chooses request (reqd,i, d, i, αd,i, leak), as elaborated in the text.

10: if ((Done(d, i))∧ (i = 1)∧ (reqd,i = R_INST))∨ ((i > 1)∧Done(d, i− 1)) then
11: Vd,i ← Handle_Request(Vd,i−1, b, reqd,i, d, i, αd,i, DHinit

d,i
,DHrsd

d,i
) (# see

Alg. 4 #)
12: Done(d, i)← true
13: if leak then (# Compromise current state of device d. #)
14: Send DRBG state Vd,i to attacker.
15: corruptd ← true

(# Finish the game: the attacker wins if it correctly guesses the secret bit b. #)
16: Receive b̂ from attacker.
17: if b = b̂ then send 1 to attacker else send 0 to attacker.

Algorithm 4 Subroutine Handle_Request from DRBG Security Game.
1: function Handle_Request(Vd,i−1, b, reqd,i, d, i, αd,i, DHinit

d,i
,DHrsd

d,i
)

2: if reqd,i is R_OUT(ℓ) then
3: (Vd,i, Z)← Generate(Vd,i−1, ℓ, αd,i)
4: if b = 1 AND NOT corruptd then
5: Z ←$ {0, 1}ℓ

6: Send Z to attacker.
7: else if reqd,i is R_RESEED then
8: Sd,i ←$ DHrsd

d,i

9: Vd,i ← Reseed(Vd,i−1, Sd,i, αd,i)
10: corruptd ← false
11: else if reqd,i is R_INST then
12: Sd,i ←$ DHinit

d,i

13: Vd,i ← Instantiate(Sd,i, αd,i)
14: corruptd ← false
15: return (Vd,i)

14 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

• αd,i denotes the additional information for the call.
• leak ∈ {true, false} indicates a state compromise: if true, the adversary learns

Vd,i, i.e., the state of device d at the end of handling the request.

4. A request (req, d, i, αd,i, leak) is valid, if and only if

• there has been no i-th valid request to device d before, and
• either this is the first valid request to device d (i.e., i = 1) and the device is

requested to instantiate (req = R_INST) or this is not the first valid request to
device d (i.e., i > 1) and the (i − 1)-th valid request to device d has already
been handled.

The challenger only reacts to valid requests, cf. lines 10–15 from Algorithm 3. Note
the usage of the array Done(·, ·) to keep track of valid requests.
This serves two purposes: It prevents requests to uninstantiated devices. And it
enforces a consistent notation: Requests to device d are numbered by i = 1, i = 2,
i = 3, . . . , in that order and without skipping or repeating an integer.

5. Each valid request results in a single DRBG call made by the challenger (cf. Alg. 4).
Each DRBG call leads to one single XOF query (cf. Alg. 2). In parallel to the requests,
the attacker can also query the XOF up to Q times (cf. Line 7 from Alg. 3).

6. For each device, we assume the availability of a properly designed and tested entropy
source (known as an NTG.1, PTG.2 or PTG.3 in AIS 20/31) with a specified min-
entropy. As pointed out above, we assume lower bounds Hinit and Hrsd for the
min-entropy of our entropy sources, namely Hinit when the DRBG is instantiated,
and Hrsd when it is reseeded.
SP 800-90C requires a security parameter k and fixes the entropy bounds by Hinit =
3k/2, and Hrsd = k. AIS 20/31 requires7 Hinit = Hrsd = 240.
Assuming the specified min-entropy, we claim the validity of our results for all
realistic entropy sources.

• At the beginning of the game, the attacker will specify a sequence of distributions
Dh

d,1, . . . ,Dh
d,R with min-entropy h ∈ {Hrsd, Hinit} for each device d. As the

distributions are formally specified by the attacker, they cover all realistic
entropy sources with the required min-entropy.
Obviously, the entropy sources from different devices can be distributed differ-
ently. Furthermore, a realistic entropy source may change its distribution over
time, e.g., due to heating up or cooling down. Thus, the attacker must choose
a distribution Dh

d,i for each possible triple (d, i, h).
• To restrict the entropy sources to realistic ones, we require the attacker to

commit to all distributions Dh
d,i at the very beginning of the game, in advance

of all queries to the XOF, either directly by the attacker querying the XOF, or
indirectly from the attacker’s requests (cf. lines 5–7 of Algorithm 3).8

7The current draft of AIS 20/31 [Pet23] stems from 2023. It requires either 240 bits of min-entropy or
250 bits of Shannon entropy. Older versions of AIS 20/31 [Kil11] did allow smaller amounts of entropy.
AIS 20/31 also imposes additional requirements on seeding a DRNG [Pet23], which we disregard here.

8In reality, the distributions stem from random sources with the required amount of entropy. Giving the
attacker the ability to choose those distributions Dh

d,i is not realistic, but matches the all-quantification: I.e.,
if we claim (as we actually do) security for all combinations of distributions with the required min-entropy,
we can, as well, model this by the adversary choosing the combination of distributions it likes. On the
other hand, if the attacker had access to the XOF before committing to Dh

i , it might choose some Dh
i with

Pr[XOF(u, ℓ) = XOF(u′, ℓ)] > 2−h + 2−ℓ for ℓ ≥ 1 and u, u′ ←$ Dh
i , even though Pr[u = u′] ≤ 2−h. This is

not a realistic attack setting for a realistic entropy source.

John Kelsey, Stefan Lucks and Stephan Müller 15

This will allow us to apply Lemma 1 below: one cannot choose u ̸= u′ with
Pr[XOF(u, ℓ) = XOF(u′, ℓ)] > 2−ℓ, without first querying the XOF.

7. In some situations, the attacker may realistically be able to compromise a device i.e.,
to learn its internal state Vd,i. This is indicated by leak, see above.
For each device d, the algorithm maintains a flag corruptd. The flag is set when
the device’s state is compromised, and the flag is cleared when the state is advanced
randomly using fresh entropy, i.e., after each reseed and instantiate request. (There
is no need to initialize corruptd, because the first valid request to any device d is
always instantiate, which sets corruptd without prior reading.)
A stronger attack model might allow the attacker to set the device’s state to a chosen
or known value. Our game does not support this, because we consider such attacks
unrealistic. But we briefly discuss their potential impact in section 8.3.

8. At the end of the game, the attacker tries to guess the random bit b chosen at the
beginning of the game.
In order for XDRBG to be acceptably secure, the probability of the attacker to win
the game must be no greater than 1/2 + ϵ for some very small ϵ.

5 Security Analysis
5.1 The Main Result and some Corollaries
Let (d, i) denote the i-th request made to device d. Our results depend on the maximum
number λ1 of requests (d, i) with the same αd,i, and on the total number λ2 of unordered
pairs (d, i) ̸= (d′, i′) with αd,i = αd′,i′ :

λ1 = max
a

(∣∣{(d, i) : αd,i = a}
∣∣) and λ2 =

∑
a

(∣∣{(d, i) : αd,i = a}
∣∣

2

)
. (1)

We assume (0
2) = 0 = (1

2), and in general (N
2) = N(N−1)

2 .

Theorem 1. Let Hinit and Hrsd be the min-entropy for R_INST and R_RESEED requests,
respectively. Let |V | ≥ Hinit be the state size of the DRBG. Let the attacker make Q
queries and R requests and let λ1 and λ2 be defined as in Equation 1.

The attacker’s probability to win the DRBG game is at most 1/2 + ϵ, with

ϵ ≤ Q

(
λ1

2Hinit −Q−R
+ 1

2Hrsd −Q
+ Q

2× 2|V |

)
+ λ2

2Hinit
+ R2

2× 2|V | (2)

Below, we describe the security we guarantee, depending on different policies for the
choice of the αd,i. We assume log2(Q) ≪ Hrsd ≤ Hinit ≤ |V |. Because |V | is always at
least twice the security level of the DRBG, we also assume log2(Q) ≤ |V |/2.
The first policy imposes no restrictions on the choice of the αd,i. The αd,i may even be
empty, or set to another constant string. With at most R adversarial requests, λ1 ≤ R

and λ2 ≤ (R
2) ≤ R2

2 , which gives the following bound:

Corollary 1. Let Hinit and Hrsd be the min-entropy for R_INST and R_RESEED requests,
respectively. Let |V | ≥ Hinit be the state size of the DRBG.

The attacker’s probability to win the DRBG game, making Q queries and R requests,
is at most 1/2 + ϵ, with

ϵ ≤ Q×
(

R

2Hinit −Q−R
+ 1

2Hrsd −Q
+ Q

2× 2|V |

)
+ R2

2 ×
(

1
2Hinit

+ 1
2|V |

)
.

16 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

The above corollary incentivizes to choose Hrsd < Hinit, actually: Hrsd ≈ Hinit −
log2(R). However, we get improved bounds by requiring disjoint α. The second policy thus
requires unique αd,i, i.e., if αd,i ≠ αd′,i′ for (d, i) ̸= (d′, i′). In this case, we have λ1 = 1
and λ2 = 0 and an improved bound:
Corollary 2. Let Hinit and Hrsd be the min-entropy for R_INST and R_RESEED requests,
respectively. Let |V | ≥ Hinit be the state size of the DRBG. Let all additional inputs αd,i

be unique. Let the attacker make Q queries and R requests.
The attacker’s probability to win the DRBG game is at most 1/2 + ϵ, with

ϵ ≤ Q×
(

1
2Hinit −Q−R

+ 1
2Hrsd −Q

+ Q

2× 2|V |

)
+ R2

2× 2|V | .

I.e., unique additional data αd,i would incentivise Hinit = Hrsd. On the other hand, the
αd,i are de-facto nonces, and handling nonces may not always be desirable for a DRBG.
Actually, the current draft of SP 800-90 [BKM+22] abandons the requirement to use a
nonce, which has been imposed so far [BK15]. Instead, [BKM+22] explicitly requires
Hinit > Hrsd.

So finally, we study a policy in between no rules and strict uniqueness for all αd,i. Each
device d has a unique name idd, i.e., idd ≠ idd′ for d ≠ d′. The adversary makes at most
Rdev requests to each device, and there are at most D devices. I.e., the number of requests
in total is at most R = D ×Rdev. Set αd,i = idd, i.e., all requests to a device just use the
device’s unique name as the additional input. We refer to this as personalization. Then
λ1 ≤ Rdev and λ2 ≤ D × (Rdev

2) ≤ D × Rdev
2

2 ≤ R×Rdev
2 , and thus:

Corollary 3. Let Hinit and Hrsd be the min-entropy for R_INST and R_RESEED requests,
respectively, and |V | ≥ Hinit the state size of the DRBG. Assume D devices, each responding
to at most Rdev requests, idd being a unique name for device d ∈ {1, . . . , D}, and αd,i = idd.
Let the attacker make Q queries and at most R = D ×Rdev requests.

The attacker’s probability to win the DRBG game is at most 1/2 + ϵ, with ϵ ≤

Q×
(

Rdev

2Hinit −Q−R
+ 1

2Hrsd −Q
+ Q

2× 2|V |

)
+ R×Rdev

2 ×
(

1
2Hinit

+ 1
2|V |

)
. (3)

Once again, this incentivizes Hrsd < Hinit, but now Hrsd ≈ Hinit − log2(Rdev).

Remark. Sometimes, devices d ̸= d′ with identical names: idd = idd′ may exist. For
example, device IDs could be chosen at random, or a manufacturing error might cause
two devices to have the same serial number. In this case, the claimed security bound still
holds if we treat all devices with the same name as a single device. Namely, if we redefine
Rdev such that all devices d1, d2, . . . with idd1 = idd2 = · · · together do not respond to
more than Rdev queries, then equation 3 still applies.

5.2 The Proof of the Main Result
Notation for the Proof. As before, we use (d, i) as a shorthand for requests (b, reqd,i, d, i,
αd,i, leak). A generate request (d, i) is either corrupted or faithful.. Namely, it is corrupted,
if, and only if, at the point of time Handle_Request is called, corruptd = true. Instantiate
and reseed requests are always faithful.9 We refer to the inputs to the attacker’s XOF
queries as W1, . . . , WQ. Furthermore, recall that Vd,i denotes the i-th state on device
d. We write Ud,i for the matching input from the challenger’s matching XOF query, i.e.,
Vd,i = XOF(Ud,i, |V |):

9Note that the security game first calls Handle_Request and only then considers the leak parameter.
Thus, a request (d, i) = (b, reqd,i, d, i, αd,i, leak) can be corrupted or faithful, regardless of leak. But if
leak = true then all subsequent generate requests (d, i + 1), (d, i + 2), . . . to the same device will be
corrupted, until the first reseed or instantiate request is made.

John Kelsey, Stefan Lucks and Stephan Müller 17

• Ud,i = encode(Sd,i, αd,i, 0) for instantiate,

• Ud,i = encode((Vd,i−1 ∥ Sd,i), αd,i, 1) for reseed, and

• Ud,i = encode(Vd,i−1, αd,i, 2) for generate.

Also, we say Ud,i is corrupted or faithful, if (d, i) is so.
If Wj is a XOF query made by the attacker, write Qn for the number of queries in

W1, . . . , WQ with parse(Wj , 3) = n. Clearly, Q1 + Q2 + Q3 ≤ Q.

Independent XOF queries. Our proof consists of a sequence of lemmas. The first one is
almost trivial.

Lemma 1. For any u ̸= u′ chosen independently from the XOF and any ℓ ≥ 1

Pr[XOF(u, ℓ) = XOF(u′, ℓ)] = 2−ℓ.

Proof. Recall Algorithm 1. Since u ̸= u′, the values XOF(u, ℓ) and XOF(u′, ℓ) are chosen as
two independent random ℓ-bit values. Their probability to collide is 2−ℓ.

Collisions. A part of our proof is based on bounding the probability of an input Wj for a
XOF query made by the attacker to collide with a faithful Ud,i, i.e., the event Wj = Ud,i.
We refer to the triple (j, d, i) as a collision. A collision can only occur if the input strings
to the XOF are identical, and thus for every t, parse(Wj , t) = parse(Ud,i, t). Specifically,
this requires that parse(Wj ,−1) = parse(Ud,i,−1) = αd,i, so that a given attacker XOF
query can only collide with a XOF query from one kind of XDRBG call. Note that for any
given string a, there are at most λ1 requests (d, i) with αd,i = a.

Instantiate Collisions. We start with collisions (j, d, i), where (d, i) is an instantiate
request, i.e., parse(Wi,−1) = parse(Ud,i,−1) = 0.

Lemma 2. Let BADinit
uw denote the event that during the attack game a XOF query j and

an instantiate request (d, i) is made with Ud,i = Wj. Then

Pr[BADinit
uw] ≤ Q1 × λ1

2Hinit −Q
.

Proof. An instantiate collision (j, d, i) implies that the attacker actually did make both
the XOF query Wj and the instantiate request (d, i) during the DRBG security game. If
the query is made before request i, the attacker is trying to guess a random value with
Hinit bits of min-entropy, which will be chosen later (i.e., when the request is made). In
this case, Pr[Ud,i = Wj] ≤ 2−Hinit . If request j is made before the query, and the event
BADinit

uw did not already occur before the request, then the attacker is trying to guess
a fixed unknown value with Hinit bits of min-entropy. But in this case, the attacker
may already know at most j − 1 relationships W1 ̸= Ud,i, . . . , Wj−1 ≠ Ud,i. Thus, the
attacker’s chance to guess Ud,i when making up to Q1 queries Wj with parse(Wj ,−1) = 1
is Pr[Ud,i = Wj] ≤ 1/(2Hinit −Q1).

As there are at most Q1 × λ1 triples (j, d, i), with (d, i) being an instantiate query and
αd,i = parse(Wj , 2), the probability of any instantiate collision (j, d, i) is

Pr[BADinit
uw] ≤ Q1 × λ1

2Hinit −Q1
≤ Q1 × λ1

2Hinit −Q
.

18 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

Repeating States. Another event, which can be beneficial for the attacker, is the case
that the challenger generates the same state Vd,i = Vd′,i′ from two different requests (d, i)
and (d′, i′).

Lemma 3. Let BADinit
uw be defined as in lemma 2. Let BADvv denote the event that some

of the challenger’s states during the attack game repeat. I.e., for two requests (d, i) ̸= (d′, i′),
the i-th request to device d and the i′-th request to device d′, it holds that Vd,i = Vd′,i′ .
Then

Pr[BADvv|BADinit
uw] ≤ λ2

2Hinit
+ R2

2× 2|V | + Q2

2× 2|V |

Proof. If Ud,i ̸= Ud′,i′ ,

Pr[Vd,i = Vd′,i′ |Ud,i ̸= Ud′,i′] = 1/2|V |,

cf. lemma 1. As there exist at most (R
2) unordered pairs Ud,i ̸= Ud′,i′

Pr[∃d, i, d′, i′ : (Ud,i ̸= Ud′,i′ ∧ Vd,i = Vd′,i′)] ≤
(

R

2

)
1
|V |
≤ R2

2× 2|V | . (4)

We still need to discuss Pr[Ud,i = Ud′,i′]. W.l.o.g., (d, i) is made before (d′, i′). If
i, i′ > 1, then Vd,i−1 ̸= Vd′,i′−1 (otherwise, the event BADvv has already occurred).

If at least one of the requests (d, i), (d′, i′) is not an instantiate request, then Ud,i ̸= Ud′,i′

follows from Vd,i−1 ̸= Vd′,j′−1. If αd,i ̸= αd′,i′ , then Ud,i ̸= Ud′,i′ .
To bound Pr[Ud,i = Ud′,i′], we can thus assume (αd,i = αd′,i′) and both (d, i) and (d′, i′)

are instantiate requests. As the seeds Sd,i and Sd′,i′ are independently drawn, and the
min-entropy of each seed is at most Hinit, we get

Pr[Ud,i = Ud′,i′] ≤ Pr[Sd,i = Sd′,i′] ≤ 1
2Hinit

.

As there exist at most λ2 pairs (d, i) ̸= (d′, i) with αd,i = αd′,i′ , we thus have

Pr[∃d, i, d′, i′ : Ud,i = Ud′,i′] ≤ λ2

2Hinit
. (5)

Finally, the attacker might try to cause a collision between two XDRBG states, using his
control over the α and his large number of allowed XOF queries. For example, the attacker
might compromise two different devices’ internal states, V, V ′, and then search for an
α, α′ such that XOF(encode(V, α, 2), |V |) = XOF(encode(V ′, α′, 2), |V |), but perhaps there
could be other ways to structure this collision search. We bound the probability of this
happening by bounding the attacker’s probability of finding any pair of inputs to the XOF
that might lead to a colliding pair of DRBG states. Let W [i], W [j] be XOF queries made
by the attacker. The attacker’s probability of finding a collision on the first |V | bits of any
XOF output is bounded by

Pr[XOF(W [i], |V |) = XOF(W [j], |V |)] ≤
(

Q

2

)
× 2−|V | ≤ Q2

2× 2|V | (6)

The lemma follows from combining equations 4, 5, and 6.

Reseed Collisions. How likely is a collision (j, d, i), if (d, i) is a reseed request?

Lemma 4. Let BADvv be as defined in lemma 3. Let BADrsd
uw denote the event that

(j, d, i) exist, where (d, i) is a reseed request and Ud,i = Wj. Then

Pr[BADrsd
uw |BADvv] ≤ Q2

2Hrsd −Q
.

John Kelsey, Stefan Lucks and Stephan Müller 19

Proof. Assume (d, i) to be a reseed request, and BADrsd
uw did not alreaday occur, i.e.,

Ud,i ̸∈ {W1, . . . , Wj−1}.
First, consider query j being made before reseed request (d, i). Thus, Wj is fixed, and

Pr[Ud,i = Wj] ≤ 1
2Hrsd , since the min-entropy of Ud,i is at least Hrsd.

Now consider reseed request (d, i) has been made first. Even if the attacker knows
Vd,j−1, maybe due to a previous compromise, it still has to guess the current seed Sd,i.
The probability to guess Sd,i without prior knowledge is 1

2Hrsd . If previously there had
been Q2 failed attempts to guess Sd,i, the probability to guess Ud,i when choosing Wj is
still Pr[Wj = Ud,i] ≤ 1

2Hrsd−Q2
.

Note that, even if the attacker knows Vd,i−1, we assume no repeating states (i.e.,
BADvv), so for any given Wj , there can be at most one request (d, i) such that (j, d, i)
could possibly collide, namely the unique (d, i) with parse(Wj , 1) = Vd,i−1. So in total,
the attacker’s chance to find a collision within Q queries is

Pr[BADrsd
uw |BADvv] ≤ Q2

2Hrsd −Q2
≤ Q2

2Hrsd −Q

Faithful Generate Requests. In the case of a generate request, observe that if (d, i) is
compromised, i.e., if the attacker knows Vd,i−1, then the attacker may easily match a
challenger XOF query, leading to a collision between Wj and Ud,i. But such matches are
useless for the attacker, who is trying to distinguish the output from faithful generate
requests from random values. So in our context, we consider only faithful generate requests.

Lemma 5. Let BADvv, BADinit
uw , and BADrsd

uw be as defined above. Let BADfgen
uw denote

the event that (j, d, i) exist, where (d, i) is a faithful generate query and Ud,i = Wj. Then

Pr[BADfgen
uw |BADvv ∧BADinit

uw ∧BADrsd
uw] ≤ Q3 × λ1

2|V | −Q3 −R
≤ Q3 × λ1

2|V | −Q−R

Proof. Assume (d, i) to be a faithful generate request, and Ud,i ̸∈ {W1, . . . , Wj−1}. Consider
the probability of the attacker to choose Wj with Wj = Ud,i. Essentially, the attacker has
to guess Vd,j−1.

First, consider query j being made before request (d, i). The event Ud,i = Wj only
occurs if the XOF generates the right |V |-bit output. Thus Pr[Ud,i = Wj] ≤ 1

2|V | .
Now consider query j being made after request (d, i). In this case, the attacker

is guessing an unknown |V | bit output from a challenger’s XOF query. Without other
information, Pr[Wj = Ud,i] would be ≤ 1

2|V | . But the attacker knows up to Q3 values Wj

which are not Ud,i, and there can be up to R previously-disclosed DRBG states, which the
attacker can avoid to guess. So the probability of the attacker matching the XOF query
from a single faithful Generate request is Pr[Wj = Ud,i] ≤ 1

2|V |−Q3−R
.

The claimed bound stems from the fact that there may be up to λ1 faithful generate
requests (d, i) with the same additional input αd,i = parse(Ud,i, 2) and up to Q3 queries
Wj with parse(Wj) = 3.

No Bad Events. The last lemma we need for the main result is describes the adversarial
advantage in the absence of bad events.

Lemma 6.

Pr
[
b̂ = b | (BADinit

uw ∧BADvv ∧BADrsd
uw ∧BADfgen

uw)
]

= 1
2

20 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

Proof. By the definition of the attack game (cf. alg. 3), all those outputs sent to the
attacker which depend on b, stem from faithful generate requests.

The event BADvv implies that, since all the challenger’s states Vd,i are different, all
the XOF inputs Ud,i to answer generate requests are different. Thus, all the output bits
generated in line 3 of the attack game stem from calls XOF(Ud,i, . . .) with different inputs
Ud,i. Depending on b, a faithful generate request will return either of the following values
to the attacker:

• By the definition of the XOF, cf. Algorithm 1, all the output bits from a XOF query
are uniformly distributed random bits. I.e., if b = 0, the challenger will compute
T ←$ {0, 1}ℓ+|V | in the XOF query and the attacker will see the rightmost ℓ bits of T .

• If b = 1, the attacker is given Z ←$ {0, 1}ℓ.

Regardless of b, if BADvv the distribution of responses to the attacker’s faithful generate
requests is the uniform distribution. To distinguish b = 0 from b = 1, the attacker must thus
make a query XOF(Ud,i, . . .), which matches a faithful request. Without such a matching
query, i.e., when BADinit

uw ∧BADrsd
uw ∧BADfgen

uw , all the answers to the attacker’s queries
are uniform random values, independent from the responses to faithful requests.

Proof of theorem 1. According to lemma 6,

Pr
[
b̂ = b | (BADinit

uw ∧BADvv ∧BADrsd
uw ∧BADfgen

uw)
]

= 1
2 .

I.e., our advantage ϵ in distinguishing b = 0 from b = 1 is at most the probability to trigger
one of the bad events. Hence ϵ is at most the sum of the the bounds from lemmas 2, 3, 4,
and 5:

ϵ ≤ Q1 × λ1

2Hinit −Q
+ λ2

2Hinit
+ R2

2× 2|V | + Q2

2× 2|V | + Q2

2Hrsd −Q
+ Q3 × λ1

2|V | −Q−R
.

We can simplify this to the claimed bound

ϵ ≤ Q

(
λ1

2Hinit −Q−R
+ 1

2Hrsd −Q
+ Q

2× 2|V |

)
+ λ2

2Hinit
+ R2

2× 2|V |

by applying Q1×λ1
2Hinit−Q

+ Q3×λ1
2|V |−Q−R

≤ Q×λ1
2Hinit−Q−R

(since Hinit ≤ |V | and Q1 + Q3 ≤ Q) and
Q2

2Hrsd−Q
≤ Q

2Hrsd−Q
(since Q2 ≤ Q).

6 Matching Attacks
In this section, we will sketch attacks which closely match our claimed security bounds.
For the case of simplicity, we do not put any constraints on the usage of the additional
input – the attacker is even free to choose all the ad,i as the empty string. This is the case
of corollary 1.

We assume each Dh
d,i to be the uniform distribution of h-bit values. This tightly

matches the claimed min-entropy h for the Dh
d,i.

6.1 Classical Attacks
Attack 1 (R ≈ 2 ∗ 2Hinit/2): The core idea for this attack is to maximise the probability
of the event BADvv and then to exploit it. Note that Hinit ≤ |V |.

The attacker makes R/2 instantiate-requests. After each instantiate-request, it makes
one request to generate ℓ≫ Hinit/2 output bits.

John Kelsey, Stefan Lucks and Stephan Müller 21

If b = 0, the attacker can expect two of the ℓ-bit outputs to be identical: The seeds for
the instantiate-requests are uniformly distributed Hinit-bit values, with probability > 1/2
two of the R seeds will be identical. Thus, these two instantiate-requests will initiate
the same output state, which will then be used by the subsequent generate requests to
generate the same ℓ-bit output.

If b = 1, then, since ℓ≫ Hinit/2, the probability for any two independent ℓ-bit values
to be identical is negligible.

Attack 2 (Q ≈ 2 ∗ max(2Hinit/R, 2Hrsd)): The core idea for this attack is to try to
guess one of the challenger’s XOF inputs Ud,i. We split the attack into two subcases:

Attack 2a (2Hinit/R > 2Hrsd , Q ≈ 2 ∗ 2Hinit/R): Similarly to attack 1, the attacker
makes R/2 instantiate requests, interleaved with R/2 requests to generate ℓ ≫ Hrsd
output bits each. In contrast to attack 1, the attacker now chooses Q/2 random seeds
S1, . . . , SQ/2 ∈ {0, 1}Hrsd and picks the ℓ rightmost bits from each of the Q strings
XOF(XOF(Sj , |V |), |V |+ ℓ). With significant probability, one of the attacker’s random states
Sj will collide with one of the challenger’s states Sd,i.

If b = 0, the collision of the attacker’s Sj with one of the challenger’s states implies the
same ℓ-bit output.

If b = 1, the probability for one of the attacker’s Q/2 ℓ-bit output strings with one of
the challengers R/2 ℓ-bit output strings is negligible, since ℓ > Hrsd.

Attack 2b (2Hinit/R < 2Hrsd , Q ≈ 2 ∗ 2Hrsd): Consider a sequence of a corruption
followed by a reseed request and then a request to generate ℓ≫ Hrsd output bits. Thanks
to the corruption, the attacker knows the input state Vd,i for reseed. The input state Vd,i+1
for generate is computed by Vd,i+1 = XOF((Vd,i ∥ Sd,i ∥ αd,i), |V |) from the unknown seed
Sd,i ←$ DHrsd

i .
If b = 0, the visible output consists of the ℓ rightmost bits from XOF(Vd,i+1, |V |+ ℓ).

By trying out all 2Hrsd choices for Sd,i, the attacker can find Vd,i+1 with matching output
bits.

If b = 1, the visible output consists of ℓ random bits. Since ℓ≫ Hrsd, the probability
for the existence of any S ∈ {0, 1}Hrsd , such that the ℓ rightmost bits from XOF(XOF(Vd,i ∥
S, |V |), |V |+ ℓ) match ℓ random bits is negligible.

6.2 Quantum Security: Applying Grover’s Algorithm
What happens if the attacker can use a quantum computer? In the current paper, we
always assume the DRBG to run on a classical computer. By implication, the challenger
is classical, and attack 1 still applies. As the attacker can use a quantum computer, it
can make XOF calls in superposition. This allows the quantum attacker to use Grover’s
algorithm to speed-up attack 2a from Q ≈ 2Hinit/R XOF calls down to Q ≈ 2Hinit/2/

√
R

and attack 2b from Q ≈ 2Hrsd calls down to Q ≈ 2Hrsd/2. This is a serious issue for
quantum secure DRBGs.

On the other hand, Grover’s algorithm doesn’t parallelize well. An implementation
of attack 2a or 2b, running c classical cores in parallel, speeds up by a factor of c. The
speed-up of Grover’s algorithm from running c quantum cores is only

√
c.

A concrete example: If the classical attack takes time 285 on a single classical core, then
215 classical cores running in parallel suffice to reduce the wall-clock time for the attack to
the equivalent of 285/215 = 270 sequential XOF calls. If Grover’s algorithm takes the same
285 units of time on a single quantum core, we’d need 230 quantum cores to mount the
attack in time 285/

√
230 = 270. Given the same number of 230 cores, but classical ones,

and 270 units of wall-clock time, we could classically exhaust a 100-bit search space. So

22 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

let us assume the attacker not to be willing to wait for more than the wall-clock time 270

cryptographic operations would take,10 either on a classical or on a quantum computer.
In this case, 85-bit quantum security is as good as 100-bit classical security. In general, a
classical security level of 70 + 2t bits is equivalent a quantum security level of only 70 + t
bits.11

7 Concrete Proposals
7.1 Numerical Examples
Table 1 provides some numerical examples, derived from corollary 1 and 3, respectively.
The security levels depend on the state size, the entropy bounds, on the number R of
requests and, in the case of the bounds derived from corollary 3, also on the maximum
number Rdev of requests from a single device. E.g., if we assume |V | ≥ 256, Hinit ≥ 192,
Hrsd ≥ 128, R ≤ 264, and apply corollary 1, we can guarantee a classical security level of
128 bits, and a quantum security level of 64 bits. But we can increase the bound on R to
R ≤ 2128, we can maintain the same approximate security bound if we assume personalized
devices (i.e., each device is given a unique name as its additional input), restrict each
single device to at most Rdev ≤ 256 queries and apply corollary 3.

Table 1: Approximate security levels for different instantiations of the XDRBG, assuming an ideal
XOF and derived by applying corollary 1 or 3, respectively. The quantum security levels assume a
straightforward application of Grover’s algorithm. Each row describes lower bounds for each of
|V |, Hinit, and Hrsd, and an upper bound for R (and for Rdev in the lower part), to achieve a given
level L of classical and quantum security. Note that if R = Rdev, the bounds from corollary 1
and 3 are the same. The connection of Q and L is explained in section 2.3.

bounds derived from corollary 1
|V | Hinit Hrsd log2(R) approx. security level L
≥ ≥ ≥ ≤ classical quantum

256 192 128 64 128 64
512 240 240 56 192 96
512 384 256 128 256 128

bounds derived from corollary 3
|V | Hinit Hrsd log2(R) log2 (Rdev) approx. security level L
≥ ≥ ≥ ≤ ≤ classical quantum

256 192 128 128 56 128 64
512 240 240 128 56 192 96
512 384 256 128 128 256 128

7.2 Recommendation on Personalization of XDRBG Instances
We recommend to personalize all implementations of the XDRBG at least when the bound
for the number R of is less than 264. If the XOF itself provides a personalization option, as,
e.g., cSHAKE does for the SHAKE XOF, one could make use of that option and then leave
the α empty.

10We argue that this assumption is realistic. No attacker cares about 1 000 or 10 000 years to mount an
attack on sequential hardware. The attacker cares about the amount of parallel hardware needed to finish
the attack in a given amount of time. The threshold size 270 is, of course, open for debate.

11Reality may be even worse for the quantum attacker. Evaluating a cryptographic primitive on quantum
circuits should be slower, in practice, than evaluating the same primitive on classical hardware.

John Kelsey, Stefan Lucks and Stephan Müller 23

In Appendix A.2 we briefly discuss the approach of going beyond personalization or
randomization by actually providing additional entropy for the additional input.

7.3 Proposed XDRBG Parameters Based on SHAKE128 and SHAKE256

We propose three XDRBG instances in Table 4. The first one employs SHAKE128 with a
capacity of 256 bits and provides 128 bits of classical security and 64 bits of quantum
security. This matches category one (the lowest category) from the NIST post-quantum
security criteria, see Appendix D. The second and third instance employ SHAKE256, where
we claim security category three for the second instance and category five, the top category,
for the third instance.

Table 2: Three proposals for DRBG standards and their approximate security levels. The first
assumes SHAKE128 with its 256-bit capacity, the second and third SHAKE256 with its 512-bit
capacity. The first two require personalized devices, with the bound Rdev ≤ 256 on the number
of queries from a single device, the third one can achieve its claimed security without such a
constraint. We set |V | = capacity. The promised classical security levels stem from corollary 3,
though for XDRBG-256 corollary 1 would suffice to derive exactly the same bound. The quantum
security levels assume the application of Grover’s algorithm. The category refers to the NIST
post-quantum criteria, cf. Appendix D.

capacity Hinit Hrsd log2 log2 promised security level L
(R) (Rdev) classi- quantum cate-

cal (Grover) gory
XDRBG-128 256 192 128 128 56 128 64 1
XDRBG-192 512 240 240 128 56 192 96 3
XDRBG-256 512 384 256 128 128 256 128 5

These proposals are inspired by existing or drafted standards. In SP 800-90, a DRBG
has a security level, k ∈ {128, 192, 256}.12 The min-entropy needed for instantiation is
defined in terms of the security level: Hinit ≥ 3k/2, Hrsd ≥ k. I.e., XDRBG-128 and XDRBG-
256 match the cases k = 128 and k = 256, respectively. XDRBG-192 is inspired by the revised
version of AIS 20/31 [Pet23], (still a draft as of this writing), which defines lower-limits on
effective internal state size and entropy provided to the DRNG13. The current draft of
AIS 20/31 requires 240 bits of min-entropy for instantiation, so Hinit ≥ 240, Hrsd ≥ 240.
An implementation meant to comply with both would simply choose the maximum of the
two required values. It is always allowable to incorporate more entropy than required, or
to assume/require a smaller number R of requests. In this way, an implementation can be
compatible with both standards.

7.4 Alternative Proposals Based on the ASCON Permutation
Recently, [Nat23], NIST has announced plans to standardize ASCON [DEMS22], a
lightweight family of authenticated encryption and hashing algorithms based on a 320-bit
permutation. We anticipate corresponding standards for ASCON-based XOFs.

A typical constraint for lightweight primitives is the number of input and output bits
– e.g., b = 320 bit for the ASCON permutation, in contrast to 1600 bit for the SHAKE
permutation. As pointed out above, any sponge-based XOF with a capacity of c bit can
only provide c/2 bit of classical and c/3 bit of quantum security. Note that the rate
r = b− c determines the maximum number of input bits to be absorbed or output bits to
be squeezed from each time the permutation is called. I.e., the performance of a XOF is
roughly proportional to the rate.

12Currently, SP 800-90 also supports k = 112, but we expect that to be removed from the next version.
13Recall that DRNG is the term used in AIS 20/31 for what we refer to as a DRBG.

24 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

Table 3: Two proposals for lightweight DRBG standards and their promised security levels, which
again stem from corollary 3 in the classical case, and from Grover’s algorithm in the quantum
case. The category refers to the NIST post-quantum criteria, cf. Appendix D.

capacity Hinit Hrsd log2 log2 promised security level L
(R) (Rdev) classi- quantum cate-

cal (Grover) gory
XDRBG-L-128 256 192 128 128 56 128 64 1
XDRBG-L-170 308 240 240 128 64 170 85 2

Table 3 proposes two ASCON-based lightweight variants of the XDRBG. The first one,
XDRBG-L-128, is a lightweight alternative to XDRBG-128 with the same security claims.
Note that the capacity is c = 256 bit, so the rate is still r = 320 − c = 64 bit. The
second one, XDRBG-L-170 aims at improved security, namely category-2 quantum security.
Performance-wise, the improved security comes at a steep price. Since the capacity is
c = 308 bit, i.e., almost the full permutation size of 320 bit (and can’t be much smaller, if
one wants to claim category-2 security based on the bounds we have proven), this leaves
only r = 12 = 320− c bits for the rate.

7.5 Limiting the Damage from State Compromise: maxout

XDRBG, like the DRBGs in [BK15], promises backtracking resistance between Generate
calls, but not within a Generate call. Thus, a state compromise during a very long
Generate output could expose previously-generated outputs from the Generate call to
compromise. This risk was pointed out in [WS19].

This threat is partly mitigated14 in SP 800-90A DRBGs by defining a limit, maxout,
on the maximum output length from one single Generate call. That is, each Generate
call must return no more than maxout bits of output. To generate X > maxout bits of
output, one has to call the generate function ⌈X/maxout⌉ times.

While the choice of maxout has no effect on our security bounds (we promise backtrack-
ing resistance only between Generate calls, and our security definition reflects this), a
not-too-large maxout limit is a low-cost defense against the impact of a state compromise.
Although we cannot offer a rigorous analysis in defense of any particular choice, we believe a
maxout of around 2048 bits for XDRBG provides a reasonable performance/security tradeoff.
However, the precise value of maxout should be tailored to the underlying XOF, to maximize
performance. For example, SHAKE128 has a rate of 1344 bits, and XDRBG uses the first 256
bits as its new DRBG state, so it would be wasteful to set the maxout of XDRBG-128 to 2048
bits–setting maxout = 2432 gets the full benefit of the bits produced by two permutation
calls. Table 4 shows recommended maxout values for each of our proposed versions of
XDRBG. These values are derived by finding the smallest number of complete permutation
calls that give an output of at least 2048 bits after accounting for the generation of the
next DRBG state. However, we emphasize that the specific choice of maxout is not based
on the results of a rigorous security analysis, and could reasonably be changed when the
requirements of the application using the DRBG require it.

7.6 Performance and Usefulness
While performance is usually not the most important feature of a DRBG, it still matters.
Table 5 gives a preliminary performance comparison on several different platforms, including
both low-end and high-end processors across three different architectures. In our data,

14In [BKM+22], an additional requirement is imposed: the full Generate output must be produced
before any of the output is used.

John Kelsey, Stefan Lucks and Stephan Müller 25

Table 4: Recommended values for maxout for different proposed XDRBG parameters. In each case,
maxout is chosen to be the smallest output length of at least 2048 bits that can be produced from
an integer number of permutation calls, after accounting for the need to generate a new DRBG
state. Note that XDRBG-192 and XDRBG-256 are identical other than the amount of entropy they
require for instantiation and reseeding.

Based on Rate Recommended maxout
XDRBG-128 SHAKE128 1344 2432
XDRBG-192 SHAKE256 1088 2752
XDRBG-256 SHAKE128 1088 2752
XDRBG-L-128 ASCON_XOF 64 2048
XDRBG-L-170 ASCON_XOF 12 2052

XDRBG based on SHAKE256 is always competitive with HashDRBG or HMAC based on
SHA256, and is usually faster.

Table 5: Comparing XDRBG to other hash-based DRBGs on a variety of platforms. All DRBGs
claim 256 bits of classical security. Times given are in seconds required to fill a buffer with 1 GiB
of output from the DRBG (smaller numbers mean better performance). The “Vec. Instr.” column
shows performance using whatever vector instructions were available on the given platform.

XDRBG-256 XDRBG-256 HashDRBG HMACDRBG
SHAKE256 SHAKE256 SHA256 SHA256
Vec. Instr.

AMD Ryzen 5950X 4.62 5.06 6.63 27.33
Intel 11th Gen i7-1195G7 2.64 5.28 5.81 23.11
Intel 12th Gen i7-1280P 3.96 4.15 4.68 19.97
Apple M2 2.18 2.89 4.88 20.54
ARM Cortex-A76 r4p1 6.17 6.52 9.59 41.15
ARM Cortex-A72 r0p3 12.26 12.33 18.15 78.20
ARM Cortex-A8 r2p5 62.68 185.45 186.71 784.66
ARM Cortex-A7 r0p5 81.81 249.85 242.79 1015.23
Si Five (RISC-V) 104.73 104.80 72.11 309.03

XDRBG is designed to use the normal XOF interface, rather than having access to any
internal values or state, or making any assumptions about the underlying XOF’s inner
workings other than its security strength. This makes the DRBG somewhat less efficient,
but with the benefit that the DRBG can be implemented pretty efficiently with normal
access to a XOF primitive such as SHAKE256, and will work as well for future XOFs–even
ones not based on a sponge construction.

XDRBG is designed to keep the inputs to the XOF as small as possible, given its security
requirements. Consider the number of permutation calls to handle the different types of
requests:

• Handling a reseed request with a seed of length σ and additional input of length |α|
needs to make ⌈(|V |+ σ + |α|+ |encode|)/r⌉ permutation calls to absorb its entire
input and to emit the first r bits of the new state. If |V | > r, it needs an additional
⌈|V |/r⌉ − 1 permutation calls to generate the new state in full. In total, this makes⌈

|V |+ σ + |α|+ |encode|
r

⌉
+

⌈
|V |
r

⌉
− 1 permutation calls.

• Handling an instantiate request is almost the same as handling a reseed request,
except that the input does not expect a seed of any size. Thus, it requires⌈

σ + |α|+ |encode|
r

⌉
+

⌈
|V |
r

⌉
− 1 permutation calls.

26 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

• Similarly, handling a generate request for ℓ bits of output takes⌈
|V |+ |α|+ |encode|

r

⌉
+

⌈
|V |+ ℓ

r

⌉
− 1 permutation calls.

As a concrete (arguably quite typical) example, consider σ = 512, |encode| = 8
(cf. appendix B) and ℓ = 256. We assume the additional input not to be too long, say,
|α| = 128. The performance of our proposed XDRBG variants is as follows:

• XDRBG-128 has rate r = 1344 and |V | = 256. Regardless of the request, given our
choice of parameters the XDRBG-128 calls the permutation only once.

• XDRBG-192 and XDRBG-256 have rate r = 1088 and |V | = 512. Both XDRBG-192 and
XDRBG-256 make two permutation calls for reseed and one call for each of instantiate
and generate.

• The rate and state size of XDRBG-L-128 are r = 64 and |V | = 256. A reseed thus takes
⌈ 256+512+128+8

64 ⌉+ ⌈ 256
64 ⌉−1 = 18 calls, instantiate ⌈ 512+128+8

64 ⌉+ ⌈ 256
64 ⌉−1 = 14 calls,

and generate also ⌈ 256+128+8
64 ⌉+ ⌈ 256+256

64 ⌉ − 1 = 14 calls.

• For XDRBG-L-170 the rate is r = 12 and the state size is |V | = 308. This implies 101
calls for reseed, 89 calls for instantiate, and 73 calls for generate.

The above comparison is simplistic. E.g., we assumed a constant seed size σ = 512. In
practice, σ will likely be proportional to the required entropy. I.e., we neglect a certain
benefit for the less secure variants of the XDRBG. Nevertheless, we believe the above
comparison still gives a reasonable idea for typical application scenarios.

8 Alternative Approaches
We considered and rejected a number of design alternatives and alternative security models
for XDRBG.

8.1 Sponge-based vs XOF-based
The first design choice we had was whether to base the DRBG on a sponge function or a
XOF. (Recall that a XOF provides a particular kind of functionality that can be implemented
by sponge function, but might also be implemented in some other way.) As discussed above,
several prior works, have proposed cryptographic PRNGs based on a sponge construction
(specifically using a large ideal permutation), and it would have been relatively easy to
adapt those to the requirements of SP 800-90A. However, we believe that basing a DRBG
on a XOF provides more flexibility. XDRBG can be based on any XOF, regardless of its
underlying structure or assumptions. A future XOF whose security does not rely on an
ideal permutation assumption or even use a sponge construction will still work with XDRBG.

8.2 Reseed Interval
SP 800-90A defines a reseed interval for its DRBGs. This requires that the DRBG be
reseeded after a certain number of Generate calls. A relatively small reseed interval
provides a defense against the impact of a DRBG state compromise. However, a reseed
interval short enough to provide substantial protection from state compromise would also
make the DRBG algorithm unworkable in many environments. For example, SP 800-90C
defines the RBG1 construction, which has access to live entropy only for instantiation; a
similar construction is permitted as a DRG.3 under AIS 20/31. If XDRBG required reseeding

John Kelsey, Stefan Lucks and Stephan Müller 27

every ten or even one hundred Generate calls, it would be unworkable for use in these
constructions. On the other hand, the huge reseed intervals (requiring a Reseed every 232

or 248 Generate calls) in [BK15] are not too costly, but their security benefit is negligible.
For these reasons, we elected not to define a reseed interval as part of XDRBG.

However, we recommend that in any application where it is practical, XDRBG (or any
other DRBG) should be reseeded periodically. As described in [KSWH98, CDK+22a], a
reseed must wait until sufficient entropy is available to avoid the iterative guessing attack
/ premature next condition.

A conditional reseed may serve as an easy alternative to a fixed reseed interval without
forcing the application to wait (if the min-entropy of the seed is Hrsd then reseed before
continuing else continue without reseeding). Alas, this also introduces a potential side-
channel vulnerability: The attacker might observe if, whenever the DRBG executes a
conditional reseed, the DRBG actually reseeds or not. Thus, each time a conditional reseed
is called, one bit of Shannon entropy may be lost.

8.3 Stronger Attack Model
A variation of the attack game could allow the attacker to compromise the DRBG state
by overwriting it, or resetting it to a fixed inital state, rather than by just reading it. The
attack game would otherwise be the same, including the role of the flag corrupt. But now,
the attacker could benefit from a multitarget attack, similar to the attack from section 2.5:
Fix a state V ∗ and repeat the following three-step sequence as often as possible: (1) set
the DRBG to V ∗, (2) reseed, and (3) generate some output bits. Eventually try O(Q)
times to guess any of the O(R) seeds from step (2) and generate the output bits to detect
a match.

As pointed out above, we doubt the plausibility of an attacker to the DRBG state
by a chosen or known value V ∗. But for readers who prefer to consider such attacks, we
point out the following: Reseeding is never worse than instantiating, except that Hrsd
may be smaller than Hinit. In fact, the combination of setting the DRBG state to V ∗ and
then to reseed with a seed S is equivalent to instantiating the DRBG state with a seed
S∗ = V ∗ ∥ S. Since V ∗ is known to (or even chosen by) the attacker, the distributions,
which S and S∗ are drawn from, have exactly the same min-entropy. Accordingly, we
make two recommendations for the stronger attack model: (1) set Hrsd ≈ Hinit, and (2) if
the XDRBG is personalized, then personalize both instantiate and reseed requests. In that
context, observe that AIS 20/31 sets Hinit = Hrsd.

Regarding the first recommendation, we revisited the proof for our main result. As it
turned out, both proof and result still apply, with a slightly tweaked bound. In fact, for
H = Hinit = Hrsd we can replace equation 2 by

ϵ ≤ Q

(
λ1

2H −Q
+ 1

2H −Q
+ Q

2× 2|V |

)
+ λ2

2H
+ R2

2× 2|V | ,

which also applies to the attack model where the attacker can set the DRBG state.

9 Conclusions
Drawing on previous work in [BDPV10, CDKT19], we have proposed a new class of DRBG
that can be based on any XOF, and analyzed its security in a model well adapted for
DRBGs as defined in [BK15]. We have kept the specification of XDRBG general enough
to adapt to the different requirements of SP 800-90 and AIS 20/31, and to work for any
XOF. It is possible to make a more efficient DRBG by altering the internal workings of
a sponge-based XOF, but this would result in a less generally-useful DRBG. We prefer to
provide a more generic design.

28 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

XDRBG is quite efficient. Assuming reasonable choices for seed length, size of the
additional input and output length, every XOF query made by XDRBG with SHAKE128 or
SHAKE256 will result in at most two permutation calls. Even XDRBG-L-170, the lightweight
variant based on a smallish 320-bit permutation, where we squeezed in as much quantum
security as possible, is slow, but not prohibitively so: a typical request requires about
100 permutation calls. For the lightweight variant with standard security, namely for
XDRBG-L-128, less than 20 permutation calls suffice.

Our hope is that XDRBG will be a useful addition to the set of DRBGs currently in use,
especially in environments in which SHAKE or ASCON is the only cryptographic primitive
available. Our focus in the design and analysis of XDRBG is to provide a practical DRBG
that fits cleanly with the requirements of two widely-followed standards for cryptographic
random bit generation, SP 800-90 and AIS 20/31. We have provided concrete parameter
sets to meet these requirements, in the hopes of making XDRBG easy to incorporate into
applications.

Open Questions. We see at least three interesting directions for future research:

1. Our analysis for quantum security focused on the application of Grover’s algorithm.
Also, recall the cautionary note from Footnote 5 regarding the quantum security of
sponge-based XOFs. Nevertheless, we conjecture that these bounds actually describe
the security of the XDRBG against quantum adversaries very well. A proof for those
quantum bounds, similar to our classical security analysis, would probably assume
the compressed oracle model [Zha19].

2. Our security proof assumes oracle-independent entropy sources. While this seems
entirely reasonable for the context of random number generation with trusted entropy
sources (as in SP 800-90 or AIS 20/31), it would be interesting to prove similar
security bounds for oracle-dependent sources, using techniques from [CDKT19].

3. We are not entirely satisfied with the performance of our high-security small-
permutation proposal XDRBG-L-170. To match a given security level by applying our
bounds, we seem to require a largish capacity (because |V | is a lower bound for the
capacity), which implies a low rate for XDRBG-L-170. Is it possible to prove similar
bounds with a significantly smaller |V |?

Acknowledgments
The authors wish to thank Johannes Mittmann, Kerry McKay, and Meltem Sönmez Turan
for many helpful comments on earlier drafts of this paper. We thank the reviewers for their
insights and comments which had been helpful to improve this paper. Our special thanks
go to the reviewer who pointed out errors in the original version of the security proof.

References
[AMD23] AMD – Advanced Micro Devices. AMD RNG ESV public use doc-

ument, document version 0.4. Technical report, Advanced Micro
Devices(AMS), 2023. https://csrc.nist.gov/CSRC/media/projects/
cryptographic-module-validation-program/documents/entropy/E27_
PublicUse.pdf.

[AMMS16] Sergey Agievich, Vadim Marchuk, Alexander Maslau, and Vlad Semenov.
Bash-f: another lrx sponge function. Cryptology ePrint Archive, Paper
2016/587, 2016. https://eprint.iacr.org/2016/587.

https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/entropy/E27_PublicUse.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/entropy/E27_PublicUse.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/entropy/E27_PublicUse.pdf
https://eprint.iacr.org/2016/587

John Kelsey, Stefan Lucks and Stephan Müller 29

[BDPA07] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions.
Ecrypt Hash Workshop 2007, 2007.

[BDPV10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge-
based pseudo-random number generators. In Stefan Mangard and François-
Xavier Standaert, editors, CHES 2010, volume 6225 of LNCS, pages 33–47,
Santa Barbara, CA, USA, August 17–20, 2010. Springer, Heidelberg, Germany.

[BDPVA08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the
indifferentiability of the sponge construction. In Nigel Smart, editor, Advances
in Cryptology – EUROCRYPT 2008, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[BK15] Elaine Barker and John Kelsey. Recommendation for random number genera-
tion using deterministic random bit generators. Technical report, National
Institute of Standards & Technology, Gaithersburg, MD, United States, 2015.

[BKL+19] D. J. Bernstein, S. Kölbl, Stefan Lucks, P. Maat Costa Massolino, F. Mendel,
K. Nawaz, T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo, and
B. Viguier. Gimli. Submission to the NIST Lightweight Cryptogra-
phy Standardization Process, 2019. https://csrc.nist.gov/Projects/
lightweight-cryptography/round-2-candidates.

[BKM+22] Elaine Barker, John Kelsey, Kerry McKay, Allen Roginsky, and Meltem Sön-
mez Turan. Recommendation for random bit generator (rbg) constructions
(3rd draft). Technical report, National Institute of Standards & Technology,
Gaithersburg, MD, United States, 2022.

[CDK+22a] Sandro Coretti, Yevgeniy Dodis, Harish Karthikeyan, Noah Stephens-
Davidowitz, and Stefano Tessaro. On seedless prngs and premature next.
In Dana Dachman-Soled, editor, 3rd Conference on Information-Theoretic
Cryptography, ITC 2022, July 5-7, 2022, Cambridge, MA, USA, volume 230
of LIPIcs, pages 9:1–9:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022.

[CDK+22b] Sandro Coretti, Yevgeniy Dodis, Harish Karthikeyan, Noah Stephens-
Davidowitz, and Stefano Tessaro. On seedless prngs and premature next.
IACR Cryptol. ePrint Arch., page 558, 2022.

[CDKT19] Sandro Coretti, Yevgeniy Dodis, Harish Karthikeyan, and Stefano Tessaro.
Seedless fruit is the sweetest: Random number generation, revisited. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
- CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I, volume 11692 of
Lecture Notes in Computer Science, pages 205–234. Springer, 2019.

[Cza21] Jan Czajkowski. Quantum indifferentiability of SHA-3. IACR Cryptol. ePrint
Arch., page 192, 2021.

[DEM+20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. ISAP v2.0. IACR
Trans. Symm. Cryptol., 2020(S1):390–416, 2020.

[DEMS22] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Mar-
tin Schläffer. Status Update on Ascon v1.2. Update to the NIST
Lightweight Cryptography Standardization Process, 2022. https:
//csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/
documents/finalist-round/status-updates/ascon-update.pdf.

https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/documents/finalist-round/status-updates/ascon-update.pdf
https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/documents/finalist-round/status-updates/ascon-update.pdf
https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/documents/finalist-round/status-updates/ascon-update.pdf

30 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

[DGH+04] Yevgeniy Dodis, Rosario Gennaro, Johan Håstad, Hugo Krawczyk, and Tal
Rabin. Randomness extraction and key derivation using the CBC, cascade
and HMAC modes. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 494–510, Santa Barbara, CA, USA, August 15–19, 2004.
Springer, Heidelberg, Germany.

[DVW20] Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs. Extracting
randomness from extractor-dependent sources. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume
12105 of Lecture Notes in Computer Science, pages 313–342. Springer, 2020.

[Fer19] Niels Ferguson. The Windows 10 random number generation infrastructure.
Technical report, Microsoft, 2019. url = https://aka.ms/win10rng.

[FS03] Niels Ferguson and Bruce Schneier. Practical cryptography. Wiley, 2003.

[GT16a] Peter Gaži and Stefano Tessaro. Provably robust sponge-based PRNGs
and KDFs. Cryptology ePrint Archive, Report 2016/169, 2016. https:
//eprint.iacr.org/2016/169.

[GT16b] Peter Gazi and Stefano Tessaro. Provably robust sponge-based PRNGs
and KDFs. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part I, volume 9665 of LNCS, pages 87–116, Vienna, Austria,
May 8–12, 2016. Springer, Heidelberg, Germany.

[Hut16a] Daniel Hutchinson. A robust and sponge-like prng with improved efficiency.
Cryptology ePrint Archive, Paper 2016/886, 2016. https://eprint.iacr.
org/2016/886.

[Hut16b] Daniel Hutchinson. A robust and sponge-like PRNG with improved efficiency.
In Roberto Avanzi and Howard M. Heys, editors, Selected Areas in Cryptog-
raphy - SAC 2016 - 23rd International Conference, St. John’s, NL, Canada,
August 10-12, 2016, Revised Selected Papers, volume 10532 of Lecture Notes
in Computer Science, pages 381–398. Springer, 2016.

[Kil11] Killmann, Wolfgang and Schindler, Werner. A proposal for functionality
classes for random number generators. Technical Report AIS20, Bundesamt
für Sicherheit in der Informationstechnik (BSI), 2011.

[KSF99] John Kelsey, Bruce Schneier, and Niels Ferguson. Yarrow-160: Notes on
the design and analysis of the yarrow cryptographic pseudorandom number
generator. In Howard M. Heys and Carlisle M. Adams, editors, Selected Areas
in Cryptography, 6th Annual International Workshop, SAC’99, Kingston,
Ontario, Canada, August 9-10, 1999, Proceedings, volume 1758 of Lecture
Notes in Computer Science, pages 13–33. Springer, 1999.

[KSWH98] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Cryptanalytic
attacks on pseudorandom number generators. In Serge Vaudenay, editor,
FSE’98, volume 1372 of LNCS, pages 168–188, Paris, France, March 23–25,
1998. Springer, Heidelberg, Germany.

[Mec18] John P Mechalas. Intel® Digital Random Number Gen-
erator (DRNG) Software Implementation Guide, 2018.
https://www.intel.com/content/www/us/en/developer/articles/guide/
intel-digital-random-number-generator-drng-software-implementation-guide.
html.

https://eprint.iacr.org/2016/169
https://eprint.iacr.org/2016/169
https://eprint.iacr.org/2016/886
https://eprint.iacr.org/2016/886
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-digital-random-number-generator-drng-software-implementation-guide.html

John Kelsey, Stefan Lucks and Stephan Müller 31

[MMHH23] Stephan Müller, Sebastian Mayer, Caroline Holz auf der Heide, and Andreas
Hohenegger. Documentation and analysis of the Linux random number gener-
ator. Technical report, Bundesamt für Sicherheit in der Informationstechnik
(BSI), 2023.

[Nat01] National Institute of Standards and Technology. Advanced encryption stan-
dard (AES). Technical Report Federal Information Processing Standards
(FIPS) Publication 197, U.S. Department of Commerce, Washington, D.C.,
2001.

[Nat13] National Institute of Standards and Technology. Digital signature standard
(dss). Technical Report Federal Information Processing Standards (FIPS)
Publication 186-4, U.S. Department of Commerce, Washington, D.C., 2013.

[Nat15a] National Institute of Standards and Technology. Secure hash standard
(SHS). (U.S. Department of Commerce, Washington, DC), Federal In-
formation Processing Standards Publication (FIPS) 180-4, August 2015.
https://doi.org/10.6028/NIST.FIPS.180-4.

[Nat15b] National Institute of Standards and Technology. Sha-3 standard: Permutation-
based hash and extendable output functions. Technical Report Federal
Information Processing Standards (FIPS) Publication 202, U.S. Department
of Commerce, Washington, D.C., 2015.

[Nat16] National Institute of Standards and Technology. Submission requirements and
evaluation criteria for the post-quantum cryptography standardization pro-
cess, 2016. url = https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf.

[Nat23] National Institute of Standards and Technology. Lightweight cryp-
tography standardization process: NIST selects Ascon, Feb 2023.
url = https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-
ascon.

[NL18] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols.
RFC 8439, June 2018.

[Pet23] Peter, Matthias and Schindler, Werner. A proposal for functionality classes
for random number generators–version 2.35 draft. Technical Report AIS20,
Bundesamt für Sicherheit in der Informationstechnik (BSI), 2023.

[RS16] Ronald L. Rivest and Jacob C. N. Schuldt. Spritz - a spongy rc4-like stream
cipher and hash function. IACR Cryptol. ePrint Arch., page 856, 2016.

[TBK+18] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry McKay, Mary
Baish, and Mike Boyle. Recommendation for random number generation using
deterministic random bit generators. Technical report, National Institute of
Standards & Technology, Gaithersburg, MD, United States, 2018.

[WS19] Joanne Woodage and Dan Shumow. An analysis of NIST SP 800-90A. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477
of LNCS, pages 151–180, Darmstadt, Germany, May 19–23, 2019. Springer,
Heidelberg, Germany.

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum
indifferentiability. In Alexandra Boldyreva and Daniele Micciancio, editors,

https://doi.org/10.6028/NIST.FIPS.180-4

32 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part II, volume 11693 of Lecture Notes in Computer Science, pages 239–268.
Springer, 2019.

A Unusual Use Cases
Our security analysis above discusses the normal use cases for a DRBG. In this appendix,
we consider less common ways a DRBG may be used and how this might affect our security
bounds.

A.1 Seeding from another DRBG

In some contexts, a DRBG’s seed may come from another DRBG. Since our security proof
assumes access to entropy for seed material, it is natural to consider the security impact of
seeding from a DRBG. We can extend our security bounds to deal with the situation, by
simply incorporating an additional term for violating the security of the DRBG providing
the seed. Informally, if the attacker cannot distinguish the outputs of the DRBG providing
the seed from ideal random outputs, it also cannot gain any advantage in distinguishing
XDRBG outputs seeded from those DRBG outputs.

A.2 Adding Entropy via the Additional Input

XDRBG, like the DRBGs in SP 800–90A, allows for an optional additional input to each
DRBG call. This input may be used in many different ways in practical applications. For
example:

1. Some systems maintain a seed file, to save entropy across device restarts as a hedge
against an entropy source failure. A natural way to incorporate the seed file into the
DRBG state is to put it into the additional input of the instantiate call.

2. Secret information, such as the hash of a private key, can be incorporated into the
DRBG during instantiation, again to provide a hedge against the failure of the
entropy source.

3. Additional entropy can be drawn from some secondary entropy source, or even from
the primary entropy source, and provided to the DRBG during instantiation or
reseeding.

Intuitively, it is easy to see that entropy provided in the additional input is incorporated
into the DRBG state in the same way as the seed, since the additional input is simply
appended to the seed in instantiate and reseed calls. Thus, an Instantiate or Reseed
in which sufficient entropy is provided in the additional input will end up in a secure state,
even if no entropy is provided in the seed.

Let h1 the entropy in the seed, and h2 be the entropy in the additional input. By
virtue of our encoding function, and as long as the seed is independent from the additional
input, the string input to the XOF must thus have h1 + h2 bits of min-entropy. And even
if seed and additional input are statistically dependent, the min-entropy of the encoded
input for the XOF has at least max(h1, h2) bits of min entropy.

John Kelsey, Stefan Lucks and Stephan Müller 33

B The Function encode
XDRBG requires a function encode : {0, 1}∗ × {0, 1}∗ × {0, 1, 2} → {0, 1}∗ such that for all
(S, α, n) ̸= (S′, α′, n′) encode(S, α, n) ̸= (S′, α′, n′). (That is, the encoding function must
not introduce any trivial collisions.) There are many suitable encodings possible, but for
concreteness, we define a recommended encoding as follows:

Let |α|/8 ∈ {0, . . . , 84}. I.e., the additional input α is a sequence of bytes, and it is at
most 84 bytes long. Then, the following encoding unambiguously encodes the inputs while
adding only a single byte of stretch:

encode(S, α, n) = (S ∥ α ∥ (n ∗ 85 + |α|/8)8),

where (. . .)8 indicates an 8-bit (i.e., single-byte) encoding of a value in {0, 255}. Thus,
|encode| = 8, i.e., the stretch is constantly one byte.

This encoding is efficient and flexible, but does require that the additional input string
is no longer than 84 bytes–a constraint that seems very easy to manage in practice. For
example, IPV6 addresses and GUIDs are 16 bytes long, Ethernet addresses are 12 bytes
long, and the most demanding requirement for unique randomly-generated device identifiers
can be met with a 32-byte random value. Thus, we recommend this encoding for XDRBG.

C HashXOF

Although there are already multiple widely-used DRBGs based on a hash function, we
can construct a XOF suitable for XDRBG from any standard hash function, such as SHA256.
The design is as follows:

1: function HashXOF(x, ℓ)
2: t← Hash(x ∥ 064)
3: Z ← ε
4: i← 1
5: while |Z| < ℓ do
6: Y ← Hash(t ∥ i64)
7: i← i + 1
8: Z ← Z ∥ Y

9: return(Z truncated to ℓ bit)
Using XDRBG with HashXOF(SHA256) will provide comparable performance to either

HMAC_DRBG(SHA256) or Hash_DRBG(SHA256).

D NIST Post-Quantum Security Categories
NIST defines five security categories for submissions to the Post-Quantum Cryptography
process in [Nat16]. These categories are as follows:

category requirement security
any attack must require computational resources classical quantum
comparable to or greater than those required for

1 key search on a block cipher with a 128-bit key 128 64
2 collision search on a 256-bit hash function 128 85
3 key search on a block cipher with a 192-bit key 192 96
4 collision search on a 384-bit hash function 192 128
5 key search on a block cipher with a 256-bit key 256 128

34 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

E Pool-Based DRNGs
In this paper, we assume the existence of trusted entropy sources that provide strings with
a known amount of min-entropy on demand. In this, we follow the lead of NIST and BSI
standards–SP 800-90 and AIS 20/31 specify techniques for evaluating entropy sources, and
then assume the availability of entropy sources whose claims of entropy can be relied upon.

When entropy sources do not reliably provide a known amount of min-entropy, or
when they may even be adversarially controlled, a very different approach is required. The
Fortuna cryptographic PRNG, first described in [FS03], is designed to guarantee that its
PRNG algorithm will eventually be seeded securely, as long as the entropy sources used
are providing some entropy, even without any way to know how much is being provided.
This kind of design is modeled in depth in [CDK+22a].

The Fortuna PRNG considers different entropy pools, which over time receive inputs
from one or more sources of entropy. It is not exactly known how much entropy the sources
provide. From time to time, the entropy gathered in some subset of these pools is used to
update the state. If, after a state compromise, the pools have gathered a sufficient amount
of entropy, then the PRNG recovers from the compromise. Otherwise, the entropy from
those pools is essentially lost, since the attacker can use his knowledge of the previous
state of the RNG and subsequent outputs to guess the entropy input. (This is referred to
as “premature next" in [CDK+22b] and as the "iterative guessing attack" in [KSWH98].)
The goal of Fortuna is to guarantee that the PRNG will eventually reach a secure state if
there is any entropy being provided to it.

Potentially adversarial entropy sources, as well as “oracle-dependent" entropy sources
(entropy sources whose distributions are not independent of the cryptographic functions
used to extract entropy from them) are analyzed in [CDKT19, DVW20]. Since we assume
trusted, already-analyzed entropy sources in this paper (in keeping with the SP 800-90 and
AIS 20/31 standards), we do not consider adversarial or oracle-dependent sources here.

	Introduction
	Preliminaries
	Entropy
	Interface for DRBG
	Security Level
	Forward and Backward Security
	Multitarget Attack on Instantiate
	Extendable Output Functions (XOFs)

	XDRBG Definition
	The DRBG Security Game
	Intuition for the Game
	Game Definition and Rationale

	Security Analysis
	The Main Result and some Corollaries
	The Proof of the Main Result

	Matching Attacks
	Classical Attacks
	Quantum Security: Applying Grover's Algorithm

	Concrete Proposals
	Numerical Examples
	Recommendation on Personalization of XDRBG Instances
	Proposed XDRBG Parameters Based on SHAKE128 and SHAKE256
	Alternative Proposals Based on the ASCON Permutation
	Limiting the Damage from State Compromise: maxout
	Performance and Usefulness

	Alternative Approaches
	Sponge-based vs XOF-based
	Reseed Interval
	Stronger Attack Model

	Conclusions
	Unusual Use Cases
	Seeding from another DRBG
	Adding Entropy via the Additional Input

	The Function encode
	HashXOF
	NIST Post-Quantum Security Categories
	Pool-Based DRNGs

