A Framework with Improved Heuristics to Optimize Low-Latency Implementations of Linear Layers

Haotian Shi^{1, 2} Xiutao Feng¹ Shengyuan Xu³

 1 Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

²University of Chinese Academy of Sciences, Beijing, China

³Department of Fundamental Courses, Shandong University of Science and Technology, Taian, 271019, China

2024.3.28

Table of Contents

Outline

- [State-of-art heuristics](#page-10-0)
- [Our method](#page-16-0)

Lightweight Cryptography

- Application scenarios.
	- Internet of Things (IoTs), wireless sensor networks.
	- Other devices with limited resource.
- Goals.
	- Low resource cost in terms of **area**, power comsuption and **latency**.
- Research directions.
	- Designing new ciphers with lightweight building blocks. Constructing lightweight Maximum Distance Separable (MDS) matrices.
	- **Optimizing** the implementation of **linear** and non-linear layers of existing ciphers.

Implementation of a linear layer

The linear layer: a linear Boolean function *f* .

$$
f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^m
$$

$$
\mathbf{x}^T \mapsto \mathbf{y}^T = A\mathbf{x}^T
$$

, where $\mathbf{x} = (x_0, x_1, \dots, x_{n-1}), \mathbf{y} = (y_0, y_1, \dots, y_{m-1})$ and $A = (a_{ij})_{m \times n}$. A "node" $t = (t_0, t_1, \ldots, t_{n-1})$ defines an intermediate value

 $t = t_0 x_0 \oplus t_1 x_1 \oplus \cdots \oplus t_{n-1} x_{n-1}$.

Definition 1 (Implementation of a linear layer)

An implementation $\mathcal I$ of a matrix $A_{m \times n}$ over $\mathbb F_2$ can be described as a sequence of nodes $\mathcal{I} = \{x_0, x_1, \cdots, x_{n+c-1}\}$ which contains all output nodes of $A_{m \times n}$ and satisfies $x_i = x_j \oplus x_k$ for any $i = n, n + 1, ..., n + c - 1$ with some $j, k < i$. It is also called a general implementation of *A* with XOR gate count *c*.

- A trivial implementation: ∑*^m−*¹ *ⁱ*=0 (*wt*(*yi*) *−* 1) XOR gates. Nodes can be reused.
- Area: XOR gate count.

An example

$$
A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}
$$

Table 1: Two implementations of *A*

A trivial implementation needs 6 XOR gates.

Implementation graph

- Nodes: the nodes in the implementation.
- Edges: node x_j, x_k points to node x_i , if x_i is generated by x_j, x_k .

Figure 1: The implementation graphs of *A*'s two implementations (*a*)*,*(*b*).

Depth

Definition 2 (Depth)

Given an implementation *I* of *A*, the depth of a node *t* in *I* is defined as the length of the longest path from an input node to *t* in the implementation graph, denoted by $d(t)$. In particular, the depth of all input nodes is defined as 0. The depth of *I* is defined as the maximum depth of all output nodes denoted by $d(\mathcal{I})$, that is

$$
d(\mathcal{I}) = \max_{0 \le i < m} d(y_i).
$$

- $d(t_1) = \max\{d(t_2), d(t_3)\} + 1$, if t_1 is generated by t_2, t_3 .
- Latency: closely related to the depth of implementations.

Minimum depth

 \bullet $d_{min}(t)$: the minimum depth of node *t* that *t* can reach.

$$
d_{min}(t) = \lceil \log_2 wt(t) \rceil.
$$

 \bullet $d_{min}(A)$: the minimum depth of *A* that all *A*'s implementations can achieve.

$$
d_{min}(A) = \max_{0 \le i < m} d_{min}(y_i),
$$

Definition 3

An implementation of *A* is called a minimum latency implementation if its depth is equal to $d_{min}(A)$.

The SLP and SLPD problem

Definition 4

The shortest linear program (SLP) problem is defined as follows: given a matrix $A_{m \times n}$ over \mathbb{F}_2 , where each row $y_i, 0 \leq i < m$, represents an output node. The goal is to find an implementation of *A* using the least number of XOR gates.

Definition 5

The shortest linear program with minimum depth limit (SLPD) problem is defined as follows: given a matrix $A_{m \times n}$ over \mathbb{F}_2 , where each row $y_i, 0 \leq i < m$, represents an output node. The goal is to find a minimum latency implementation of *A* using the least number of XOR gates.

- The SLP problem over \mathbb{F}_2 has been proven to be NP-complete.
- This paper focuses on the SLPD problem.

Outline

[Our method](#page-16-0)

State-of-art heuristics

Forward search. Variants of the BP algorithm.

• Backward search.

Local re-optimization algorithm. Re-optimize a subcircuit.

The BP algorithm

- Two key parameters: the base set *B* and the distance vector *DistB*. $Dist_{\mathcal{B}}[i] = \min\{d \mid y_i = \bigoplus_{t=1}^d \mathcal{B}[i_t]\}$
- Main iterative step:
	- Select a new base element generated by two nodes in $\mathcal B$ and add it to $\mathcal B$.
	- Update the distance vector *Dist*.
- BP's strategy:
	- Cost function to minimize: $\sum_{i=0}^{m-1} Dist[i]$.
	- Tie-breaker: maximizing $\sum_{i=0}^{m-1} Dist[i] \cdot Dist[i]$. $((2, 2, 2, 2)$ is worse than $(1, 1, 4, 2)$.
	- Pre-emptive strategy: if *B*[*i*] *⊕ B*[*j*] equals an output node *t*, *t* is added to *B*.

Innovation points on some variants of the BP algorithm

- The RNBP algorithm: every tie-breaking choice is equally possible.
- The A1 algorithm: at least one *Dist*[*j*] which equals to min*ⁱ,Dist*[*i*]*>*¹ *Dist*[*i*] must be reduced.
- The LSL algorithm: depth limit on base elements and *Dist*.
- The BFI algorithm: focusing on *PAQ*, where *P, Q* are permutation matrices.

Backward search

- \bullet Initiate the search from output nodes by determining how a given node w is split, i.e, $w = p \oplus p'$, until all nodes are split into input nodes.
- **•** Parameters:
	- A working set *W*.
	- A predecessor set *P*.
	- A parameter *s* indicates the depth of elements in *W*.
- Goal: maximize the reuse of predecessor nodes in *P*.
- **•** Heuristic: randomly choose one splitting operation which satisfies the rule with the highest priority.

Rules

 \bullet The authors developed five priority-based rules for splitting nodes within W :

 3 The number of new predecessors we generate.

(The picture was used in their slide.)

Outline

[Background](#page-2-0)

[State-of-art heuristics](#page-10-0)

³ [Our method](#page-16-0)

Improved forward search: IBPD and IBPD-MD

- Observation: about the depth limit. Outputs and those with high depth have a smaller contribution to other outputs due to the depth limit, but this is not the case in the SLP problem. Consequently, prioritizing closer outputs has a smaller impact on approaching other outputs and may result in the loss of alternative, better pathways that generate the closer outputs.
- ∑ *m−*1 *ⁱ*=0 *Dist*[*i*] *· Dist*[*i*] instead of maximizing it. **Our strategy**: A new tie-breaking rule of **minimizing** new (Reduce all *Dist*[*i*]'s at a relatively consistent pace.)
- New improved heuristics:
	- LSL + RNBP + **our strategy** *−→* **IBPD**.
	- **IBPD** + A1 *−→* **IBPD-MD**.
- **Difference between IBPD with IBPD-MD.**
	- IBPD: better suitable for a strict depth limit for all output nodes.
	- IBPD-MD: better suitable for a bit looser depth limit for some output nodes.

A new framework of combining forward search with backward search (BPBS)

Figure 1: Framework of integrating IBPD-MD with backward search.

Remarks on the new framework

- A combination of forward search with backward search.
- Adjusting the search space of IBPD-MD is helpful for IBPD-MD to jump out of local minima.
- **The IBPD-MD version works better than the IBPD version.**
- A modified priority of rules: combination of **Rule 3** and **Rule 5**.
- A relaxed depth bound.

Outline

[Background](#page-2-0)

- [State-of-art heuristics](#page-10-0)
- [Our method](#page-16-0)

Application to AES MixColumns

Table 3: XOR/depth costs of AES MixColumns

Application to many proposed matrices

J.

ł.

÷,

 a The result can only be searched by BPBS.

 \real^b The result can be searched by IBPD.

 c The result can be searched by IBPD-MD.

[Applications](#page-20-0)

Application to many involutory MDS matrices

Table 6: Experiments for matrices in $[LSL+19]$

^a The number of matrices that our algorithms can optimize.

 b The percentage of matrices that our algorithms can optimize.</sup>

 $^{\rm c}$ The maximum number of reduced XOR gates from our algorithms.

 d The minimum number of XOR gates.

Thank you!