A Framework with Improved Heuristics to Optimize Low-Latency Implementations of Linear Layers

Haotian Shi^{1, 2} Xiutao Feng¹ Shengyuan Xu³

¹Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

²University of Chinese Academy of Sciences, Beijing, China

³Department of Fundamental Courses, Shandong University of Science and Technology, Taian, 271019, China

2024.3.28

Table of Contents

2 State-of-art heuristics

Outline

- 2 State-of-art heuristics
- 3 Our method
- Applications

Lightweight Cryptography

- Application scenarios.
 - Internet of Things (IoTs), wireless sensor networks.
 - Other devices with limited resource.
- Goals.
 - Low resource cost in terms of area, power comsuption and latency.
- Research directions.
 - Designing new ciphers with lightweight building blocks. Constructing lightweight Maximum Distance Separable (MDS) matrices.
 - **Optimizing** the implementation of **linear** and non-linear layers of existing ciphers.

Implementation of a linear layer

• The linear layer: a linear Boolean function f.

$$f: \mathbb{F}_2^n \longrightarrow \mathbb{F}_2^m$$
$$\mathbf{x}^T \mapsto \mathbf{y}^T = A\mathbf{x}^T$$

, where $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$, $\mathbf{y} = (y_0, y_1, \dots, y_{m-1})$ and $A = (a_{ij})_{m \times n}$. • A "node" $t = (t_0, t_1, \dots, t_{n-1})$ defines an intermediate value

 $t = t_0 x_0 \oplus t_1 x_1 \oplus \cdots \oplus t_{n-1} x_{n-1}.$

Definition 1 (Implementation of a linear layer)

An implementation \mathcal{I} of a matrix $A_{m \times n}$ over \mathbb{F}_2 can be described as a sequence of nodes $\mathcal{I} = \{x_0, x_1, \cdots, x_{n+c-1}\}$ which contains all output nodes of $A_{m \times n}$ and satisfies $x_i = x_j \oplus x_k$ for any $i = n, n+1, \ldots, n+c-1$ with some j, k < i. It is also called a general implementation of A with XOR gate count c.

- A trivial implementation: $\sum_{i=0}^{m-1} (wt(y_i) 1)$ XOR gates. Nodes can be reused.
- Area: XOR gate count.

An example

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Implementation (a)				Implementation (b)			
No.	Operation	Depth	No.	Operation	Depth		
1	$x_4 = x_0 \oplus x_1 / / y_2$	1	1	$x_4 = x_0 \oplus x_1 / / y_2$	1		
2	$x_5 = x_2 \oplus x_4 / / y_1$	2	2	$x_5 = x_2 \oplus x_3$	1		
3	$x_6 = x_3 \oplus x_5 / / y_0$	3	3	$x_6 = x_4 \oplus x_2 / / y_1$	2		
			4	$x_7 = x_4 \oplus x_5 / / y_0$	2		

Table 1: Two implementations of A

A trivial implementation needs 6 XOR gates.

Implementation graph

- Nodes: the nodes in the implementation.
- Edges: node x_j, x_k points to node x_i , if x_i is generated by x_j, x_k .

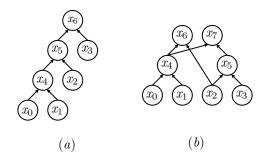


Figure 1: The implementation graphs of A's two implementations (a), (b).

Depth

Definition 2 (Depth)

Given an implementation \mathcal{I} of A, the depth of a node t in \mathcal{I} is defined as the length of the longest path from an input node to t in the implementation graph, denoted by d(t). In particular, the depth of all input nodes is defined as 0. The depth of \mathcal{I} is defined as the maximum depth of all output nodes denoted by $d(\mathcal{I})$, that is

$$d(\mathcal{I}) = \max_{0 \le i < m} d(y_i).$$

- $d(t_1) = \max\{d(t_2), d(t_3)\} + 1$, if t_1 is generated by t_2, t_3 .
- Latency: closely related to the depth of implementations.

Minimum depth

• $d_{min}(t)$: the minimum depth of node t that t can reach.

$$d_{min}(t) = \lceil \log_2 wt(t) \rceil.$$

• $d_{min}(A)$: the minimum depth of A that all A's implementations can achieve.

$$d_{\min}(A) = \max_{0 \le i < m} d_{\min}(y_i),$$

Definition 3

An implementation of A is called a minimum latency implementation if its depth is equal to $d_{\min}(A).$

The SLP and SLPD problem

Definition 4

The shortest linear program (SLP) problem is defined as follows: given a matrix $A_{m \times n}$ over \mathbb{F}_2 , where each row $y_i, 0 \le i < m$, represents an output node. The goal is to find an implementation of A using the least number of XOR gates.

Definition 5

The shortest linear program with minimum depth limit (SLPD) problem is defined as follows: given a matrix $A_{m \times n}$ over \mathbb{F}_2 , where each row $y_i, 0 \le i < m$, represents an output node. The goal is to find a *minimum latency* implementation of A using the least number of XOR gates.

- $\bullet\,$ The SLP problem over \mathbb{F}_2 has been proven to be NP-complete.
- This paper focuses on the SLPD problem.

Outline

- 2 State-of-art heuristics
 - Our method
 - Applications

State-of-art heuristics

• Forward search. Variants of the BP algorithm.

• Backward search.

• Local re-optimization algorithm. Re-optimize a subcircuit.

The BP algorithm

- Two key parameters: the base set \mathcal{B} and the distance vector $Dist_{\mathcal{B}}$. $Dist_{\mathcal{B}}[i] = \min\{d \mid y_i = \bigoplus_{t=1}^d \mathcal{B}[i_t]\}$
- Main iterative step:
 - \bullet Select a new base element generated by two nodes in ${\cal B}$ and add it to ${\cal B}.$
 - Update the distance vector *Dist*.
- BP's strategy:
 - Cost function to minimize: $\sum_{i=0}^{m-1} Dist[i]$.
 - Tie-breaker: maximizing $\sum_{i=0}^{m-1} Dist[i] \cdot Dist[i]$. ((2, 2, 2, 2) is worse than (1, 1, 4, 2).)
 - Pre-emptive strategy: if $\mathcal{B}[i] \oplus \mathcal{B}[j]$ equals an output node t, t is added to \mathcal{B} .

Innovation points on some variants of the BP algorithm

- The RNBP algorithm: every tie-breaking choice is equally possible.
- The A1 algorithm: at least one Dist[j] which equals to $\min_{i,Dist[i]>1} Dist[i]$ must be reduced.
- The LSL algorithm: depth limit on base elements and *Dist*.
- The BFI algorithm: focusing on PAQ, where P, Q are permutation matrices.

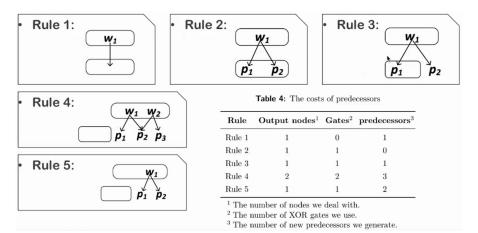
Backward search

Backward search

- Initiate the search from output nodes by determining how a given node w is split, i.e, $w = p \oplus p'$, until all nodes are split into input nodes.
- Parameters:
 - A working set \mathcal{W} .
 - A predecessor set \mathcal{P} .
 - A parameter s indicates the depth of elements in W.
- Goal: maximize the reuse of predecessor nodes in \mathcal{P} .
- Heuristic: randomly choose one splitting operation which satisfies the rule with the highest priority.

Rules

 \bullet The authors developed five priority-based rules for splitting nodes within $\mathcal{W}:$



(The picture was used in their slide.)

Outline

Background

2 State-of-art heuristics

Our method

Improved forward search: IBPD and IBPD-MD

- Observation: about the depth limit. Outputs and those with high depth have a smaller contribution to other outputs due to the depth limit, but this is not the case in the SLP problem. Consequently, prioritizing closer outputs has a smaller impact on approaching other outputs and may result in the loss of alternative, better pathways that generate the closer outputs.
- **Our strategy**: A new tie-breaking rule of **minimizing** new $\sum_{i=0}^{m-1} Dist[i] \cdot Dist[i]$ instead of maximizing it. (Reduce all Dist[i]'s at a relatively consistent pace.)
- New improved heuristics:
 - $LSL + RNBP + our strategy \longrightarrow IBPD$.
 - $IBPD + A1 \longrightarrow IBPD-MD$.
- Difference between IBPD with IBPD-MD.
 - IBPD: better suitable for a strict depth limit for all output nodes.
 - IBPD-MD: better suitable for a bit looser depth limit for some output nodes.

A new framework of combining forward search with backward search (BPBS)

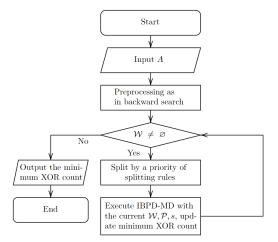


Figure 1: Framework of integrating IBPD-MD with backward search.

Remarks on the new framework

- A combination of forward search with backward search.
- Adjusting the search space of IBPD-MD is helpful for IBPD-MD to jump out of local minima.
- The IBPD-MD version works better than the IBPD version.
- A modified priority of rules: combination of Rule 3 and Rule 5.
- A relaxed depth bound.

Outline

Background

- 2 State-of-art heuristics
- 3 Our method

Application to AES MixColumns

Table 3: XOR/depth costs of AES MixColumns

Source	[KLSW17]	[TP20]	$[XZL^+20]$	[Max19]
$\rm XORs/depth$	97/8	94/6	92/6	92/6
Source	[LXZZ21]	$[LSL^{+}19]$	[BFI21]	$[LWF^+22]$
$\rm XORs/depth$	91/7	105/3	103/3	103/3
Source	[LZW23]	IBPD	IBPD-MD	BPBS
XORs/depth	102/3	101/3	100/3	99/3

Application to many proposed matrices

Matrix	Size	$[LSL^+19]$	[BFI21]	$[LWF^+22]$	[LZW23]	This paper
[DR02]AES	32	105/3	103/3	103/3	102/3	$99/3^{a}$
[CMR05]SMALLSCALE AES	16	49/3	49/3	47/3	47/3	$46/3^{a}$
[JNP15]Joltik	16	51/3	50/3	48/3	48/3	$47/3^{a}$
[SKOP15](Hadamard)	16	51/3	50/3	49/3	48/3	$47/3^{a}$
[LS16](Circulant)	16	47/3	44/3	44/3	44/3	$43/3^{a}$
[LW16](Circulant)	16	47/3	44/3	44/3	44/3	$43/3^{c}$
[SS16] (Toeplitz)	16	44/3	43/3	45/3	43/3	$42/3^{c}$
[JPST17]	16	45/3	45/3	45/3	44/3	$43/3^{a}$
[SKOP15](Involutory)	16	51/3	49/3	48/3	48/3	$47/3^{a}$
[LW16](Involutory)	16	51/3	49/3	48/3	48/3	$47/3^{a}$
[SS16](Involutory)	16	48/3	46/3	45/3	43/3	$42/3^{b}$
[JPST17](Involutory)	16	47/3	47/3	47/3	47/3	$46/3^{b}$
[SKOP15](Hadamard)	32	102/3	99/3	100/3	99/3	$96/3^{b}$
[LS16](Circulant)	32	113/3	113/3	113/3	112/3	$110/3^{c}$
[LW16]	32	102/3	103/3	102/3	102/3	$101/3^{c}$
[BKL16](Circulant)	32	112/3	110/3	111/3	110/3	$107/3^{b}$
[SS16] (Toeplitz)	32	107/3	107/3	107/3	107/3	$105/3^{bc}$
[JPST17](Subfield)	32	90/3	90/3	93/3	90/3	$89/3^{c}$
[SKOP15](Involutory)	32	102/3	100/3	100/3	99/3	$98/3^{b}$
[LW16](Involutory)	32	99/3	95/3	94/3	93/3	$89/3^{c}$
[SS16](Involutory)	32	104/4	102/4	109/4	102/4	$98/4^{c}$
[KLSW17]	32	96/3	-	92/3	89/3	$86/3^{a}$
$[LSL^+19]$	32	88/3	-	86/3	85/3	$84/3^a$

Table 5:	The XOR/	depth cos	ts for	minimum	latency	imp	elementations of m	atrices

^a The result can only be searched by BPBS.
^b The result can be searched by IBPD.

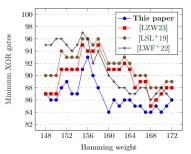
^c The result can be searched by IBPD-MD.

Applications

Application to many involutory MDS matrices

Hamming weight	Number	Opt. ^a	$Percentage^{b}$	$Max.^{c}$	$MinXOR^d$
148	18	18	100.0%	3	87
149	48	48	100.0%	5	86
150	72	72	100.0%	6	86
151	48	48	100.0%	7	88
152	60	60	100.0%	8	89
153	72	72	100.0%	7	87
154	84	84	100.0%	8	87
155	24	24	100.0%	8	91
156	48	48	100.0%	6	93
157	72	72	100.0%	7	90
158	84	84	100.0%	10	88
160	162	146	90.1%	12	84
161	96	96	100.0%	12	86
162	132	132	100.0%	11	85
163	120	96	80.0%	10	86
164	144	132	91.7%	15	86
165	240	240	100.0%	11	85
166	228	228	100.0%	15	85
167	216	168	77.8%	13	84
168	528	493	93.4%	14	84
169	360	322	89.4%	11	85
170	432	388	89.8%	11	84
171	432	362	83.8%	11	85
172	534	319	59.7%	17	86
All	4254	3752	88.2%	17	84

Table 6: Experiments for matrices in [LSL+19]



^a The number of matrices that our algorithms can optimize.

^b The percentage of matrices that our algorithms can optimize.

^c The maximum number of reduced XOR gates from our algorithms.

^d The minimum number of XOR gates.

Thank you!