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Abstract. For an Authenticated Encryption with Associated Data (AEAD) scheme,
the key committing security refers to the security notion of whether the adversary
can produce a pair of distinct input tuples, including the key, that result in the
same output. While the key committing security of various nonce-based AEAD
schemes is known, the security analysis of Robust AE (RAE) is largely unexplored.
In particular, we are interested in the key committing security of AEAD schemes
built on the Encode-then-Encipher (EtE) approach from a wide block cipher. We
first consider AEZ v5, the classical and the first dedicated RAE that employs the EtE
approach. We focus our analysis on the core part of AEZ to show our best attacks
depending on the length of the ciphertext expansion. In the general case where the
Tweakable Block Cipher (TBC) is assumed to be ideal, we show a birthday attack
and a matching provable security result. AEZ adopts a simpler key schedule and the
prove-then-prune approach in the full specification, and we show a practical attack
against it by exploiting the simplicity of the key schedule. The complexity is 227,
and we experimentally verify the correctness with a concrete example. We also cover
two AEAD schemes based on EtE. One is built on Adiantum, and the other one is
built on HCTR2, which are two wide block ciphers that are used in real applications.
We present key committing attacks against these schemes when used in EtE and
matching proofs for particular cases.
Keywords: AEAD · AEZ · Adiantum · HCTR2 · Key Committing Security

1 Introduction
An Authenticated Encryption with Associated Data (AEAD) scheme is a symmetric
primitive for privacy and integrity. The two important security notions for AEAD are
privacy and authenticity, which are the conventional security notions of AEAD schemes
as a keyed primitive. The development of AEAD schemes has identified that these two
notions do not necessarily capture the security requirements expected in real applications.
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One of the notions we focus on in this paper is the key committing security. In this notion,
we consider whether a ciphertext returned by the encryption algorithm commits to a key,
nonce, AD, and a plaintext, i.e., we expect that decryption of the ciphertext with another
key, nonce, or AD fails to return rejection. Key committing security is in the known-key
or chosen-key setting. Hence, it is not covered by the classical notions of AEAD schemes.
This notion was initiated by Farshim et al. [FOR17] and is relevant in various practical
applications, including end-to-end encrypted messaging systems [GLR17,DGRW18,IIM21],
key rotation in key management services, envelop encryption, Subscribe with Google
(SwG) [ADG+22], and password-based encryption and key exchange [LGR21].

We consider a class of AEAD schemes that achieve the strongest robustness, called
Robust Authenticated Encryption (RAE) [HKR15]. This generalizes Deterministic AE
(DAE) and nonce-reuse Misuse-Resistant AE (MRAE) [RS06]. RAE schemes have several
desirable features, including nonce-misuse resistance, flexibility of the ciphertext expansion,
and a type of security against the release of unverified plaintexts [ABL+14]. RAE can
be obtained through Encode-then-Encipher (EtE) [BR00] using a tweakable Wide-Block
Cipher (WBC) as the underlying primitive. EtE is a well-known and strong approach to
designing authenticated encryption, and Grubbs et al. [GLR17] proved a variant of key
committing security (receiver-binding property) of EtE. However, the underlying WBC is
assumed to be ideal. They suggested AEZ [HKR15] as one of the possibly safe instantiations
for key committing EtE, however, no concrete analysis was shown. Beyond this result, the
key committing security of EtE is largely unexplored, which is the focus of this paper.

In this paper, we consider three RAE schemes built on the EtE approach, AEZ,
EtE-Adiantum, and EtE-HCTR2, and we analyze the key committing security of these
schemes.

Committing Security. In this paper, we adopt the “committing security” notions by
Bellare and Hoang [BH22]. We remark that the security formalization has evolved over
the years [FOR17, GLR17, DGRW18, ADG+22, MLGR23], and we refer to Chan and
Rogaway [CR22] for a summary of these works and the relationships between these security
notions.

We consider the notion for DAE or MRAE following Bellare and Hoang [BH22]
adapted to our target schemes. The encryption takes (K, A, M) as input, where K is a
key, A is AD, and M is a message and returns a ciphertext C. In the CMT-1 notion,
the adversary wins if it returns (K, A, M) and (K ′, A′, M ′) such that (K, A, M) and
(K ′, A′, M ′) have the same ciphertext and K ̸= K ′. The CMT-4 notion is stronger,
requiring only (K, A, M) ̸= (K ′, A′, M ′) instead of K ≠ K ′. In this paper, we cover both
CMT-1 and CMT-4. For the relation between these notions and practical applications, we
refer to Bellare and Hoang [BH22].

AEZ. AEZ was proposed by Hoang, Krovetz, and Rogaway at Eurocrypt 2015 [HKR15].
It was submitted to CAESAR [Ber19] and advanced to the third round. It has multiple
versions, v1, v1.1, v2, v3, v4, v4.1, v4.2, and v5, and our focus is on the latest version,
AEZ v5, which we write as AEZ for simplicity. The changes between the versions are
explained in [HKR17, Sect. 8]. AEZ uses a tweakable WBC called AEZ-core for processing
plaintexts of 256 bits or longer, and AEZ-tiny for shorter ones. We apply zero appending
as the encoding in EtE to obtain an AE. AEZ-core builds on EME [HR04, Hal04] and
OTR [Min14], and its structure has a proof of security [HKR15]. The full specification of
AEZ adopts the proof-then-prune approach to reduce the number of rounds of the primitive
and uses an efficient key schedule to gain efficiency. AEZ-tiny is a type of format-preserving
encryption [BRRS09] that needs a larger number of Feistel rounds, its security claim is
heuristic and not supported by a proof. AEZ is the first attempt to efficiently realize
the EtE approach, which is inherently an offline AE to achieve strong robustness. The
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computational cost of AEZ is about one AES computation per block, so its throughput is
close to AES-CTR mode.

The security of AEZ in the secret key setting has been well analyzed. See [BDD+17,
CG16,FLS15,FLLW17] for analyses of earlier versions in the classical setting, [Men17] for
an analysis of weak keys, and [KLLN16,Bon17] for analyses in the quantum setting. AEZ
remains an important target of cryptanalysis as it is the first dedicated EtE construction
to achieve RAE security. From the application perspective, AEZ has attracted several
open-source projects including Tor [Mat15], and both JavaScript and WebAssembly
implementations are provided by the Node.js package manager [Gug18,Mok18]. We also
remark that NIST has held a workshop on block cipher modes of operation [Nat23,MD23],
where tweakable wide encryption techniques were among the topics of discussion, and AEZ
is a representative example of this category.

We present the analysis of AEZ in terms of key committing security. Specifically, we
focus our analysis on AEZ-core, as this forms the core part of the scheme, and it comes
with a proof of security.1 We present the following results:

• We first point out that a straightforward CMT-4 attack exists against general AEZ,
which is AEZ where the underlying Tweakable Block Cipher (TBC) is assumed to be
ideal. The attack is efficient and works with O(1) complexity.

• We then consider CMT-1 attacks. We divide our analysis into cases depending on τ ,
which is a parameter that specifies the stretch of the ciphertext. For n, the block
length of the underlying TBC, we consider the case τ = n, which is the default case,
and the case τ < n. We show that there is a CMT-1 attack against the default
case with the birthday complexity of O(2n/2). For the case τ < n, we show CMT-1
attacks with the generic attack, the attack based on the 4-tree algorithm [Wag02], the
attack based on the repeated 4-tree algorithm, and the birthday attack, depending
on the value of τ . Here, the repeated 4-tree algorithm is a variant of the 4-tree
algorithm [Wag02] that we formalize here. It works when the size of the lists is
insufficient. Our findings are illustrated in Fig. 4.

• To see the tightness of our attack against general AEZ, we present a provable security
result when τ = n, assuming that the primitives are ideal. By reducing the CMT-1
attack into a collision-finding problem of a part of the output of general AEZ, we
show an O(2n/2) provable security bound, indicating the tightness of our attack for
this case. We remark that, to our knowledge, this is the first provable security result
of the key committing security for a non-monolithic EtE scheme.

• We then consider AEZ, where the underlying TBC follows the full specification
of AEZ-core, which we call full-spec AEZ. By fully utilizing the details of the key
schedule adopted in full-spec AEZ, we carefully choose distinct keys (K, K ′) so that
the difference in certain intermediate states becomes zero with a high probability. As
a result, we obtain a CMT-1 attack against full-spec AEZ with a complexity of 227,
whose correctness we have experimentally verified. We provide a numerical example
of the CMT-1 attack against full-spec AEZ.

Therefore, in general, the structure of AEZ is sound with respect to key committing security
as the provable security result on general AEZ shows, while the full specification of AEZ is
practically insecure due to the details of the key schedule, as the attack against full-spec
AEZ shows.

1The security of AEZ-tiny is not supported by proof and its security argument is only heuristically
justified by the designers. Moreover, AEZ-tiny has a very different structure compared to the other three
constructions we have studied. Therefore, we leave it for future work.
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EtE-Adiantum. Adiantum is a wide-block encryption scheme designed and proposed by
Crowley and Biggers [CB18] and is widely deployed in practice as a disk sector encryption
scheme and for filesystem-level encryption (fscrypt) on Android devices. It uses a variant
of the Feistel structure called HBSH that follows [MT05]. It uses a universal hash function,
a block cipher, and a stream cipher as the underlying primitive. Adiantum has a proof of
security as a wide block cipher [MT05,CB18]. It was designed to be efficient on lower-end
processors, and it adopts the combination of NH [BHK+99] and Poly1305 [Ber05] as the
hash function, AES-256 as the block cipher, and XChaCha12 as the stream cipher to be
efficient on such platforms. To our knowledge, an EtE AEAD scheme based on Adiantum,
which we write EtE-Adiantum, has not been deployed to a real product. However, as
mentioned, Adiantum is widely used in practice and is a high-profile target of cryptanalysis
for its practical importance.

We analyze the key committing security of EtE-Adiantum. In AEZ, the message is first
zero-appended to encode according to the specification. For EtE-Adiantum, it turns out
that zero-prepending and zero-appending can have different security characteristics, and
we consider both cases for EtE-Adiantum. We present the following results:

• We point out that an efficient CMT-4 attack is possible against both the prepending
and appending cases.

• For a CMT-1 attack, we discuss that the problem is reduced to a collision-finding
problem. As a result, we show that the key committing security of EtE-Adiantum is
at most O(2τ/2) for the prepending case and O(2n/2) for the appending case, where
τ is the bit length of the zero-padding and n is the block length of the block cipher.

• We show that our attack on the prepending case is tight by showing a proof of
security, assuming the cryptographic permutation inside XChaCha12 is ideal. More
precisely, we consider prepending 0τ to the input, where τ ≤ n, and we show O(2τ/2)
security of EtE-Adiantum. To complete our proof, we prove a lemma showing the
upper bound on the s-way collision probability of a permutation-based Davies-Meyer
mode.

EtE-HCTR2. HCTR2 is a wide-block encryption scheme designed by Crowley, Huckleberry,
and Biggers [CHB21]. It is based on HCTR [WFW05] to improve the security bound and
to address an issue in [CN08] of the provable security result. HCTR2 uses a polynomial
hash function as a universal hash function, AES as a block cipher, and a mode of stream
encryption called XCTR, and it has a proof of security as a wide block cipher [CHB21]. As
in the case of Adiantum, we do not know a practical deployment of EtE-HCTR2. However,
HCTR2 is practically deployed as a part of fscrypt [And23] as well as Adiantum, and is
under consideration in an extension of UDP proxy optimized for QUIC [PRS23]. Thus,
we consider that analyzing the security of EtE-HCTR2 is of interest. As in the case of
EtE-Adiantum, we consider the zero-prepending and zero-appending cases, and we present
the following results:

• There is an efficient CMT-4 attack against both the prepending and appending cases.

• There is a CMT-1 attack with a birthday complexity. More precisely, following the
CMT-1 attack against EtE-Adiantum, we can reduce the CMT-1 attack against EtE-
HCTR2 into a collision finding problem to show that the key committing security of
EtE-HCTR2 is at most O(2τ/2) for the appending case and O(2n/2) for the prepending
case.

See Table 1 for the summary of our results.
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Table 1: Our Results, where n = τ = 128. The second to fourth columns denote the attack
complexity and the last denotes the bit security. CMT-x A (P) denotes CMT-x security
for 0τ Appending (Prepending). Proofs are given for general AEZ and Adiantum with
0n prepending. For general AEZ, we present a fine-grained CMT-1 analysis for τ < n
(Sect. 3.3).

Scheme CMT-1 A CMT-1 P CMT-4 (A & P) Proof
general AEZ O(2n/2) (not specified) O(1) n/2 (Sect. 7.1)
full-spec AEZ 227 (not specified) O(1) —
EtE-Adiantum O(2n/2) O(2n/2) O(1) n/2 (Sect. 7.2)
EtE-HCTR2 O(2n/2) O(2n/2) O(1) —

Organization. In Sect. 2, we give preliminaries to define security notions and the specifi-
cations of AEZ, Adiantum, and HCTR2. In Sect. 3, we present our attacks against general
AEZ, covering both CMT-4 and CMT-1 attacks. In Sect. 4, we present a practical CMT-1
attack against full-spec AEZ, including a numerical example. We cover attacks against
EtE-Adiantum in Sect. 5 and against EtE-HCTR2 in Sect. 6. In Sect. 7, we present provable
security results. We cover general AEZ in Sect. 7.1 and Adiantum in Sect. 7.2. We conclude
the paper in Sect. 8.

2 Preliminaries
For non-negative integers i < j, let [i..j] := {i, i + 1, . . . , j}. For 1 ≤ i, let [i] := {1, . . . , i}.
Let {0, 1}i be the set of all i-bit strings and {0, 1}∗ ({0, 1}8∗) be the set of all bit (byte)
strings. For X ∈ {0, 1}∗, |X| denotes its length in bits. The empty string is denoted
by ε, where |ε| = 0. Let {0, 1}≤b denote

⋃
i=0,1,...,b{0, 1}i, where {0, 1}0 = {ε}. For

X, Y ∈ {0, 1}∗, X ∥ Y is their concatenation. It is also written as XY if it is clear from
the context. Let 0i be the string of i zero bits. For X ∈ {0, 1}∗ with |X| ≥ i, msbi(X) are
the first (left) i bits of X, and lsbi(X) are the last (right) i bits of X. If X is uniformly
chosen from the set X , we write X

$← X . The addition and subtraction in the group
Z/2nZ are denoted by ⊞ and ⊟. Here, we use n to denote the block length and set it as
n = 128 unless explicitly stated otherwise.

(Tweakable) Block Ciphers. A tweakable block cipher (TBC) [LRW11] is a keyed function
E : K × Tw ×M→M such that for any (key, tweak) pair (K, T ) ∈ K × Tw, E(K, T, ·) is
a permutation over M. A tweak T is a public value that may be chosen by the adversary.
The encryption of a plaintext M ∈ M with a key K and a tweak T is a ciphertext
C = E(K, T, M), which is also written as EK(T, X) or ET

K(X). Similarly, the decryption
is written as M = E−1(K, T, C) or E−1

K (T, C) or (ET
K)−1(C). A TBC with a singleton

tweak space |Tw| = 1 is interpreted as a conventional block cipher E : K ×M → M.
We write E−1

K (∗) to denote the decryption function when it is clear that we use E as a
(non-tweakable) block cipher.

If the message length of a TBC is variable, the scheme has various names: a variable-
length TBC, a wide block cipher (WBC), or a Tweakable Enciphering Scheme. The tweak
may or may not be of variable length. Throughout the paper, we adopt the name WBC.
Typically, the message space of a WBC is not the full {0, 1}∗ but has a certain minimum
length. For example, the most common block cipher-based WBCs have a minimum message
length of n bits, where n denotes the block size of the underlying block cipher.

Ideal primitives. For finite sets X and Y, let Func(X ,Y) be the set of all the functions:
X → Y. Similarly, let TPerm(Tw,M) denote the set of all tweakable permutations over
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M with tweak space Tw, and let Perm(M) be the set of all permutations over M.
An ideal cipher (IC) π : K ×M→M uniformly distributes over TPerm(K,M). It is

used as a public function so that the adversary can query a tuple (K, X) ∈ K ×M in the
forward or backward direction. The oracle returns Y = π(K, X) (Y = π−1(K, X)) for the
forward (backward) direction. Similarly, an ideal tweakable cipher π̃ : K × Tw ×M→M
uniformly distributes over TPerm(K × Tw,M), and a (public) random permutation π :
M→M uniformly distributes over Perm(M). Both accept forward and backward queries
(including the tweak as a part of the query for the former) as in the case of an IC.

(Deterministic) Authenticated Encryption. Deterministic authenticated encryption
(DAE) is a class of authenticated encryption (AE) introduced by [RS06]. Unlike conven-
tional nonce-based AE schemes such as GCM or OCB, it does not necessarily require a
nonce if our confidentiality/privacy goal is Deterministic Privacy [RS06] (note that a DAE
still needs a non-repeating nonce to achieve the standard privacy notion). The syntax of
DAE is as follows. Let DAE = (DAE.E , DAE.D) be a DAE scheme. The (deterministic)
encryption algorithm DAE.E takes a key K ∈ K and a tuple (A, M) consisting of associated
data (AD) A ∈ A and a plaintext M ∈ M as input, and returns a ciphertext C ∈ M.
Note that |C| > |M | must hold for authenticity. The (deterministic) decryption algorithm
DAE.D takes K ∈ K and the tuple (A, C) ∈ A ×M as input, and returns M ∈ M or
the reject symbol ⊥. While not mandatory, a DAE scheme may contain a nonce as an
independent variable or as a part of the AD. In this case, a DAE scheme may be called a
(nonce) misuse-resistant AE (MRAE) as it offers the best possible protection against nonce
repetition when encrypting. Since our focus is not on standard DAE security notions for
confidentiality and integrity, we refer to [RS06] for their definitions.

A secure WBC Π : K × Tw ×M → M can be converted into a DAE/MRAE by
the popular encode-then-encipher (EtE) approach [BR00]. For an encryption input
(A, M) ∈ A×M such that A ⊆ Tw, let the ciphertext C = ΠK(A, M ∥ 0τ ) for some τ > 0,
assuming an encoding of A into the tweak space. Often τ ∈ [n] is fixed for the block size
n. The verification for (A, C) is done by checking if lsbτ (Π−1

K (A, C)) = 0τ holds. The
DAE security of EtE with a WBC is reduced to the pseudorandomness of WBC [BR00].
The security depends on the redundancy introduced by the encoding (τ), and one can
use other injective encodings of M with an appropriate checking method. Specifically, we
focus on 0τ appending (C = ΠK(A, M ∥ 0τ )) and 0τ prepending (C = ΠK(A, 0τ ∥M)) as
the most natural options. Let EtE-Π denote the EtE using the WBC Π. We may write Π
to mean EtE-Π if it is clear from the context.

We mostly follow the original notation for each of the target schemes. Hence, the
notation may have slight differences. For details, we refer to each specification section.

2.1 Security Notions
We adopt the “committing security” notions by Bellare and Hoang [BH22]. They succinctly
capture various goals of the key committing property. While sharing the same spirit,
namely finding a pair of inputs, including the keys, that produces the same output, different
notions for key committing security have been proposed in the literature [FOR17,GLR17,
DGRW18,ADG+22,MLGR23]. Chan and Rogaway [CR22] provided an excellent summary
of these works and the relationships between these security notions and their notions.

We describe the notions proposed by Bellare and Hoang [BH22]. For simplicity, our
description is dedicated to DAE (or MRAE; in that case, AD is assumed to contain the
nonce), but it is originally defined for general nonce-based AE.

Definition 1. Let DAE = (DAE.E , DAE,D) be a DAE scheme with a key space K, a
message space M, and an AD space A. The CMT-1 notion is the maximum advantage of
the adversary whose goal is to find two input tuples (K, A, M), (K ′, A′, M ′) ∈ K×A×M
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Figure 1: AEZ (AEZ-core) for the even-block case, using TBC E. Here, X =
⊕

i∈[m] Xi

and Y =
⊕

i∈[m] Yi. ∆ =
⊕

i ∆i. The sequence (Z1 . . . , Zℓ) denotes i-th string in the
vector T containing AD, and j = i + 2. Note that E−1,∗

K denotes the forward evaluation
with the tweak (−1, ∗), not the inverse.

such that K ̸= K ′ and DAE.E(K, A, M) = DAE.E(K ′, A′, M ′). The CMT-1 advantage is
defined as

Advcmt-1
DAE (A) := Pr[((K, A, M), (K ′, A′, M ′))← A

s.t. K ̸= K ′, DAE.E(K, A, M) = DAE.E(K ′, A′, M ′)].

The CMT-4 notion is identical to CMT-1 except that only (K, A, M) ̸= (K ′, A′, M ′) is
required instead of K ̸= K ′. An intermediate notion, CMT-3, requires (K, A) ̸= (K ′, A′).
However, Bellare and Hoang [BH22] showed that it is equivalent to CMT-4. They also
proposed a class of CMTD notions whose winning condition is defined via decryption
functions rather than encryption functions. Bellare and Hoang [BH22] showed that CMTD-
x is equivalent to CMT-x for x ∈ {1, 3, 4} when the target scheme is tidy.2 As all the
analyzed schemes in this paper are tidy, we only consider CMT-x notions. The same
approach was taken by [MLGR23]. Note that the adversary in these notions can choose
keys. Hence, proving the security under these notions will require an idealized primitive
inside the target to make these notions meaningful (see e.g. [Rog06]).

2.2 Specification of AEZ
We study the latest specification (v5) [HKR17] of AEZ. It consists of two WBCs, AEZ-tiny
and AEZ-core, where the former is used for plaintexts shorter than 256 bits, and the
latter is used otherwise. The standard EtE method with zero appending is applied to
the WBC to implement an AE. As the name suggests, we focus on the latter case using
AEZ-core as it is the “core” construction of AEZ. AEZ-tiny is a kind of format-preserving

2An encryption scheme (Enc, Dec) is tidy if M = Dec(K, C) implies Enc(K, M) returns C.
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encryption [BRRS09] and needs a larger number of Feistel rounds. We may write AEZ to
mean AEZ-core throughout the paper.

Mode. The original pseudocodes of [HKR17] are shown in Appendix B (Algs. 1, 2
and 3). See also Fig. 1. We omit the pseudocodes for AEZ-tiny and BLAKE2b [ANWW13].
The structure of (the internal WBC of) AEZ is Encrypt-Mix-Encrypt, where “Encrypt”
is realized by a two-round Feistel permutation and “Mix” is a combination of a linear
operation and one encryption round per diblock. It is built on the ideas of EME [HR04]
and OTR [Min14].

Let n = 128. The encryption of AEZ (Alg. 1) takes a key K ∈ {0, 1}8∗, a nonce
N ∈ {0, 1}8∗, an AD A ∈ ({0, 1}8∗)∗, a tag length3 τ ∈ N, and a plaintext M ∈ {0, 1}8∗.
It returns a ciphertext C ∈ {0, 1}8∗ with |C| = |M |+ τ . The decryption (Alg. 2) takes
(K, N, A, τ, C) and returns M or ⊥, an error symbol. The key length |K| is recommended
to be at least 128 bits, and the default length is 3n = 384 bits. The key length does not
matter for our generic attacks of Sect. 3.2. The variable τ is a multiple of 8 and denotes
the bit-length overhead. The default (and the recommended maximum) value is τ = n.
It can vary for each message, however, the designers suggested it is typically fixed. We
consider the case τ ∈ [n] following these suggestions. An AD in AEZ can consist of multiple
bitstrings (i.e., a vector). Unlike the description of Sect. 2, AEZ treats the nonce explicitly;
a vector-input PRF AEZ-hash takes an encoding of (τ, N, A), denoted by T . We assume
that AD is a single bitstring without loss of generality for our attacks and proofs. We do
not distinguish nonce and other AD blocks. Moreover, we may write A instead of A and
write AEZ-hash(K, A) instead of AEZ-hash(K, T ). We mostly follow the original notation,
however, we apply slight modifications to them for convenience. In particular, our attack
descriptions will use MMi (CCi) to denote the 2n-bit sequence (diblock) MiM

′
i (CiC

′
i)

for i ∈ [m] in the original pseudocodes.

Primitive. AEZ is based on a TBC E : K × Tw × M → M, where K = {0, 1}3n,
M = {0, 1}n, Tw = I × J with I,J ⊆ Z; their actual ranges can be found in the
pseudocode. The designers proved standard DAE security (more precisely, an even stronger
one called robust AE security) assuming the underlying TBC is computationally secure,
i.e., a tweakable pseudorandom permutation [HKR15]. In the submission to the CAESAR
competition, this TBC is instantiated by either a 4-round or 10-round AES depending on
the tweak value, rather than relying on provably secure constructions such as XE [Rog04]
built on (unmodified) AES. Moreover, it adopts very simple tweak and key schedules.

The concrete instantiation of TBC Ei,j
K (∗) is shown in Alg. 3, where AES10K denotes

10-round AES with the list of subkeys K. Similarly AES4k denotes 4-round AES with
the list of round keys k. As the pseudocode shows, if |K| = 384, we first parse K into
three n-bit parts, I, J , and L, and any n-bit round key in K and k is one of I or J
or L. See Appendix B for more details. This instantiation implies that the reduction
to AES’s pseudorandomness is no longer possible. Even more, the 4-round AES can be
practically distinguished from random with a chosen plaintext attack [DKR97, KW02],
clearly indicating the deviation from what provable security aims at. The designers named
this approach prove-then-prune. The security of a prove-then-prune construction depends
on the interaction between the mode and the primitive instantiation; thus, it is not always
safely applicable. As DAE/MRAE, the security claim of AEZ (v5) using the above TBC
instantiation has been maintained since the proposal.
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1: procedure HashP(KP , P )
2: KL ← msb128(KP )
3: KN ← lsb8320(KP )
4: R← NHKN

(pad(P ))
5: return Poly1305KL

(R)

1: procedure Hash(h, T, P )
2: KT ← msb128(h)
3: KP ← lsb8448(h)
4: HT ← HashT(KT , |P |, T )
5: HP ← HashP(KP , P )
6: return HT ⊞ HP

1: procedure HashT(KT , ℓ, T )
2: return Poly1305KT

(ℓ ∥ T )

1: procedure Encrypt(K, T, P )
2: KE ∥ h← SK(ε, 8832) ▷ |KE | = 256
3: PL ∥ PR ← P ▷ |PR| = n
4: PM ← PR ⊞ Hash(h, T, PL)
5: CM ← EKE

(PM )
6: CL ← PL ⊕ SK(CM , |PL|)
7: CR ← CM ⊟ Hash(h, T, CL)
8: C ← CL ∥ CR

9: return C

Figure 2: Adiantum with an n-bit block cipher E and a stream cipher S that accepts a
nonce and an output length as arguments. K, P , and T denote the key, the plaintext, and
the tweak, respectively. ε is the empty string. pad() is a padding that adds 0∗ to the end
of its input until its size reaches a multiple of n.

2.3 Specification of Adiantum
Adiantum is a WBC proposed by Crowley and Biggers [CB18]. It is based on three
primitives: a universal hash H, a block cipher E, and a stream cipher S. The specification
is given in Fig. 2. See also Fig. 6 for illustration. In particular, Adiantum implements E as
the AES-256 [AES23] block cipher and S as the XChaCha12 stream cipher, which is an
extension of ChaCha12 [Ber08] to accept a 192-bit nonce. Adiantum uses XChaCha12 by
padding the 128-bit nonce with a one followed by 63 zeroes. The hash function relies on
two hash subroutines: NH [BHK+99] and Poly1305 [Ber05].

NH is an efficient hash function that uses an 8, 576-bit key split into 32-bit blocks
k = k0 ∥ · · · ∥ k266 ∥ k267, and split the input into 32-bit blocks M = M0 ∥ . . . ∥Mℓ−2 ∥Mℓ−1.
Then, it adds and multiplies blocks of the key and the message, appending the result once
all the key blocks are used:

NH(k, M, r) =
( 267∑

i=0
(k2i + Mr∗268+2i mod 232)(k2i+1 + Mr∗268+2i+1 mod 232)

)
mod 264,

NHk(M) = NH(k, M, 0) ∥NH(k, M, 1) ∥ ... ∥NH(k, M, ℓ/(268 ∗ r)).

Poly1305 first masks the 128-bit hash key k = k∧ (128 ∥06 ∥126 ∥06 ∥126 ∥06 ∥126 ∥04)
and split the input into 128-bit blocks M = M0 ∥ . . . ∥Mℓ−2 ∥Mℓ−1. Then, it evaluates a
polynomial with coefficients depending on M at the point k:

Poly1305k(M) =
((

ℓ−1∑
i=0

k
ℓ−i(Mi + 2128)

)
mod (2130 − 5)

)
mod 2128.

As mentioned earlier, we consider EtE-Adiantum by either prepending or appending 0τ

to the plaintext P . The tweak T will be used as an AD, which may contain a nonce. The
decryption mechanism then rejects every plaintext that does not start (or end) by 0τ .

3In the AEZ specification, the authenticator length refers to τ/8 and is written as abytes.
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1: procedure Encrypt(K, T, P )
2: h← EK(0)
3: L← EK(1)
4: PL ∥ PR ← P ▷ |PL| = n
5: CM ← PL ⊕Hash(h, T, PR)
6: CC ← EK(CM )
7: N ← CM ⊕ CC ⊕ L
8: CR ← PR ⊕XCTR(K, N, |PR|)
9: CL ← CC ⊕Hash(h, T, CR)

10: return CL ∥ CR

1: procedure XCTR(K, N, ℓ)
2: S ← ε
3: i← 1
4: r ← ℓ
5: while r > n do
6: S ← S ∥ EK(N ⊕ i)
7: i← i + 1
8: r ← r − n

9: S ← S ∥ msbr(EK(N ⊕ i))
10: return S

1: procedure Hash(h, T, M)
2: Y ← 0
3: A1 ∥A2 ∥ · · · ∥At ← pad(T )
4: if n divides |M | then
5: B1 ∥B2 ∥ · · · ∥Bm ←M
6: Y ← Y ⊕ (2|T |+ 2) · h
7: else
8: B1 ∥B2 ∥ · · · ∥Bm ← pad(M ∥ 1)
9: Y ← Y ⊕ (2|T |+ 3) · h

10: for i ∈ [t] do
11: Y ← Y ⊕Ai · h
12: for j ∈ [m] do
13: Y ← Y ⊕Bj · h
14: return Y

Figure 3: HCTR2 [CHB21] based on an n-bit block cipher E, and processing a key K, a
tweak T , and a plaintext P . The function pad() is a padding that adds 0∗ to the end of
its input until it reaches a size multiple of n.

2.4 Specification of HCTR2
Crowley, Huckleberry, and Biggers designed HCTR2 [CHB21], which is a WBC based
on Wang et al.’s HCTR [WFW05]. HCTR2 consists of a variant of counter mode and a
polynomial hash function. HCTR2’s specifications are given in Fig. 3. See also Fig. 7 for
illustration. As in the case of Adiantum, we consider EtE-HCTR2 with either prepending
or appending 0τ to the plaintext.

HCTR2 follows the same structure as HCTR with slight differences. For instance,
HCTR2 derives the hash key from the block cipher’s key, which may make it more resistant
to attacks on key committing security. It is fairly straightforward to translate attacks on
the key committing security of HCTR2 to the original HCTR; hence, we focus our study on
HCTR2. Indeed, independently setting the keys gives the attacker more freedom in looking
for other key materials to build a key committing attack. This stands in contrast with
standard notions of security, where it is the key derivation that may introduce security
flaws.

The hash function of HCTR2 can mostly be understood as a polynomial evaluated
at a secret point, the secret key h, with coefficients depending on its inputs. Also, for a
given length, it can be rewritten as the sum of two polynomials, one depending on the
tweak T and one depending on the input M . Let us define Polyh(X) for an x-block
input X = X1 ∥X2 ∥ · · · ∥Xx as the following polynomial with coefficients given by X and
evaluated at h writing finite field multiplication as “·”:

Polyh(X) = X1 · hx−1 ⊕X2 · hx−2 ⊕ · · · ⊕Xx−1 · h⊕Xx
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Then, for input sizes |T | and |M | that are multiple of n, the hash function of HCTR2 is:

Hash(h, T, M) = (2|T |+ 2) · h
|T |+|M|

n +1 ⊕Polyh(T ) · h
|M|

n +1 ⊕Polyh(M) · h

This representation will help describe our key committing attacks in Sect. 6.

3 Key Committing Security of General AEZ
We start with attacking AEZ, assuming the underlying TBC E : K × Tw ×M→M is an
ideal tweakable cipher. We call such a version general AEZ. The CMT-4 attack is simple
and works for any τ with negligible complexity. The complexity of the CMT-1 attack
depends on τ . Recall that we consider τ ∈ [n]; the default is τ = n.

3.1 CMT-4 Attack
We present a CMT-4 attack against general AEZ. The adversary fixes K (of any length)
and other input variables, performs encryption, and tries to find another AD that yields a
collision on AEZ-hash. Since AEZ-hash is effectively a TBC-based PHASH (the message
hashing part of PMAC [Rog04]), finding such an AD pair is trivial because preimages
are easy to find given the key. Assuming AD is a single bitstring, an input to AEZ-hash
is a vector T of three components. Then the output ∆ = AEZ-hash(K, T ) is written as
∆⊕ E3,ℓ−1

K (Zℓ−1)⊕ E3,ℓ
K (Zℓ), where Zℓ−1 and Zℓ are the last two AD blocks and ∆ is a

value computed from K and T except Zℓ−1 and Zℓ. To find a collision, we modify the last
two AD blocks to Z ′

ℓ−1 and Z ′
ℓ so that

E3,ℓ−1
K (Zℓ−1)⊕ E3,ℓ

K (Zℓ) = E3,ℓ−1
K (Z ′

ℓ−1)⊕ E3,ℓ
K (Z ′

ℓ)

holds. Concretely, for i = ℓ− 1, ℓ, we let Bi ← E3,i
K (Zi) and obtain Z ′

i ← (E3,i
K )−1(Bi ⊕ e)

for some e ≠ 0n. Then, a difference e introduced in i = ℓ − 1 is canceled in i = ℓ.
An example of a complete attack is: first, fix (K, A, M), then, encrypt (A, M) with
K to obtain ∆ and C, and finally, find another A′ ≠ A that yields the same ∆ and
returns ((K, A, M), (K, A′, M), C). This attack needs two forward and inverse queries
with negligible computation and is thus practical.

Remark. A variant of the CMT-4 attack described above works on any EtE scheme
if AD is processed by a (keyed) function f and the result is absorbed into the main
encryption/decryption routine and f is weak with respect to preimage with knowledge
of its key (if keyed). This holds for many WBCs, including Adiantum and HCTR2. We
omit the details of the attacks as they are rather straightforward from the paragraph
“Preimages using Hash Function” in Sect. 5 and Sect. 6. A cryptographically strong hashing
for AD processing would prevent this type of CMT-4 attack but does not guarantee CMT-4
security in general.

3.2 CMT-1 Attack for τ = n

Unlike CMT-4, breaking CMT-1 needs a pair of distinct keys for a pair of input tuples.
Hence, the internal states are processed by independent random primitives, thereby
excluding simple single-variable cancellation strategies as our CMT-4 attack. We first
present an attack for the default setting τ = n. The attack requires finding a collision on
Cy, which is a birthday attack of O(2n/2) time. However, we emphasize that this is not
a trivial collision finding on a hash function (K, A, M)→ Cy deduced from general AEZ
since other ciphertext blocks must collide.
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Overview. Our attack focuses on the last diblock. See the box with a dashed line in
Fig. 1. For encryption, it takes the key K, the last plaintext diblock (Mx, My), the internal
variables X and Y determined by the other diblocks, and the output of AEZ-hash taking
AD, ∆. It outputs the last ciphertext diblock (Cx, Cy) and S, which is absorbed by the
processing of other diblocks. Following Fig. 1, let X1 = E0,1

K (My)⊕∆⊕X ⊕Mx, which
is an input to E−1,1

K . Let Y1 = E−1,1
K (X1) and X2 = Y1 ⊕My, Y2 = E−1,2

K (X2). When
τ = n, My = 0n and X2 = Y1. We first fix a pair of distinct keys, K and K ′, and the
ciphertext diblocks except the last one. Next, we find a collision on Cy by sampling 2n/2

times for the internal Y1. Then, we can make the system of equations for the last diblock
consistent by exploiting the preimage weakness of AEZ-hash.

For simplicity, we describe the case of even message blocks. Extending to odd blocks
can be done by minor modifications after Step 7. For the notation, we refer to Fig. 1 and
Appendix B.2.

Attack Procedure.

Step 1. Pick an arbitrary pair of distinct keys K, K ′ ∈ K. Pick an arbitrary sequence of
diblocks CC = (CC1, . . . , CCm) and Cx, derive (Y1, . . . , Ym) using K. Also derive
(Y ′

1 , . . . , Y ′
m) from CC and K ′. Let Y = Y1 ⊕ . . . ⊕ Ym and Y ′ = Y ′

1 ⊕ . . . Y ′
m. Set

My = M ′
y = 0n.

Step 2. (Randomly) sample 2n/2 values of Ŷ1 as candidates for Y1, and sample 2n/2 values
of Ŷ′

1 as candidates for Y′
1.

Step 3. For each pair, derive X̂1 = (E−1,1
K )−1(Ŷ1), Ŷ2 = E−1,2

K (Ŷ1), X̂′
1 = (E−1,1

K′ )−1(Ŷ′
1)

and Ŷ′
2 = E−1,2

K′ (X̂′
2). Build two lists for (X̂1 ⊕ Ŷ2) and (X̂′

1 ⊕ Ŷ′
2), each of size 2n/2.

Step 4. Find a collision in the lists which becomes Cy: Cy = (X̂1 ⊕ Ŷ2) = (X̂′
1 ⊕ Ŷ′

2).
Determine (the true tuple of) (X1,Y1,X2,Y2) as (X̂1, Ŷ1, X̂2, Ŷ2), and (X′

1,Y′
1,X′

2,Y′
2)

as (X̂1
′
, Ŷ1

′
, X̂2

′
, Ŷ2

′
). Determine S = X1 ⊕ X2 and S′ = X′

1 ⊕ X′
2.

Step 5. Determine ∆target = Cx⊕E0,2
K (Cy)⊕Y ⊕Y1 and ∆′

target = Cx⊕E0,2
K′ (Cy)⊕Y ′⊕Y′

1.

Step 6. Find A, A′ ∈ {0, 1}8∗ so that AEZ-hash(K, A) = ∆target and AEZ-hash(K ′, A′) =
∆′

target. This can be done efficiently by using the inverse of E in the same manner as
in a CMT-4 attack.

Step 7. Determine (X1, . . . , Xm) from S, CC and K. Similarly determine (X ′
1, . . . , X ′

m).
Let X = X1 ⊕ . . .⊕Xm, X ′ = X ′

1 ⊕ . . .⊕X ′
m.

Step 8. Determine Mx = ∆target ⊕X ⊕ X1, M ′
x = ∆′

target ⊕X ′ ⊕ X′
1.

Step 9. Determine MM = (MM1, . . . , MMm) from CC, S, and K. Similarly determine
MM ′ = (MM ′

1, . . . , MM ′
m).

Step 10. Let M = (MM, Mx, My(= 0n)) and M ′ = (MM ′, M ′
x, M ′

y(= 0n)). Return
((K, A, M), (K ′, A′, M ′), C).

3.3 CMT-1 Attack for τ < n

The complexity of a CMT-1 attack can be reduced if τ is smaller than n as it enables
us to choose Y1 and X2 independently for the first (n− τ) bits. More specifically, when
τ ≤ 2n/3, we can use a generalized birthday attack on 4XOR (4-tree algorithm) [Wag02].
The 4-tree algorithm takes four lists LX1 , LX2 , LX3 , and LX4 as input, where each list
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Figure 4: Overview of CMT-1 attack complexities against general AEZ. The vertical line
indicates the logarithm of attack complexities (including time and memory). The τ ≤ n/3
case shows the generic attack complexity. The n/3 ≤ τ ≤ 2n/3 case shows the 4-tree
algorithm complexity. The 2n/3 ≤ τ ≤ 3n/4 case shows the repeated 4-tree algorithm
complexity. The 3n/4 ≤ τ ≤ n case shows the birthday attack complexity.

includes 2n/3 items of random n-bit strings. The algorithm outputs (X1, X2, X3, X4) ∈
LX1 × LX2 × LX3 × LX4 s.t. X1 ⊕X2 ⊕X3 ⊕X4 = 0n. It requires the time and memory
complexities of O(2n/3). Note that 4-tree has been used in the key committing attack on
SIV [MLGR23], but ours is different and not derived from their attack. We modify the
attack procedure of Sect. 3.2 as follows.

Step 2. Instead of fixing My and M ′
y, we fix cst, cst′ ∈ {0, 1}τ arbitrarily and (randomly)

sample Ŷ1, X̂2, Ŷ′
1, and X̂′

2, each 2n/3 times (which is possible as n− τ ≥ n/3), so
that lsbτ (Ŷ1) and lsbτ (X̂2) are fixed to cst. Similarly, lsbτ (Ŷ′

1) and lsbτ (X̂′
2) are

fixed to cst′.

Step 3. We compute X̂1 and Ŷ2 and X̂′
1 and Ŷ′

2 each for 2n/3 values and build the lists of
these variables, denoted by LX1 , LY2 , LX′

1
, and LY′

2
.

Step 4. We run the 4-tree algorithm of Wagner [Wag02] on these four lists. With a
high probability, we find a solution, i.e., (X1,Y2,X′

1,Y′
2) ∈ LX1 × LY2 × LX′

1
× LY′

2
such that X1 ⊕ Y2 ⊕ X′

1 ⊕ Y′
2 = 0n. We determine Cy = X1 ⊕ Y2 (= X′

1 ⊕ Y′
2),

My = X2 ⊕ Y1, and M ′
y = X′

2 ⊕ Y′
1. (Note that lsbτ (My) = lsbτ (M ′

y) = 0τ holds.)
Determine S = X1 ⊕ X2 and S′ = X′

1 ⊕ X′
2.

The remaining steps remain the same. The time and memory complexities of this attack
are O(2n/3).

Case 2n/3 < τ < n. The above attack needs τ ≤ 2n/3 to ensure we have enough
samples for X̂1, Ŷ2, X̂′

1, and Ŷ′
2. However, even when 2n/3 < τ , we can mount a variant of

the 4-tree attack by repeating the 4-tree attack with small lists until we find a solution. This
repeated 4-tree algorithm works better than the birthday attack when 2n/3 < τ < 3n/4,
and its complexity is O(22τ−n) as shown in Fig. 4. See Appendix D for the details.

Case τ < n/3. In case τ < n/3, a simple generic attack against EtE-based AE works.
We just pick random 2τ tuples (K, A, C) and decrypt them until we find a valid plaintext
M , i.e., lsbτ (My) = 0τ . We obtain (K, A, M, C) as a valid tuple. We repeat this procedure
using another 2τ tuples of (K ′, A′, C) for some K ′ ̸= K and A′ ̸= A to find the solution.
The time and memory complexities are O(2τ ).
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4 Key Committing Security of Full-spec AEZ
We continue to consider attacking AEZ where the underlying TBC E : K× Tw ×M→M
follows the full-spec AEZ-core. We call such a version full-spec AEZ. A CMT-4 attack
against full-spec AEZ works for any τ with negligible complexity, as described in Sect. 3.1.
Unlike the attack described in Sect. 3.1, we choose the key of full-spec AEZ to provide a
CMT-1 attack. Note that the CMT-1 security definition does not restrict whether the
attacker can or cannot choose the key. Although we need a stronger assumption, this is a
practical attack of 227 time for any τ . We verified the attack experimentally. We provide
an example of two data sets enciphering to the same ciphertext in Appendix C.

Overview. This attack follows similar steps to the CMT-1 attack described in Sect. 3.2.
Namely, this attack also focuses on the last diblock, which is illustrated as the dashed line
box in Fig. 1, and finding (X1 ⊕ Y2) = (X′

1 ⊕ Y′
2). The notation in this section is almost

identical to Sect. 3.2, with the following differences. We use the round keys of E−1,i
K (X),

i.e., AES10K(X⊕∆), as (∆, I, J, L, I, J, L, I, J, L, I) instead of (0, I, J, L, I, J, L, I, J, L, I),
where ∆ = i · L. With this change, we note that the input value of AES10K is changed
from X⊕∆ to X. Let δB be an XOR difference between B and B′, which are two blocks
at the same location, i.e., δB = B ⊕B′.

We first fix a pair (X1,X′
1) and a pair (My, M ′

y) in such a way that δX1 = 0 and δMy = 0,
respectively. Next, we find a collision on Cy by choosing a proper pair of distinct keys, K
and K ′, in such a way that (δX1 , δY1 , δX2 , δY2) = (0, 0, 0, 0) holds and the number of active
S-boxes in this case are minimized. In the following paragraphs, we propose a choice of
distinct keys (K, K ′) so that (δX1 , δY1) = (0, 0) holds with a probability of one, whereas
(δX2 , δY2) = (0, 0) holds with a probability of at least 2−28. Note that we can always get
δX2 = 0 when (δX1 , δY1) = (0, 0) holds since δX2 = δY1 ⊕ δMy and δY1 = δMy = 0. Then we
can make the system for the last diblock consistent by exploiting the preimage weakness
of AEZ-hash, as described in Sect. 3.2.

According to Alg. 3, the subkeys (I, J, L) are directly derived from the master key K
when |K| = 384 as (I ∥ J ∥ L) ← K, however, they are generated from the BLAKE2b
algorithm when |K| ≠ 384, as (I ∥ J ∥ L) ← BLAKE2b(K). The BLAKE2b algorithm is
not invertible. Therefore, we choose the key length as |K| = 384, which is the default
option, so that we can choose the subkey differences (δI , δJ , δL) in our attack.

How to Choose Subkey Differences. Before explaining the details, we discuss how to
choose the subkey differences (δI , δJ , δL). As described above, we need to choose a proper
pair of distinct keys (K, K ′) in such a way that (δX1 , δY1 , δX2 , δY2) = (0, 0, 0, 0) holds and
the number of active S-boxes is minimized. To find such a differential propagation from
δX1 to δY2 , we consider a series of computations from X1 to Y2 as two consecutive AES10K

functions with round keys ((L, I, J, L, I, J, L, I, J, L, I), (2L, I, J, L, I, J, L, I, J, L, I)).
Focusing on the round keys of the two consecutive AES10K functions, the first and

last two consecutive round keys are (L, I) or (2L, I). In addition, unlike the original AES,
AES10K contains MixColumns in the last round. We use these properties to analyze a
differential propagation of the two consecutive AES10K functions. Our strategy consists
of choosing the differences δI , δJ , and δL and the values I, J, L in such a way that the
difference that is introduced in one round will be canceled out by the difference in the next
round with high probability. Then, there are several rounds where the input and output
differences are zero. We choose the round key differences in the following steps:

1. We choose δL or δ2L in such a way that these differences activate only one byte of
the internal state. In other words, when inserting these differences into the internal
state, we need to minimize the number of active S-boxes in the corresponding
aesenc function. Note that choosing δL uniquely determines δ2L.
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2. We choose δI in such a way that the differential propagation caused by inserting δL

or δ2L in the previous round will be canceled with high probability. In other words,
inserting this difference into the internal state will lead to a pair of identical internal
states (zero difference, no active S-boxes) with high probability.

3. We do not need to consider a difference in J (i.e., δJ = 0), since we know from Step 2
that the probability that the state difference is already zero is high. Instead, we
choose the value J satisfying X1 = X′

1 = aesenc(aesenc(aesenc(X1, L), I), J).

Given X1(= X′
1), δY1 = 0 holds by choosing round key differences and values from the

above way. It implies that we do not need to rely on a probabilistic event for a differential
propagation of the first AES10K . Instead, we rely on a probabilistic event for a differential
propagation of the second AES10K , but it contains only four active S-boxes. Its differential
probability is within the range of 2−6×4 to 2−7×4. Note that AES10K contains MixColumns
in the last round; thus, both δY1 = 0 and δY2 = 0 hold simultaneously with high probability
by canceling the differences with δI .

Attack Procedure. We execute the following procedure:

Step 1. Pick a pair (X1,X′
1) and a pair (My, M ′

y) in such a way that δX1 = 0 and δMy
= 0,

respectively.

Step 2. Find a proper pair of distinct keys (K, K ′) in the following procedure, with the
way of choosing the round key differences as described above (see Fig. 5 for a better
understanding of a differential propagation used in this step):

1. Pick (L, I) randomly, and compute I ′ = I ⊕ δI .
2. Compute aesdec(aesenc(X1⊕L, I)⊕I ′,X′

1) to get L′, and determine δL = L⊕L′.
3. Select a pair (J, J ′) for which both aesenc(aesenc(X1 ⊕ L, I), J) = X1 and

aesenc(aesenc(X′
1 ⊕ L′, I ′), J ′) = X′

1, where J = J ′ since δJ = 0.
4. Execute the remaining first AES10K to get δY1 . If Steps 2 and 3 hold, we know

that the same will apply to the remaining rounds because of the repetition of
the round subkeys and the states, and δY1 = 0 holds with probability one.

5. Execute the second AES10K to get δY2 from δX2 , where δX2 = 0 always holds
since δX2 = δY1⊕δMy

and δY1 = δMy
= 0. The event that δY2 = 0 is probabilistic.

There are four rounds in which the difference introduced by δ2L or δL must be
canceled by δI , and in each one, there is only one active Sbox. The differential
probability is within the range of (2−6)4 = 2−24 to (2−7)4 = 2−28.

6. Get a collision on Cy when δY2 = 0 holds since δCy = δX1 ⊕ δY2 = 0, and
determine S = X1 ⊕ X2 and S′ = X′

1 ⊕ X′
2.

Step 3. Pick an arbitrary sequence of diblocks CC = (CC1, . . . , CCm) and Cx, and derive
(Y1, . . . , Ym) using K and (Y ′

1 , . . . , Y ′
m) from CC and K ′. Note that Y = Y1⊕. . .⊕Ym

and Y ′ = Y ′
1 ⊕ . . . Y ′

m.

Step 4. Execute Steps 5–10 in Sect. 3.2 to return ((K, A, M), (K ′, A′, M ′), C).

Complexity Estimation. Following the above attack procedure, the complexity of making
Substeps 2-5 of Step 2 work is dominant. The probability that Substeps 2-5 hold is within
the range of 2−24 to 2−28, therefore, the complexity of the whole attack is estimated as at
most 228.
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Figure 5: A differential propagation used in the proposed CMT-1 attack against full-spec
AEZ. The values in red indicate the expected differences. The values in blue indicate the
expected differential probabilities for each 1-round or 7-round aesenc function. The arrows
in blue indicate the 7-round aesenc functions.

Experimental Verification. We experimentally verified the validity of the proposed attack.
We first search for an appropriate δL, where the probability that the differential trail is
satisfied is maximum. Clearly, δL must have a single active byte. Then, the active column
position of δI is determined. Moreover, msb1(δL) = 0. Otherwise, a different byte position
is active in δ2L, and it is impossible to cancel the difference by XORing δI . Therefore, the
choice of δL is at most 16× 127, and an exhaustive search is possible.

As a result, the best choice of δL satisfies the differential trail with a probability of
2−27. An example solution of δL, δ2L, δI , and δJ is given as follows:

δL = [01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00],
δ2L = [02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00],
δI = [28 14 14 3C 00 00 00 00 00 00 00 00 00 00 00 00],
δJ = [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00].

We provide a specific example of a key committing attack using this differential propagation
in Appendix C. To summarize, our experimental verification demonstrates that the proposed
attack is feasible with a time complexity of 227.

Countermeasure. The practical CMT-1 attack against full-spec AEZ exploits the weak
key schedule, where the attacker can easily control the value of I, J , and L. One option
to counter the practical attack is to use BLAKE2b to generate a 384-bit key even when the
key length is 384 bits. Without breaking the hash function BLAKE2b, this makes it hard
to choose the master key satisfying the subkey relation.

5 Key Committing Security of Adiantum
This section describes two collision-based CMT-1 attacks on EtE using Adiantum, both for
prepending and appending. In both cases, the most expensive step is a collision-finding
problem. Thus, both attacks work in the time and memory complexity of the chosen
collision algorithm, which is, at best, birthday-bound time complexity. Our attacks show
that the key committing security of EtE-Adiantum is at most O(2τ/2) for prepending and
O(2n/2) for appending. Figure 6 shows the collision-finding problem for each case.
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Figure 6: Collision-finding problem for CMT-1 attacks against Adiantum. The left and
right figures show the prepending and appending versions, respectively.

Preimages using Hash Function. The attacks described below rely on the efficiency
of finding preimages of the hash function given a key. The input of a hash function is
typically much larger than its output, so there can be many solutions. The hash used
by Adiantum has good properties when using a secret key, but it is easily manipulable
in the known-key setting, which allows for our efficient key committing attacks. The
Adiantum hash is based on both NH and Poly1305 which allow for straightforward
preimages when the key is known.

In particular, steps such as “Find T s.t. Hash(h, T, a) = b” for some value h, a, b
involve finding a preimage of Poly1305 as:

Hash(h, T, a) = b⇔ HashT(KT , |a|, T ) ⊞ HashP(KP , a) = b,

⇔ HashT(KT , |a|, T ) = b ⊟ HashP(KP , a),
⇔ Poly1305KT

(|a| ∥ T ) = b ⊟ Poly1305KL
(NHKN

(pad(a))) .

Indeed, given a known masked hash key k ̸= 0, it is trivial to manipulate two or more blocks
of T to obtain any 128-bit value. Since 2130 − 5 is prime, (ki+1(Ti + 2128) mod (2130 − 5))
can have 2128 different values, one for every choice of Ti. Then, when reducing to
mod 2128, a maximum of 4 possible values might map to a single one. Let us give an easy
algorithm: given a target a, arbitrarily choose all blocks of T except Ti for some i, and
compute the required value. This works with a probability of at least 1/4, and this can be
repeated by fixing other values for T .

Note that finding a preimage implies a CMT-4 attack (see Sect. 3.1). We can break the
CMT-4 notion by constructing a pair of distinct T and T ′ such that the hash function’s
outputs are identical.

Goal of CMT-1 Attack. The goal of our attacks is to find a non-trivial solution to the
equation:

Encrypt(K, T, PL ∥ PR) = Encrypt(K ′, T ′, P ′
L ∥ P ′

R)

These can be seen as two equations for the left and right parts of the ciphertext, CL and
CR, respectively. We further break down these by introducing the intermediate values CM
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and C ′
M so that we get four equations:

CM = EKE
(Hash(h, T, PL) ⊞ PR) ,

C ′
M = EK′

E
(Hash(h′, T ′, P ′

L) ⊞ P ′
R) ,

PL ⊕ SK(CM , |PL|) = P ′
L ⊕ SK(C ′

M , |P ′
L|), (CL = C ′

L),
CM ⊟ Hash(h, T, CL) = C ′

M ⊟ Hash(h′, T ′, CL), (CR = C ′
R).

(1)

5.1 CMT-1 Attack of Adiantum with 0τ Prepending
Overview. The attack finds a non-trivial solution to Equation (1) where PL and P ′

L are
replaced by 0τ ∥ PL and 0τ ∥ P ′

L, respectively, with |0τ ∥ PL| = |0τ ∥ P ′
L| = ℓ. The left

figure of Fig. 6 shows the high-level idea of our attack. We find CM and C ′
M satisfying

msbτ (SK(CM , ℓ)) = msbτ (SK′(C ′
M , ℓ)), which is the collision-finding problem, and we can

find such a pair with a complexity of O(2τ/2). Suppose we have such a pair, (CM , C ′
M )

with distinct keys, K and K ′. Then, because we can easily compute the preimage of the
hash function given a key, we can construct (T, PL, PR) and (T ′, P ′

L, P ′
R) whose ciphertexts

are identical using the following procedure.

Attack Procedure.

Step 1. Pick a pair of distinct keys K and K ′ arbitrarily. Pick PL and PR arbitrarily.
Compute KE ∥ h← SK(ε, 8832) and K ′

E ∥ h′ ← SK′(ε, 8832).

Step 2. Define f1(x) ← msbτ (SK(x, ℓ)) and f2(x) ← msbτ (SK′(x, ℓ)). Find a collision
such that f1(CM ) = f2(C ′

M ).

Step 3. Let CL ← (0τ ∥ PL)⊕ SK(CM , ℓ). Then, let 0τ ∥ P ′
L ← CL ⊕ SK′(C ′

M , ℓ), where
matching 0τ is guaranteed by the collision, f1(CM ) = f2(C ′

M ).

Step 4. Find T s.t. Hash(h, T, 0 ∥ PL) = E−1
KE

(CM ) ⊟ PR.

Step 5. Determine CR ← CM ⊟ Hash(h, T, CL).

Step 6. Find T ′ s.t. Hash(h′, T ′, CL) = C ′
M ⊟ CR.

Step 7. Determine P ′
R ← E−1

K′
E

(C ′
M ) ⊟ Hash(h′, T ′, 0 ∥ P ′

L).

Step 8. Return ((K, T, 0τ ∥ PL ∥ PR), (K ′, T ′, 0τ ∥ P ′
L ∥ P ′

R), (CL, CR)).

5.2 CMT-1 Attack of Adiantum with 0n Appending
Overview. The attack finds a non-trivial solution to Equation (1) where PR and P ′

R are
replaced by 0n. The right figure of Fig. 6 shows the high-level idea of our attack. We
exploit the following property of the hash function.

Hash(h, T, PL) = E−1
KE

(CM ),
=⇒ HashT(KT , ℓ, T ) ⊞ HashP(KP , PL) = E−1

KE
(CM ),

=⇒ HashT(KT , ℓ, T ) = E−1
KE

(CM ) ⊟ HashP(KP , PL),
=⇒ Hash(h, T, CL) = E−1

KE
(CM ) ⊟ HashP(KP , PL) ⊞ HashP(KP , CL).

As shown in Fig. 6, CR is computed from CM and CL as follows:

CR = CM ⊟ HashP(KP , CL) ⊟
(
E−1

KE
(CM ) ⊟ HashP(KP , CL ⊕ SK(CM , ℓ))

)
.
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Therefore, given an arbitrary CL, we find CM and C ′
M satisfying CR = C ′

R, which is the
collision-finding problem, and we can find such a pair with a complexity of O(2n/2). Once
we find such a pair, (CM , C ′

M ) with distinct keys K and K ′, we can construct (T, PL, PR)
and (T ′, P ′

L, P ′
R) whose ciphertexts are identical using the following procedure because it

is easy to find a preimage of the hash function given a key.

Attack Procedure.
Step 1. Pick a pair of distinct keys K and K ′ arbitrarily. Pick CL arbitrarily and ℓ← |CL|.

Compute KE∥h← SK(ε, 8832) and K ′
E∥h′ ← SK′(ε, 8832). Moreover, KT ∥KP ← h

and K ′
T ∥K ′

P ← h′.

Step 2. Define f1(x)← x⊟E−1
KE

(x)⊞HashP(KP , CL⊕msbℓ(SK(x, ℓ)))⊟HashP(KP , CL)
and f2(x) ← x ⊟ E−1

K′
E

(x) ⊞ HashP(K ′
P , CL ⊕ msbℓ(SK′(x, ℓ))) ⊟ HashP(K ′

P , CL).
Find a collision such that f1(CM ) = f2(C ′

M ). Then, determine CR ← f1(CM ).

Step 3. Determine PL ← CL ⊕ SK(CM , ℓ) and P ′
L ← CL ⊕ SK′(C ′

M , ℓ).

Step 4. Find T s.t. Hash(h, T, PL) = E−1
KE

(CM ). Find T ′ s.t. Hash(h′, T ′, P ′
L) =

E−1
K′

E
(C ′

M ).

Step 5. Return ((K, T, PL ∥ 0n), (K ′, T ′, P ′
L ∥ 0n), (CL, CR)).

6 Key Committing Security of HCTR2
This section describes two CMT-1 attacks on authenticated encryption using HCTR2,
one for the prepend version and one for the append version. These attacks have much
in common with the ones of Sect. 5 on Adiantum. Note that the roles of the left and
right branches are reversed compared to Adiantum. The 0τ appending and 0n prepending
attacks against HCTR2 correspond to 0τ prepending and 0n appending attacks against
Adiantum, respectively. Just as in the attack on Adiantum, the most expensive step in
both cases is a collision-finding problem. Thus, both attacks work with the time and
memory complexity of the chosen collision algorithm, which is, at best, birthday-bound
time complexity. Therefore, the key committing security of HCTR2 is at most O(2τ/2) and
O(2n/2) for the 0τ appending and 0n prepending versions, respectively. Figure 7 shows
the collision-finding problem for each case.

Preimages using Hash Function. The attacks described below rely on the efficiency
of finding preimages of the hash function given a key. The input of a hash function is
typically much larger than its output, so there can be many solutions. The hash used by
HCTR2 has good properties when using a secret key, but it is easily manipulable in the
known-key setting, which allows for our efficient key committing attacks.

In particular, steps such as “Find T s.t. Hash(h, T, a) = b” for some value h, a, b
involve finding a preimage of Poly as:

Hash(h, T, a) = b⇔ (2|T |+ 2) · h
|T |+|a|

n +1 ⊕Polyh(T ) · h
|a|
n +1 ⊕Polyh(a) · h = b,

⇔ Polyh(T ) =
(

b⊕ (2|T |+ 2) · h
|T |+|a|

n +1 ⊕Polyh(a) · h
)
· h− |a|

n +1,

where h ̸= 0 is known, and the right-hand side can be computed down to a single value.
Finding this preimage is easy. For instance, one can arbitrarily set every block of T except
one and compute the required value for the remaining block by simple algebra.

Again, similarly to Adiantum, we can easily break CMT-4 by constructing a pair of
distinct T and T ′ such that the hash function’s outputs are identical.
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Figure 7: Collision-finding problem for CMT-1 attacks for HCTR2. The left and right
figures show the appending and prepending versions, respectively.

Goal of CMT-1 Attack. The goal of our attacks is to find a non-trivial solution to the
equation:

Encrypt(K, T, PL ∥ PR) = Encrypt(K ′, T ′, P ′
L ∥ P ′

R).

These can be seen as two equations for the left and right parts of the ciphertext, CL and
CR, respectively. We further break down these by introducing the intermediate values CM

and C ′
M so that we get four equations where h and L are derived from K (h′ and L′ from

K ′): 

CM = PL ⊕Hash(h, T, PR),
C ′

M = P ′
L ⊕Hash(h′, T ′, P ′

R),
PR ⊕XCTR(K, L⊕ CM ⊕ EK(CM ), |PR|),

= P ′
R ⊕XCTR(K ′, L′ ⊕ C ′

M ⊕ EK′(C ′
M ), |P ′

R|), (CR = C ′
R),

EK(CM )⊕Hash(h, T, CR) = EK′(C ′
M )⊕Hash(h′, T ′, CR), (CL = C ′

L).

(2)

6.1 CMT-1 Attack of HCTR2 with 0τ Appending
Overview. The attack finds a non-trivial solution to Equation (2) where PR and P ′

R are
replaced by 0τ ∥ PR and 0τ ∥ P ′

R, respectively, with |0τ ∥ PR| = |0τ ∥ P ′
R| = ℓ. The left

figure of Fig. 7 shows the high-level idea of our attack. We find CM and C ′
M satisfying

lsbτ (XCTR(K, L⊕ CM ⊕ EK(CM ), ℓ)) = lsbτ (XCTR(K ′, L′ ⊕ C ′
M ⊕ EK′(C ′

M ), ℓ)),

which is the collision-finding problem, and we can detect such a pair with a complexity of
O(2τ/2). Suppose we have such a pair, (CM , C ′

M ) with distinct keys, K and K ′. Then,
because we can easily compute the preimage of the hash function given a key, we can
construct (T, PL, PR) and (T ′, P ′

L, P ′
R) whose ciphertexts are identical as follows.

Attack Procedure.

Step 1. Pick a pair of distinct keys K and K ′ arbitrarily. Pick PL and PR arbitrarily.
Compute h ← EK(0) and h′ ← EK′(0). Compute L ← EK(1) and L′ ← EK′(1).
Set ℓ← |PR|+ τ .
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Step 2. Define f1(x) ← lsbτ (XCTR(K, L ⊕ x ⊕ EK(x), ℓ)). Then, define f2(x) ←
lsbτ (XCTR(K ′, L′ ⊕ x⊕EK′(x), ℓ)). Find a collision such that f1(CM ) = f2(C ′

M ).

Step 3. Determine CR ← (PR ∥ 0τ )⊕XCTR(K, L⊕CM ⊕EK(CM ), ℓ). Then, determine
P ′

R∥0τ ← CR⊕XCTR(K ′, L′⊕C ′
M⊕EK′(C ′

M ), ℓ), where matching 0τ is guaranteed
by the collision, f1(CM ) = f2(C ′

M ).

Step 4. Find T s.t. Hash(h, T, PR ∥ 0τ ) = CM ⊕ PL.

Step 5. Determine CL ← Hash(h, T, CR)⊕ EK(CM ).

Step 6. Find T ′ s.t. Hash(h′, T ′, CR) = EK′(C ′
M )⊕ CL.

Step 7. Determine P ′
L ← Hash(h′, T ′, P ′

R ∥ 0τ )⊕ C ′
M .

Step 8. Return ((K, T, PL ∥ PR ∥ 0τ ), (K ′, T ′, P ′
L ∥ P ′

R ∥ 0τ ), (CL, CR)).

6.2 CMT-1 Attack of HCTR2 with 0n Prepending
Overview. The attack finds a non-trivial solution to Equation (2) where PL and P ′

L are
replaced by 0n. The right figure of Fig. 7 shows the high-level idea of our attack. We
exploit the following property of the hash function.

Hash(h, T, PR) = CM ,

=⇒ (2|T |+ 2) · h
|T |+ℓ

n +1 ⊕Polyh(T ) · h ℓ
n +1 ⊕Polyh(PR) · h = CM ,

=⇒ (2|T |+ 2) · h
|T |+ℓ

n +1 ⊕Polyh(T ) · h ℓ
n +1 = CM ⊕Polyh(PR) · h,

=⇒ Hash(h, T, CR) = CM ⊕Polyh(PR) · h⊕Polyh(CR) · h,

=⇒ Hash(h, T, CR) = CM ⊕Polyh(PR ⊕ CR) · h,

=⇒ Hash(h, T, CR) = CM ⊕Polyh(XCTR(K, L⊕ CM ⊕ EK(CM ), ℓ)) · h.

As shown in Fig. 7, CL is computed from CM as follows:

CL = Polyh(XCTR(K, L⊕ CM ⊕ EK(CM ), ℓ)) · h⊕ CM ⊕ EK(CM ).

Note that CR is not used here because the hash function output related to CR is canceled
out. Therefore, we find CM and C ′

M satisfying CL = C ′
L, which is the collision-finding

problem, and we can find such a pair with a complexity of O(2n/2). Once we find such a
pair, (CM , C ′

M ) with distinct keys K and K ′, we can construct (T, PL, PR) and (T ′, P ′
L, P ′

R)
whose ciphertexts are identical using the following procedure because it is easy to find a
preimage of the hash function given a key.

Attack Procedure.

Step 1. Pick a pair of distinct keys K and K ′. Pick CR arbitrarily. Compute h← EK(0)
and h′ ← EK′(0). Compute L← EK(1) and L′ ← EK′(1). Set ℓ← |PR|.

Step 2. Define f1(x)← Polyh(XCTR(K, L⊕x⊕EK(x), ℓ)) ·h⊕x⊕EK(x) and f2(x)←
Polyh′(XCTR(K ′, L′⊕ x⊕EK′(x), ℓ)) · h′⊕ x⊕EK′(x). Find a collision such that
f1(CM ) = f2(C ′

M ). Then, determine CL = f1(CM ).

Step 3. Determine PR ← CR ⊕ XCTR(K, L ⊕ CM ⊕ EK(CM ), ℓ) and P ′
R ← CR ⊕

XCTR(K ′, L′ ⊕ C ′
M ⊕ EK′(C ′

M ), ℓ).

Step 4. Find T s.t. Hash(h, T, PR) = CM . Find T ′ s.t. Hash(h′, T ′, P ′
R) = C ′

M .

Step 5. Return ((K, T, 0n ∥ PR), (K ′, T ′, 0n ∥ P ′
R), (CL, CR)).
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7 Security Proofs of General AEZ and Adiantum with
Prepending

We present provable security results for general AEZ with τ = n and Adiantum with the
0τ prepending case, assuming their primitives are ideal. We prove birthday-type security
bounds for them, which indicates the tightness of our attacks for these cases. To our
knowledge, they are the first results to show meaningful key committing security for
the existing non-monolithic EtE schemes. We start with a definition of multi-collision
resistance, which will be used in our proofs.

Multi-collision Resistance. Let H : X → Y be a function. Let s ≥ 2 be an integer. An
s-way collision for H is a tuple (X1, . . . , Xs) of distinct points in X such that H(X1) =
· · · = H(Xs). For an adversary A, define its advantage in breaking the s-way multi-collision
resistance of H built on a primitive Π as

AdvColl
H,s(A) = Pr[(X1, . . . , Xs)← AΠ±

: X1 ̸= . . . ̸= Xs, H(X1) = · · · = H(Xs)]

where the probability is over (X1, . . . , Xs) $← A. Here Π is an ideal primitive which can
be a (tweakable) block cipher or permutation, and ± means that the adversary is getting
both forward and inverse access to this primitive. When s = 2, we recover the classical
notion of collision resistance and simply write AdvColl

H,s(A) as AdvColl
H (A).

7.1 Security Proof of general AEZ
We prove the CMT-1 security of general AEZ (gAEZ) when τ = n.

Theorem 1.

AdvCMT-1
gAEZ (A) ≤ p(p− 1)

2n
,

where p is the maximum number of queries by A to the underlying ideal tweakable cipher
E.

Proof strategy. The CMT-1 security can be seen as the collision probability of the whole
ciphertext. We prove that this probability is small by showing that the collision probability
of a part of the ciphertext is sufficiently small by focusing on Cy, the last ciphertext block.

Proof. For distinct input tuples of gAEZ, (K, A, M), (K ′, A′, M ′) ∈ {0, 1}k × {0, 1}∗ ×
{0, 1}∗ such that K ̸= K ′, define Cy = lsbn(gAEZK(A, M)), C ′

y = lsbn(gAEZK′(A′, M ′)).
We obtain

AdvCMT-1
gAEZ (A) ≤ Pr[A′ → ((K, A, M), (K ′, A′, M ′)) s.t. K ̸= K ′, Cy = C ′

y)].

We extract a function outputting Cy from gAEZ and define it as FPTP2’ : {0, 1}k×{0, 1}n →
{0, 1}n. Thus, we obtain4

Cy = FPTP2’K(Z) := E−1,2
K (E−1,1

K (Z))⊕ Z,

where Z = Mx ⊕X ⊕∆⊕ E0,1
K (0n). Then we obtain

Pr[A → ((K, A, M), (K ′, A′, M ′)) s.t. K ̸= K ′, Cy = C ′
y)] ≤ AdvColl

FPTP2’(A′), (3)
4The name FPTP2’ comes from the resemblance to the Feed-forward Permutation-Tweak-Permutation

proposed by Chen and Tessaro [CT21].
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for some A′ who uses p queries to the primitive. Here, AdvColl
FPTP2’(A) := Pr[A →

((K, Z), (K ′, Z ′)) s.t. (K, Z) ̸= (K ′, Z ′), FPTP2’K(Z) = FPTP2’K′(Z ′)]. In the game
Coll, A has access to E−1,1 and E−1,2, which are modeled as (tweakable) ideal ciphers.

Next, we evaluate maxA′

(
AdvColl

FPTP2’(A′)
)

. FPTP2’ is the DM construction with
double encryption and the proof is almost the same as the original DM’s proof (just taking
into account the structure of the double encryption). Without loss of generality, assume
that an adversary makes no repeated queries. In this evaluation, we permit an adversary A′

to obtain the following additional responses of the underlying primitives. In the additional
setting, if there is an input-output tuple of E−1,i

K1
where i ∈ {1, 2}, then an additional

input-output tuple of the other primitive is defined by following the structure of FPTP2’.

• For a forward query (K1, X1) to the forward oracle of E−1,1
K1

or an inverse query
(K1, Y1) to the inverse oracle of E−1,1

K1
,

1. the query-response tuple (K1, X1, Y1) is defined by E−1,1
K1

,

2. the additional query (K1, Y1) is made to E−1,2
K1

and then the query-response
tuple (K1, Y1, Z1) is defined,

3. the two responses Y1 (resp., X1) and Z1 are returned to the adversary making
the forward query (resp., the inverse query).

• For a forward query (K2, Y2) to the forward oracle of E−1,2
K2

or an inverse query
(K2, Z2) to the inverse oracle of E−1,2

K2
,

1. the query-response tuple (K2, Y2, Z2) is defined,
2. the additional query (K2, Y2) is made to the inverse oracle of E−1,1

K2
and then

the query-response tuple (K2, X2, Y2) is defined,
3. the two responses X2 and Z2 (resp., Y2) are returned to the adversary making

the forward query (resp., the inverse query).

The additional queries ensure that for each query made by the adversary, one input-output
tuple of FPTP2’ is defined: (K1, X1, X1 ⊕ Z1) by the query to E−1,1

K1
or (K2, X2, X2 ⊕ Z2)

by the query to E−1,2
K1

. Regarding the tuple (K1, X1, X1 ⊕ Z1) that is defined by the i-th
query, at least one of X1 or Z1 is chosen uniformly at random from at least 2n−p elements
in {0, 1}n, thus the probability that X1 ⊕ Z1 collides with one of the previous outputs
of FPTP2’ is at most i−1

2n−p . The same evaluation holds for the tuple (K2, X2, X2 ⊕ Z2).
Summing the bound for each i, we have

max
A′

(
AdvColl

FPTP2’(A′)
)
≤

p∑
i=1

i− 1
2n − p

= 0.5p(p− 1)
2n − p

≤ p(p− 1)
2n

, assuming p ≤ 2n−1.

Remark. Inequality (3) does not hold when evaluating CMT-4 security. In the case of
CMT-1 security, K ̸= K ′ necessarily holds (the left side of the inequation), and thus
(K, Z) ̸= (K ′, Z ′) holds, which is required for the definition of AdvColl

FPTP2’(A′). However, in
the case of CMT-4 security, (K, Z) ̸= (K ′, Z ′) in AdvColl

FPTP2’(A′) does not necessarily hold.
For example, as we showed in Sect. 3.1, the CMT-4 adversary can exploit two distinct AD
values to collide ∆. In such a case, (K, Z) = (K ′, Z ′) holds, and we cannot take an upper
bound of collision probability of Cy with that of FPTP2’.

7.2 Security Proof of Adiantum with Prepending
Let c = 512. In this section, we use X[i..j] to denote the i-th to j-th bit of X and X∗[i..j]
to denote the remainder of X by truncating the i-th to j-th bit of X. We here prove
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the CMT-1 security of Adiantum with 0τ prepending, assuming the c-bit permutation
underlying XChaCha12 (i.e., c-bit 12-round ChaCha permutation) is ideal. We do not
change other components. We denote it by Adiantum-pre. Note that when τ = n, we
obtain birthday-bound security. The first c-bit output block of XChaCha12 taking 128-bit
input x with 256-bit key K is denoted as

SK(x, c) := π(cst1 ∥ L ∥ cst2) +32 (cst1 ∥ L ∥ cst2),

with 256-bit L = π(cst1 ∥K ∥ x)∗[c/4 + 1..3c/4], where π : {0, 1}c → {0, 1}c is an ideal
permutation. Here, +32 refers to 16 additions of 32-bit words, cst1 is the 128-bit XChaCha12
constant and cst2 is another 128-bit constant that is equal to ctr ∥NUL(4) ∥ 1 ∥ 063, where
ctr = 031 ∥ 1, and NUL(4) is the concatenation of four constant bytes. This is because
XChaCha12 uses the first 128 bits of its input for subkey derivation, while the remaining 64
bits are used together with the subkey to derive the final output. In the case of Adiantum,
the 128-bit input is padded with a one followed by 63 zeroes to generate the 192-bit
XChaCha12 input.

Theorem 2.

AdvCMT-1
Adiantum-pre(A) ≤ 2p

2c/4 + p(p− 1)
2c/2 + p(p− 1)

2τ
,

where p is the maximum number of queries to π.

Note that in our case, c = 512 and n = 128. Hence, the first term of the security bound
is negligible.

We need the following result for our security proof on the permutation-based variant of
truncated Davies-Meyer (DM) construction. In particular, let m ≤ n be an integer. The
truncated DM based on a permutation π : {0, 1}c → {0, 1}c is defined as pDMπ,m(X) :=
(π(X) +32 X)[1..m]. We write pDMπ for the special case m = c (meaning there is no
truncation).

Lemma 1 (ω-way collision of permutation-based Davies-Meyer). Let π : {0, 1}c → {0, 1}c

be an ideal permutation. Let ω ≥ 2 and m ≤ c be integers. For an adversary A that makes
at most p ≤ 2n−1 − ω ideal permutation queries, we have

AdvColl
pDMπ,ω

(A) ≤
(

p

ω

)
2(1−m)(ω−1).

The proof of Lemma 1 can be found in Appendix A and is similar to the one of the
block cipher-based DM given in [BH22]. Note that the same bound holds when +32 is
replaced by ⊕.

Proof strategy. As in the case of general AEZ, we prove the CMT-1 security by showing
that the collision probability of a part of the ciphertext is sufficiently small. Focusing on
msbτ (CL), we can see that this value is almost the same as the output of the permutation-
based DM construction if the subkey L is always fresh. The subkey is calculated by
evaluating SK for the input x = EKE

(PR ⊞ Hash(h, T, 0τ ∥ PL)). See the left figure of
Fig. 6.

Proof. For distinct input tuples of Adiantum-pre, (K, T, P ) and (K ′, T ′, P ′) such that
K ̸= K ′, let us define C = (CL ∥ CR) = Adiantum-preK(T, P ), C ′ = (C ′

L ∥ C ′
R) =

Adiantum-preK(T ′, P ′), Cf = msbτ (CL), and C ′
f = msbτ (C ′

L). We obtain

AdvCMT-1
Adiantum-pre(A) ≤ Pr[A′ → ((K, P ), (K ′, P ′)) s.t. K ̸= K ′, Cf = C ′

f ].
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We extract a function outputting Cf from Adiantum and define it as tpDM : {0, 1}n →
{0, 1}τ . Thus, we obtain

Cf = tpDMK(CM ) := msbτ (SK(CM , c)),

where CM = EKE
(PR ⊞ Hash(h, T, 0τ ∥ PL)). Then, we obtain the following inequation.

Pr[A → ((K, T, P ), (K ′, T ′, P ′)) s.t. K ̸= K ′, Cf = C ′
f ] ≤ AdvColl

tpDM(A′),

for some A′ who uses p queries to the primitive. Here, AdvColl
tpDM(A) := Pr[A →

((K, CM ), (K ′, C ′
M )) s.t. (K, CM ) ̸= (K ′, C ′

M ), tpDMK(CM ) = tpDMK′(C ′
M )]. In the

game Coll, A has both forward and backward (inverse) access to the ideal permutation π.
Next, we evaluate AdvColl

tpDM(A′), maximized over all possible A′. Without loss of generality,
assume that an adversary makes no repeated query. In this evaluation, we permit an
adversary A′ to obtain the following additional responses of the underlying primitive. For
a forward query X to π or an inverse query Y to π−1,

1. the query-response tuple (X, Y ) is defined by π which is returned to the adversary,

2. the additional forward query (cst1 ∥ Y ∗[c/4 + 1..3c/4] ∥ cst2) is made to π and then
the query-response tuple ((cst1 ∥ Y ∗[c/4 + 1..3c/4] ∥ cst2), Z) is defined,

3. the two responses Y (resp., X) and Z are returned to the adversary making the
forward query (resp., the inverse query).

The additional queries ensure that for each query made by the adversary, one input-output
tuple of tpDM is defined.

Let s ∈ {+,−} denote the direction of the primitive queries; + for forward and −
for backward. We define the following events: for any distinct (i, Xi, Yi, si), (j, Xj , Yj , sj)
tuples in the transcript such that one of the following conditions hold:

Bad1 : [si = sj = +] ∧
[
Y ∗

i [c/4 + 1..3c/4] = Y ∗
j [c/4 + 1..3c/4]

]
,

Bad2 : [si = sj = −] ∧
[
X∗

i [1..c/4] = X∗
j [1..c/4]

]
.

Let Bad = Bad1 ∨Bad2. Next, we show that

AdvColl
tpDM(A′) ≤ Pr[Bad] + AdvColl

pDM(B).

Here, the probability where B is determined by A′ and uses total p queries to the primitive.
What is now left is to bound the two probabilities. We will first bound the probability of
the event Bad. We first start with Bad1. For the i-th forward entry (Xi, Yi), given Xi

and all prior queries/answers before the i-th query, Yi is uniformly distributed over a set of
at least 2c− p ≥ 2c−1 values, and thus the conditional probability that Y ∗

i [c/4 + 1..3c/4] =
Y ∗

j [c/4 + 1..3c/4] (for j < i) is at most 2c/2/2c−1 = 21−c/2. We have

Pr[Bad1] ≤
p∑

i=1

i− 1
2c/2−1 = 0.5p(p− 1)

2c/2−1 ≤ p(p− 1)
2c/2 .

Now we consider Bad2. For the i-th backward entry is (Xi, Yi), given Yi and all prior
queries/answers before the i-th query, Xi is uniformly distributed over a set of at least
2c − p ≥ 2c−1 values, and thus the conditional probability that X∗

i [1..c/4] = X∗
j [1..c/4]

(for j < i) is at most 23c/4/2c−1 = 21−c/4. We have

Pr[Bad2] ≤ 2p

2c/4 .
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Together, we have

Pr[Bad] ≤ p(p− 1)
2c/2 + 2p

2c/4 . (4)

From Lemma 1 by setting m = τ and s = 2, we obtain

AdvColl
pDM(B) ≤ p(p− 1)

2τ
, (5)

assuming p ≤ 2n−1. The theorem is proven by combining Equations (4) and (5).

8 Conclusions and Future Work
We have studied the key committing security of encode-then-encipher schemes built on
wide block ciphers. Taking three well-known schemes as our targets, we have shown several
new results, both from the attack and the provable security sides.

Admittedly, our analysis is not comprehensive, in particular for the provable security
side. The missing cases are left as future work. One reason for this is while conducting
our research, we realized that a small detail that has little impact on the standard model
security can significantly impact the key committing security. This can greatly increase the
difficulty of analysis from both the attack and the proof sides. For example, our CMT-1
attack against Adiantum with 0n appending can be greatly sped up if we replace the
modular additions of the NH hash function with simple XORs. Such a function would still
be a universal hash, but it now allows a very efficient attack. Therefore, it is impossible to
prove the key committing security of Adiantum with 0n appending up to birthday bound
using only the fact that NH is a universal hash function. Conversely, HCTR2 uses XCTR
which cannot be idealized as a PRF unlike in Adiantum where our proof idealizes XChaCha
as a PRF. Indeed, HCTR2 produces a counter N for XCTR based on the same block cipher
as XCTR itself. Thus, the adversary can manipulate and control N setting the same input
to the block cipher and forcing it to repeat even if the block cipher itself is idealized. That
is why we judged that it is challenging to prove birthday-bound security. In other words,
proving key committing security can be difficult for schemes that are not designed for that
purpose. Nonetheless, we think our research will give insights and help further analysis of
the key committing security of EtE schemes and WBCs.
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A Proof of Lemma 1
An adversary has oracle access to the underlying permutation π. It can make forward
and inverse queries to its oracles, and the queries are stored in a query history τ . For
the i-th query of the adversary, if it is a forward query Y ← π(X) then we store an
entry (i, X, Y, +). Otherwise, if it is a backward query X ← π−1(Y ), then we store a
corresponding entry (i, X, Y,−). In this work, we consider information-theoretic adversaries,
which have unbounded computational power.

Let S be the collection of ordered subsets I = (r1, . . . , rs) in {1, . . . , p}, with r1 <
· · · < rs. For I = (r1, . . . , rs) with (ri, Xi, Yi, ∗) as the corresponding entry of the ri-th
queries in the transcript, let Bad(I) be the event that

(Y1 +32 X1)[1..m] = · · · = (Ys +32 Xs)[1..m].

Let

Bad =
⋃

I∈S

Bad(I).

It is easy to see that if Bad does not happen, then A cannot produce an s-way multi-
collision. Suppose that Bad indeed does not happen. Let (X1, . . . , Xs) be the output of
A. For each Xi, there must be a corresponding entry (ri, Xi, Yi, ∗) in the transcript (since
Yi is uniquely determined by Xi and vice-versa). Without loss of generality, assume that
r1 < · · · < rs, and let I = (r1, . . . , rs). Then (X1, . . . , Xs) is an s-way multi-collision if
and only if Bad(I) happens. As Bad does not happen, the adversary does not create an
s-way multi-collision. Hence, we have

AdvColl
pDM,s(A) ≤ Pr[Bad(I)].

Bounding the Chance of Bad. We have the following claim.

Claim. For each I ∈ S,

Pr[Bad(I)] ≤ 2s−1

2(s−1)m
.

Proof of the claim. Fix I = (r1, . . . , rs) ∈ S, and let (ri, Xi, Yi, ∗) be the corresponding
entry of the ri-th queries in the transcript. Fix i ∈ {2, . . . , s}. We consider the following
cases.

• The ri-th entry is (ri, Xi, Yi, +). Then, given Xi and all prior queries/answers before
the ri-th query, Yi is uniformly distributed over a set of at least 2n−p ≥ 2n−1 values,
and thus the conditional probability that (Y1 +32 X1)[1..m] = · · · = (Ys +32 Xs)[1..m]
is at most 2n−m/2n−1 = 21−m.

• The ri-th entry is (ri, Xi, Yi,−). Then, given Yi and all prior queries/answers before
the ri-th query, Xi is uniformly distributed over a set of at least 2n−p ≥ 2n−1 values,
and thus the conditional probability that (Y1 +32 X1)[1..m] = · · · = (Ys +32 Xs)[1..m]
is at most 2n−m/2n−1 = 21−m.

Multiplying these conditional probabilities for all i ∈ {2, . . . , s}, we obtain

Pr[Bad(I)] ≤ 2(s−1)(1−m).
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By the union bound, we have

Pr[Bad] = Pr[
⋃

I∈S

Bad(I)],

≤
∑
I∈S

Pr[Bad(I)] ≤
(

p

s

)
2s−1

2(s−1)m
=
(

p

s

)
2(1−m)(s−1).

B More Detailed Specification of AEZ
B.1 Pseudocode
The pseudocode of AEZ enciphering and deciphering algorithms is described in Algs. 1, 2,
and 3. We omit the pseudocode of the AEZ-tiny enciphering, AEZ-tiny deciphering, and
BLAKE2b algorithms because these are out of scope in our analysis.

B.2 Notation
Symbols and Strings. The following symbols and strings are used in the pseudocode:

|X| : The length of a string X.
ϵ : An empty string, i.e., |ϵ| = 0.

A ∥ B : The concatenation of strings A and B.
Xn : A string X repeated n times, e.g., 03 = 000 and (01)2 = 0101.

0 : 0128.
X0∗ : X0p with p the smallest number such that 128 divides |X|+ p.

X[i..j] : X[i] · · ·X[j], where X[i] is the ith bit of X and msb(X) = 1.
[n]t : A t-bit string representing n mod 2t.
⌈x⌉ : Mapping x to the least integer greater than or equal to x.
K : Key, |K| ≥ 128 is recommended, the default is |K| = 384.
N : Nonce, |N | ≤ 128 is recommended.
A : Associated data, which is regarded as a one-element vector.
τ : Tag length, |τ | = 8 · abytes.

abytes : An authenticator length, the default is 16.
T : Tweak, which encodes N , A, and abytes.

M : Plaintext, M1M ′
1 · · ·MmM ′

mMuvMxMy ←M ,
where |M1| = · · · |M ′

m| = |Mx| = |My| = 128 and |Mvu| < 256.
C : Ciphertext, C1C ′

1 · · ·CmC ′
mCuvCxCy ← C,

where |C1| = · · · |C ′
m| = |Cx| = |Cy| = 128 and |Cvu| < 256.

Multiplication. N means a non-negative integer, i.e., N = {0, 1, 2, . . . }. A 128-bit string
X is denoted as x1 · · ·x128; then, X ≪ 1 = x2 · · ·x1280. For n ∈ N and X ∈ {0, 1}128,
a multiplication n ·X is defined by asserting that 0 ·X = 0, 1 ·X = X, 2 ·X = (X ≪
1)⊕ [135 · msb1(X)]128, 2n ·X = (2 · (n ·X)), and (2n + 1) ·X = (2n ·X)⊕X.

AES4 and AES10. For X, K ∈ {0, 1}128, aesenc(X, K) is defined as a single round
of AES, i.e., it permutes X by performing SubBytes, ShiftRows, MixColumns, and then
AddRoundKey with K. For k = (K0, K1, K2, K3, K4), AES4k(X) is defined as

aesenc(aesenc(aesenc(aesenc(X ⊕K0, K1), K2), K3), K4).



484 Key Committing Security of AEZ and More

For K = (K0, K1, . . . , K10), AES10K(X) is defined in the same manner as AES4k(X).
Note that AES4 and AES10 contain MixColumns in the last round, unlike the original AES.

Others. See [HKR17] for more details.

Algorithm 1 AEZ enciphering routines
1: procedure Encrypt(K, N, A, τ, M) ▷ AEZ authenticated encryption
2: X ←M ∥ 0τ ; (A1, . . . , Aa)← A
3: T ← ([τ ]128, N, A1, . . . , Aa)
4: if M = ϵ then
5: return AEZ-prf(K, T , τ)
6: return Encipher(K, T , X)

1: procedure Encipher(K, T , X) ▷ AEZ enciphering
2: if |X| < 256 then
3: return Encipher-AEZ-tiny(K, T , X)
4: if |X| ≥ 256 then
5: return Encipher-AEZ-core(K, T , X)

1: procedure Encipher-AEZ-core(K, T , M) ▷ AEZ-core enciphering
2: ∆← AEZ-hash(K, T )
3: M1M ′

1 · · ·MmM ′
mMuvMxMy ←M ; d← |Muv|

4: if d ≤ 127 then
5: Mu ←Muv; Mv ← ϵ
6: else
7: Mu ←Muv[1..128]; Mv ←Muv[129..|Muv|]
8: for i← 1 to m do
9: Wi ←Mi ⊕ E1,i

K (M ′
i); Xi ←M ′

i ⊕ E0,0
K (Wi)

10: if d = 0 then
11: X ← X1 ⊕ · · · ⊕Xm ⊕ 0
12: else if d ≤ 127 then
13: X ← X1 ⊕ · · · ⊕Xm ⊕ E0,4

K (Mu10∗)
14: else
15: X ← X1 ⊕ · · · ⊕Xm ⊕ E0,4

K (Mu)⊕ E0,5
K (Mv10∗)

16: Sx ←Mx ⊕∆⊕X ⊕ E0,1
K (My); Sy ←My ⊕ E−1,1

K (Sx); S ← Sx ⊕ Sy

17: for i← 1 to m do
18: S′ ← E2,i

K (S); Yi ←Wi ⊕ S′; Zi ← Xi ⊕ S′

19: C ′
i ← Yi ⊕ E0,0

K (Zi); Ci ← Zi ⊕ E1,i
K (C ′

i)
20: if d = 0 then
21: Cu ← Cv ← ϵ; Y ← Y1 ⊕ · · · ⊕ Ym ⊕ 0
22: else if d ≤ 127 then
23: Cu ←Mu ⊕ E−1,4

K (S); Cv ← ϵ; Y ← Y1 ⊕ · · · ⊕ Ym ⊕ E0,4
K (Cu10∗)

24: else
25: Cu ←Mu ⊕ E−1,4

K (S); Cv ← E−1,5
K (S)

26: Y ← Y1 ⊕ · · · ⊕ Ym ⊕ E0,4
K (Cu)⊕ E0,5

K (Cv10∗)
27: Cy ← Sx ⊕ E−1,2

K (Sy); Cx ← Sy ⊕∆⊕ Y ⊕ E0,2
K (Cy)

28: return C1C ′
1 · · ·CmC ′

mCuvCxCy
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Algorithm 2 AEZ deciphering routines
1: procedure Decrypt(K, N, A, τ, C) ▷ AEZ authenticated decryption
2: (A1, . . . , Aa)← A; T ← ([τ ]128, N, A1, . . . , Aa)
3: if |C| < τ then
4: return ⊥
5: if |C| = τ then
6: if C = AEZ-prf(K, T , τ) then
7: return ϵ
8: else
9: return ⊥

10: X ← Decipher(K, T , C)
11: M ∥ Z ← X where |Z| = τ
12: if Z = 0τ then
13: return M
14: else
15: return ⊥

1: procedure Decipher(K, T , C) ▷ AEZ deciphering
2: if |C| < 256 then
3: return Decipher-AEZ-tiny(K, T , C)
4: if |C| ≥ 256 then
5: return Decipher-AEZ-core(K, T , C)

1: procedure Decipher-AEZ-core(K, T , C) ▷ AEZ-core deciphering
2: ∆← AEZ-hash(K, T )
3: C1C ′

1 · · ·CmC ′
mCuvCxCy ← C; d← |Cuv|

4: if d ≤ 127 then
5: Cu ← Cuv; Cv ← ϵ
6: else
7: Cu ← Cuv[1..128]; Cv ← Cuv[129..|Cuv|]
8: for i← 1 to m do
9: Wi ← Ci ⊕ E1,i

K (C ′
i); Yi ← C ′

i ⊕ E0,0
K (Wi)

10: if d = 0 then
11: Y ← Y1 ⊕ · · · ⊕ Ym ⊕ 0
12: else if d ≤ 127 then
13: Y ← Y1 ⊕ · · · ⊕ Ym ⊕ E0,4

K (Cu10∗)
14: else
15: Y ← Y1 ⊕ · · · ⊕ Ym ⊕ E0,4

K (Cu)⊕ E0,5
K (Cv10∗)

16: Sx ← Cx ⊕∆⊕ Y ⊕ E0,2
K (Cy); Sy ← Cy ⊕ E−1,2

K (Sx); S ← Sx ⊕ Sy

17: for i← 1 to m do
18: S′ ← E2,i

K (S); Xi ←Wi ⊕ S′; Zi ← Yi ⊕ S′

19: M ′
i ← Xi ⊕ E0,0

K (Zi); Mi ← Zi ⊕ E1,i
K (M ′

i)
20: if d = 0 then
21: Mu ←Mv ← ϵ; X ← X1 ⊕ · · · ⊕Xm ⊕ 0
22: else if d ≤ 127 then
23: Mu ← Cu ⊕ E−1,4

K (S); Mv ← ϵ; X ← X1 ⊕ · · · ⊕Xm ⊕ E0,4
K (Mu10∗)

24: else
25: Mu ← Cu ⊕ E−1,4

K (S); Mv ← E−1,5
K (S)

26: X ← X1 ⊕ · · · ⊕Xm ⊕ E0,4
K (Mu)⊕ E0,5

K (Mv10∗)
27: My ← Sx ⊕ E−1,1

K (Sy); Mx ← Sy ⊕∆⊕X ⊕ E0,1
K (My)

28: return M1M ′
1 · · ·MmM ′

mMuvMxMy
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Algorithm 3 AEZ’s hash, PRF, TBC, and key-derivation algorithms
1: procedure AEZ-hash(K, T ) ▷ Atmost XOR universal hash
2: (T1, . . . , Tt)← T
3: for i← 1 to t do
4: ℓ← max(1, ⌈|Ti|/128⌉); j ← i + 2
5: Z1 · · ·Zℓ ← Ti where |Z1| = · · · = |Zℓ−1| = 128
6: if |Zℓ| = 128 then
7: ∆i ← Ej,1

K (Z1)⊕ · · · ⊕ Ej,ℓ
K (Zℓ)

8: if |Zℓ| < 128 then
9: ∆i ← Ej,1

K (Z1)⊕ · · · ⊕ Ej,ℓ−1
K (Zℓ−1)⊕ Ej,ℓ

K (Zℓ10∗)
10: return ∆1 ⊕ · · · ⊕∆t ⊕ 0

1: procedure AEZ-prf(K, T , τ) ▷ PRF used when M = ϵ
2: ∆← AEZ-hash(K, T )
3: return (E−1,3

K (∆) ∥ E−1,3
K (∆⊕ [1]128) ∥ E−1,3

K (∆⊕ [2]128) ∥ · · · )[1..τ ]

1: procedure Ej,i
K (X) ▷ Scalled-down TBC

2: I ∥ J ∥ L← Extract(K)
3: K ← (0, I, J, L, I, J, L, I, J, L, I); k← (0, J, I, L, 0)
4: if j = −1 then
5: ∆← i · L
6: return AES10K(X ⊕∆)
7: ∆← j · J ⊕ 2⌈i/8⌉ · I ⊕ (i mod 8) · L
8: return AES4k(X ⊕∆)

1: procedure Extract(K) ▷ Key-derivation function
2: if |K| = 384 then
3: return K
4: else
5: return BLAKE2b(K)

C Example of Different Keys Enciphering to the Same
Ciphertexts

We provide two data sets containing a key, a nonce, a vector of additional data and a
plaintext that will produce the same ciphertext when enciphering with AEZ where τ = 128.

[ Common Ciphertext ]
e79c7ff859956834ae3fc030089a688cec2b3982873599ac0cfc8d057276d6e9
5cc71d5d72c23eeddbb27fcfe9357ba795b2f393e7ef14ecae553923d4e6304c

[ First Data ]
key:

03378c1350f6417f30bcd233d04a41ef
55314b2cb7b7fa1d5d0fb626e7bd893f
b1f649e86148f99bc50ef46154ee4fee

nonce: ec96b26c88627a1a7d2ec67203e3af5c
AD: [

05, 05, 05, 05, 4c, 4c, 4c, 4c, 4c, 05, 4c, 05, 05, 05, 4c, 4c, 4c,
4c, 05, 4c, 4c, 4c, 05, 05, 4c, 4c, 05, 4c, 4c, 05, 05, 4c, 05, 05,
4c, 4c, 05, 05, 4c, 4c, 05, 05, 05, 4c, 4c, 05, 4c, 4c, 05, 05, 4c,
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4c, 4c, 4c, 4c, 05, 4c, 4c, 05, 4c, 4c, 05, 4c, 4c, 05, 4c, 05, 05,
05, 05, 4c, 05, 4c, 05, 05, 05, 05, 05, 4c, 05, 4c, 4c, 4c, 4c, 4c,
4c, 05, 4c, 05, 4c, 4c, 4c, 05, 05, 05, 05, 05, 05, 05, 05, 4c, 05,
4c, 4c, 4c, 4c, 4c, 4c, 05, 4c, 4c, 4c, 05, 05, 4c, 05, 05, 05, 05,
05, 05, 05, 4c, 4c, 4c, 05, 05, 05

]
plaintext:

f4f20e8cce629a4685837f7d52bb35c4cffeac9f90b6d589
d725fce1daa1fdc86ee2ed059d0b87422fe704040e2d0d17

[ Second Data ]
key:

2b23982f50f6417f30bcd233d04a41ef
55314b2cb7b7fa1d5d0fb626e7bd893f
b0f649e86148f99bc50ef46154ee4fee

nonce: 7905db71fc712d6eb65e15a32b1b6ee5
AD: [

4c, 4c, 05, 4c, 4c, 4c, 05, 4c, 4c, 05, 4c, 4c, 05, 05, 05, 4c, 05,
05, 05, 4c, 05, 4c, 05, 05, 4c, 4c, 4c, 05, 05, 05, 05, 05, 05, 4c,
4c, 05, 4c, 4c, 05, 4c, 4c, 05, 05, 4c, 05, 05, 4c, 05, 4c, 05, 4c,
05, 05, 4c, 05, 4c, 4c, 05, 05, 4c, 05, 4c, 4c, 05, 05, 05, 4c, 4c,
4c, 05, 4c, 05, 05, 05, 4c, 4c, 4c, 4c, 4c, 4c, 05, 05, 4c, 05, 05,
05, 05, 05, 4c, 4c, 4c, 4c, 4c, 05, 05, 4c, 4c, 4c, 4c, 4c, 4c, 4c,
05, 4c, 4c, 4c, 4c, 4c, 05, 05, 4c, 05, 05, 4c, 05, 05, 05, 4c, 05,
05, 05, 05, 4c, 4c, 05, 05, 05, 4c

]
plaintext:

40256d76012001a6623635a4cec61500a4e3d498aa0947cf
8aae7bf5f683814643773e6d6696003f56f43245e0376835

}

D Repeated 4-tree algorithm
We here show an algorithm and complexity of the 4-tree attack shown in Sect. 3.3 when
we do not have enough samples for X̂1, Ŷ2, X̂′

1, and Ŷ′
2. We set 2n/3 < τ < n and

|LX1 | = |LY2 | = |LX′
1
| = |LY′

2
| = 2n−τ . The algorithm is as follows.

1. Creating a list LX1Y2 which contains all pairs of ⟨X̂1, Ŷ2⟩ satisfying X̂1 ∈ LX1 ,
Ŷ2 ∈ LY2 , and msbn−τ (X̂1) = msbn−τ (Ŷ2). We also create LX′

1Y′
2

in the same way.

2. Find ⟨X̂1, Ŷ2⟩ ∈ LX1Y2 and ⟨X̂′
1, Ŷ′

2⟩ ∈ LX′
1Y′

2
such that lsbτ (X̂1 ⊕ Ŷ2) = lsbτ (X̂′

1 ⊕
Ŷ′

2). If we can find such a pair, the tuple of (X̂1, Ŷ2, X̂′
1, Ŷ′

2) satisfies X̂1⊕ Ŷ2⊕ X̂′
1⊕

Ŷ′
2 = 0n, we terminate this algorithm.

3. If we fail in the previous step, we resample X̂1, Ŷ2, X̂′
1, and Ŷ′

2 and create new four
lists that are independent of previous lists. Then, we go back to step one.

Next, we evaluate the complexity of the above algorithm. The way to evaluate is almost
the same as that of the original 4-tree algorithm [Wag02]. We would like to note that the
list values are not truly random since they are permutation outputs. However, we can
assume that they are uniformly random since the distinguishing probability between them
and random values is O(2n/2), and we are interested in only the case where the complexity
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of the algorithm is up to O(2n/2). The complexity of step one can be evaluated as O(2n−τ )
due to |LX1 | = |LY2 | = |LX′

1
| = |LY′

2
| = 2n−τ and their randomness5 Also, we can expect

|LX1Y2 | would be |LX1 | × |LY2 |/2n−τ = 2n−τ , and also |LX′
1Y′

2
| has expected size 2n−τ .

Thus, the complexity of step two can be evaluated as O(2n−τ ). The probability that we
can find the desired tuple (X̂1, Ŷ2, X̂′

1, Ŷ′
2) in step two is |LX1Y2 | × |LX1Y2 |/2τ = 22n−3τ .

We can expect to terminate the algorithm in step two by repeating the above steps 23τ−2n

times. Thus, the required complexity of whole steps is O(2n−τ ) × 23τ−2n = O(22τ−n),
which includes query complexities for (re-)sampling X̂1, Ŷ2, X̂′

1, and Ŷ′
2.

5The complexity becomes Õ(2n−τ ) = O(2n−τ log(2n−τ )) using a simple sort algorithm. However, it is
well-known that the complexity is reduced to O(2n−τ ) when the elements of the lists are random [Knu98].
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