

Committing Security of ASCON: Cryptanalysis on Primitive and Proof on Mode

Yusuke Naito Yu Sasaki

Takeshi Sugawara

Mitsubishi Electric Corporation NTT Social Informatics Laboratories NIST Associate The University of Electro-Communications

03/25/2024 FSE2024@Leuven

Summary

We study the context committing (CMT-4) security of ASCON.

Known Fact: Security upper-bound of AEAD with a *t*-bit tag is $\frac{t}{2}$ bits.

Our Mode Results

- We prove $\frac{t}{2}$ bits of CMT-4 security of ASCON. (best achievable)
- By adding *z*-bits of zeros to the message (ASCON-zp), provable CMT-4 security increases $\min\{\frac{t+z}{2}, \frac{n+t-k-\nu}{2}, \frac{c}{2}\}$, where *n* is permutation size, *k* is key size, *v* is nonce size, *c* is capacity; $\min\{64 + \frac{z}{2}, 96\}$ for ASCON.

Our Primitive Results

We practically break CMT-4 security of ASCON up to 3 rounds of ASCONpermutation, which is 1 round longer than the existing collision attacks.

Authenticated Encryption with Associated Data VTT (2)

- Security of AE is well studied. Schemes usually come with security proofs with formal security notions.
- However, AE schemes are sometimes misused or abused beyond their promise.

Key Commitment

- Key-committing security used to be discussed in the context of PKC.
- Farshim et al. proposed the theoretical framework of the symmetric-key counterpart of the key-committing security: In AEAD, any ciphertext should be decrypted only with the key that is used to generate it.
- Without key commitment, an attacker can efficiently find a ciphertext decrypted with multiple keys:

 $\Pi_{Enc}(K, N, A, M) = \Pi_{Enc}(K', N', A', M') \text{ with } K \neq K'$

- Conventional AE security notions do not support the key commitment.
- *O*(1) attacks exist in GCM, GCM-SIV, CCM, ChaCha20-Poly1305.

Context Commitment

In 2022, Bellare-Hoang introduced generalization of key commitment called "context commitment."

- **Key commitment (CMT-1)**: *K* is different but no limit on *N*, *A*. $\Pi_{\text{Enc}}(K, N, A, M) = \Pi_{\text{Enc}}(K', N', A', M') \text{ with } K \neq K'.$
- Context commitment (CMT-4): different values can be located in any of K, N, A, M.

 $\Pi_{\text{Enc}}(K, N, A, M) = \Pi_{\text{Enc}}(K', N', A', M') \text{ with } (K, N, A, M) \neq (K', N', A', M')$

CMT-4 guarantees more robust security than CMT-1. AE with CMT-4 security is an ongoing research challenge.

ASCON

- **ASCON**: The winner of NIST lightweight crypto competition.
- Duplex-like mode (ASCON mode) with a dedicated permutation (ASCON permutation)
 - 3 schemes in ASCON family: ASCON-128, ASCON-128a, ASCON-80pq
- NIST is standardizing ASCON and real-world systems will migrate to ASCON in near future.

Our Interest

- How strong is ASCON with respect to committing security?
- Can we improve CMT-4 security of ASCON with a slight change?

Generic Attacks on CMT-4

- Consider AEAD s.t. the decryption function computes a *t*-bit tag *T*' from decryption context (*K*, *N*, *A*, *C*) and verifies its correctness by matching it with the received *T*.
 - Generic attack complexity of CMT-4 security, i.e. complexity to generate $\Pi_{\text{Enc}}(K, N, A, M) = \Pi_{\text{Enc}}(K', N, A', M')$ is $2^{\frac{t}{2}}$.
- Fix C to a constant. Compute a tag for $2^{\frac{t}{2}}$ choices of (K, N, A) and find a collision of the tag.
- For ASCON, t = 128. CMT-4 security of ASCON is at most 64 bits.

Towards Higher CMT-4 Security

• CMT4 is **offline security**; typically *k*-bit security is required for a *k*-bit key due to exhaustive search. 64-bit security is too small.

Previous work on enhancing CMT-x security

- Appending zero bits to M (zero-padding)
 - Proposed to improve CMT-1 security rather than CMT-4
 - Ciphertext size increases, higher load in bandwith

• Combining collision-resistant hash H (eg HtE, CTX, KIVR).

- Need extra primitive
- Security is bounded by the output of *H*.
- It may break black-box access to the underlying AEAD.

We consider zero-padding to improve ASCON's CMT-4 security.

Existing Results on Duplex AEAD

Figure 1: Duplex Construction [BDPV11]. P is a (r + c)-bit permutation.

- Duplex AEAD easily achieves the committing security because its security is reducible to the indifferentiability of the sponge construction [BDPV08].
- The output can be seen as that from a random oracle (RO) up to c/2 bits.
- For example, Dodis et al. proposed a concrete duplex-based scheme that satisfies the key-committing security [DGRW18].

Unique Features in ASCON Mode

ASCON mode is similar to duplex, yet has **several important differences**.

- Initial state is chosen such that the inner part is controlled.
- Tag is generated from the inner part.
- Key, chosen by the attacker in CMT-4, is added to the inner part.
- **Proof for duplex does not work.** A new proof is required.

Very Brief Proof Intuition

At the first glance,

- 1. (k + v)-bits of the initial state is controllable.
- 2. r bits of the outer part and t bits of the inner part are observable.

These might degrade the security to $\frac{n - \max\{k + \nu, r + t\}}{2}$ bits. However,

- 1. The key masking serves as the feed-forward and prevents security degradation.
- 2. Use of two permutations P_1 and P_2 prevents from observing r and t bits simultaneously.

In the end, when z bits of zeros are padded to M, we can prove $\min\{\frac{t+z}{2}, \frac{n+t-k-\nu}{2}, \frac{c}{2}\}$ bits of CMT-4 security of ASCON with z-bit zero-padding.

Implication with ASCON's Parameters

- Our bound min $\{\frac{t+z}{2}, \frac{n+t-k-\nu}{2}, \frac{c}{2}\}$ with ASCON's parameters offer min $\{64 + \frac{z}{2}, 96\}$.
 - Original ASCON (z = 0) ensures 64-bit CMT-4 security.
 - Zero-padding increases the security by a factor of $\frac{z}{2}$ up to 96 bits ($z \le 64$).

- The bound is tight as long as $z \le 64$.

- There are boundaries of increasing the number of primitive calls due to the zero padding.
- We can avoid having additional primitive calls for several messages lengths, for example, the last message block is partial by the zero-padding length *z*.

Cryptanalysis Approaches (Mode Level)

For primitive analysis, the goal is to find two distinct (K, N, A, M) that collide on (C, T) with a smaller cost than the generic attack, i.e. 2^{64} .

Two possible approaches

1. Fix (K, N, M). Inject difference from A_i and cancel it with A_{i+1} .

2. Fix (K, M). Inject difference from N and cancel it with A_1 .

Existing Results that can Break CMT4 Security NTT

For cryptanalysis on primitive, the goal is to find two distinct (K, N, A, M) that collides on (C, T) with a smaller cost than the generic attack, i.e. 2^{64} .

No existing work aiming at CMT4, but collision and forgery attacks with approach 1 may work.

- 2-round collision with complexity 2^{62.6} [YLW+23] can attack CMT-4.
- 3-round forgery [GPY21] may work if differential trail with prob 2^{-117} can be satisfied with $< 2^{64}$ cost by using the knowledge of *K*.

Collision with $< 2^{64}$ cost is already a big challenge even for 3 rounds. We adopt approach 2, which has not been investigated in previous work.

Analytic Techniques (Primitive Level)

- We searched for differential trail using **MILP** and practically generated 2 distinct contexts resulting in the same ciphertext.
- MILP model for ASCON-permutation is too heavy in general.
- The most effective effort is divide-and-conquer approach.
 - For some round, we only allowed 2 active rows.
 - Try (5 choose 2) = 10 patterns.
 - Limit runtime to several hours. If effective trail exists, the solver stops quickly.

Generated Colliding Contexts for ASCON-128 NTT (2)

Table 7: An Example of Paired Values for 3-Round Ascon-128.

	Value 1	Value 2	Difference	
$IV_{k,r,a,b}$	80400c060000000	80400c060000000	000000000000000000000000000000000000000	No difference in IV and key
$K_{\rm MSB}$	2164995204d2b154	2164995204d2b154	000000000000000000000000000000000000000	
$K_{\rm LSB}$	21408952161a8984	21408952161a8984	000000000000000000000000000000000000000	
$N_{\rm MSB}$	8040043400204008	a1009d660470d14c	2140995204509144	
$N_{\rm LSB}$	0470021110020000	25309f4314529144	21409d5204509144	
	51e48a98919f2c82	51e48a98919f2c82	000000000000000000000000000000000000000	
	efbdf90bc9751bbb	efbdcd2bcb358b93	0000342002409028	
After $1R$	79f1b4b6785bf32f	79f1b4b6785bf32f	000000000000000000000000000000000000000	
	b261490a843943c3	b261490a843943c3	000000000000000000000000000000000000000	
	aeb407337089aef5	aeb4331372c13edd	0000342002489028	
	9d6061940da22156	9d6061940da22156	000000000000000000000000000000000000000	
	08d70052ebfab2bb	48d60452f9f6a29b	40010400120c1020	
After $2R$	ae20f09b6d80208f	ae20f09b6d80208f	000000000000000000000000000000000000000	
	39aa88b8440203ca	39aa88b8440203ca	000000000000000000000000000000000000000	
	7cbea6bfd0266b48	3cbfa2bfc22a7b68	40010400120c1020	
	a50d1f38a255a0d4	47c9113c90c9f2b4	e2c40e04329c5260	Difference in the 64-bit
	67cc3c30332574dc	67cc3c30332574dc	000000000000000000000000000000000000000	outor part
After $3R$	f7e64d0ddad70381	f7e64d0ddad70381	000000000000000000000000000000000000000	
(Output)	ca05427803f501e0	ca05427803f501e0	000000000000000000000000000000000000000	
	20542b670894ef04	20542b670894ef04	000000000000000000000000000000000000000	

Conclusion

We study the context committing (CMT-4) security of ASCON.

Our Mode Results

- We prove min $\{\frac{t+z}{2}, \frac{n+t-k-\nu}{2}, \frac{c}{2}\}$ bits of CMT-4 security of ASCON-zp.
- With ASCON's parameters, the security is $min{64 + \frac{z}{2}, 96}$ bits.

Our Primitive Results

• Practical collision-type attacks on 3 rounds by using ΔN .

Target	\mathbf{Type}	Round	Complexity	Ref.
Ascon-128, Ascon-80pq	CMT- 3	2	$2^{62.6}$	$[\mathrm{YLW}^+23]$
Ascon-128a	CMT- 3	3	$2^{117\dagger}$	[GPT21]
Ascon-128, Ascon- 80 pq	CMT- 3	3	$2^{48\ddagger}$	This Work
Ascon-128a	CMT- 3	3	$2^{36\ddagger}$	This Work