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Tweakable Block Cipher (TBC)
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• Tweak t bring variability to BC & publicly controlled.

• For each (k ,t), m 7→ Ẽ (k ,t,m) is a permutation.
• Wide range of applications:

• AEs [LRW11; Rog04; PS16],
• MACs [Nai15; Iwa+17; CLS17; GLN19; CLL22],
• Other security goals [Min09; RZ11; JN18; BLN18].
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Designing TBC

• Two ways of designing TBCs:
• From a block cipher (in black box) → could be non efficient or BB secure.
• From lower level primitive - permutations

• In our work we concentrate on designing it from permutations.
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TWEAKEY Framework - Jean et al. [JNP14]

TWEAKEY Scheduling Algorithm

P = s0 f s1
. . . f sr

sr+1 = C

tk0 h

g

h

g

tk1 . . . h

g

tkr−1

g

tkr

• Tweak and key is seen as unified (tweakey) and the schedule is linear.

• High level design follows Tweakable Even-Mansour.

• No provable security analysis.
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Tweakable Even Mansour

x P1 P2
. . . Pr y

h0(k, t) h1(k , t) hr−1(k, t) hr (k , t)

TEM: P1, . . . ,Pr and k are random and independent.

• r even & h XOR universal → TEM construction [CLS15] (secure up to 2(r/(r+2))n

queries).

• r = 4 & h linear → TEML construction [CS15] (secure up to 22n/3 queries).

• Drawbacks: deviates from TWEAKEY framework (r > 4) & no support for large tweaks.
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Our Contributions

1. TEM with 2r rounds (2r -TEML) αn-bit tweak where the schedule follows a property
(α-bijective) is IND-CCA secure up to 2((r−α)/r)n queries (using the coupling technique).

2. TEM with rn-bit key (tweakey) and r -bijective key schedule in the chosen key model:
• for r + 2 rounds → there is an attack,
• for r + 3 rounds we prove the security.
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r -TEML with Tweak and Key Mixing

x P1 P2
. . . Pr y

γ0(k, t) γ1(k , t) γr−1(k, t) γr (k, t)

TEMγ : P1, . . . ,Pr and k are random and independent.

• We require γ = (γ0, . . . , γr ) to all be linear.

• For r = 4 rounds, n-bit tweak and 2n-bit key → TEML construction [CS15].

• We want to minimize r for αn-bit tweak, can we have r ≤ α?

• Write γi (k, t) = λi (k)⊕ δi (t).

• If r ≤ α & simple counting reasoning → collision attack.

• Is the condition r > α enough for security?
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s-Bijective Tweakey Schedules

• For 2n-bit tweak and any r , choose δi (t1, t2) = t1, δr (t1, t2) = t2 for i ≤ r − 1 → similar
attack.

• Jean et al. [JNP14] had similar observation → they require one-to-one relation between
(k, t) to subsets of tweakey (γi (k , t) : i ∈ I ).

Definition (s-bijectivity)

A s-bijective schedule γ := (γ0, . . . , γr ) is a tuple of r ≥ s linear functions
γi : {0, 1}sn → {0, 1}n such that for any contiguous s-subtuple, γ′ = (γi , . . . , γi+s−1) of γ, the
mapping

(k , t) 7→ (γi (k , t), . . . , γi+s−1(k , t))

is a bijection.
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r -TEML Construction

x P1 P2
. . . Pr y

γ0(k, t) γ1(k , t) γr−1(k, t) γr (k, t)

r -TEML: P1, . . . ,Pr and k are random and independent.

• For random and independent K = (k0, . . . , kr ) - define γi (t) = ki ⊕ δi (t).

• We prove that for r > α, any α-bijective tweak schedule δ, it achieves IND-CCA security

up to O(N
r−2α

r ), where N = 2n.
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High-Level Proof

Following the proofs of [LS14; CLS15]:

• Step 1: Divide the computation to two parts,

2r -TEMLδ,Pk (t, x) =
(
r -TEMLδ

2P2
k2

)−1 (
t, r -TEMLδ

1,P1

k1
(t, x)⊕ δr ′(t)

)
.

• Step 2: Upper bound ||µt,x,QP
− µ∗

t || where

µt,x,QP
∼ TEMLPk (t, x) : P ⊢ QP , µ∗

t ∼ Ut.

• Step 3: Simplify:

||µt,x,QP
− µ∗

t || ≤
qc−1∑
l=0

||νl+1 − νl ||

where νl = (t1, x1), . . . , (tl , xl), (tl+1, zl+1), . . . , (tqc ,zqc )

• Main Goal: for l ∈ [0, qc ] upper bound ||νl+1 − νl || - hybrid distances.
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Proof Of Hybrid-Distances - Coupling

νl+1 ∼ x1i P1 P2
. . . Pr x ri

k0⊕δ0(t) k1⊕δ1(t) kr−1⊕δr−1(t) kr⊕δr (t)

νl ∼: z1i P ′
1 P ′

2
. . . P ′

r z ri

k ′
0⊕δ0(t) k ′

1⊕δ1(t) k ′
r−1⊕δr−1(t) k ′

r⊕δr (t)

We want to couple: P ′
j (z

j
i ⊕ k ′j ⊕δj(t)) := Pj(x

j
i ⊕ kj ⊕ δj(t)).
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Proof Of Hybrid-Distances - Coupling

• It is enough to consider queries i ≤ l + 1.

• From the coupling technique we get,

||νl+1 − νl || ≤ Pr(z rj ̸= x ri : j ≤ l + 1) ≤ Pr(z rl+1 ̸= x rl+1)

• The novelty of our approach lies in how to upper bound Pr(z rl+1 ̸= x rl+1) - coupling failure
event.
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Proof Of Hybrid-Distances - Coupling Failure

x1i P1 P2
. . . Pry

x ri

k0⊕δ0(ti ) k1⊕δ1(ti ) kr−1⊕δr−1(ti ) kr⊕δr (ti )

x1l+1 P1 P ′
2∈ U2

. . . Pry
x rl+1

k0 ⊕ δ0(tl+1) k1 ⊕ δ1(tl+1) kr−1 ⊕ δr−1(t) kr ⊕ δr (tl)

YPj = (y jl+1 ∈ Uj) resp. WPj (primitive collision with prob. ≤ qp/N),

YYj =
(
∃i ∈ [1, r ] : y jl+1 = y ji

)
resp. WWj (internal collision).
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Proof Of Hybrid-Distances - Internal Collision

• There exists i : y jl+1 = y ji → x j−1
l+1 ⊕ x j−1

i = h(ti , tl+1, kj).

• In previous constructions,

h(ti , tl+1, kj) = Hkj (ti )⊕Hkj (tl+1)

where Hkj is AXU → h(ti , tl+1, kj) ̸= 0 with very high probability.

• In our construction the key cancels out so,

h(ti , tl+1, kj) = δj(ti ⊕ tl+1).
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Proof Of Hybrid-Distances - Internal Collision

. . . Pj−1 Pjy

kj−1⊕δj−1(ti ) kj⊕δj(ti )

. . . Pj−1 Pjy

kj−1 ⊕ δj−1(tl+1) kj ⊕ δj(tl+1)

• δj(ti ⊕ tl+1) = 0 → cannot bound! (because of α-bijectivity happens ≤ α− 1).

• Otherwise, if inputs of Pj−1 are not fresh → look at rounds j ′ < j .
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Proof Of Hybrid-Distances - Activity Pattern

• Previous works consider the failure at each round independently.

• In our work, we can consider the full event of failing at some round together.

• The rest of the proof can be completed by analyzing each sub-event + probability chain
rule.
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Example: Partial Chain Probability Computation

y jl+1 y j−1
l+1

. . . y j
′+1

l+1 y j
′

l+1

qp/N qp/N qp/N

y ji y j−1
i

. . . y j
′+1

i y j
′

i

1 1 1 2/N

WLOG: y j
′

l+1 ∈ Uj and y j
′

i /∈ Uj .

• y sl+1 = x s−1
l+1 ⊕ ks ⊕δs(tl+1) ∈ Uj - randomness over the key ks .

• Pj ′(y
j ′

l+1)⊕ Pj ′(y
j ′

i ) = x j
′

l+1 ⊕ x j
′

i = δj ′+1(tl+1 ⊕ ti ). - randomness over permutation Pj ′ .

• Probability ≤ (2qp/N)s where s is the chain length.
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Conclusions

• For 2r rounds and αn-bit tweak we achieve IND-CCA security up to 2((r−α)/r)n queries.

• Coupling is not tight → We conjecture the same security can be achieved for less rounds.

• Activity pattern/Chains idea can maybe be deployed for other security proofs.

• In chosen key setting → r + 3 rounds are sufficient and necessary for TEML with rn-bit
key (tweakey) and r -bijective key (tweakey) schedule.
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End

Thank You!
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