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Abstract. In this paper, we provide the first analysis of the Iterated Tweakable
Even-Mansour cipher with linear tweak and key (or tweakey) mixing, henceforth
referred as TEML, for an arbitrary tweak(ey) size kn for all k ≥ 1, and arbitrary
number of rounds r ≥ 2. Note that TEML captures the high-level design paradigm
of most of the existing tweakable block ciphers (TBCs), including SKINNY, Deoxys,
TweGIFT, TweAES etc. from a provable security point of view. At ASIACRYPT 2015,
Cogliati and Seurin initiated the study of TEML by showing that 4-round TEML
with a 2n-bit uniform at random key, and n-bit tweak is secure up to 22n/3 queries.
In this work, we extend this line of research in two directions. First, we propose a
necessary and sufficient class of linear tweakey schedules to absorb mn-bit tweak(ey)
material in a minimal number of rounds, for all m ≥ 1. Second, we give a rigorous
provable security treatment for r-round TEML, for all r ≥ 2. In particular, we first
show that the 2r-round TEML with a (2r + 1)n-bit key, αn-bit tweak, and a special
class of tweakey schedule is IND-CCA secure up to O(2

r−α
r

n) queries. Our proof
crucially relies on the use of the coupling technique to upper-bound the statistical
distance of the outputs of TEML cipher from the uniform distribution. Our main
technical contribution is a novel approach for computing the probability of failure
in coupling, which could be of independent interest for deriving tighter bounds in
coupling-based security proofs. Next, we shift our focus to the chosen-key setting,
and show that (r + 3)-round TEML, with rn bits of tweakey material and a special
class of tweakey schedule, offers some form of resistance to chosen-key attacks. We
prove this by showing that r + 3 rounds of TEML are both necessary and sufficient
for sequential indifferentiability. As a consequence of our results, we provide a sound
provable security footing for the TWEAKEY framework, a high level design rationale
of popular TBC.
Keywords: TEM · indifferentiability · indistinguishability · coupling

1 Introduction
Tweakable Block Ciphers (or TBCs in short) are symmetric-key cryptographic
primitives that, in addition to the usual secret key of a standard block cipher, take an
additional public indexing input, called tweak. In a seminal work [LRW11], Liskov et al.
formalized the concept of a TBC, Ẽ : K × T ×M→M, as a family of permutations on
the plaintext/ciphertext space M, and indexed by two parameters: the secret key K ∈ K
and the public tweak T ∈ T .

Owing to their versatility, tweakable block ciphers have a broad range of applicability,
most notably in authenticated encryption schemes [LRW11, Rog04, PS16], and message
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authentication codes [Nai15, IMPS17, CLS17, GLN19, CLL22]. Apart from these, TBCs
have also been employed to achieve other symmetric-key security goals, e.g., [Min09, RZ11,
JN18, BLN18].

Historically, TBCs were mostly constructed on top of a block cipher. Indeed, there is a
plethora of block cipher-based TBC constructions, such as LRW1 and LRW2 by Liskov et
al. [LRW11], Rogaway’s XEX [Rog04] and its future refinements [CS08, Min06, GJMN16],
F̃[1] and F̃[2] by Mennink [Men15a, Men15b], and XHX by Jha et al. [JLM+17] etc. Several
other constructions [LST12, LS13b, BGGS20, Men18, JN20, LL18] employed a cascade of
previously mentioned constructions to obtain a higher security guarantee.

All the aforementioned constructions are based on block ciphers. However, there also
exist constructions that are based on public random permutation. In [CLS15], Cogliati,
Lampe and Seurin introduced the Tweakable Even-Mansour (TEM) construction and its
cascaded variant. They showed that, as long as the round subkeys are derived from the
tweak using keyed hash functions, the two round construction is secure up to roughly 22n/3

queries. They also proved that the 2r-round construction is secure up to 2rn/(r+1) queries.
Later, Cogliati and Seurin [CS15a] proved that the 4-round tweakable Even-Mansour with
a linear tweak and key (tweakey) mixing, also called TEML, is secure up to 22n/3 queries.
Dutta [Dut20] proved a similar result with a smaller number of independent permutations.

TWEAKEY and the Advent of Dedicated Design Strategies: In [JNP14], Jean
et al. introduced a new dedicated design strategy for TBC designs. This completely
revolutionized the design landscape of concrete TBCs. Most notably, they proposed the
Superposition TWEAKEY (STK)1 construction which is derived from the key-alternating
cipher. Specifically, they proposed using p words of unified tweak and key (that they dubbed
a tweakey), from which round tweakeys are extracted and xored between application of
AES-like rounds. Between rounds, the nibbles of the p tweakey words are shuffled, and then
each c-bit cell of the j-th bit tweakey word is multiplied by a constant αj in GF(2c). Round
tweakeys are then simply computed by XORing all the p-words of the tweakey. Critically,
the tweakey schedule is a linear function of the key and the tweak. This framework
has been the basis of most recent TBCs such as Deoxys-BC [JNP14], Joltik-BC [JNP14],
Kiasu-BC [JNP14], and Skinny [BJK+16]. The success of the TWEAKEY framework also
motivated new design frameworks for more specialized usage, such as the Elastic-Tweak
framework [CDJ+21] for TBCs with small tweak size like TweAES and TweGIFT.

While the rationale behind the TWEAKEY framework has been extensively tested
through the cryptanalysis of various proposals, it has seen little theoretical analysis.
Notably, it is well-known that the high-level design of STK largely follows the Tweakable
Even-Mansour construction. However, the only work that provides an asymptotically tight
bound for TEM requires the use of almost-universal hash functions. A typical tweak and
key mixing of this type would be the multiplication of the key and the tweak in GF(2n),
where n denotes the block size. This deviates significantly from the STK construction and
presents obvious performance drawbacks. The only works dealing with linear tweak and
key mixing currently only consider 4-round constructions. In addition, while STK allows
for large-tweak values in design, there is no suitable theoretical model for analyzing TEML
with tweak size larger than n bits. Given the recent push [NI19, BGIM19, CJPS22] from
the community towards leveraging large tweak size, it is necessary to come up with a sound
theoretical mechanism for it. The main goal of the paper is to study the TEML construction
for arbitrary number of rounds and possibly large tweak size. This allows us to give a
theoretically sound argument in favor of the resistance of STK-based TBCs against generic
attacks in the indistinguishability setup, where the goal is to show indistinguishability

1STK corresponds to a class of tweakey schedules.
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from a secret tweakable random permutation assuming a uniform at random and secret
key.

Chosen-Key Model and Sequential Indifferentiability: In practice, how-
ever, (tweakable) block ciphers are often employed in the known-key and chosen-key
[KR07, BKN09] attack models, where the adversary either knows the random key or, in
an even more stronger setting, can instantiate the block cipher with its choice of key at
each invocation. Knudsen and Rijmen [KR07] suggested correlation intractability [CGH98]
notion due to Canetti et al. as a possible theoretical formalization to capture the KKA
and CKA models. In [MPS12], Mandal et al. introduced the notion of sequential indiffer-
entiability which directly implies and, since then, is the go to method to prove collision
intractability. Note that, sequential indifferentiability is a weaker variant of the classical
indifferentiability notion by Maurer et al. [MRH04], where the adversary is compelled to
make all the simulator (res. internal primitive) queries before it can make any ideal cipher
(res. construction) queries.

The indifferentiability of Even-Mansour ciphers has been an active area of research with
a series of papers proving both indifferentiability [ABD+13, LS13a, DSST17, GL16] and
its sequential counterpart [CS15b, CS16, XDG22]. Interestingly though all these works,
either consider a trivial key schedule, where the round keys are the same as the master
key, and hence the master key size is same as the permutation input size, say n, or employ
independent random oracles to derive the round keys from the master key. This makes
it difficult to employ these results directly to TWEAKEY based block ciphers where the
tweakey size is usually bigger than the block size and the tweakey schedule is, in general,
linear. So, it would be interesting to see how these changes affect the security in the
indifferentiability setting. In this paper, we take the first step by studying the sequential
indifferentiability of TWEAKEY block ciphers with arbitrary key size and a special class of
linear key scheduling.

1.1 Our Contributions
Our contributions are twofold.

I. In section 3, using the well-known coupling technique, we show that a 2r-round
Tweakable Even-Mansour cipher with αn-bit tweak, and weak α-bijective tweak
schedule (see Definition 3.2), is secure up to 2 r−α

r n chosen plaintext and chosen ci-
phertext queries, under the assumption that the round permutations are independent
public random permutation and round keys are chosen independently and uniformly
at random.

Our proof extends the proof strategy used in [LS14, CLS15], and introduces, what we
call, the activity patterns — a succinct string representation of the coupling failure
event (see section 4). Basic coupling proofs proceed iteratively by upper-bounding,
for each round, the probability to get various collision events using the randomness
of the round key. This simple approach can fail if collision events can span several
rounds. Looking ahead briefly, a collision between two inputs of the j-th round
permutation for the TEML construction with n-bit tweak gives rise to an equation of
the form xj

i ⊕ ti = xj
i′ ⊕ ti′ , where the key has been eliminated. This forces us to

consider the inputs to the previous round permutation, which may both be involved
in another collision, and so on (possibly) down to the first round. In order to solve
this issue, we introduce the idea of activity patterns: instead of considering each
round individually, we consider the succession of collision events throughout the
full evaluation of the construction, and sum over all possible choices. Our main
contribution is to give a fine-grained analysis of the r-TEML construction.
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Table 1.1: Comparison of sequential indifferentiablity results on TEML. The column Complex.
indicates the simulator query/time complexity.

Rounds Primitives Key Size Complex. Bounds Ref.

4 4 n O(q2) O
(

q4

N

)
[CS15b]

4 2 n O(q2) O
(

q4

N

)
[XDG22]

r + 3 r + 3 rn O
(
qr+1)

O
(

q2r+2

N

)
Sec. 6

II. In section 6 we prove the sequential indifferentiability of (Tweakable) Even-Mansour
cipher with rn-bit key (or tweakey) and any weak r-bijective key schedule. Specifically,
we show an attack on r + 2 rounds and prove the security for r + 3 rounds, thereby
establishing the necessary and sufficient number of rounds for security in sequential
indifferentiability setting. Note that our result directly implies the security of
(r + 3)-round (Tweakable) Even-Mansour against chosen key attacks.
Note that, both [XDG22] and this paper build over [CS15b]. In fact, our result can
be seen as a generalization of [XDG22], for larger key (key size ≥ rn-bit for r ≥ 1)
and typical linear TWEAKEY schedules. Table 1.1 gives a comparison of the three
results.

A Note on Our Choice of Proof Technique: We employ the coupling tech-
nique [Ald83] to establish the IND-CCA bound. One can argue that the H-coefficients
technique [Pat08] might have the potential to derive very tight security bound, as has
been demonstrated [CS14] in the case of key alternating ciphers. However, we note that,
in the tight security analysis of key alternating ciphers for an arbitrary number of rounds,
the main technical step is actually a combinatorial result (see [CS14, Lemma 1]) that
gives a very sharp lower bound on the number of permutations that can realize a given
transcript. Indeed, all the existing tight security analyses of key alternating cipher, be
it [CS14] or a subsequent work by Hoang and Tessaro [HT16], employ this key result. Its
proof utilizes two crucial observations. Firstly, the secret round keys or masks (which
are independent of the queries) can be simply subsumed within the permutation calls.
Second, and somewhat more importantly, there are no internal input (corresponding to
the internal permutation calls) collisions between any two distinct queries. These two
facts together help in deriving a conditional lower bound for the current query based on
the lower bound for the previous queries. Unfortunately, in the case of TEM, unless the
tweak is a constant (equivalent to a key alternating cipher), these two observations no
longer apply. First, the secret round masks are tweak-dependent, and thus, depend on
adversarial queries. Second, for two distinct tweaks, there can be internal input collisions.
As a result, the previous combinatorial result is not applicable directly, and as of now, it
seems hard to extend when there are multiple tweaks in play, even for a very small tweak
space. Indeed, coming up with a similar result for even AXU hash-based tweakey schedule,
let alone the linear tweakey schedule, seems technically challenging. On the other hand,
there is no existing analysis for TEML with arbitrary number of rounds and arbitrary tweak
sizes. It is our firm belief that such analyses (even with a loose security bound) could
shed some light on the provable security of the high level design strategy of the popular
TWEAKEY framework. Given the apparent need for such an excursion, the technical
challenges in reusing/extending the existing results on key alternating ciphers, and inspired
by the pragmatic approach from [LS14, CLS15], we employ the coupling technique to
derive probably a non-tight yet meaningful security bound for arbitrary number of rounds
and arbitrary tweak size. We also note that, apart from giving some security guarantee for
arbitrary number of rounds, the coupling-based analysis is also useful in getting a good
indication on what could be the tight security bound. This could serve as a motivation
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and a plausible target bound for future endeavors in this direction.

2 Preliminaries
General Notations. Let N denote the set of all positive integers, and N0 := N ∪ {0}.
For i ≤ j ∈ N0, Ji, jK denotes the set {i, . . . , j}. For n ≥ k ∈ N0, the falling factorial is
defined as (n)k := n(n− 1)...(n− k + 1). For a finite set X , we write x←$ X to denote
the uniform at random draw of x from X .

Alphabet and String. An alphabet Γ is a finite non-empty set of symbols. For any
alphabet Γ, Γ∗ denotes the set of all strings over Γ, including the empty string. For any
string x ∈ Γ∗, |x| = r, denotes the length of x, where x = x1 · · ·xr and xi ∈ Γ for all
i ∈ J1, rK. For any two strings, x, y ∈ Γ∗, the concatenation of x and y is denoted by xy.
We say that string x is a prefix of string y, denoted x ⊆ y, if a string z exists such that
xz = y and that x is a proper prefix of y, denoted x ⊂ y if x ̸= y. For s ∈ N, xs denotes
the string x · · ·x of length s for some symbol x ∈ Γ, and Γs denotes the set of all strings
over Γ of length s.

(Tweakable) Block Cipher. A block cipher with key space {0, 1}κ and message
space {0, 1}n is a mapping E : {0, 1}κ × {0, 1}n → {0, 1}n such that for any k ∈ {0, 1}κ,
m 7→ E(k, m) is a permutation of {0, 1}n. For n ∈ N, BC(κ, n) denotes the set of all block
ciphers with key space {0, 1}κ and message space {0, 1}n, and P(n) denotes the set of all
permutations of {0, 1}n.

A tweakable block cipher with key space {0, 1}κ, tweak space {0, 1}τ and message
space {0, 1}n is a mapping Ẽ : {0, 1}κ × {0, 1}τ × {0, 1}n → {0, 1}n such that for any
k ∈ {0, 1}κ and any tweak t ∈ {0, 1}τ , m 7→ E(k, t, m) is a permutation of {0, 1}n.
B̃C(κ, τ, n) denotes the set of all tweakable block ciphers with key space {0, 1}κ, tweak
space {0, 1}τ and message space {0, 1}n. Similarly, we denote by P̃(τ, n) the set of all
tweakable permutations with tweak space {0, 1}τ and message space {0, 1}n, i.e. the set
of all functions P : {0, 1}τ × {0, 1}n −→ {0, 1}n such that, for all t ∈ {0, 1}τ , P (t, ·) is a
permutation of {0, 1}n.

Throughout, we fix κ, τ , and n as the key size, tweak size and block size, respectively.
We also write N := 2n. In addition, we often use the term tweakey to refer to key and
tweak input in a combined manner.

Oracle and Adversary. An oracle O is simply an interface to some function. An
adversary, A is an interactive Turing machine (or an algorithm) that interacts with a given
set of oracles in a black box fashion and returns a bit output at the end of the interaction.
For an oracle O, AO denotes the output of A after its interaction with O. AO± denotes
that A has bidirectional access to O, i.e., oracle O and its inverse. In this paper, we
assume that the adversary is non-trivial, i.e., it never makes a duplicate query, and it never
makes a query for which the response is already known due to some previous query.

2.1 IND-CCA Security Under the Random Permutation Model
Let Ẽ : {0, 1}κ×{0, 1}τ×{0, 1}n → {0, 1}n be a tweakable block cipher that is constructed
over a tuple of independent and uniform random permutations P = (P1, . . . , Pr), denoted
by ẼP, where each Pi←$ P(n).
The IND-CCA game describes the goal of an adversary A to distinguish between two pairs
of oracles using adaptive bidirectional queries:

• the real world oracle, where A can make adaptive bidirectional queries to (ẼP
k , P);

and
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• the ideal world oracle (Π̃, P), where Π̃←$ P̃(τ, n) independent from P.

After issuing all its queries and obtaining the corresponding responses, A outputs a single
bit of response.

Definition 2.1. Let qc, qp ∈ N, and ε ∈ [0, 1] be some security parameters. A tweakable
block cipher ẼP is said to be (qc, qp, ε)-IND-CCA secure if

Advind-cca
ẼP (qc, qp) := max

A∈A(qc,qp)

∣∣∣Pr
[
AẼP

k ,P = 1
]
− Pr

[
AΠ̃,P = 1

]∣∣∣ ≤ ε, (1)

where A(qc, qp) denotes the set of all adversaries that make at most qc queries to the left
oracle, and at most qp queries to P, and the probabilities are taken over the uniformly
random and independent choices of k, P, and Π̃.

2.2 Sequential Indifferentiability and Chosen-Key Security
Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a block cipher that is constructed over a tuple of
independent and uniform random permutations P = (P1, . . . , Pr), denoted by EP, where
each Pi←$ P(n).
The indifferentiability game describes the goal of an adversary A to distinguish between
two pairs of oracles using adaptive bidirectional queries:

• the real world oracle, (EP
k , P), where EP

k and P are sometimes referred as the left
and right oracle, respectively; and

• the ideal world oracle, (Π̃, Sim), where Π̃←$ P̃(τ, n) (the left oracle), and Sim (the
right oracle) is an oracle Turing machine, referred as the simulator, with bidirectional
oracle access to Π̃.

Let A be an adversary accessing a pair of oracles that we denote generically as (C,P). A
is said to be sequential if after its first query to its left oracle C, it does not query its right
oracle P. Hence, such an adversary works in two phases: first it queries only P, and then
only C. We define the total oracle query cost of A as the total number of queries received
by the right oracle (from A or C) when A interacts with (CP ,P). In particular, if C makes
c queries to P to answer any query it receives, and if A makes qc queries to its left oracle
and qp queries to its right oracle, then the total oracle query cost is at most qp + cqc.

Definition 2.2. Let q, σ, T ∈ N and 0 < ε ∈ R be some security parameters. A block
cipher EP is said to be (q, σ, T, ε)-sequential indifferentiable from an ideal cipher if there
exists an oracle simulator Sim such that

Advseq-indiff(q, σ, T) := max
A∈A(q)

∣∣∣∣Pr
[
AΠ̃,Sim̃Π

= 1
]
− Pr

[
AEP,P = 1

]∣∣∣∣ ≤ ε, (2)

where A(q) denote the set of all adversaries that make at most q queries. Here, Sim makes
at most σ oracle queries, and runs in time at most T.

Sequential Indifferentiability to Chosen-Key Security. While it is well-
known [CGH98] that a rigorous definition of chosen-key security is impossible in the
standard model, the idealized models help us avoid classical impossibility results. This is
done using the notion of evasive relations.

Definition 2.3. An m-ary relation R is said to be (q, ε)-evasive with respect to an ideal
cipher Π̃ if for any oracle Turing machine M making at most q oracle queries, one has

Pr
[
Π̃←$ P̃(κ, n), (αi)i∈J1,mK ←MΠ̃ : (αi, Π̃(αi))i∈J1,mK ∈ R

]
≤ ε.
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Informally, a relation is evasive if it is hard, for any algorithm with oracle access to
an ideal cipher, to output an m-tuple of inputs (αi)i∈J1,mK such that (αi, Π̃(αi))i∈J1,mK
satisfies the relation.

A similar notion can be defined through correlation intractability, when we consider a
block cipher EP constructed over a tuple of random permutations P.

Definition 2.4. Let EP be a block cipher construction over a tuple of independent and
uniform random permutations P, and let R be an m-ary relation. EP is said to be
(q, ε)-correlation intractable with respect to R if, for any Turing machine M with oracle
access to P making at most q oracle queries, one has

Pr
[
P←$ (P(n))r

, (αi)i∈J1,mK ←MP : (αi, EP(αi))i∈J1,mK ∈ R
]
≤ ε.

We will deem a block cipher construction EP resistant to chosen-key attacks if, for every
relation R that is (q, ε)-evasive with respect to an ideal cipher, EP is (q′, ε′)-correlation
intractable with respect to R, with q′ ≈ q and ε′ ≈ ε. The link between correlation
intractability and sequential indifferentiability comes from the following result based
on [MPS12, Theorem 3].

Theorem 2.1. [CS15b, Theorem 4] Let EP be a block cipher constructed over a tuple of
independent and uniform random permutations P such that EP makes at most c queries
to P on any input. Assume that EP is (q + cm, σ,T, εSI)-sequential indifferentiable from
an ideal cipher. Then, for any m-ary relation R, if R is (σ + m, εR)-evasive with respect
to an ideal cipher, then EP is (q, εSI + εR)-correlation intractable with respect to R.

Theorem 2.1 clearly implies that proving the sequential indifferentiability of EP is
sufficient to justify some form of resistance to chosen-key attacks.

2.3 Statistical Distance and the Coupling Technique
Let Ω be a finite event space and two probability distributions µ and ν are defined on
Ω. The statistical distance (or total variation) between µ and ν, denoted by ∥µ− ν∥, is
defined as:

∥µ− ν∥ := 1
2

∑
x∈Ω
|µ(x)− ν(x)| .

The following formulations can be easily verified to be equivalent:

∥µ− ν∥ = max
S⊂Ω
{µ(S)− ν(S)} = max

S⊂Ω
{ν(S)− µ(S)}

It is easy to verify that the statistical distance satisfies the symmetry and triangle inequality.
Moreover, it is always lying between zero and one. It is one if and only if the support2 of
the probability distributions are disjoint and zero if and only if the distributions are the
same.

A coupling of µ and ν is a distribution λ on Ω×Ω such that for all x ∈ Ω,
∑

y∈Ω λ(x, y) =
µ(x) and for all y ∈ Ω,

∑
x∈Ω λ(x, y) = ν(y). In other words, λ is a joint distribution

whose marginal distributions are resp. µ and ν. The following lemma is the main technical
ingredient of the well-known coupling technique [Ald83]. A proof of this lemma is available
in [LPS12], and restated here for completeness.

Lemma 2.1 (Coupling Lemma). Let µ and ν be probability distributions on a finite event
space Ω. Let λ be a coupling of µ and ν, and let (X, Y ) ∼ λ (i.e. (X,Y) is a random
variable sampled according to distribution λ). Then ∥µ− ν∥ ≤ Pr [X ̸= Y ].

2The set of all elements having positive probability.



Benoît Cogliati, Jordan Ethan, Ashwin Jha and Soumya Kanti Saha 337

Proof. Let λ be the coupling of µ and ν, and (X, Y ) ∼ λ. By definition, we have that for
any z ∈ Ω, λ(z, z) ≤ min {µ(z), ν(z)}. Moreover, Pr [X = Y ] =

∑
z∈Ω λ(z, z). Hence we

have:
Pr [X = Y ] ≤

∑
z∈Ω

min {µ(z), ν(z)} .

Therefore:

Pr [X ̸= Y ] ≥ 1−
∑
z∈Ω

min {µ(z), ν(z)}

=
∑
z∈Ω

(µ(z)−min {µ(z)− ν(z)})

=
∑
z∈Ω

µ(z)≥ν(z)

(µ(z)− ν(z))

= max
S⊂Ω
{µ(S)− ν(S)}

= ∥µ− ν∥ .

3 TEML: TEM with Linear Tweak-Key Mixing
Throughout, we fix r ∈ N as the number of rounds. In addition, we set η = αn, κ = βn,
and define θ := α + β.
Iterated Tweakable Even-Mansour. The r-round Tweakable Even-Mansour cipher
is built on a tuple of r permutations P = (P1, . . . , Pr) of {0, 1}n and a tuple of (r + 1)
functions γ = (γ0, . . . , γr) from {0, 1}θn → {0, 1}n. It takes as input an θn-bit tweakey
(k, t) and an n-bit block x, and outputs

TEMγ,P
k,t (x) = Pr (Pr−1 (· · ·P1 (x⊕ γ0(k, t)) · · · )⊕ γr−1(k, t))⊕ γr(k, t), (3)

The tuple γ is referred to as the tweakey schedule of the construction. When clear from
the context, we will sometimes drop γ and P from the notation.

3.1 The TEML Construction
In [CS15a], Cogliati and Seurin provided the first result on Tweakable Even-Mansour
with linear tweak and key mixing, henceforth referred as TEML. They proved beyond-the-
birthday bound security for a 4-round TEM with 2n-bit key and n-bit tweak., i.e., α = 1
and β = 2.

In this paper, our goal is to generalize TEML for all r ≥ 1 and α ≥ 1, i.e., we also
consider tweaks larger than n bits. This is particularly the case for several TBCs based on
the TWEAKEY framework. For instance, Skinny-128-384 can be used with 128-bit block
and key size and 256-bit tweak size.

When γ is linear, then there exists a tuple of linear functions λ = (λ0, . . . , λr) and
δ = (δ0, . . . , δr), such that for all i ∈ J0, rK

γi(k, t) = λi(k)⊕ δi(t) (4)

In other words, we can always view the key and tweak scheduling as separate linear
functions, whenever the tweakey schedule is linear. We refer to λ and δ as the key and
tweak schedule corresponding the tweakey schedule γ, respectively.

Ideally, one would want a minimal increase in the number of rounds on account of a
larger tweak, to obtain similar security bounds as in the case of α = 1. From (3), it is
clear that an r-round TEM construction uses r + 1 round tweakeys. So, r must be at least



338 On Large Tweaks in TEM with Linear Tweak and Key Mixing

α− 1, otherwise, it is easy to see that the adversary can choose two distinct tweaks t and
t′, such that δi(t) = δi(t′) for all i ∈ J0, rK, resulting in a simple collision distinguisher.
The case where α − 1 ≤ r ≤ α does not fare well either. Specifically, the adversary can
always choose distinct tweaks and block input pairs (t, x) and (t′, x′) such that t ̸= t′,
δ0(t) ⊕ x = δ0(t′) ⊕ x′, and δi(t) = δi(t′) for all i ∈ J1, r − 1K (since r − 1 ≤ α). Clearly,
the XOR of the outputs corresponding to (t, x) and (t′, x′) equals δr(t)⊕ δr(t′).

The above discussion clearly shows that r = α + 1 rounds are necessary to securely
absorb an η-bit tweak using a linear tweak schedule, where η = αn denotes the tweak
size in bits. However, just having r > α rounds is not sufficient for security. Indeed, one
can come up with some pathological linear tweak(ey) schedule that makes the resulting
construction completely insecure. For instance, assume α = 2, and let δi(t1, t2) = t1 for
all i ∈ J0, r − 1K and δr(t1, t2) = t2. This tweak schedule is obviously insecure irrespective
of the number of rounds. So, some care has to be taken while deciding on a tweak(ey)
schedule.

In fact, similar concerns were raised in the core discussion behind the rationale of the
STK construction in [JNP14]. Indeed, their main observation requires a one-to-one relation
between the input tweakey (k, t) and any θ-subset of the (r + 1) round tweakeys. Formally,
we introduce the following definitions.

Definition 3.1 (Strong s-bijectivity). Let s ∈ N. A strong s-bijective schedule γ :=
(γ0, . . . , γr) is a tuple of r ≥ s linear functions γi : {0, 1}sn → {0, 1}n such that for any
s-subtuple, γ′ = (γi1 , . . . , γis

) of γ, the mapping

(k, t) 7→ (γi1(k, t), . . . , γis(k, t))

is a bijection.

Definition 3.2 (Weak s-bijectivity). Let s ∈ N. A weak s-bijective schedule γ :=
(γ0, . . . , γr) is a tuple of r ≥ s linear functions γi : {0, 1}sn → {0, 1}n such that for any
contiguous s-subtuple, γ′ = (γi, . . . , γi+s−1) of γ, the mapping

(k, t) 7→ (γi(k, t), . . . , γi+s−1(k, t))

is a bijection.

It is obvious to see that strong s-bijectivity implies weak s-bijectivity. However, the
converse may not be true. By definition, a strong s-bijective schedule cannot collide on
more than (s− 1) round tweakeys for any two distinct tweaks. On the contrary, a weak
s-bijective schedule only requires at least one distinct round tweakey for every consecutive
s rounds. In the following results, we show that weak s-bijectivity of the public3 part of
the tweak(ey) schedule is sufficient for desired security with minimal number of rounds. In
particular, we will not employ the strong bijectivity property in this paper.

3.2 IND-CCA Security of TEML
In the indistinguishability framework, the underlying key is secret. Additionally, it is quite
common to consider independent and uniform at random keys at each round. We will also
employ this assumption.

More specifically, we assume that the key is an (r + 1) tuple k = (k0, . . . , kr), where
ki←$ {0, 1}n, and ki is independent of kj , for all i ̸= j ∈ J0, rK. In addition, we take
λi(k) = ki, i.e., we ignore the key schedule λ, and simply XOR the i-th component of k as
the i-th round key. The following result establishes the IND-CCA security of r-TEML for
any r ≥ 2.

3In the indistinguishability setting, this is the tweak part of the tweakey, whereas in the indifferentiability
setting the entire tweakey is controlled by the adversary.
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Theorem 3.1 (IND-CCA Security). Let r ≥ α + 1 be an even integer and r′ = r/2. Let
qc, qp, qmax be positive integers such that qmax = max {qc, qp} and qc + qp < N/2. Then,
for any weak α-bijective tweak schedule δ, we have

Advind-cca
r-TEMLδ,P(qc, qp) ≤

√√√√24+3r′qc

(
2qmax

N

)⌈ r′
α ⌉−1

.

For odd r ≥ 3, we have:

Advind-cca
r-TEMLδ,P(qc, qp) ≤ Advind-cca

(r−1)-TEMLδ,P(qc, qp).

More concretely, r-TEML achieves IND-CCA security up to O(N r−2α
r ) queries. Note that,

we can use the bound of Theorem 3.1 for both r and r − 1 (if r is odd). Hence, in the
following, we always assume that r is even.

3.3 Sequential Indifferentiability of TEML
In the sequential indifferentiability setting, we are concerned with resistance against chosen-
key attacks. In this case, since the adversary will always be allowed to choose its own keys,
there will be functionally no difference between the tweak and key bits. In other words,
the full tweakey is public and controlled by the adversary. Consequently, we will need
weak bijectivity property for the entire tweakey input. In the following results we take the
tweakey size to be rn bits.

We provide two results in this direction. We start off with a simple attack (see
Lemma 3.1) on (r +2)-TEML with a r-bijective tweakey schedule δ. This clearly establishes
that r + 3 rounds are necessary for security.

Lemma 3.1 (Seq. Indiff. Attack on r + 2 Rounds). For any efficient simulator Sim
making at most σ oracle queries to the ideal cipher Π, there exists a sequential distinguisher
D with at most 2r + 6 total query cost such that:∣∣∣Pr

[
DΠ,SimΠ

= 1
]
− Pr

[
DTEMLδ,P,P = 1

]∣∣∣ ≥ 1− 1
N − 1 −

q′4

2N
,

where q′ = 2r + σ + 6 is the total calls to Π from D and Sim combined.

The proof of this lemma mostly follows the strategy used in a similar attack on
Even-Mansour cipher [CS15a]. For completeness, we provide the proof in section 5.

Next, in Theorem 3.2, we show that r + 3 rounds are also sufficient for sequential indiffer-
entiability.

Theorem 3.2 (Sequential Indifferentiability). Let q, σ, t ∈ N, ε ∈ [0, 1]. Suppose qr+1 ≤
N/4. Then, the (r+3)-round TEML construction with a weak r-bijective tweakey schedule γ
is (q, σ, T, ε)-sequentially indifferentiable from an ideal cipher, where σ = qr+1, T = O(qr+1),
and

Advseq-indiff
r-TEMLγ,P(q, σ, T) ≤ ε =

(
(r + 5)2 + 32

)
q2r+2

N
.

4 Proof of IND-CCA Security of TEML
Fix a computationally unbounded and deterministic adversary A that maximizes the
advantage. Let T = {0, 1}η. Given a tuple t = (t1, . . . , tqc) ∈ T qc , we will write
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Ωt ⊂ ({0, 1}n)qc to denote the set of all possible inputs x = (x1, . . . , xqc
) ∈ ({0, 1}n)qc

such that all pairs (ti, xi) are pairwise distinct, i.e.,

Ωt := {x := (x1, . . . , xqc
) ∈ ({0, 1}n)qc : ∀i ̸= j, (xi, ti) ̸= (xj , tj)}.

Query Transcript. The interaction of A with its oracles can be summarized in a
query transcript (QC ,QP1 , . . . ,QPr ) of the attack. Here QC records the queries to the
construction oracle which contains all triples (t, x, y) ∈ T × {0, 1}n × {0, 1}n such that A
either made the direct query (t, x) to the construction oracle and received answer y, or made
the inverse query (t, y) and received answer x. Similarly, for each i ∈ J1, rK, QPi

contains
the queries to the round permutation Pi in the form of pairs (u, v) ∈ {0, 1}n × {0, 1}n

such that A either made the direct query u to permutation Pi and received answer v,
or made the inverse query v and received answer u. Note that the queries are recorded
in a directionless and unordered fashion, but by our assumption that A is deterministic,
there is a one-to-one mapping between this representation and the raw transcript of the
interaction of A with oracles (see [CS14][CLS15] for more details). Also, note that by our
assumption A never makes pointless queries. So, each query to the construction oracle
results in a distinct triple in QC , and each query to Pi results in a distinct pair in QPi

, so
that |QC | = qc and |QPi | = qp for each i ∈ J1, rK since we assume that A always makes the
maximal number of allowed queries to each oracle. Let m denote the number of distinct
tweaks appearing in QC , and qi the number of queries for the i-th tweak, 1 ≤ i ≤ m, using
an arbitrary ordering of tweaks. Note that m may depend on the answer received from
the oracles, yet we have

∑m
i=1 qi = qc.

Let τ ′ = (QC ,QP1 , . . . ,QPr
) be the resulting transcript. We say that τ ′ is attainable

(with respect to some fixed adversary A) if the probability to realize τ ′ in an interaction of A
with (Π̃, P) (the ideal world) is non-zero. Let Θ denote the set of all attainable transcripts.
We denote by µre (resp. µid), the probability distribution of the transcript induced in the
real world (resp. the ideal world). Note that these two probability distributions depend on
the adversary. By a slight abuse of notations, we reuse the same notations to denote the
random variables distributed according to these distributions.

Given a permutation queries transcript Q and a permutation P , P ⊢ Q (referred
as P extends Q) denotes the event P (u) = v for all (u, v) ∈ Q. By extension, given a
tuple of permutation queries transcript QP = (QP1 , . . . ,QPr

) and a tuple of permutations
P = (P1, . . . , Pr), P ⊢ QP (referred as P extends QP) denotes the event ∧r

i=1(Pi ⊢ QPi
).

Note that for a permutation transcript of size qp, we have:

Pr [P ←$ P(n) : P ⊢ Q] = 1
(N)qp

.

Also, it follows from the above fact that

Pr [P←$ (P(n))r : P ⊢ QP] = 1(
(N)qp

)r ,

as the permutations P = (P1, . . . , Pr′) are uniformly random and independent.
Similarly, given a tweakable permutation transcript Q̃ and a tweakable permutation

P̃ , we say that P̃ ⊢ Q̃, if P̃ (t, x) = y for all (t, x, y) ∈ Q̃. For a tweakable permutation
transcript Q̃ with m distinct tweaks and qi queries corresponding to the i-th tweak, we
have:

Pr
[
P̃ ←$ P̃(η, n) : P̃ ⊢ Q̃

]
=

m∏
i=1

1
(N)qi

.

So, the probability of getting any attainable transcript τ ′ = (QC ,QP) in the ideal
world is

Pr [µid = τ ′] =
(

1
(N)qp

)r

×
m∏

i=1

1
(N)qi

.
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In the real world, the probability to obtain τ ′ is

Pr [µre = τ ′] =
(

1
(N)qp

)r

× p(τ ′),

where p(τ ′) := Pr
[
P←$ (P(n))r : TEMLP

k ⊢ QC | P ⊢ QP

]
.

Proof Overview. Let us fix an IND-CCA-distinguisher A against the r-TEML construction.
We start by recalling the H-coefficient technique [Pat08].

Lemma 4.1. [Pat08, CS14] Let Θ = Θgood ⊔Θbad be a partition of the set of attainable
transcripts. Assume that there exists ε ≥ 0 such that, for any τ ′ ∈ Θgood, one has

Pr [µre = τ ′]
Pr [µid = τ ′] ≥ 1− ε.

Then
AdvIND-CCA

r′-TEML(A) ≤ Pr [µid ∈ Θbad] + ε.

Our goal is to apply Lemma 4.1 with Θbad = ∅. In order to do so, we have to lower
bound the ratio of the probabilities of observing any given attainable transcript in both
the worlds. We start by dividing the r-TEML construction into two r′-TEML constructions
as follows. For any k = (k0, . . . , kr) ∈ {0, 1}(r+1)n, and tweak schedule δ = (δ0, . . . , δr),
any permutation tuple P = (P1, . . . , Pr), any t ∈ {0, 1}η, and any x ∈ {0, 1}n, one has

r-TEMLδ,P
k (t, x) =

(
r′-TEMLδ2P2

k2

)−1 (
t, r′-TEMLδ1,P1

k1
(t, x)⊕ δr′(t)

)
,

where

P1 = (P1, . . . , Pr′), P2 = (Pr, . . . , Pr′+1),
k1 = (k0, . . . , kr′−1, kr′ ⊕ k′), k2 = (kr, . . . , kr′+1, k′),
δ1 = (δ0, . . . , δr′), δ2 = (δr, . . . , δr′+1),

for any k′ ∈ {0, 1}n. Hence, the r-TEML construction with uniformly random keys and
round permutations can be seen as the composition (up to a shift) of two independent
instances of the r′-TEML construction, also with uniformly random keys and round
permutations.

The crucial point of our proof will be to upper bound the statistical distance between
the distribution of the outputs of r′-TEML conditioned on partial information on the
permutations (namely Pi ⊢ QPi for i = 1, . . . , r′) and the uniform distribution on Ωt.

Definition 4.1. Fix t = (t1, . . . , tqc) and x = (x1, . . . , xqc) ∈ Ωt. We denote µt,x,QP the
distribution of the tuple

r′-TEMLP
k (t, x) :=

(
r′-TEMLP

k (t1, x1), . . . , r′-TEMLP
k (tqc

, xqc
)
)

conditioned on the event P ⊢ QP (i.e. when the key k = (k0, . . . , kr′) is uniformly random
and the permutation P = (P1, . . . , P ′

r) are uniformly random among permutation satisfying
∧r′

i=1(Pi ⊢ QPi)). We denote µ∗
t the uniform distribution on Ωt.

The following lemma, establishing an appropriate upper bound for ∥µt,x,QP − µ∗
t∥ is

the main technical contribution of this paper.
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Lemma 4.2. Let qc, qp ∈ N such that qc + qp < N/2, and qmax = max{qc, qp}. Fix any
attainable permutation transcript QP and any t ∈ T qc , x ∈ Ωt. Then, we have

∥µt,x,QP − µ∗
t∥ ≤ 8r′

qc

(
2qmax

N

)⌈
r′
α

⌉
−1

.

Proof. Fix any attainable permutation queries transcript QP = (QP1 , . . . ,QPr′ ) and
t = (t1, . . . , tqc

) ∈ T qc , x = (x1, . . . , xqc
) ∈ Ωt. Our main task is to upper bound

∥µt,x,QP − µ∗
t∥.

We can split the computation of ∥µt,x,QP − µ∗
t∥ into qc simpler computations. The idea is

to construct a distribution νl for every l ∈ J0, qcK such that νl is the distribution of the
outputs of a random instance of r′-TEMLP

k queried with (ti, xi) for i ∈ J1, lK and the last
qc − l queries keep the same tweak ti as in adversarial queries, but their block inputs zi

are chosen uniformly at random among the values that were not queried. More precisely,
for each l ∈ J0, qcK, let z = (z1, . . . , zqc

) be a tuple of queries such that:{
zi = xi,∀i ∈ J1, lK,
zi ←$ {0, 1}n \ {zj |tj = ti, j < i} ,∀i > l.

This means that the first l queries are the adversary’s queries and the remaining zi are
chosen uniformly at random among all the possible values (all queries have to be pairwise
distinct). Denote νl the distribution of r′-TEMLP

k (t, z), conditioned on P ⊢ QP. Hence we
have:

∥µt,x,QP − µ∗
t∥ = ∥νqc

− ν0∥ ≤
qc−1∑
l=0
∥νl+1 − νl∥ . (5)

Note that for l = qc, zi = xi, ∀i ∈ J1, qcK and hence r′-TEMLP
k (t, z) = r′-TEMLP

k (t, x)
leads to νqc

= µt,x,QP . It is easy to see that ν0 is identical to µ∗
t . In Lemma 4.3, we upper

bound the total variation distance ∥νl+1 − νl∥. The proof of this lemma is deferred to
section 4.1.

Lemma 4.3 (Hybrids-Distance). Let qc, qp ∈ N such that qc + qp < N/2 and qmax =
max{qc, qp}. For any l ∈ J0, qc − 1K, we have

∥νl+1 − νl∥ ≤ 8r′
(

2qmax

N

)⌈
r′
α

⌉
−1

.

The proof of Lemma 4.2 follows from (5) and Lemma 4.3.

Concluding the proof of Theorem 3.1. The final result in Theorem 3.1 can be obtained by
relying on the following composition lemma, whose proof is identical to [CLS15, Lemma
11].

Lemma 4.4. Let r be an even integer and r′ = r/2. Let qc, qp ∈ N and qmax = max{qc, qp}.
Assume that there exists an ε such that, for any attainable queries transcript QP and every
t ∈ T qc , x ∈ Ωt, we have

∥µt,x,QP − µ∗
t∥ ≤ ε.

Then, for any attainable transcript queries τ ′, one has

Pr [µre = τ ′] ≥ (1− 4
√

ε)Pr [µid = τ ′], (6)

The proof of Theorem 3.1 follows from Lemmata 4.1, 4.2 and 4.4.
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4.1 Proof of Hybrids-Distance Lemma
To prove Lemma 4.3, it remains to upper bound the total variation distance between νl+1
and νl, for each l ∈ J0, qc − 1K. In this section, since we are considering a single instance
of r′-TEML, we will drop the number of rounds r′ and simply denote it by TEML in order
to lighten the notation.

Note that we only have to consider the first l + 1 elements of the two tuples of outputs
since for both distributions, the i-th input for i > l + 1 is sampled at random. In other
words,

∥νl+1 − νl∥ =
∥∥ν′

l+1 − ν′
l

∥∥ , (7)

where ν′
l+1 and ν′

l are the respective distributions of the l + 1 first outputs of the cipher as
defined in section 3. We will construct a suitable coupling of the two distributions, ν′

l+1
and ν′

l , and apply the coupling lemma (see Lemma 2.1) to bound the distance.

Coupling of ν′
l+1 and ν′

l. To define the coupling of ν′
l+1 and ν′

l , we consider the
tweakable Even-Mansour cipher TEMLP

k , where P satisfies P ⊢ QP . Namely, where
the key k = (k1, . . . , kr′) is uniformly random and the permutations P = (P1, . . . , Pr′)
are uniformly random among permutation satisfying ∧r′

i=1(Pi ⊢ QPi
)). It receives inputs

x′ = (x1, . . . , xl+1) and t′ = (t1, . . . , tl+1), so that TEMLP
k (t′, x′) is distributed according

to ν′
l+1.

We will now construct a second tweakable Even-Mansour cipher TEMLP′

k′ with inputs
z′ = (z1, . . . , zl+1) and t′ = (t1, . . . , tl+1), satisfying the following properties:

• Property I: P′ = (P ′
1, . . . , P ′

r′) are uniformly random among permutation tuples
satisfying P′ ⊢ QP and k′ is uniformly random.

• Property II: zi = xi for every i ∈ J1, lK, and zl+1 is uniformly random in {0, 1}n \
{xj |tj = tl+1, j < l + 1};

• Property III: for each i ∈ J1, l + 1K, if the outputs of the j-th round permutation
in the computations of TEMLP

k (ti, xi) and TEMLP′

k′ (ti, zi) are equal, then this also
holds for all subsequent inner permutations.

Note that, the same tweaks are used for both ciphers. So, Property I and II will ensure
that TEMLP′

k′ (t′, z′) is distributed according to ν′
l .

For i ∈ J1, r′K, we denote:

Ui = {ui|(ui, vi) ∈ QPi},
Vi = {vi|(ui, vi) ∈ QPi}.

For i ∈ J1, l + 1K and j ∈ J1, r′K, we also define xj
i (resp. yj

i ) as the output (rep. input) of
the j-th round permutation, Pj when computing TEMLP

k (ti, xi), and similarly zj
i (resp.

wj
i ) as the output (rep. input) of the j-th round permutation, P ′

j when computing
TEMLP′

k′ (ti, zi), i.e., 

x0
i = xi

z0
i = zi

yj
i = xj−1

i ⊕ kj ⊕ δj(ti)
wj

i = zj−1
i ⊕ k′

j ⊕ δj(ti)
xj

i = Pj(yj
i )

zj
i = P ′

j(wj
i ).

(8)

We refer to τ = ((xj
i , yj

i , zj
i , wj

i , k, t, Uj) : i ∈ J1, l + 1K, j ∈ J1, r′K, k = (k1, . . . , kr′), t =
(t1, . . . , tl+1))), as an extension of the transcript (QC ,QP), and call it the view of τ . Note
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that for a view, we must have(
xj

i = xj
i′

)
⇐⇒

(
yj

i = yj
i′

)
,
(

zj
i = zj

i′

)
⇐⇒

(
wj

i = wj
i′

)
.

In order to apply the coupling lemma, we have to find how to correlate (P, k) and
(P′, k′) so that the outputs,

(
xr′

1 , . . . , xr′

l+1

)
and

(
zr′

1 , . . . , zr′

l+1

)
, are equal with high

probability. We choose (P, k) uniformly at random and we construct (P′, k′) as a function
of (P, k), i.e., (P′, k′) will not be independent from (P, k). The only requirement is
that both (P, k) and (P′, k′) have the correct marginal distributions. We have to pay
attention that the distribution of (P′, k′) remains uniform in order for

(
zr′

1 , . . . , zr′

l+1

)
to

be distributed according to ν′
l .

We now describe how (P′, k′) is constructed using (P, k). First, choose the key k′ = k =
(k1, . . . , kr). Next, we want both tuples P and P′ to agree on the permutation queries,
i.e., for any i ∈ J1, r′K and (y, x) ∈ QPi

, we want P ′
i (y) = x. Moreover, in order to obtain

Property III, we will want that for every (i, j) ∈ J1, lK× J1, r′K, zj
i = xj

i and wj
i = yj

i .
For the (l + 1)-th query, we will try to make the outputs of the two corresponding

permutations equal, at some round j, as long as it does not interfere with the previous
rules, i.e., Property I-III. If it succeeds, by Property III, the outputs of all the subsequent
round permutations must be equal. Formally, we describe the following sampling.

Coupling the first l queries: For every i ∈ J1, lK, the i-th queries x0
i and z0

i are equal
by definition. Considering the system (8), we set P ′

j

(
wj

i

)
= P ′

j

(
yj

i

)
= Pj

(
yj

i

)
for

every i ∈ J1, lK and j ∈ J1, r′K. This implies that the first l outputs
(

xr′

1 , . . . , xr′

l

)
and(

zr′

1 , . . . , zr′

l

)
are equal.

Coupling the (l + 1)-th query: For every j ∈ J1, r′K we define the coupling for the (l + 1)-th
query as follows:

Rule (1) : If wj
l+1 ∈ Uj or there exists i ∈ J1, lK such that wj

l+1 = wj
i = yj

i , then
zj

l+1 = P ′
j

(
wj

l+1

)
is already determined; unless we have coupled zj−1

l+1 and xj−1
l+1 in a

previous round, we cannot couple zj
l+1 and xj

l+1 at this round.
Rule (2) : else, if wj

l+1 /∈ Uj and wj
l+1 ̸= wj

i for all i ∈ J1, lK, then;

(a) If yj
l+1 ∈ Uj or there exists i ∈ J1, lK such that yj

l+1 = yj
i , then we choose

zj
l+1 = P ′

j

(
wj

l+1

)
uniformly at random in {0, 1}n \ (Vj ∪{P ′

j

(
wj

i

)
, i ≤ l}), and,

so we cannot couple zj
l+1 and xj

l+1 at this round.
(b) else, we define P ′

j

(
wj

l+1

)
= Pj

(
yj

l+1

)
. This implies that zj

l+1 = xj
l+1.

Note that, for the first l construction queries we define P′ to be exactly same as P and for
the (l + 1)-th query we have defined P′ by the above rules. Hence, using the fact that the
keys and the tweaks are the same for both the ciphers, we can conclude that Property III is
satisfied. So, once zj

l+1 = xj
l+1, we must have zj′

l+1 = xj′

l+1 for any subsequent round j′ ≥ j.
In particular, for j′ = r′, zr′

l+1 = xr′

l+1. So, the coupling succeeds.

Uniformly random (P′, k′). Since k′ = k and k is uniformly random, k′ is also uniformly
random. During the coupling of the first l queries , we set P ′

j

(
wj

i

)
= Pj

(
yj

i

)
for every

i ∈ J1, lK, j ∈ J1, r′K and Pj

(
yj

i

)
is uniformly random among possible values, thus P ′

j

(
wj

i

)
is uniformly random among possible values.
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Rule (1) says that if there is a collision with a previous input of P ′
j , we cannot choose

the value of P ′
j(wj

l+1) so this does not change anything to the distribution of P ′
j .

When the conditions of Rule (2)(a) are met, we have:

− for some i ∈ J1, lK: {
Pj

(
yj

l+1

)
= Pj

(
yj

i

)
= P ′

j

(
wj

i

)
wj

l+1 ̸= wj
i ,

− or for some (uj , vj) ∈ QPj
:{
Pj

(
yj

l+1

)
= Pj (uj) = P ′

j (uj)
wj

l+1 ̸= uj .

The two cases imply that P ′
j

(
wj

l+1

)
is chosen uniformly random among possible values to

keep P ′
j uniformly distributed and distinct from P ′

j

(
wj

i

)
.

Finally, in Rule (2)(b), both Pj(yj
l+1) and P ′

j

(
wj

l+1

)
are set to a uniformly at random

chosen value excluding Vj .
In conclusion, the permutations P ′

j are uniformly random and independent as desired,
whence

(
zr′

1 , . . . , zr′

l+1

)
is distributed according to ν′

l .
This justifies Property I. Hence, the joint distribution,(

TEMLP
k (t′, x′) , TEMLP′

k′ (t′, z′)
)

,

is created in such a way that the marginal distribution TEMLP
k (t′, x′) and TEMLP′

k′ (t′, z′)
are ν′

l+1 and ν′
l , respectively.

We can now apply Lemma 2.1 to obtain:∥∥ν′
l+1 − ν′

l

∥∥ ≤ Pr
[(

zr′

1 , . . . , zr′

l+1

)
̸=

(
xr′

1 , . . . , xr′

l+1

)]
. (9)

Probability of Failure in Coupling. From (9), it remains to upper bound the probability
that the coupling fails, i.e., to upper bound

Pr
[(

zr′

1 , . . . , zr′

l+1

)
̸=

(
xr′

1 , . . . , xr′

l+1

)]
.

Let fail be the event
(

zr′

1 , . . . , zr′

l+1

)
̸=

(
xr′

1 , . . . , xr′

l+1

)
, and notice that since zr′

i = xr′

i

for all i ∈ J1, lK, we have:

Pr
[(

zr′

1 , . . . , zr′

l+1

)
̸=

(
xr′

1 , . . . , xr′

l+1

)]
≤ Pr

[(
zr′

l+1

)
̸=

(
xr′

l+1

)]
. (10)

Hence, we are left with the task to upper bound the probability that xr′

l+1 ̸= zr′

l+1. In
earlier works [LPS12, LS13b, CLS15], this is done by analyzing each round independently.
However, in our case, this approach seems loose. Instead of bounding the probability
locally at each round, we consider the global event of failure for all the rounds at once.
We briefly discuss the motivation behind this change.

Consider the following collision events on round j ∈ J1, r′K,

F j
0 = (yj

l+1 ∈ Uj),F j
2 = (wj

l+1 ∈ Uj),
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F j
1 =

(
∃i ∈ J1, r′K : yj

l+1 = yj
i

)
,F j

3 =
(
∃i ∈ J1, r′K : wj

l+1 = wj
i

)
.

Then, it is easy to see that, if xr′

l+1 ̸= zr′

l+1 then each round must have incurred a collision
event. More precisely,

fail ⊆
r′⋂

j=1

(
F j

0 ∪ F
j
1 ∪ F

j
1 ∪ F

j
3

)
:= Col(τ)

From now on we say τ leads to a coupling failure if and only if Col(τ) occurs.
Fix a round j ∈ J1, r′K and suppose Fj

2 ∪ F
j
3 occurs, then without loss of generality,

there exists i ∈ J1, lK, such that yj
l+1 = yj

i . In the proof of r-TEM[H] [CLS15] and CLRW
[LS13b], this gives an equation of the form

Hkj
(tl+1)⊕Hkj

(ti) = xj−1
l+1 ⊕ xj−1

i ,

where H is an AXU-hash function. Since, tl+1 ̸= ti, the event can be easily bounded by
the AXU4 property of H.

However, in our case the same event gives rise to the following equation:

xj−1
l+1 ⊕ δj(tl+1)⊕ kj = xj−1

i ⊕ δj(ti)⊕ kj . (11)

First notice that the key kj cancels out. As a result, we no longer have the AXU property.
Next, if δj(tl+1 ⊕ ti) = 0 then we must have xj−1

l+1 = xj−1
i , i.e., the current collision is

implied by a similar collision in the previous round. However, there can be at most α− 1
consecutive such collisions, otherwise this would violate the α-bijectivity property of δ.
Now, assume that δj(tl+1 ⊕ ti) ̸= 0. We consider the randomness of the permutation
Pj−1. If at least one of the events yj−1

l+1 /∈ Uj−1 or yj−1
i /∈ Uj−1 holds, then we can

simply use the randomness of Pj−1, since this value is not known to the adversary. When
yj−1

l+1 , yj−1
i ∈ Uj−1, these outputs are already revealed to the adversary, whence we cannot

use the randomness of Pj−1 on these inputs. However, yj−1
l+1 , yj−1

i ∈ Uj−1 is still an event
over the randomness of the round key kj−1. Therefore, it holds with probability at most
qpN−1. Hence, the predicate YYj holds with probability at most (qp · qc) N−1. Looking
ahead momentarily, this is far from a desirable upper bound.

Interestingly, we can actually extend this same argument to previous rounds until we
reach a round j′ < j, where yj′

l+1 /∈ Uj′ or yj′

i /∈ Uj′ , at which point we can terminate the
argument. Considering such an extension might actually be useful in getting a better
bound for F j

2 (equivalently F j
3 ). Note that the argument above creates a chain structure for

calculating the probability that F j
2 holds (equivalently F j

3 ), it starts at round j with (11)
and stops once a source of randomness has been found at round j′ < j. The following
definition gives a concrete formulation of this idea.

Definition 4.2. For symbols (C, c) ∈ {(Y, y), (W, w)}, and indices i ∈ J1, lK, j ∈ J2, r′K,
p ∈ J0, j − 1K, we say a (i, j, p)-chain, denoted C(i, j, p), occurs in the view τ if the following
conditions occur:

1. cj
l+1 = cj

i ;
2. δj(tl+1 ⊕ ti) ̸= 0;
3. ∀j′ ∈ Jj − p, j − 1K, cj′

l+1, cj′

i ∈ Uj′ ; and
4. if j − p− 1 > 0,

∣∣∣{cj−p−1
l+1 , cj−p−1

i

}
∩ Uj−p−1

∣∣∣ < 2.

If p = 0 we refer to the special case where the third condition does not occur, we call it
an empty chain. Otherwise, if p = j − 1, then we call C(i, j, p) a complete chain, and a
partial chain in any other case.

4For some x ̸= x′ and ∆, Pr [k←$K : Hk(x)⊕Hk(x′) = ∆] is negligible.
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For a symbol C ∈ {Y,W} and query i ∈ J1, lK we denote by C(j, p) the set of all chains
C(i, j, p) where p ∈ J0, j − 1K is called the size of the chain.

Activity Pattern. More importantly, it is clear from the preceding discussion that we
may have to consider a joint event on some consecutive rounds, as the earlier approach
of bounding failure probability locally at each round will be tedious and loose. In our
new approach, we associate to a view τ , a string S(τ) = s1 . . . sr′ over the alphabet
Γ = {⊤,⊥, 0, 1, 2, 3, 4, 5, 6, 7} representing the failure at every round. In this context, the
symbol ⊤ will correspond to an empty symbol while the symbol ⊥ corresponds to a failing
event we give away (as we cannot bound it’s probability).

Description of S(τ). We give a description of the mapping τ 7→ S(τ):

• We start with a string S(τ) = (⊤)r′ (our representation of an empty string);

• For any round j ∈ J1, r′K, we assign a symbol to sj the following way,

– If F j
0 (collision with a permutation query) occurs we assign sj ← 0. Otherwise,

if F j
2 occurs we assign sj ← 4. The randomness can be drawn from the key kj ;

– Else if F j
1 ∪F

j
3 (collision between internal variables) occurs but δj(tl+1⊕ ti) = 0

then we assign sj ← ⊥, as this represents an implied collision;
– Else, if Y(j, 0) is non empty (there is an empty chain) then we assign sj ← 1,

otherwise if W(j, 0) is non empty then we assign sj ← 5, in this case the
probability of the collision between the variables can be bounded with the
randomness of the previous round;

• Once the first loop is done we start searching for chains. At this point any chain will
be of size at least one. For any j ∈ J2, r′K we assign the following symbols,

– Let p be maximal such that Y(j, p) is non empty, if p > 0, we assign sj ← 3
and sj′ ← 2 for every j′ ∈ Jj − p, j − 1K;

– Otherwise, let p′ be maximal such that W(j, p) is non empty, if p′ > 0, we
assign sj ← 7 and sj′ ← 6 for every j′ ∈ Jj − p′, j − 1K;

We call S(τ) the activity pattern, or simply the pattern corresponding to τ . In a sense,
S(τ) gives a necessary local view of the activity at each round during the computation
of TEMLP

k (t′, x′) and TEMLP′

k′ (t′, z′). It is easy to see that the following set captures the
various patterns we can produce, i.e., let

P =
{

S1 · · ·Sd : ∀i ∈ J1, dK, (Si ∈ S1 ∪ S2 ∪ S3) ∧
d∑

i=1
|Si| = r′

}
,

where S1 = ∪r′

i=1{0, 1, 4, 5}i, S2 = {2i3, 6i7 : i ∈ J1, r′ − 1K}, and S3 = {⊥i : i ∈
J1, α− 1K}. The following lemma gives a complete the characterization of S(τ).

Lemma 4.5. For any view τ , if Col(τ) occurred then S(τ) ∈ P. Moreover, S(τ) consists
of at least ⌈r′/α⌉ non ⊥ symbols.

Proof. Let S(τ) = s1 . . . sr′ where for every j ∈ J1, r′K, sj ∈ Γ. The first part of the lemma
is easy to see by the construction of S(τ), the definition of P , and α-bijectivity of δ. As for
the second part, note that, s1 ≠ ⊥ (by definition). Divide the remaining r′ − 1 symbols in
contiguous substrings of length α, except the last which could be of length less than α.
Then, using the α-bijectivity of δ, we have at least 1 + ⌊ r′−1

α ⌋ ≥ ⌈r
′/α⌉ non-⊥ symbols in

S(τ).



348 On Large Tweaks in TEM with Linear Tweak and Key Mixing

We will be interested in the probability that the view τ produces a pattern S ∈ P,
i.e, Pr [S(τ) = S], which essentially covers the global failure event. For any string S ∈ P,
fix a representation S = S1 . . . Sd. Then, we can write S(τ) := E1(τ) · · ·Ed(τ) such
that |Ei(τ)| = |Si|. Let d′ be the number of strings such that Si /∈ ⊥<α, and let
m1 < m2 < . . . < md′ be the indices corresponding to these sets.

Let F0 be an event that is always true, and for all j ∈ J1, d′ − 1K, let Fj denote the
event (Em1(τ) = Sm1 , . . . , Emj

(τ) = Smj
). We are interested in the following conditional

probability
Pr
τ

[Emi
(τ) = Smi

| Fi−1] (12)

for all i ∈ J1, d′K. Note that, the above conditional event is well-defined, and non-trivial.
This can be argued as follows: for distinct i, i′ ∈ J1, d′K, Emi(τ) and Emi′ (τ) involve
different rounds. Further, at round j ∈ J1, r′K, we either use the randomness of the key kj

or that of the permutation Pj−1, which means that no two rounds share the same source
of randomness.

In Lemma 4.6, we upper bound the conditional probability (12) depending on the type
of string Smi for all i ∈ J1, d′K.

Lemma 4.6. Suppose |Smi | = s. Then

1. for i = 1, we have

Pr
τ

[Emi
(τ) = Smi

| Fi−1] ≤
(

2qmax

N

)s−1
.

2. for i > 1, we have

Pr
τ

[Emi(τ) = Smi | Fi−1] ≤
(

2qmax

N

)s

.

Proof. We prove the result in two cases:

Case A. Smi ∈ S1: Suppose Πmi(τ) = ej · · · ej+s−1 for some consecutive rounds
j, . . . , j + s − 1 such that j ∈ J1, r′ − s + 1K. First, assume that i > 1, i.e., Πmi

(τ)
is not a prefix of S(τ). Let E0 = Fi−1, and for all s′ ∈ J1, s− 1K, let Es′ denote the
event (ej = fj , . . . , ej+s′−1 = fj+s′−1, Fi−1). Our goal is to compute

Pr [ej+s′ = fj+s′ | Es′ ] , ∀s′ ∈ J0, s− 2K. (13)

Now, we may have the following two cases, depending on the value of fj :

Case I: fj+s′ ∈ {0, 4}. In this case, since kj+s′ is uniform and independent of
{k1, . . . , kj+s′−1}, we have

Pr [(ej+s′ = fj+s′) |Es′ ] ≤ qp

N
. (14)

Case II: fj+s′ ∈ {1, 5}. Without loss of generality, assume fj+s′ = 1. Then there
exists i′ ∈ J1, lK such that y

ij

l+1 = y
ij

i′ . This gives rise to the following equation,

Pj+s′−1

(
yj+s′−1

l+1

)
⊕ Pj+s′−1

(
yj+s′−1

i′

)
= δj+s′(tl+1 ⊕ ti′) ̸= 0 (Eqi′)

Further, since F j
0 ∪ F

j
2 = ∅, at least one of yj+s′−1

l+1 or yj+s′−1
i′ is fresh (does not

belong to Uj+s′−1), whence we have,

Pr [(ej+s′ = fj+s′) |Es′ ] ≤
∑
i′≤l

Pr [(Eqi′)] ≤
∑
i′≤l

1
N − qc − qp

≤ 2qc

N
. (15)
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From (13), (14) and (15), we have,

Pr [ej+s′ = fj+s′ |Es′ ] ≤ 2qmax

N
. (16)

Using chain rule, for i > 1, we have,

Pr
τ

[Πmi
(τ) = Smi

| Fi−1] =
s∏

s′=1
Pr [ej+s′ = fj+s′ | Es′ ] ≤

(
2qmax

N

)s

. (17)

This proves the second part of the lemma for Case A. Now, if i = 1, then Πi(τ) is a
prefix of S(τ), i.e., j = 1, then we can view it as Πmi

(τ) := e1∥E′(τ). Note that, the
adversary can easily choose inputs (x1, . . . , xl+1) such that

y1
l+1 = x0

l+1 ⊕ δ1(tl+1)⊕ k1 = x0
i ⊕ δ1(ti)⊕ k1 = y1

i .

Therefore, Pr [ei1 = f1] ≤ 1. Now, we have

Pr
τ

[Πi1(τ) = Si1 | F0] = Pr [e1 = f1]× Pr [E′(τ) = f2 · · · fs | E1]

≤
(

2qmax

N

)s−1
,

where the last inequality follows from (17). This completes Case A.

Case B. Smi ∈ S2: Assume without loss of generality, Smi = 2s−13 (the proof for the
other type of chain is identical). Suppose Emi(τ) = ej · · · ej+s−1 for some consecutive
rounds j, . . . , j + s− 1 such that 1 ≤ i1 < . . . < is ≤ r. Our goal is to compute

Pr
[
ei1 = 2, . . . , eis−1 = 2, eis

= 3 | Fi−1
]

. (18)

Since Si = (2s−13), there exists i′ ∈ J1, lK such that a Y (i′, j, p) chain for p = s−1 ≥ 1
yields it. Hence, the following conditions hold,

yis

l+1 = yis

i′ , δj(tl+1 ⊕ ti′) ̸= 0 (C1
i′)

∀m ∈ J1, s− 1K, yim

l+1 ∈ Uim
, (C2)

∀m ∈ J1, s− 1K, yim

i′ ∈ Uim
, (C3

i′)

and, assuming i1 − 1 ≥ 1, one of the following conditions hold,

yi1−1
l+1 /∈ Ui1−1, (C4)

yi1−1
i′ /∈ Ui1−1. (C5

i′)

Using these conditions we conclude that,

Pr
[
ei1 = 2, . . . , eis−1 = 2, eis

= 3 | Fi−1
]
≤

∑
i′≤l

Pr
[(

(C1
i′) ∧ (C2) ∧ (C3

i′)
)
∧

(
(C4) ∨ (C5

i′)
)]

≤
∑
i′≤l

(
Pr

[
(C1

i′) ∧ (C2) ∧ (C3
i′) ∧ (C4)

]
+ Pr

[
(C1

i′) ∧ (C2) ∧ (C3
i′) ∧ (C5

i′)
] )

≤
∑
i′≤l

(
Pr

[
(C1

i′) ∧ (C2) ∧ (C3
i′) | (C4)

]
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+ Pr
[
(C1

i′) ∧ (C2) ∧ (C3
i′) | (C5

i′)
] )

.

(19)

Fix some query i ∈ J1, lK and consider the event,

E =
(
(C1

i′) ∧ (C2) ∧ (C3
i′) | (C5

i′)
)

Without loss of generality assume that (C5
i′) occurs. To analyze this event we will

need to split the conditions (C2) and (C3
i′) into sub-events. Our strategy will be to

first bound the events yim

l+1 ∈ Uim
for any m ∈ J1, s− 1K, conditioned on yis

l+1 = yis

i′ .
Assuming those events we can upper bound the probability that yim

i′ ∈ Uim
for

any m ∈ J1, s− 1K (starting from m = s − 1 down to 1). More precisely, for any
j ∈ J1, s− 1K, we define the events

Ej
l+1 :

j∧
m=1

(
yim

l+1 ∈ Uim

)
, Ej

i′ :
s−1∧
m=j

(
yim

i′ ∈ Uim

)
.

Additionally, we let E0
l+1, Es

i′ be always true. Then, using the chain rule, one has

Pr [E ] =
s−1∏
m=1

Pr
[
yim

l+1 ∈ Uim
| Em−1

l+1 ∧ (C5
i′)

]
× Pr

[
(C1

i′) | Es−1
l+1 ∧ (C5

i′)
]

×
1∏

m=s−1
Pr

[
yim

i′ ∈ Uim
| Es−1

l+1 ∧ (C1
i′) ∧ Em+1

i′ ∧ (C5
i′)

]
≤

(qp

N

)s−1
×

1∏
m=s−1

Pr
[
yim

i′ ∈ Uim
| Es−1

l+1 ∧ (C1
i′) ∧ Em+1

i′ ∧ (C5
i′)

]
. (20)

where the last inequality holds since all the round keys are uniform and independent,
and Pr

[
(C1

i′) | Es−1
l+1 ∧ (C5

i′)
]
≤ 1.

First assume that Ei(τ) is not a prefix of S(τ), then 2 ≤ i1 < . . . < is ≤ r. In this
case, using (20), we will give a better upper bound on

1∏
m=s−1

Pr
[
yim

i′ ∈ Uim
| Es−1

l+1 ∧ (C1
i′) ∧ Em+1

i′ ∧ (C5
i′)

]
≤ Pr

[
yi1

i′ ∈ Ui1 |F0
]

, (21)

where F0 =
(
Es−1

l+1 ∧ (C1
i′) ∧ E2

i′ ∧ (C5
i′)

)
. Now to bound the last probability, we claim

that conditioned on F0, there exists at most one ui1 ∈ Ui1 such that yi1
i′ = ui1 . To

prove that we proceed by reverse recursion on 1 ≤ m ≤ s− 1. First for m = s− 1,
note that since F0 occurs this implies the variable xis−1

l+1 is fixed, since the round
keys involved in the event Es−1

l+1 are fixed and as a consequence xis−1
i′ is fixed to,

xis−1
i′ = xis−1

l+1 ⊕ δis−1(tl+1 ⊕ ti′) ̸= xis−1
l+1 .

Since the adversary never repeats a primitive query, this gives at most one choice
of vis−1 ∈ Vis−1, such that xis−1

i′ = vis−1. In other words, there is at most one
(uis−1, vis−1) ∈ QPis−1 such that yis−1

i′ = uis−1. Applying the same argumentation,
it is easy to show that there is at most one (uim

, vim
) ∈ QPim

, such that yim

i′ = uim

for any 1 ≤ m < s − 1, which proves our claim. Now, yi1
i′ = ui1 can be rewritten
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as xi1−1
i′ = ui1 ⊕ ki1 ⊕ δi1−1(ti′). Since, yi1−1

i′ /∈ Ui1−1 and xi1−1
i′ = Pi1−1(yi1−1

i′ )
then by using the randomness of the permutation Pi1−1, the value yi1−1

i′ is chosen
uniformly at random from a set of size at least N − qc − qp. In conclusion, we have
the following upper bound,

Pr
[
yi1

i′ ∈ Ui1 | F0
]
≤ 1

N − qc − qp
≤ 2

N
. (22)

Using (19), (20), (21), and (22), we have:

Pr
[
ei1 = 2, . . . , eis−1 = 2, eis

= 3 | Fi−1
]
≤ 4

(qmax

N

)s

≤
(

2qmax

N

)s

.

This proves the second part of the lemma for Case B.
Now, assume that Ei(τ) is a prefix of S(τ). In this case, we have

Pr
[
ei1 = 2, . . . , eis−1 = 2, eis

= 3 | Fi−1
]
≤ Pr

[
∀m ∈ J1, s− 1K, yim

l+1 ∈ Uim

]
≤

(
2qp

2n

)s−1
≤

(
2qmax

2n

)s−1
,

where the second inequality follows from the independence of key tuple. This proves
the first part of the lemma for Case B, whence the proof is complete.

Lemma 4.7. Let qc, qp be positive integers, qmax = max{qc, qp}, and qc + qp < N/2. For
any pattern S ∈ P, we have

Pr
τ

[S(τ) = S] ≤
(

2qmax

N

)⌈
r′
α

⌉
−1

.

Proof. By repeated application of Lemma 4.6, we have

Pr
τ

[S(τ) = S] ≤
k′∏

i=1
Pr
τ

[Emi
(τ) = Smi

| Ei−1]

≤
(

2qmax

N

)sm1 −1
×

k′∏
i=2

(
2qmax

N

)smi

≤
(

2qmax

N

)∑k′

i=1
smi

−1

≤
(

2qmax

N

)⌈
r′
α

⌉
−1

where
∑k′

i=1 smi
≥

⌈
r′

α

⌉
comes from Lemma 4.5. This completes the proof.

Now, we return to our main problem, i.e., (10). We have,

Pr[fail] ≤
∑

τ

(Col(τ)) (23)

≤
∑
S∈P

Pr[Col(τ) ∧ S(τ) = S]

≤
∑
S∈P

Pr[S(τ) = S]

≤ 8r′
qc

(
2qmax

N

)⌈r′/α⌉−1
(24)

The Hybrids-Distance lemma follows from (10) and (24).
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5 Proof of Lemma 3.1
Consider the distinguisher (or differentiator) D described in Algorithm 5.1 interacting with
(Π̃, P).

We claim that D outputs 1 with overwhelming probability when interacting with
(TEMLP, P). As a first step, notice that K, K ′, K ′′, K ′′′ are not pairwise distinct in only two
scenarios, either x2 = x′

2 or x2⊕x′
2 = γ1(K⊕K ′). Note that the first scenario is impossible

as if x2 = x′
2 it implies that y2 = y′

2, which in turn implies that x3 = x′
3. Continuing this

process we must have yr+1 = yr+1′ , hence the two round keys kr+1 and kr+1′ must be
equal in contradiction to our assumption. In the second scenario, note that the probability
the equation x2 ⊕ x′

2 = γ1(K ⊕ K ′) ̸= 0 holds, where x2 = P −1
2 (y2), x′

2 = P −1
2 (y′

2), is
satisfied with probability at most 1/(N − 1), since P2 is a random permutation. Moreover,
note that since the schedule is linear, γ1(K + K ′) ⊕ k′′

1 ⊕ k′′′
1 = 0. Therefore, since the

schedule is also r-bijective we get that K ⊕K ′ ⊕K ′′ ⊕K ′′′ = 0.
Next, we show that conditioned on D not outputting 0 in line 15, it always outputs 1.

Consider the computational paths of inputs (K, x), (K ′, x′), (K ′′, x′′), (K ′′′, x′′′) and note
that they are well defined from our last two observations. Following both computational
paths of (K, x) and (K ′, x′) inside the EM cipher, it is easy to see that the input to Pr+2
in both paths is xr+2. Similarly, in both computational paths of (K ′′, X ′′) and (K ′′′, x′′′)
the input to the permutation Pr+2 is x′

r+2 = yr+1 ⊕ k′
r+1 = y′

r+1 ⊕ kr+1. It implies that,

y ⊕ y′ = (yr+2 ⊕ γr+2(K))⊕ (y′
r+2 ⊕ γr+2(K ′)),

y′′ ⊕ y′′′ = (y′
r+2 ⊕ γr+2(K ′′))⊕ (yr+2 ⊕ γr+2(K ′′′)). (25)

where yr+2 = Pr+2(xr+2) and y′
r+2 = Pr+2(x′

i+2). Finally, one has,

y ⊕ y′ ⊕ y′′ ⊕ y′′′ = γr+2(K ⊕K ′ ⊕K ′′ ⊕K ′′′) = γr+2(0) = 0,

where the last equation comes from combining the equations in (25), the definition of the
master keys in line 10 and the fact that γr+2 is linear. Hence, we get the following upper
bound,

Pr
(
DTEMLP,P = 1

)
≥ 1− 1

N − 1 .

Consider now what happens when D interacts with (Π̃, SimΠ̃) for some efficient simulator
Sim which makes at most σ queries when D makes at most 2r+6 queries. Denote by {0, 1}n

the Turing machine which runs both D and Sim together, which make at most q′ = 2r + 6
queries to Π̃. Whenever D outputs 1, we see that {0, 1}n has successfully found four
inputs (K, x), (K ′, x′), (K ′′, x′′), (K ′′′, x′′′) ∈ {0, 1}rn × {0, 1}n such that K, K ′, K ′′, K ′′′

are pairwise distinct and satisfy the following system of equations:

K ⊕K ′ ⊕K ′′ ⊕K ′′′ = 0,

x⊕ x′ ⊕ x′′ ⊕ x′′′ = 0,

y ⊕ y′ ⊕ y′′ ⊕ y′′′ = 0.

where y = Π̃(K, x), y′ = Π̃(K ′, x′), y′′ = Π̃(K ′′, x′′), y′′′ = Π̃(K ′′′, x′′′). Note that the first
two equations occur with probability 1 according to the definition of the distinguisher.
Consider the q′ queries of {0, 1}n to Π̃ sequentially, and denote by BAD the event where
such values can be found among the q′ queries. For any i ∈ rng1q′, let BADi be the event
where such values can be found among the first i queries. Hence, by the union bound,

Pr (BAD) ≤
q′∑

i=1
Pr (BADi|BADi−1) .
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Algorithm 5.1 The sequential differentiator, D(Π̃,P).
1: Choose xr+2, kr+1, k′

r+1 ←$ {0, 1}n at random such that kr+1 ̸= k′
r+1.

2: Compute yr+1 ← xr+2 ⊕ kr+1, y′
r+1 ← xr+2 ⊕ k′

r+1.
3: Query xr+1 ← P −1

r+1(yr+1), x′
r+1 ← P −1

r+1(y′
r+1).

4: for i′ ∈ J2, rK do
5: Let i = (r − 2)− i′.
6: Choose ki ←$ {0, 1}n at random.
7: Compute yi ← ki ⊕ xi+1, y′

i ← ki ⊕ x′
i+1.

8: Query xi ← P −1
i (yi), x′

i ← P −1
i (y′

i).
9: end for

10: Let I = J2, r + 1K, compute the master keys:

K ← γ−1
I (k2, . . . , kr+1), K ′ ← γ−1

I (k2, . . . , k′
r+1).

11: Compute y1 ← x2 ⊕ γ1(K), y′
1 ← x′

2 ⊕ γ1(K ′).
12: Query x1 ← P −1

1 (y1), x′
1 ← P −1

1 (y′
1).

13: Compute the round keys k′′
1 ← y1 ⊕ x′

2, k′′′
1 ← y′

1 ⊕ x2.
14: Let I ′ = J1, rK, compute the master keys:

K ′′ ← γ−1
I′ (k′′

1 , k2, . . . , kr), K ′′′ ← γ−1
I′ (k′′′

1 , k2, . . . , kr).

15: if K, K ′, K ′′, K ′′ are not pairwise distinct then return 0 else continue
16: Compute the inputs:

x← x1 ⊕ γ0(K), x′ ← x′
1 ⊕ γ0(K ′),

x′′ ← x1 ⊕ γ0(K ′′), x′′′ ← x′
1 ⊕ γ0(K ′′′).

17: Query y ← Π̃(K, x), y′ ← Π̃(K ′, x′), y′′ ← Π̃(K ′′, x′′), y′′′ ← Π̃(k′′′, x′′′).
18: if y ⊕ y′ ⊕ y′′ ⊕ y′′′ = 0 then return 1 else return 0
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Let i ∈ J1, q′K and consider the i-th encryption query (a similar argument can made about
decryption), yi = Π̃(Ki, xi). Assume without loss of generality that Ki is distinct from
the previous keys used up to now (otherwise it does not help to find pairwise distinct
keys in the system above). Hence, yi is chosen uniformly at random from the set {0, 1}n.
Therefore, BADi occurs only if yi takes some value from a set of size at most

(
i−1

3
)
≤ i3. In

conclusion,

Pr [BAD] ≤
q′∑

i=1
Pr (BADi|BADi−1) ≤

q′∑
i=1

i3

N
≤ q′4

2N

Therefore, we conclude that,

Pr
(
DΠ̃,Sim̃Π

= 1
)
≤ Pr [BAD] ≤ q′4

2N
.

6 Proof of Sequential Indifferentiability of TEML
Notations. In this section, we have access to a weak r-bijective tweakey schedule γ.
For any contiguous r-tuple, I = Ji, i + r − 1K we denote by γ−1

I : ({0, 1}n)r → {0, 1}rn the
inverse mapping of the bijection

k 7→ (γi(k), . . . , γi+r−1(k)) .

6.1 The Simulator
We start with an informal description of our simulator (a formal pseudo-code description is
given in Algorithm 6.1). The simulator offers an interface Query (i, δ, w) to the distinguisher
for querying the internal permutations, where i ∈ J1, r + 3K indicates the index of the
permutation, and δ ∈ {+,−} the direction of the query (direct or inverse). For each
i ∈ J1, r + 3K the simulator maintains (internally) a table Πi mapping entries (δ, w) ∈
{+,−} × {0, 1}n to a value w′ ∈ {0, 1}n, initially undefined for all entries (defined by
the symbol ⊥). We denote by Π+

i , respectively Π−
i , the time dependent sets of strings

w ∈ {0, 1}n such that Π+
i , respectively Π−

i , is defined (not a ⊥ symbol). When the
simulator receives a query (i, δ, w), it looks in table Πi to see whether the corresponding
answer Πi(δ, w) is already defined. When this is the case, it outputs the answer and waits
for the next query. Otherwise, it randomly draws an answer w′ ∈ {0, 1}n and defines
Πi(δ, w) := w′, as well as the opposite direction table entry, Πi(δ, w′) := w, where δ defined
as − if δ is +, and + otherwise. In order to handily describe how the answer w′, we make
the randomness used by the simulator explicit through a tuple of random permutations
P = (P1, . . . , Pr+3).

After this random choice of the answer w′, and before returning it to the distinguisher,
the simulator takes additional steps to ensure consistency with the ideal cipher by running
a chain completion mechanism. For that we define the set of all intermediate value
in the middle layer of the cipher. Formally, let Ar be the set of all r tuples, a =
((ui, vi) : i ∈ J3, r + 1K), where for each i ∈ J3, r + 1K, we have that Π+

i (ui) = vi and
Π−

i (vi) = ui. Then, if the distinguisher called Query (i, δ, w) for i = 2 or i = r + 2, the
simulator completes all newly created “chains” (v2, a, ur+2) where v2 ∈ Π−

2 , ur+2 ∈ Π+
r+2

and a ∈ Ar, by executing a procedure CompleteChain (v2, a, ur+, ℓ) where ℓ indicates at
which endpoint the chain will be "adapted".

For example, assume that the distinguisher called Query (2, +, u2) and that the answer
randomly chosen by the simulator was u2 (or backwards where the random value is
u2). Then for each a ∈ Ar and endpoints ur+2 ∈ Π−

r+2, the simulator computes the
corresponding round keys ki = vi ⊕ ui+1 for i ∈ J2, r + 1K, and defines the master key
K = γJ2,r+1K(k2, . . . , kr+1). The simulator then can adapt at round 1. Indeed, we can
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Algorithm 6.1 Formal Description of the Simulator, Sim(P)
1: Variables:
2: tables (Πi : i ∈ J1, r + 3K) initially empty.

3: procedure Query(i, δ, w)
4: if (δ, w) /∈ Πi then
5: w′ = Pi(δ, w)
6: Πi(δ, w) := w′

7: Πi(δ, w′) := w ▷ may overwrite an entry
8: � complete (v2, a, ur+2) chains if exists
9: if i = 2 then

10: if δ = + then vi := w′ else vi := w
11: for all a ∈ Ar, ur+3 ∈ Π+

r+3 do
12: CompleteChain(v2, a, ur+2, 1)
13: end for
14: else if i = r + 2 then
15: if δ = + then ui := w else ui := w′

16: for all a ∈ Ar, v2 ∈ Π−
2 do

17: CompleteChain(v2, a, ur+2, r + 3)
18: end for
19: end if
20: end if
21: return Πi(δ, w)
22: end procedure

23: procedure ForceVal(ui, vi, i)
24: Πi(+, ui) := vi ▷ may overwrite an entry
25: Πi(−, vi) := ui ▷ may overwrite an entry
26: end procedure

27: procedure CompleteChain(v2, a, ur+2, ℓ)
28: for i ∈ J2, r + 1K do
29: ki := vi ⊕ ui+1
30: end for
31: K = γ−1

I (k2, . . . , kr+1) , I = J2, r + 1K

32: case ℓ = 1:
33: � evaluate chain backwards up to

v1
34: u2 := Π2(−, v2)
35: v1 := u2 ⊕ γ2(K)
36: � evaluate chain forwards up to u1
37: vr+2 := Πr+2(+, ur+2)
38: ur+3 = vr+2 ⊕ γr+2(K)
39: vr+3 = Query(r + 3, +, ur+3)
40: x := Π̃(−, K, vr+3 ⊕ γr+3(K))
41: u1 := x⊕ γ0(K)
42: � adapt the chain
43: ForceVal(u1, v1, 1)
44: case ℓ = r + 3:

45: � evaluate chain forwards up to
ur+3

46: vr+2 = Πr+2(+, ur+2)
47: ur+3 = vr+2 ⊕ γr+2(K)
48: � evaluate chain backwards up to

vr+3
49: u2 := Π2(−, v2)
50: v1 := u2 ⊕ γ1(K)
51: u1 := Query(1,−, v1)
52: y = Π̃(+, K, u1 ⊕ γ0(K))
53: vr+3 = y ⊕ γr+3(K)
54: � adapt the chain
55: ForceVal(ur+3, vr+3, r + 3)

56: end procedure
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compute the value v1 = k2 ⊕Π2(−, v2). Moreover, looking at the other endpoint of the
cipher we can retrieve u1 by applying the following steps:

vr+2 = Πr+2(+, ur+2), ur+3 = vr+2 ⊕ γr+2(K),
vr+3 = Πr+3(+, ur+3), x = Π̃(−, K, vr+3 ⊕ γr+3(K)),
u1 = x⊕ γ0(K),

where vr+3 is drawn at random if it is not in Π+
r+3. Now we can force the pair of

input/output (u1, v1) to the table Π1, in order to ensure consistency of the simulated
TEML construction with Π̃. For the case of Query (r + 3, ·, ·) the behavior of the simulator
will be symmetrical, namely adaptation of the chain takes place in Πr+3 instead.

In order to prove this claim, we will first define a simulator Sim, then prove that it
runs in polynomial time and makes a polynomial number of queries, and finally prove that
the two systems Σ1 = (Π̃, SimE) and Σ3 = (TEMLP, P) are sequentially indistinguishable,
using an intermediate system Σ2.

Lemma 6.1. Consider the execution of the simulator SimΠ̃ which makes q queries in total.
Then:

1. the size of Π2, . . . , Πr+2 is at most q,

2. the size of Π1, Πr+3 is that most qr+1 + q.

3. the simulator executes CompleteChain at most qr+1 times and makes at most qr+1

queries to E,

4. the total runtime of the simulator is O(qr+1).

Proof. Notice that for i ∈ J2, r + 2K, the table Πi can only increase in a call to the procedure
Query(i, δ, w). Therefore the size of Πi is bounded by the number of the distinguisher’s
queries q. CompleteChain is called once for at most every tuple of permutation queries,
((ui, Πi(+, ui)) : i ∈ J2, r + 2K), hence at most qr+1 in total. Since CompleteChain makes
at most one query to Π̃, the simulator cannot make more than qr+1 queries to Π̃. Note
that tables Π1 and Πr+3 are only increased by one for the calls to Query(1, δ, w) or
Query(5, δ, w), which happens only once in the procedure CompleteChain , therefore the
size of those tables is bounded by qr+1 + q. In conclusion, since CompleteChain runs in
constant runtime, the total runtime of the simulator is O(qr+1).

6.2 Intermediate Games and Distance Between Them
We will denote by Sim(Π̃, P) the simulator with oracle access to the ideal cipher E
and the randomness coming from P. In order to prove the indistinguishability of the
two systems (Π̃, Sim(Π̃, P)) and (TEMLP, P), we will use an intermediate system Σ2 =
(TEMLSim(Π̃,P), Sim(Π̃, P)). In other words, the right oracle is the simulator Sim(Π̃, P), with
oracle access to an ideal cipher E as in Σ1, but now the left oracle is the r + 3-round TEML
construction with oracle access to Sim(Π̃, P) instead of independent random permutations.

6.2.1 Transition from Σ1 to Σ2

Definition 6.1. A pair (Π̃, P) is said to be good if the simulator Sim never overwrites an
entry of its tables (Πi : i ∈ J1, r + 3K) during an execution of DΣ2(Π̃,P), otherwise the pair
is called bad.
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Note that an overwrite may only happen during a random assignment in Line (7) or
when adapting a chain in Lines (24) and (25). Moreover, whether a pair is good depends
on the queries of the distinguisher D. We first upper bound the probability that a random
pair (Π̃, P) is bad.

Lemma 6.2. Consider a distinguisher D with total oracle query cost at most q, with
qr+1 ≤ N/4. Then a uniformly random pair Π̃←$ P̃(rn, n) and P ∈ (P(n))r+3 is bad, with
respect to D, with probability at most 16q2r+2

N .

Proof. First, note that the total number of queries received by the simulator in Σ2 is
exactly q. Since Π2, . . . , Πr+2 are never adapted, they can never be overwritten either.
Therefore, we only consider the probability of the tables Π1 and Πr+3. Let BadRand be the
event that an overwrite occurs during a random assignment, at line (7), and BadAdapt be
the event that an overwrite occurs when adapting a chain (v2, a, ur+2) at lines (24) and
(25).

We first consider the probability of BadRand . Let i ∈ {1, r + 3} and consider the
assignments Πi(δ, w) := w′ and Πi(δ, w′) := w where w′ := Pi(δ, w) and Pi is some random
permutation. By Lemma 6.1 (2), there at most qr+1 + q random assignments in Π1
and Πr+3, so that w′ is sampled out of a set of size at least N − qr+1 − q. Moreover,
this assignment cannot overwrite a value that was previously added during a random
assignment, but only a value that was added by ForceVal , when adapting a chain, therefore
by Lemma 6.1 (3) there are at most qr+1 such values. In conclusion, the probability
w′ hits a previously added value in table Πi by a call to ForceVal is at most qr+1

N−qr+1−q .
Summing over all possible random assignments in Π1 and Πr+3, we obtain the following
upper bound,

Pr [BadRand ] ≤ 2(qr+1 + q) · qr+1

N − qr+1 − q
≤ 8q2r+2

N
.

Next, we consider the probability of BadAdapt , conditioned on BadRand not occurring.
Let BadAdapt i be the event where a value is overwritten by the i-th call to ForceVal . We
will be interested in the probability

Pr

BadAdapti

∣∣∣∣∣∣¬BadRand ∧

i−1∧
j=1
¬BadAdaptj


Consider the i-th execution of CompleteChain (v2, a, ur+2, ℓ) and assume that no value
was overwritten before this i-th call to CompleteChain . More precisely, consider the
query Query (j, δ, ·) that was triggered during the chain completion and the call to
ForceVal (uℓ, vℓ, ℓ). We must show that with high probability the entries of the tables
Πℓ(+, uℓ) and Πℓ(−, vℓ) are undefined previously to this call. Distinguish between several
cases. Assume j = 2, ℓ = 1, (the case i = r + 2, ℓ = r + 3 is symmetrical) and consider the
value of v1 given by v1 = u2 ⊕ γ1(K) where K = γJ2,r+1K(v2 ⊕ u3, . . . , vr+1 ⊕ ur+2). Note
that since j = 2, then either u2 or v2 is a random value. Consider when K is created and
note that if v2 is a random value and since the other values involved are fixed, then the value
γ1(K) is a random variable that depends solely on the sampling of v2. Therefore, v1 takes
a random value from a set of size at least N − q (from u2 or v2). Hence, by Lemma 6.1 (2),
the probability that v1 takes a values from a defined value in table Π1 is at most qr+1+q

N−q .
Next, we show that simulator never made the query Π̃(−, K, vr+3 ⊕ γr+3(K)) before nor
received the value from a previous query to Π̃(+, K, u1 ⊕ γ0(K)). Assume otherwise, then
there exists a chain (v′

2, a′, u′
r+2) such that the query Π̃(−, K, vr+3 ⊕ γr+3(K)) appears

during it’s completion. Then, since both chains use the same master key (there is only
one query to E for each chain completion), then vr+3 = v′

r+3. Hence, ur+3 = u′
r+3, which
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implies that vr+2 = v′
r+2, since again they share the same master key. By going down with

this recursive process we conclude that the chains are equal. Therefore, by Lemma 6.1 (3)
and (2), the probability that u1 = x⊕ γ0(K) hits one of the values in the table Π1 is at
most qr+1+q

N−qr+1 , since that are at most qr+1 calls to E. Summing over all at most qr+1 calls
to CompleteChain , we conclude that,

Pr [BadAdapt |¬BadRand ] ≤
qr+1∑
i=1

Pr

BadAdapt i

∣∣∣∣∣∣¬BadRand ∧

i−1∧
j=1
¬BadAdapt j


≤ qr+1

(
qr+1 + q

N − q
+ qr+1 + q

N − qr+1

)
≤ 8q2r+2

N
.

Combining both upper bounds yields the result.

Lemma 6.3. For any distinguisher D of total oracle query cost at most q, one has,∣∣∣Pr
[
DΣ1(Π̃,P) = 1

]
− Pr

[
DΣ2(Π̃,P) = 1

]∣∣∣ ≤ 16q2r+2

N
.

where both probabilities are taken over Π̃←$ P̃(rn, n), P←$ (P(n))r+3.

Proof. We show that for any good pair (Π̃, P), the transcript of the interaction of D
with Σ1(Π̃, P) and Σ2(Π̃, P) is identical. Since the distinguisher is sequential and they
both share the same right oracle it is clear it is the same interaction during the first
phase. For the second phase of the interaction, since the simulator never overwrites
the tables Πi for i ∈ J1, r + 3K, it follows that, for any δ ∈ {+,−} and z ∈ {0, 1}n,
TEMLSim(e,P)(δ, K, z) = Π̃(δ, K, z). Therefore, the interaction of D with Σ1(Π̃, P) and
Σ2(Π̃, P) is identical in both phases. Hence,∣∣∣Pr

[
DΣ1(Π̃,P) = 1

]
− Pr

[
DΣ2(Π̃,P) = 1

]∣∣∣ ≤ Pr
[
(Π̃, P) is bad

]
,

from which the result follows by Lemma 6.2.

6.2.2 Transition From Σ2 to Σ3 and Randomness Mapping

To transition from Σ2 to Σ3 we will need the notion of a partial permutation.

Definition 6.2. A partial permutation is a function P ′
i : {+,−}×{0, 1}n → {0, 1}n∪{⊥}

such that for all u, v ∈ {0, 1}n, P ′
i (+, u) = v ̸= ⊥ ⇔ P ′

i (−, v) = u.

For this, we define a map A mapping pairs (Π̃, P) either to the special symbol ⊥ when
(Π̃, P) is bad, or to a tuple of partial permutations as follows: run DΣ2(Π̃,P), and consider
the tables (Πi : i ∈ J1, r + 3K) at the end of the simulation, then fill all undefined entries of
the tables with the special symbol ⊥. Then define A(Π̃, P) = (Π1, . . . , Πr+3). Note that
since (Π̃, P) is a good pair, the simulator never overwrites an entry in its tables, which
implies that A(Π̃, P) is indeed a partial permutation and A is well defined.

We say a tuple of partial permutations P′ = (P ′
1, . . . , P ′

r+3) is good if there exists an
ideal cipher E and a tuple of permutations P = (P1, . . . , Pr+3), such thatA(Π̃, P) = P′. We
say that a tuple of permutations P = (P1, . . . , Pr+3) extends a tuple of partial permutations
P′ = (P ′

1, . . . , P ′
r+3), denoted by P ⊢ P′, if for any i ∈ J1, r + 3K, Pi and P ′

i agree on all
entries that are already defined in P ′

i (where P ′
i (δ, w) ̸= ⊥).
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Lemma 6.4. For any distinguisher D of total oracle query cost at most q, one has,∣∣∣Pr
[
DΣ2(Π̃,P) = 1

]
− Pr

[
DΣ3(P) = 1

]∣∣∣ ≤ (
(r + 5)2 + 16

)
q2r+2

N
.

where the first probability is take over Π̃ ←$ P̃(rn, n), P ←$ (P(n))r+3, and the second
only over P←$ (P(n))r+3.

Proof. Let
ε :=

∣∣∣Pr
[
DΣ2(Π̃,P) = 1

]
− Pr

[
DΣ3(P) = 1

]∣∣∣
and assume without loss of generality that Pr

[
DΣ2(Π̃,P) = 1

]
≥ Pr

[
DΣ3(P) = 1

]
.

By the definition of the map A, for any good tuple of partial permutations P′, the
outputs of DΣ2(Π̃,P) and DΣ3(P) are equal for any pair (Π̃, P) such that A(Π̃, P) = P′,
and any tuple of permutations P such that P ⊢ P′. Let Θ1 be the set of tuples of partial
permutations P′ such that DΣ2(Π̃,P) outputs 1 for any pair (Π̃, P) such that A(Π̃, P) = P′.
Then, we can conclude that,

ε ≤ Pr
[
(Π̃, P) is bad

]
+

∑
P ′∈Θ1

(
Pr

[
A(Π̃, P) = P′

]
− Pr [P ⊢ P′]

)
. (26)

Fix any good tuple of partial permutations P′ and for any i ∈ J1, r + 3K let

|P ′
i | = |{u ∈ {0, 1}n : P ′

i (+, u) ̸= ⊥}| = |{v ∈ {0, 1}n : P ′
i (−, v) ̸= ⊥}|.

Then by definition of a partial permutation, one has,

Pr
[
P←$ (P(n))r+3 : P ⊢ P′

]
= 1∏r+3

i=1 (N)|P ′
i
|
.

Fix now any good pre-image ( ˜̃Π, P̃) of P′, where P̃ = (P̃1, . . . , ˜Pr+3) and let qe and let
(qi : i ∈ J1, r + 3K) be the number of queries made by the simulator to Ẽ and P̃i respectively
in the execution of DΣ2(Π̃,P). Note that for any pair (Π̃, P), A(Π̃, P) = P′ if and only if the
transcript of Sim with (Π̃, P) in DΣ2(Π̃,P) is the same as the transcript of the interaction
of Sim with (Ẽ, P̃) in DΣ2(Ẽ,P̃). Then we conclude that,

Pr
[
Π̃←$ P̃(rn, n), P←$ (P(n))r+3 : A(Π̃, P) = P′

]
≤ 1

(N)qe

∏r+3
i=1 (N)qi

,

since the probability is maximized when the same master key is used for all qe queries to
Π̃. Moreover, since the number of executions of ForceVal made by the simulator, i.e., the
number of chain adaptions, is exactly the number of queries made by the simulator to Π̃,
one has,

qe +
r+3∑
i=1

qi =
r+3∑
i=1
|P ′

i | ≤ 2qr+1 + (r + 3)q. (27)

where the last inequality follows by Lemma 6.1 (1) and (2). In conclusion, by Equation (27)
we have that,

Pr [P ⊢ P′]
Pr

[
A(Π̃, P) = P′

] = (N)qe

∏r+3
i=1 (N)qi∏r+3

i=1 (N)|P ′
i
|

≥ Nqe+
∑r+3

i=1
qi

N
∑5

i=1
|P ′

i
|

qe−1∏
j=1

(
1− j

N

) r+3∏
i=1

qi−1∏
j=1

(
1− j

N

)
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≥ 1− q2
e +

∑r+3
i=1 q2

i

N
≥ 1− (2qr+1 + (r + 3)q)2

N

≥ 1− (r + 5)2q2r+2

N

Combining (26) with (27), we obtain,

ε ≤ Pr
(

(Π̃, P) is bad
)

+
∑

P ′∈Θ1

Pr
[
A(Π̃, P) = P′

]  Pr [P ⊢ P′]
Pr

[
A(Π̃, P) = P′

]


≤ Pr
(

(Π̃, P) is bad
)

+ (r + 5)2q2r+2

N

∑
P ′∈Θ1

PrA(Π̃, P) = P′

≤ Pr
(

(Π̃, P) is bad
)

+ (r + 5)2q2r+2

N
≤ (r + 5)2q2r+2

N
+ 16q2r+2

N

=
(
(r + 5)2 + 16

)
q2r+2

N

Theorem 3.2 then follows from Lemma 6.3 and 6.4.

7 Conclusion
In this paper, we first showed that the 2r-round Tweakable Even-Mansour with a specific
class of linear tweak-key mixing, and αn-bit tweaks, is IND-CCA secure up to 2 r−α

r n

queries. The main ingredient of our proof is the well-known coupling technique. Our
main technical contribution was a refreshed approach to get an upper bound on the
probability of failure in coupling, which could be of independent interest. In particular, we
think that this approach might also be useful in the analysis of the Feistel network with
linear tweak and key absorption. As with several other coupling-based security bounds
[LPS12, LS13b, CLS15], we believe that our IND-CCA bound is also not tight. Indeed, we
conjecture that beyond a constant c ≥ 4, the number of rounds can be effectively reduced
by half, i.e., to r whenever r ≥ c, while maintaining the same security level, i.e., up to
2 r−α

r n queries.
Second, diverting our focus to the sequential indifferentiability setting, we showed that

(r + 3) rounds are both necessary and sufficient for security of (Tweakable) Even-Mansour
with rn-bit (twea)key and a special class of linear (twea)key mixing function.

As a direct consequence of our results, we gave a sound provable security footing
for iterated round-based TBCs, notably following the design paradigm TWEAKEY, that
employ a linear tweak-key mixing.
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