
1/15

Commutative Cryptanalysis Made Practical

Jules Baudrin1, Patrick Felke2, Gregor Leander3,
Patrick Neumann3, Léo Perrin1 & Lukas Stennes3

jules.baudrin@inria.fr

FSE, March 25th, 2024

1 Inria, Paris, France
2 University of Applied Sciences Emden/Leer, Emden, Germany
3 Ruhr University Bochum, Bochum, Germany

mailto:jules.baudrin@inria.fr


2/15

Observations on symmetric cryptanalysis

k

x yE



2/15

Observations on symmetric cryptanalysis

E(x + α) = E(x) + β

≃

k

x yE

α

k

x yE

β

Differential cryptanalysis



2/15

Observations on symmetric cryptanalysis

E ◦ Tα(x) = Tβ ◦ E(x)

≃

k

x yETα

k

x yE Tβ

Differential cryptanalysis



2/15

Observations on symmetric cryptanalysis

E ◦ ρi(x) = ρj ◦ E(x)

≃

k

x yEρi

k

x yE ρj

Rotational cryptanalysis



2/15

Observations on symmetric cryptanalysis

E ◦ Tα ◦ ρi(x) = Tβ ◦ ρj ◦ E(x)

≃

k

x yETαρi

k

x yE Tβρj

Rotational-XOR cryptanalysis



2/15

Observations on symmetric cryptanalysis

E ◦ TcA ◦ LA(x) = TcB ◦ LB ◦ E(x)

≃

k

x yETcALA

k

x yE TcBLB

More general cryptanalysis ?
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Observations on symmetric cryptanalysis

E ◦ TcA ◦ LA(x) = TcB ◦ LB ◦ E(x)

≃

k

x yETcALA

k

x yE TcBLB

More general cryptanalysis ?

where A(x) = LA(x) + cA,B(x) = LB(x) + cB

A tempting desire of unification
Mathematically elegant, better understanding, new attacks

A 20-year-old idea [Wagner, FSE 2004]
Commutative diagram cryptanalysis: not so fruitful1 since.

1to the best of our knowledge...
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Commutative (diagram) cryptanalysis

X Y

X ′ Y ′

πi

E

πo

E′

⟲

Linear cryptanalysis
πi , πo : Fn

2 → F2 linear

Any commutants [FSE:Wagner04]
Bijective affine commutants [This work]

Differentials π = Id+ δ,
Rotational-(XOR) π = ρ+ δ
Linear commutants π = L+ 0 . . .
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In this talk

Affine commutation with probability 1: theory + practice

A surprising differential interpretation

A few words about the probabilistic case
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Commutative cryptanalysis principle

Goal
Find bijective affine A,B st. for many k: Ek ◦ A = B ◦ Ek (all x are solutions)

E = Rr−1 ◦ · · · ◦ R1 ◦ R0

Sufficient condition for iterated constructions
There exist A0, · · · ,Ar st. for all i Ai+1 ◦ Ri = Ri ◦ Ai .

x0 x1 xr−1 E(x0)

z0 z1 zr−1 E(z0)

A0

R0

A1

Rr−1

Ar−1 Ar

R0 Rr−1

⟲ =⇒ round-by-round and layer-by-layer studies.
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Layer-by-layer probability-1 trail

Simplified setting for this presentation
- Commutation only: E ◦ A = A ◦ E (case A = B)
- Parallel mappings: A := A || A || · · · || A, where A : Fm

2 → Fm
2 .

S-box layer
A ◦ S = S ◦ A ⇐⇒ A ◦ S = S ◦ A =⇒ self-affine equivalent S-box.
Effective search for small m (4, 8 bits). [EC:BDBP03] [EC:Dinur18]

Constant addition
Tc(x) := x + c, A(x) := LA(x) + cA.

A ◦ Tc(x) = LA(x) + LA(c) + cA and Tc ◦ A(x) = LA(x) + c + cA

A ◦ Tc = Tc ◦ A ⇐⇒ c ∈ Fix(LA).



6/15

Layer-by-layer probability-1 trail

Simplified setting for this presentation
- Commutation only: E ◦ A = A ◦ E (case A = B)
- Parallel mappings: A := A || A || · · · || A, where A : Fm

2 → Fm
2 .

S-box layer
A ◦ S = S ◦ A ⇐⇒ A ◦ S = S ◦ A =⇒ self-affine equivalent S-box.
Effective search for small m (4, 8 bits). [EC:BDBP03] [EC:Dinur18]

Constant addition
Tc(x) := x + c, A(x) := LA(x) + cA.

A ◦ Tc(x) = LA(x) + LA(c) + cA and Tc ◦ A(x) = LA(x) + c + cA

A ◦ Tc = Tc ◦ A ⇐⇒ c ∈ Fix(LA).



6/15

Layer-by-layer probability-1 trail

Simplified setting for this presentation
- Commutation only: E ◦ A = A ◦ E (case A = B)
- Parallel mappings: A := A || A || · · · || A, where A : Fm

2 → Fm
2 .

S-box layer
A ◦ S = S ◦ A ⇐⇒ A ◦ S = S ◦ A =⇒ self-affine equivalent S-box.
Effective search for small m (4, 8 bits). [EC:BDBP03] [EC:Dinur18]

Constant addition
Tc(x) := x + c, A(x) := LA(x) + cA.

A ◦ Tc(x) = LA(x) + LA(c) + cA and Tc ◦ A(x) = LA(x) + c + cA

A ◦ Tc = Tc ◦ A ⇐⇒ c ∈ Fix(LA).



6/15

Layer-by-layer probability-1 trail

Simplified setting for this presentation
- Commutation only: E ◦ A = A ◦ E (case A = B)
- Parallel mappings: A := A || A || · · · || A, where A : Fm

2 → Fm
2 .

S-box layer
A ◦ S = S ◦ A ⇐⇒ A ◦ S = S ◦ A =⇒ self-affine equivalent S-box.
Effective search for small m (4, 8 bits). [EC:BDBP03] [EC:Dinur18]

Constant addition
Tc(x) := x + c, A(x) := LA(x) + cA.

A ◦ Tc(x) = LA(x) + LA(c) + cA and Tc ◦ A(x) = LA(x) + c + cA

A ◦ Tc = Tc ◦ A ⇐⇒ c ∈ Fix(LA).



6/15

Layer-by-layer probability-1 trail

Simplified setting for this presentation
- Commutation only: E ◦ A = A ◦ E (case A = B)
- Parallel mappings: A := A || A || · · · || A, where A : Fm

2 → Fm
2 .

S-box layer
A ◦ S = S ◦ A ⇐⇒ A ◦ S = S ◦ A =⇒ self-affine equivalent S-box.
Effective search for small m (4, 8 bits). [EC:BDBP03] [EC:Dinur18]

Constant addition
Tc(x) := x + c, A(x) := LA(x) + cA.

A ◦ Tc(x) = LA(x) + LA(c) + cA and Tc ◦ A(x) = LA(x) + c + cA

A ◦ Tc = Tc ◦ A ⇐⇒ c ∈ Fix(LA).



6/15

Layer-by-layer probability-1 trail

Simplified setting for this presentation
- Commutation only: E ◦ A = A ◦ E (case A = B)
- Parallel mappings: A := A || A || · · · || A, where A : Fm

2 → Fm
2 .

S-box layer
A ◦ S = S ◦ A ⇐⇒ A ◦ S = S ◦ A =⇒ self-affine equivalent S-box.
Effective search for small m (4, 8 bits). [EC:BDBP03] [EC:Dinur18]

Constant addition
Tc(x) := x + c, A(x) := LA(x) + cA.

A ◦ Tc(x) = LA(x) + LA(c) + cA and Tc ◦ A(x) = LA(x) + c + cA

A ◦ Tc = Tc ◦ A ⇐⇒ c ∈ Fix(LA).

Linear layer
Let L = (Lij) be an invertible block matrix with m-size blocks Lij .
L ◦ A = A ◦ L ⇐⇒ Lij ◦ LA = LA ◦ Lij for all i, j and cA ∈ Fix(L).
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Midori [AC:BBISHA15] in a nutshell

A (not so) standard SPN
- AES-like,
- Standard wide-trail analysis,
- . . . yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

p = AK ◦ AC ◦MC ◦ PC ◦ S
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2

K0 for even rounds
K1 for odd ones.
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Midori with weak constants

p = AK ◦ AC ◦MC ◦ PC ◦ S

Sbox layer
There exists a single non-trivial A⋆ st. A⋆ ◦ S = S ◦ A⋆. S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Cells permutation
Parallel mapping A : free commutation.

i

σ(i)

σ

Linear layer
- Mij ◦ LA = LA ◦Mij ∀ i, j. But Mij ∈ {04, Id4}.
- cA ∈ Fix(L). But M(c,c,c,c) = (c,c,c,c) for any c.

=⇒ Any A would work.

M M M M

Constants
Fix(LA⋆) = ⟨0x2, 0x5, 0x8⟩. ⇝Consider variantswith modified constants.

Weak keys: 1-bit condition per nibble⇝ 296 out of 2128. ⊕

⊕
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Midori with weak constants, part 2

Recap
A⋆ ◦ P = P ◦ A⋆ for every layer P (given weak constants/keys).
A⋆ ◦ Ek = Ek ◦ A⋆ for 1/232 of the keys k.

x0 x1 xr−1 E(x0)

z0 z1 zr−1 E(z0)
A⋆

R0

A⋆

Rr−1

A⋆ A⋆

R0 Rr−1

P
x $←−X

(A⋆ → A⋆ → · · · → A⋆︸ ︷︷ ︸
r times

) = 1, for any r!
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Midori with weak constants, part 3

x0 x1 xr−1 E(x0)

z0 z1 zr−1 E(z0)
A⋆∆0

R0

A⋆∆1

Rr−1

A⋆∆r−1 A⋆∆r

R0 Rr−1

∆i := xi ⊕ zi = xi ⊕A⋆(xi)

Surprising differential interpretation
δ = 0xf, δ′ = 0xa.

∀ ∆ ∈ {δ, δ′}16, P
x $←−X

(x +A⋆(x) = ∆) = 2−16 ⇐⇒ (x , x +∆) = (x ,A⋆(x)) with proba 2−16

∆
2−16
−−−→ A⋆ 1−→ · · · 1−→ A⋆ 2−16

−−−→ ∆
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Weak-key Differential interpretation

Recap
If k is weak:

- P
x $←−X

(∆→ ∆′) = 2−32 for any ∆,∆′ ∈ {δ, δ′}16.

- P
x $←−X

(
∆→ {δ, δ′}16

)
= 2−16 for any ∆ ∈ {δ, δ′}16.

- For any number of rounds, activate all S-boxes.

Standard case : quite low Pk,x
∆IN

KS

k0
AK

SB SR MC
Round 0

KS

k1
AK

SB SR MC
Round 1

KS

k2
AK

SB SR MC
Round 2

KS

k3
AK

SB SR MC
Round 3

k4
AK

SB SR MC
Round 4

Part of 9-round chosen-key distinguisher for AES-128.
Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

This work: high Px for some k
∆IN

KS

k0
AK

SB SR MC
Round 0

KS

k1
AK

SB SR MC
Round 1

KS

k2
AK

SB SR MC
Round 2

KS

k3
AK

SB SR MC
Round 3

k4
AK

SB SR MC
Round 4

0xf
0xf or 0xa
No diff.
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Weak-key Differential interpretation, part 2

Caution
- Same observations for the CAESAR candidate SCREAM (see paper).
- Same idea can be used to hide probability-1 differential trails [C:BFLNS23].

Good news
Probability-1 commutative trails can be automatically detected !
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A bigger weak-key space ?

WK space
Fewer “active” S-boxes =⇒ bigger weak-key space.
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Modified-Midori study
- Constants : 4 active nibbles = 4-bit conditions.
- S-box: S ◦ A⋆ = A⋆ ◦ S S ◦ Id = Id ◦ S
- Cell permutation: Invariant pattern for AES ShiftRows
- P

x $←−X
(A⋆ ◦M(x) =M◦A⋆(x)) = 2−4.

WK-space / probability trade-off
For 2120 weak keys, P

x $←−X
(R ◦M(x) =M◦ R(x)) = 2−4.
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Conclusion
What was done

- Probability-1: automatically solved (paper + github)
- Probabilistic commutative trails: way-harder to study but weak-key study

Standard case : quite low Pk,x
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Part of 9-round chosen-key distinguisher for AES-128.
Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].
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Further studies
- Algorithm for probabilistic affine-equivalence.
- Relationships with [C:BeyRij22] ? with invariant subspace cryptanalysis ?
- Hybridization: e.g. commutative-differential ?
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Experimental results

Recap
For Modified-Midori with ShiftRows and weak-key, P

x $←−X
(R ◦ A(x) = A ◦ R(x)) = 2−4.
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