Commutative Cryptanalysis Made Practical

Jules Baudrin**¹** , Patrick Felke**²** , Gregor Leander**³** , Patrick Neumann**³** , Léo Perrin**¹** & Lukas Stennes**³**

jules.baudrin@inria.fr

Inría

FSE, March 25th, 2024

1 Inria, Paris, France

2 University of Applied Sciences Emden/Leer, Emden, Germany

3 Ruhr University Bochum, Bochum, Germany

Differential cryptanalysis

Differential cryptanalysis

Rotational cryptanalysis

Rotational-XOR cryptanalysis

More general cryptanalysis ?

where $A(x) = L_A(x) + C_A$, $B(x) = L_B(x) + C_B$

More general cryptanalysis ?

 $\mathsf{where} \ A(x) = L_A(x) + C_A, B(x) = L_B(x) + C_B$

A tempting desire of unification

Mathematically elegant, better understanding, new attacks

A 20-year-old idea [Wagner, FSE 2004]

Commutative diagram cryptanalysis: not so fruitful¹ since.

¹ to the best of our knowledge...

Commutative (diagram) cryptanalysis

In this talk

[Affine commutation with](#page-10-0) **probability 1**: theory + practice

A **[surprising differential](#page-10-0)** interpretation

[A few words about the](#page-10-0) **probabilistic case**

Commutative cryptanalysis principle

Goal

Find **bijective affine** *A, B* st. for many *k*: $\boxed{E_k \circ A = B \circ E_k}$ (all *x* are solutions)

Commutative cryptanalysis principle

Goal

Find **bijective affine** *A, B* st. for many *k*: $\boxed{E_k \circ A = B \circ E_k}$ (all *x* are solutions)

$$
E = R_{r-1} \circ \cdots \circ R_1 \circ R_0
$$

Goal

Find **bijective affine** A, B st. for many $k: |E_k \circ A = B \circ E_k|$ (all *x* are solutions)

$$
E = R_{r-1} \circ \cdots \circ R_1 \circ R_0
$$

Sufficient condition for **iterated** constructions There exist A_0, \cdots, A_r st. for all $i | A_{i+1} \circ R_i = R_i \circ A_i |$.

 A_0 A_1 \circlearrowleft A_{r-1} A_r \implies **round-by-round** and **layer-by-layer** studies.

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $\mathcal{A} := A \parallel A \parallel \cdots \parallel A$, where $A: \mathbb{F}_2^m \to \mathbb{F}_2^m$.

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $\mathcal{A} := A \parallel A \parallel \cdots \parallel A$, where $A: \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits). [EC:BDBP03] [EC:Dinur18]

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $\mathcal{A} := A \parallel A \parallel \cdots \parallel A$, where $A: \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits). [EC:BDBP03] [EC:Dinur18]

Constant addition

 $T_c(x) := x + c$, $A(x) := L_A(x) + c_A$.

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $\mathcal{A} := A \parallel A \parallel \cdots \parallel A$, where $A: \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits). [EC:BDBP03] [EC:Dinur18]

Constant addition

 $T_c(x) := x + c$, $A(x) := L_A(x) + c_A$.

 $A \circ T_c(x) = L_A(x) + L_A(c) + c_A$ and $T_c \circ A(x) = L_A(x) + c + c_A$

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $\mathcal{A} := A \parallel A \parallel \cdots \parallel A$, where $A: \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits). [EC:BDBP03] [EC:Dinur18]

Constant addition

 $T_c(x) := x + c$, $A(x) := L_A(x) + c_A$.

 $A \circ T_c(x) = L_A(x) + L_A(c) + c_A$ and $T_c \circ A(x) = L_A(x) + c + c_A$ $A \circ T_c = T_c \circ A \iff \boxed{c \in \text{Fix}(L_A)}$.

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case $A = B$)
- Parallel mappings: $\mathcal{A} := A \parallel A \parallel \cdots \parallel A$, where $A: \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits). [EC:BDBP03] [EC:Dinur18]

Constant addition

$$
T_c(x) := x + c, \quad A(x) := L_A(x) + c_A.
$$

$$
A \circ T_{C}(x) = L_{A}(x) + L_{A}(C) + c_{A} \quad \text{and} \quad T_{C} \circ A(x) = L_{A}(x) + c + c_{A}
$$

$$
A \circ T_{C} = T_{C} \circ A \iff \boxed{C \in \text{Fix}(L_{A})}.
$$

Linear layer

Let $\mathcal{L} = (\mathcal{L}_{ii})$ be an invertible block matrix with *m*-size blocks \mathcal{L}_{ii} . $\mathcal{L} \circ \mathcal{A} = \mathcal{A} \circ \mathcal{L} \iff \boxed{\mathcal{L}_{ij} \circ L_{\mathcal{A}} = L_{\mathcal{A}} \circ \mathcal{L}_{ij}}$ for all *i*, *j* and $c_{\mathcal{A}} \in \text{Fix}(\mathcal{L})$.

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

$$
M \begin{bmatrix} 1 \\ M \end{bmatrix} M \begin{bmatrix} 1 \\ M \end{bmatrix} M =
$$

$$
M = \begin{pmatrix} 0 & \text{Id} & \text{Id} & \text{Id} \\ \text{Id} & 0 & \text{Id} & \text{Id} \\ \text{Id} & \text{Id} & 0 & \text{Id} \\ \text{Id} & \text{Id} & \text{Id} & 0 \end{pmatrix}
$$

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

p = *AK* ◦ *AC* ◦ *MC* ◦ *PC* ◦ *S*

⊕ ⊕

 $K = (K_0 || K_1) \in \mathbb{F}_2^{128}$ $K₀$ for even rounds *K*¹ for odd ones.

p = *AK* ◦ *AC* ◦ *MC* ◦ *PC* ◦ *S*

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$

p = *AK* ◦ *AC* ◦ *MC* ◦ *PC* ◦ *S*

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$

Cells permutation Parallel mapping A : free commutation.

p = *AK* ◦ *AC* ◦ *MC* ◦ *PC* ◦ *S*

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$

Cells permutation Parallel mapping A : free commutation.

Linear layer

 $- M_{ij} \circ L_A = L_A \circ M_{ij} \; \forall \; i, j.$ But $M_{ij} \in \{0_4, \text{Id}_4\}.$

 \implies Any A would work.

 $-c_A \in \text{Fix}(\mathcal{L}).$ But $M(c, c, c, c) = (c, c, c, c)$ for any *c*.

p = *AK* ◦ *AC* ◦ *MC* ◦ *PC* ◦ *S*

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$

Cells permutation Parallel mapping A : free commutation.

Linear layer

- $-M_{ii} \circ L_A = L_A \circ M_{ii} \forall i,j.$ But $M_{ii} \in \{0_4, \text{Id}_A\}.$
- $-c_A \in \text{Fix}(\mathcal{L}).$ But $M(c, c, c, c) = (c, c, c, c)$ for any *c*.

 \implies Any A would work.

Constants

 $Fix(\mathcal{L}_{A^*}) = \langle 0x2, 0x5, 0x8 \rangle$. \rightarrow Consider variants with modified constants.

Weak keys: 1-bit condition per nibble $\rightsquigarrow 2^{96}$ out of $2^{128}.$

Recap

 $A^* \circ P = P \circ A^*$ for every layer *P* (given weak constants/keys). $\mathcal{A}^* \circ E_k = E_k \circ \mathcal{A}^*$ for $1/2^{32}$ of the keys k .

$$
x_0 \xrightarrow{R_0} x_1 \xrightarrow{...} x_{r-1} \xrightarrow{R_{r-1}} E(x_0)
$$

\n
$$
\downarrow \lambda^* \qquad \qquad \downarrow \lambda^* \qquad \qquad \downarrow \lambda^* \qquad \qquad \downarrow \lambda^*
$$

\n
$$
z_0 \xrightarrow{R_0} z_1 \xrightarrow{...} z_{r-1} \xrightarrow{R_{r-1}} E(z_0)
$$

$$
\mathbb{P}_{x \xleftarrow{s} X} (\underbrace{\mathcal{A}^* \to \mathcal{A}^* \to \cdots \to \mathcal{A}^*}_{r \text{ times}}) = 1, \text{ for any } r!
$$

Midori with weak constants, part 3

 $\Delta_i := X_i \oplus Z_i = X_i \oplus \mathcal{A}^*(X_i)$

Midori with weak constants, part 3

$$
x_0 \xrightarrow{R_0} x_1 \xrightarrow{R_{r-1}} x_{r-1} \xrightarrow{R_{r-1}} E(x_0)
$$

\n
$$
\Delta_0 \downarrow \mathcal{A}^* \qquad \Delta_1 \downarrow \mathcal{A}^* \qquad \Delta_{r-1} \downarrow \mathcal{A}^* \qquad \Delta_r \downarrow \mathcal{A}^*
$$

\n
$$
z_0 \xrightarrow[R_0]{R_0} z_1 \xrightarrow{R_{r-1}} z_{r-1} \xrightarrow[R_{r-1}]{R_{r-1}} E(z_0)
$$

$$
\Delta_i := X_i \oplus Z_i = X_i \oplus \mathcal{A}^*(X_i)
$$

Surprising differential interpretation $\delta = 0 \text{xf}, \quad \delta' = 0 \text{xa}.$

$$
\forall \ \Delta \in \{\delta, \delta'\}^{16}, \ \mathbb{P}_{x \stackrel{s}{\longleftrightarrow} X}(x + \mathcal{A}^*(x) = \Delta) = 2^{-16} \iff (x, x + \Delta) = (x, \mathcal{A}^*(x)) \text{ with proba } 2^{-16}
$$

Midori with weak constants, part 3

$$
x_0 \xrightarrow{R_0} x_1 \xrightarrow{R_{r-1}} x_{r-1} \xrightarrow{R_{r-1}} E(x_0)
$$

\n
$$
\Delta_0 \downarrow \Delta^* \qquad \Delta_1 \downarrow \Delta^* \qquad \Delta_{r-1} \downarrow \Delta^* \qquad \Delta_r \downarrow \Delta^*
$$

\n
$$
Z_0 \xrightarrow[R_0]{R_0} Z_1 \xrightarrow{R_{r-1}} Z_{r-1} \xrightarrow[R_{r-1}]{R_{r-1}} E(Z_0)
$$

$$
\Delta_i := x_i \oplus z_i = x_i \oplus \mathcal{A}^*(x_i)
$$

Surprising differential interpretation $\delta = 0 \text{xf}, \quad \delta' = 0 \text{xa}.$ $\forall \Delta \in \{\delta, \delta'\}^{16}, \ \mathbb{P}_{\substack{x \stackrel{s}{\longleftrightarrow} X}}(x + \mathcal{A}^*(x) = \Delta) = 2^{-16} \iff (x, x + \Delta) = (x, \mathcal{A}^*(x)) \text{ with proba } 2^{-16}$

$$
\Delta \xrightarrow{2^{-16}} \mathcal{A}^{\star} \xrightarrow{1} \cdots \xrightarrow{1} \mathcal{A}^{\star} \xrightarrow{2^{-16}} \Delta
$$

Weak-key Differential interpretation

Recap

If *k* is **weak**:

- $\mathbb{P}_{x \leftarrow x}$ (Δ → Δ') = 2⁻³² for any Δ, Δ' ∈ {δ, δ'}¹⁶.
- $\mathbb{P}_{x \stackrel{s}{\longleftrightarrow} X}$ (Δ \rightarrow {δ, δ'}¹⁶) = 2⁻¹⁶ for any Δ ∈ {δ, δ'}¹⁶.
- For any number of rounds, activate all S-boxes.

Weak-key Differential interpretation

Recap

If *k* is **weak**:

- $\mathbb{P}_{x \leftarrow x}$ (Δ → Δ') = 2⁻³² for any Δ, Δ' ∈ {δ, δ'}¹⁶.
- $\mathbb{P}_{x \stackrel{s}{\longleftrightarrow} X}$ (Δ \rightarrow {δ, δ'}¹⁶) = 2⁻¹⁶ for any Δ ∈ {δ, δ'}¹⁶.
- For any number of rounds, activate all S-boxes.

Standard case : quite low P*^k*,*^x*

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Weak-key Differential interpretation

Recap

If *k* is **weak**:

-
$$
\mathbb{P}_{x \stackrel{\$}{\leftarrow} X} (\Delta \to \Delta') = 2^{-32}
$$
 for any $\Delta, \Delta' \in \{\delta, \delta'\}^{16}$.

$$
\text{-} \mathbb{P}_{\mathsf{x} \stackrel{\mathsf{s}}{\leftarrow} \mathsf{x}} (\Delta \to \{\delta, \delta'\}^{16}) = 2^{-16} \text{ for any } \Delta \in \{\delta, \delta'\}^{16}.
$$

- For any number of rounds, activate all S-boxes.

Standard case : quite low P*^k*,*^x*

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Weak-key Differential interpretation, part 2

Weak-key Differential interpretation, part 2

Caution

- Same observations for the CAESAR candidate SCREAM (see paper).
- Same idea can be used to hide probability-1 differential trails [C:BFLNS23].

Good news

Probability-1 commutative trails can be automatically detected !

A bigger weak-key space ?

WK space

Fewer "active" S-boxes \implies bigger weak-key space.

$$
\begin{pmatrix}\nA & A & A & A \\
A & A & A & A \\
A & A & A & A \\
A & A & A & A\n\end{pmatrix} \rightsquigarrow \begin{pmatrix}\nA & Id & A & Id \\
Id & Id & Id & Id \\
A & Id & A & Id \\
Id & Id & Id & Id\n\end{pmatrix}
$$

A bigger weak-key space ?

WK space

Fewer "active" S-boxes \implies bigger weak-key space.

$$
\begin{pmatrix}\nA & A & A & A \\
A & A & A & A \\
A & A & A & A \\
A & A & A & A\n\end{pmatrix} \rightsquigarrow \begin{pmatrix}\nA & Id & A & Id \\
Id & Id & Id & Id \\
A & Id & A & Id \\
Id & Id & Id & Id\n\end{pmatrix}
$$

Modified-Midori study

- Constants : 4 active nibbles = 4-bit conditions.
- $-S$ -box: $S \circ A^* = A^* \circ S$ $S \circ Id = Id \circ S$
- Cell permutation: Invariant pattern for AES ShiftRows
- $\mathbb{P}_{x \stackrel{s}{\longleftrightarrow} X} (\mathcal{A}^* \circ \mathcal{M}(x) = \mathcal{M} \circ \mathcal{A}^*(x)) = 2^{-4}.$

A bigger weak-key space ?

WK space

Fewer "active" S-boxes \implies bigger weak-key space.

$$
\begin{pmatrix}\nA & A & A & A \\
A & A & A & A \\
A & A & A & A \\
A & A & A & A\n\end{pmatrix} \rightsquigarrow \begin{pmatrix}\nA & Id & A & Id \\
Id & Id & Id & Id \\
A & Id & A & Id \\
Id & Id & Id & Id\n\end{pmatrix}
$$

Modified-Midori study

- Constants : 4 active nibbles = 4-bit conditions.
- $-S$ -box: $S \circ A^* = A^* \circ S$ $S \circ Id = Id \circ S$
- Cell permutation: Invariant pattern for AES ShiftRows
- $\mathbb{P}_{x \stackrel{s}{\longleftrightarrow} X} (\mathcal{A}^* \circ \mathcal{M}(x) = \mathcal{M} \circ \mathcal{A}^*(x)) = 2^{-4}.$

WK-space / probability trade-off

For 2^{120} weak keys, $\mathbb{P}_{x \stackrel{\$}{\leftarrow} X} (R \circ \mathcal{M}(x) = \mathcal{M} \circ R(x)) = 2^{-4}.$

A bigger weak-key space ? part 2

Conclusion

What was done

- Probability-1: automatically solved (paper + github)
- Probabilistic commutative trails: way-harder to study but weak-key study

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Conclusion

What was done

- Probability-1: automatically solved (paper + github)
- Probabilistic commutative trails: way-harder to study but weak-key study

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Further studies

- Algorithm for probabilistic affine-equivalence.
- Relationships with [C:BeyRij22] ? with invariant subspace cryptanalysis ?
- Hybridization: *e.g.* commutative-differential ?

Experimental results

Recap

For Modified-Midori with ShiftRows and weak-key, $\mathbb{P}_{x\stackrel{\xi}{\longleftarrow} X}\left(R\circ\mathcal{A}(x)=\mathcal{A}\circ R(x)\right)=2^{-4}.$

