Commutative Cryptanalysis Made Practical

Jules BAUDRIN¹, Patrick Felke², Gregor Leander³, Patrick Neumann³, Léo Perrin¹ & Lukas Stennes³

jules.baudrin@inria.fr

Ínnin -

FSE, March 25th, 2024

I Inria, Paris, France

2 University of Applied Sciences Emden/Leer, Emden, Germany

3 Ruhr University Bochum, Bochum, Germany

Differential cryptanalysis

Differential cryptanalysis

Rotational cryptanalysis

Rotational-XOR cryptanalysis

More general cryptanalysis?

where $A(x) = L_A(x) + C_A, B(x) = L_B(x) + C_B$

More general cryptanalysis?

where $A(x) = L_A(x) + c_A, B(x) = L_B(x) + c_B$

A tempting desire of unification

Mathematically elegant, better understanding, new attacks

A 20-year-old idea [Wagner, FSE 2004]

Commutative diagram cryptanalysis: not so fruitful¹ since.

¹to the best of our knowledge...

Commutative (diagram) cryptanalysis

In this talk

Affine commutation with probability 1: theory + practice

A surprising differential interpretation

A few words about the probabilistic case

Commutative cryptanalysis principle

Goal

Find **bijective affine** A, B st. for many k: $E_k \circ A = B \circ E_k$

(all x are solutions)

Commutative cryptanalysis principle

Goal

Find **bijective affine** A, B st. for many k:
$$E_k \circ A = B \circ E_k$$

(all x are solutions)

$$E = R_{r-1} \circ \cdots \circ R_1 \circ R_0$$

Commutative cryptanalysis principle

Goal

Find **bijective affine** A, B st. for many k: $E_k \circ A = B \circ E_k$

 $E = R_{r-1} \circ \cdots \circ R_1 \circ R_0$

Sufficient condition for **iterated** constructions There exist A_0, \dots, A_r st. for all $i \mid A_{i+1} \circ R_i = R_i \circ A_i \mid$.

(all x are solutions)

Simplified setting for this presentation

- Commutation only: $E \circ A = A \circ E$ (case A = B)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \mid \mid \mathcal{A} \mid \mid \cdots \mid \mid \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} || \mathcal{A} || \cdots || \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $A \circ S = S \circ A \iff A \circ S = S \circ A \implies$ self-affine equivalent S-box. Effective search for small *m* (4, 8 bits). [EC:B

[EC:BDBP03] [EC:Dinur18]

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \mid\mid \mathcal{A} \mid\mid \cdots \mid\mid \mathcal{A}$, where $\mathcal{A} \colon \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $\begin{array}{l} \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \iff \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \implies \text{ self-affine equivalent S-box.} \\ \text{Effective search for small } m (4, 8 \text{ bits}). \end{array}$

[EC:BDBP03] [EC:Dinur18]

Constant addition

 $T_{c}(x) := x + c, \quad A(x) := L_{A}(x) + c_{A}.$

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} || \mathcal{A} || \cdots || \mathcal{A}$, where $\mathcal{A} : \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $\begin{array}{l} \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \iff \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \implies \hline \text{self-affine equivalent S-box.} \\ \text{Effective search for small } m (4, 8 \text{ bits}). & [EC:BDBP03] [EC:Dinur18] \end{array}$

Constant addition

 $T_{c}(x) := x + c, \quad A(x) := L_{A}(x) + c_{A}.$

 $A \circ T_{c}(x) = L_{A}(x) + L_{A}(c) + c_{A}$ and $T_{c} \circ A(x) = L_{A}(x) + c + c_{A}$

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \mid\mid \mathcal{A} \mid\mid \cdots \mid\mid \mathcal{A}$, where $\mathcal{A} \colon \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $\begin{array}{l} \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \iff \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \implies \hline \text{self-affine equivalent S-box.} \\ \text{Effective search for small } m (4, 8 \text{ bits}). & [EC:BDBP03] [EC:Dinur18] \end{array}$

Constant addition

 $T_{c}(x) := x + c, \quad A(x) := L_{A}(x) + c_{A}.$

 $A \circ T_{c}(x) = L_{A}(x) + L_{A}(c) + c_{A} \quad \text{and} \quad T_{c} \circ A(x) = L_{A}(x) + c + c_{A}$ $A \circ T_{c} = T_{c} \circ A \iff \boxed{c \in \operatorname{Fix}(L_{A})}.$

Simplified setting for this presentation

- Commutation only: $E \circ \mathcal{A} = \mathcal{A} \circ E$ (case $\mathcal{A} = \mathcal{B}$)
- Parallel mappings: $\mathcal{A} := \mathcal{A} \mid\mid \mathcal{A} \mid\mid \cdots \mid\mid \mathcal{A}$, where $\mathcal{A} \colon \mathbb{F}_2^m \to \mathbb{F}_2^m$.

S-box layer

 $\begin{array}{l} \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \iff \mathcal{A} \circ \mathcal{S} = \mathcal{S} \circ \mathcal{A} \implies \hline \text{self-affine equivalent S-box.} \\ \text{Effective search for small } m (4, 8 \text{ bits}). & [EC:BDBP03] [EC:Dinur18] \end{array}$

Constant addition

$$T_{c}(x) := x + c, \quad A(x) := L_{A}(x) + c_{A}.$$

$$A \circ T_{c}(x) = L_{A}(x) + L_{A}(c) + c_{A} \quad \text{and} \quad T_{c} \circ A(x) = L_{A}(x) + c + c_{A}$$
$$A \circ T_{c} = T_{c} \circ A \iff \boxed{c \in \operatorname{Fix}(L_{A})}.$$

Linear layer

Let $\mathcal{L} = (\mathcal{L}_{ij})$ be an invertible block matrix with *m*-size blocks \mathcal{L}_{ij} . $\mathcal{L} \circ \mathcal{A} = \mathcal{A} \circ \mathcal{L} \iff \boxed{\mathcal{L}_{ij} \circ \mathcal{L}_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} \circ \mathcal{L}_{ij}}$ for all i, j and $c_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L})$.

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

S	S	S	S
S	S	S	S
S	S	S	S
S	S	S	S

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

$$\mathbf{M} = \begin{pmatrix} \mathbf{0} & \mathrm{Id} & \mathrm{Id} & \mathrm{Id} \\ \mathrm{Id} & \mathbf{0} & \mathrm{Id} & \mathrm{Id} \\ \mathrm{Id} & \mathrm{Id} & \mathbf{0} & \mathrm{Id} \\ \mathrm{Id} & \mathrm{Id} & \mathrm{Id} & \mathbf{0} \end{pmatrix}$$

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

	\bigoplus	Ð	Ð
Ð	\bigoplus	\bigoplus	Ð
Ð	\bigoplus	Ð	\bigcirc
Ð	\bigcirc		\bigcirc

- AES-like,
- Standard wide-trail analysis,
- ... yet weak-key probability-1 (non)-linear approximations [TLS19, Bey18]
- due to (excessive) lightweightness and sparsity.

The round function

 $p = AK \circ AC \circ MC \circ PC \circ S$

 $K = (K_0 || K_1) \in \mathbb{F}_2^{128}$ K_0 for even rounds K_1 for odd ones.

 $p = AK \circ AC \circ MC \circ PC \circ S$

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

S	S	S	S
S	S	S	S
S	S	S	S
S	S	S	S

 $p = AK \circ AC \circ MC \circ PC \circ S$

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

Cells permutation Parallel mapping A : free commutation.

 $p = AK \circ AC \circ MC \circ PC \circ S$

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

Cells permutation

Parallel mapping \mathcal{A} : free commutation.

Linear layer

- $M_{ij} \circ L_A = L_A \circ M_{ij} \forall i, j.$ But $M_{ij} \in \{0_4, \mathrm{Id}_4\}.$
- $C_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L}).$

But M(c, c, c, c) = (c, c, c, c) for any c.

 \implies Any \mathcal{A} would work.

м	М	М	М
---	---	---	---

 $p = AK \circ AC \circ MC \circ PC \circ S$

But M(c, c, c, c) = (c, c, c, c) for any c.

Sbox layer

There exists a single non-trivial A^* st. $A^* \circ S = S \circ A^*$.

Cells permutation

Parallel mapping \mathcal{A} : free commutation.

Linear layer

- $M_{ij} \circ L_A = L_A \circ M_{ij} \forall i, j.$ But $M_{ij} \in \{0_4, \mathrm{Id}_4\}.$
- $C_{\mathcal{A}} \in \operatorname{Fix}(\mathcal{L}).$

 \implies Any \mathcal{A} would work.

Constants

 $\operatorname{Fix}(\mathcal{L}_{A^*}) = \langle 0x2, 0x5, 0x8 \rangle$. \rightsquigarrow Consider variants with modified constants.

Weak keys: 1-bit condition per nibble $\rightarrow 2^{96}$ out of 2^{128} .

м	М	М	М
---	---	---	---

Ð	Ð	Ð	Ð
a	æ	G	
<u></u>	Ð	Ð	Ð
3	Ð	Ð	Ð

Recap

 $\mathcal{A}^* \circ P = P \circ \mathcal{A}^*$ for every layer *P* (given weak constants/keys). $\mathcal{A}^* \circ E_k = E_k \circ \mathcal{A}^*$ for 1/2³² of the keys *k*.

$$\mathbb{P}_{x \xleftarrow{s} X}(\underbrace{\mathcal{A}^{\star} \to \mathcal{A}^{\star} \to \cdots \to \mathcal{A}^{\star}}_{r \text{ times}}) = 1, \text{ for any } r!$$

Midori with weak constants, part 3

 $\Delta_i := x_i \oplus z_i = x_i \oplus \mathcal{A}^{\star}(x_i)$

Midori with weak constants, part 3

$$\Delta_i := x_i \oplus z_i = x_i \oplus \mathcal{A}^{\star}(x_i)$$

Surprising differential interpretation $\delta = 0xf$, $\delta' = 0xa$.

$$\forall \Delta \in \{\delta, \delta'\}^{16}, \mathbb{P}_{x \xleftarrow{5} X} (x + \mathcal{A}^*(x) = \Delta) = 2^{-16} \iff (x, x + \Delta) = (x, \mathcal{A}^*(x)) \text{ with proba } 2^{-16}$$

Midori with weak constants, part 3

$$\Delta_i := x_i \oplus z_i = x_i \oplus \mathcal{A}^{\star}(x_i)$$

Surprising differential interpretation $\delta = 0xf$, $\delta' = 0xa$.

$$\forall \Delta \in \{\delta, \delta'\}^{16}, \mathbb{P}_{x \xleftarrow{5} X} (x + \mathcal{A}^{\star}(x) = \Delta) = 2^{-16} \iff (x, x + \Delta) = (x, \mathcal{A}^{\star}(x)) \text{ with proba } 2^{-16}$$

$$\Delta \xrightarrow{2^{-16}} \mathcal{A}^{\star} \xrightarrow{1} \cdots \xrightarrow{1} \mathcal{A}^{\star} \xrightarrow{2^{-16}} \Delta$$

Weak-key Differential interpretation

Recap

If k is weak:

- $\mathbb{P}_{x \xleftarrow{} X} (\Delta \to \Delta') = 2^{-32} \text{ for any } \Delta, \Delta' \in \{\delta, \delta'\}^{16}.$
- $\label{eq:approx_state} \ \ \mathbb{P}_{x \xleftarrow{ \mathsf{S} } X} \left(\Delta \to \{\delta, \delta'\}^{16} \right) = 2^{-16} \text{ for any } \Delta \in \{\delta, \delta'\}^{16}.$
- For any number of rounds, activate all S-boxes.

Weak-key Differential interpretation

Recap

If k is weak:

$$\mathbb{P}_{x \xleftarrow{\mathfrak{s}} X} (\Delta \to \Delta') = 2^{-32} \text{ for any } \Delta, \Delta' \in \{\delta, \delta'\}^{16}.$$

$$\mathbb{P}_{_{\chi \not \overset{s}{\leftarrow} \chi}}\left(\Delta \to \{\delta, \delta'\}^{16}\right) = 2^{-16} \text{ for any } \Delta \in \{\delta, \delta'\}^{16}.$$

- For any number of rounds, activate all S-boxes.

Standard case : quite low $\mathbb{P}_{k,x}$

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Weak-key Differential interpretation

Recap

If k is weak:

$$\mathbb{P}_{x \xleftarrow{\mathfrak{s}} X} (\Delta \to \Delta') = 2^{-32} \text{ for any } \Delta, \Delta' \in \{\delta, \delta'\}^{16}.$$

$$\mathbb{P}_{x \xleftarrow{\mathfrak{s}} X} \left(\Delta \to \{ \delta, \delta' \}^{16} \right) = 2^{-16} \text{ for any } \Delta \in \{ \delta, \delta' \}^{16}.$$

- For any number of rounds, activate all S-boxes.

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Weak-key Differential interpretation, part 2

Weak-key Differential interpretation, part 2

Caution

- Same observations for the CAESAR candidate SCREAM (see paper).
- Same idea can be used to hide probability-1 differential trails [C:BFLNS23].

Good news

Probability-1 commutative trails can be automatically detected !

A bigger weak-key space ?

WK space

Fewer "active" S-boxes \implies bigger weak-key space.

A bigger weak-key space ?

WK space

Fewer "active" S-boxes \implies bigger weak-key space.

Modified-Midori study

- Constants : 4 active nibbles = 4-bit conditions.
- S-box: $S \circ A^* = A^* \circ S$ $S \circ Id = Id \circ S$
- Cell permutation: Invariant pattern for AES ShiftRows
- $\mathbb{P}_{x \stackrel{s}{\leftarrow} X} \left(\mathcal{A}^* \circ \mathcal{M}(x) = \mathcal{M} \circ \mathcal{A}^*(x) \right) = 2^{-4}.$

A bigger weak-key space ?

WK space

Fewer "active" S-boxes \implies bigger weak-key space.

Modified-Midori study

- Constants : 4 active nibbles = 4-bit conditions.
- S-box: $S \circ A^* = A^* \circ S$ $S \circ Id = Id \circ S$
- Cell permutation: Invariant pattern for AES ShiftRows
- $\mathbb{P}_{x \xleftarrow{} X} (\mathcal{A}^* \circ \mathcal{M}(x) = \mathcal{M} \circ \mathcal{A}^*(x)) = 2^{-4}.$

WK-space / probability trade-off

For 2^{120} weak keys, $\mathbb{P}_{x \xleftarrow{s} X}(R \circ \mathcal{M}(x) = \mathcal{M} \circ R(x)) = 2^{-4}$.

A bigger weak-key space ? part 2

Conclusion

What was done

- Probability-1: automatically solved (paper + github)
- Probabilistic commutative trails: way-harder to study but weak-key study

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Standard case : quite low \mathbb{P}_{kx}

Conclusion

What was done

- Probability-1: automatically solved (paper + github)
- Probabilistic commutative trails: way-harder to study but weak-key study

Part of 9-round chosen-key distinguisher for AES-128. Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

Further studies

- Algorithm for probabilistic affine-equivalence.
- Relationships with [C:BeyRij22] ? with invariant subspace cryptanalysis ?
- Hybridization: e.g. commutative-differential?

Experimental results

Recap

For Modified-Midori with ShiftRows and weak-key, $\mathbb{P}_{x \stackrel{\leq}{\leftarrow} X}(R \circ \mathcal{A}(x) = \mathcal{A} \circ R(x)) = 2^{-4}$.

