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Abstract. In this work we introduce algebraic transition matrices as the basis for
a new approach to integral cryptanalysis that unifies monomial trails (Hu et al.,
Asiacrypt 2020) and parity sets (Boura and Canteaut, Crypto 2016). Algebraic
transition matrices allow for the computation of the algebraic normal form of a
primitive based on the algebraic normal forms of its components by means of well-
understood operations from linear algebra. The theory of algebraic transition matrices
leads to better insight into the relation between integral properties of F and F −1. In
addition, we show that the link between invariants and eigenvectors of correlation
matrices (Beyne, Asiacrypt 2018) carries over to algebraic transition matrices. Finally,
algebraic transition matrices suggest a generalized definition of integral properties
that subsumes previous notions such as extended division properties (Lambin, Derbez
and Fouque, DCC 2020). On the practical side, a new algorithm is described to
search for these generalized properties and applied to Present, resulting in new
properties. The algorithm can be instantiated with any existing automated search
method for integral cryptanalysis.
Keywords: Integral Cryptanalysis · Division Property · Nonlinear Invariants ·
ANF · Change-of-Basis · Algebraic Transition Matrices

1 Introduction
Integral cryptanalysis is an important technique for attacking symmetric-key primitives. It
was originally described in 2002 by Knudsen and Wagner [KW02] as a generalization of a
dedicated attack on the block cipher Square [DKR97] that exploits the byte-wise structure
of Square to construct a zero-sum distinguisher. In 2015, Todo [Tod15] introduced the
division property, which refines integral cryptanalysis by taking into account the algebraic
degree of the components of the analyzed primitive. Except for the limited bit-pattern
based integral attacks by Z’aba et al. [ZRHD08], integral cryptanalysis was mostly useful
for word-oriented ciphers. This changed with the introduction of the bit-based division
property by Todo and Morii [TM16], which made it possible to apply integral cryptanalysis
to arbitrary ciphers. Also in 2016, Boura and Canteaut introduced parity sets as a different
view of the division property [BC16], connecting the propagation of the division property
in a bitwise manner with the algebraic normal form of the components of the primitive.

The term integral cryptanalysis refers to computing an ‘integral’ over a primitive, which
can be interpreted as summing its outputs over a carefully chosen input set. Cube attacks
[Vie07, DS09] and higher-order differentials [Knu95] could also be considered as integral
cryptanalysis under this broad, albeit vague, description. This idea of integrals as generic
sums is also reflected in further work on the division property, such as the three-subset
division property without unknown subset by Hao et al. that can be used to reconstruct
cubes [HLM+21] and the linearly equivalent S-boxes method of Lambin et al. that can
describe higher-order differential [LDF20].
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The division property is intimately linked with the algebraic normal form (ANF).
Indeed, the ANF determines the propagation of parity sets, and ANF-coefficients can be
computed using the three-subset division property without unknown subset. Hebborn
et al. [HLLT20] have also shown that, in the absence of a key, parity set propagation
can exactly compute arbitrary algebraic normal form coefficients from the parity of the
number of trails. Conversely, any monomial that does not occur in the ANF of a primitive
leads to an integral distinguisher. This is exploited by Hu et al. [HSWW20] in their
work on monomial prediction, in which they reformulate division property algorithms as
methods to detect the presence of specific monomials in the algebraic normal form. They
also developed their own perfect propagation method based on backward propagation of
monomials through primitives.

Contributions We introduce a new framework for integral cryptanalysis that aims to
simplify the propagation of integral properties by relying on linear algebra. Inspired by the
correlation-matrix description of linear cryptanalysis [DGV95] and the quasidifferential
transition matrices that were proposed at Crypto 2022 [BR22], we introduce algebraic
transition matrices. Algebraic transition matrices have similar properties to correlation
matrices. In particular, the algebraic transition matrix of a composition of functions is
the product of their corresponding algebraic transition matrices. Similar to linear trails,
these products can be decomposed into a sum of algebraic trails to compute a single
element of the algebraic transition matrix. Algebraic trails can also be interpreted as a
generalization of division trails or monomial trails that can carry additional information
on key-dependency.

Algebraic transition matrices and algebraic trails lead to several new theoretical insights.
We investigate the relation between algebraic transition matrices and existing approaches
to integral cryptanalysis such as the division property, parity sets and monomial trails. In
particular, algebraic transition matrices unify the notions of parity sets and monomials
trails and make the duality that exists between them precise. The link between the
division properties of a permutation and those of its inverse that was first described by
Udovenko at Asiacrypt 2021 [Udo21] is shown to have a natural description in terms of
algebraic transition matrices and is generalized to arbitrary functions. In addition, we
show that the link between invariants and eigenvectors of correlation matrices, introduced
by Beyne at Asiacrypt 2018 [Bey18], carries over to algebraic transition matrices. As
algebraic transition matrices are not defined over an algebraically closed field, they are
not necessarily diagonalizable. However, we overcome this issue and are able to classify
invariants precisely by combining the primary decomposition and generalized Jordan
decomposition of algebraic transition matrices.

Our approach also leads to computational improvements. Based on the algebraic trail
decomposition, and its specific form for key-alternating ciphers in particular, we obtain a
more precise algorithm to compute division properties. Furthermore, algebraic transition
matrices naturally lead to a broad definition of integral properties that further generalizes
the extended integral properties of [LDF20]. A new algorithm is introduced to efficiently
search for such integral properties. For the case of extended integral properties based on
linear equivalences, it improves over the methods from [LDF20] as it is able to recover the
same properties without enumerating linear equivalences. As a proof of concept, we apply
the algorithm to 9-round Present, resulting in new properties that could not be found with
previous methods.

Organisation The necessary notations and background for this work are discussed in
Section 2. In Section 3, algebraic transition matrices are introduced and their properties
are given. In Section 4, applications of algebraic transition matrices, such as their relation
to parity sets and monomial trails and invariants, are developed. Section 5 describes the
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new algorithm to search for generalized integral properties.

2 Preliminaries
2.1 Naming and Notation
Vectors The vector space Fn

2 has the following partial ordering: x ≤ y ⇔ ∀i : xi ≤ yi

with x = (x1, . . . , xn) and y = (y1, . . . , yn). The Hamming weight wt(x) of a vector x ∈ Fn
2

is defined as the number of non-zero coordinates of that vector. The concatenation of
two vectors x ∈ Fn

2 and y ∈ Fm
2 is denoted as x∥y ∈ Fn+m

2 . Notable vectors are 0 ∈ Fn
2

and 1 ∈ Fn
2 , which respectively indicate the all-zero and all-one vector. The unit vectors

ei ∈ Fn
2 are zero in all coordinates, except the ith. Furthermore, x denotes the complement

of x: x + 1. The precursor set of a vector u ∈ Fn
2 consists of all vectors that are dominated

by u, Prec(u) = {x : x ≤ u}. Similarly, the successor set of a vector u consists of all
vectors that dominate u, Succ(u) = {x : u ≤ x}.

Boolean Functions This work considers functions operating on Fn
2 . For a field K, we

write these functions as f : Fn
2 → K or equivalently f ∈ KFn

2 . The second notation is
used to emphasize that f is considered as a vector. When the field is F2, they are called
Boolean functions. The vector space of Boolean functions on Fn

2 can be identified with the
polynomial ring F2[x1, . . . , xn]/(x2

1−x1, . . . , x2
n−xn). Specifically, every Boolean function

can be represented as a unique polynomial in this ring, which is called its algebraic normal
form (ANF):

f(x) =
∑

u∈Fn
2

λuxu , (1)

where xu =
∏n

i=1 xui
i for x = (x1, . . . , xn) and u = (u1, . . . , un). The Kronecker delta

function δx is zero everywhere except at x, where it equals one. Other notable functions
are the indicator function 1X of a set X ⊆ Fn

2 and the constant functions, 0 and 1. The
tensor product, ⊗, of two functions, f ∈ KFn

2 and g ∈ KFm
2 , is defined as (f ⊗ g)(x, y) =

f(x)g(y). The tensor product of two matrices A ∈ KFn
2 ×Fm

2 and B ∈ KFs
2×Ft

2 is defined
as (A⊗B)v∥v′,u∥u′ = Av,uBv′,u′ . Finally, vectorial Boolean functions are denoted with a
capital letter: F : Fn

2 → Fm
2 .

2.2 Linear Cryptanalysis
Even though this work is not about linear cryptanalysis, it is worth discussing it briefly as
analogous concepts will be introduced. Linear cryptanalysis is based on the correlation
between Boolean functions and linear functions, which can be exploited as a distinguishing
feature of a cipher. We follow the interpretation by Beyne [Bey21].

2.2.1 Transition Matrices

Let F : Fn
2 → Fm

2 be a vectorial Boolean function. When F is a block cipher or a
cryptographic permutation, it is a non-linear operation of high degree. However, a linear
transformation from subsets of Fn

2 to subsets of Fm
2 can also be derived from it. That is,

there exists a linear operator, called the transition matrix, that maps δx to δF (x). More
generally, it maps any function f : Fn

2 → K to a function f ′ : Fm
2 → K in the following

manner:
f ′(y) =

∑
x∈Fn

2
F (x)=y

f(x).
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Definition 1 (Transition matrix [Bey21]). Let K be a field and let F : Fn
2 → Fm

2 . Define
T F : KFn

2 → KF
m
2 as the unique linear operator that maps δx to δF (x). The transition

matrix of F is the coordinate representation of T F with respect to the Kronecker delta
bases of KFn

2 and KFm
2 .

The transition matrix has useful properties that make it possible to describe the
transition matrix of a cryptographic function based on the transition matrices of its
components.

Theorem 1 (Properties of transition matrices (derived from [Bey21])). Let F : Fn
2 → Fm

2
be a vectorial Boolean function. The transition matrix of F , T F , has the following
properties:

1. If F is a bijection, then T F is a permutation matrix.

2. If F (x2∥x1) = F2(x2)∥F1(x1), then T F = T F2 ⊗ T F1 .

3. If F = F2 ◦ F1, then T F = T F2T F1 .

4. Let g ∈ FF
m
2

2 , then g ◦ F =
(
T F

)T
g, where

(
T F

)T is the transpose of T F .

Proof. The first three properties are proven in [Bey21, Thm. 3.1]. The fourth property
refers to the pullback operator [Bey21, Def. 3.1]. However, because the matrix representa-
tion of the pullback operator is the transpose of the transition matrix [Bey21, Sec. 3.2],
we opt not to define the pullback operator and work with the transpose of T F instead.

2.2.2 Correlation Matrices

The transition matrix can be considered in different bases, either to simplify analysis or
to emphasize specific properties of the functions. One such basis consists of the group
characters of Fn

2 . These are the functions χu : Fn
2 → R defined by χu(x) = (−1)uTx, with

u ∈ Fn
2 . The basis of group characters is of particular interest, because it diagonalizes the

transition matrix of any constant addition, x 7→ x + t, resulting in a simple representation
of the key addition. The change-of-basis transformation from the Kronecker delta basis to
the character basis is the Fourier transformation.

Definition 2 (Fourier Transformation [Bey21]). The Fourier transformation of a function
f ∈ RFn

2 is the function Fn(f) = f̂ ∈ RFn
2 defined by f̂(u) =

∑
x∈Fn

2
χu(x)f(x). That is,

f̂(u)/2n is equal to the coordinate of f corresponding to χu in the character basis.

Daemen et al. [DGV95] define the correlation matrix of a vectorial Boolean function F
as the matrix CF such that each coordinate is equal the correlation of a linear approximation.
Beyne [Bey21] defines it as the Fourier transformation of the transition matrix of F . Both
definitions are equivalent, but using the second definition the properties of the transition
matrix can be translated to properties of the correlation matrix.

Definition 3 (Correlation Matrix [Bey21]). Let F : Fn
2 → Fm

2 . Define CF : RFn
2 → RF

m
2

as the Fourier transformation of T F . That is, CF = FmT F F −1
n . The correlation matrix

of F is the coordinate representation of T F with respect to the character bases of RFn
2

and RFm
2 .

Theorem 2 (Properties of correlation matrices (derived from [Bey21])). Let F : Fn
2 → Fm

2
be a vectorial Boolean function. Its correlation matrix, CF , has the following properties:

1. If F is a bijection, then CF is an orthogonal matrix.

2. If F = F2∥F1, then CF = CF2 ⊗ CF1 .
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3. If F = F2 ◦ F1, then CF = CF2CF1 .

4. Let g ∈ RFm
2 , then ĝ ◦ F = 2n−m

(
CF

)T
ĝ, where

(
CF

)T is the transpose of CF .

Proof. The first three properties are proven in [Bey21, Thm. 3.2]. The fourth property
follows from ĝ ◦ F = Fn(T F )Tg = Fn(T F )TF −1

m ĝ and the fact that F −1
n = F T

n /2n.

2.2.3 Trails and Approximations

Let F be a vectorial Boolean function consisting of multiple rounds: F = Fr ◦ · · · ◦ F1.
By the third property of Theorem 2, the correlation matrix of F can be decomposed as
CF = CFr · · ·CF1 . Expanding this matrix product into coordinates results in

CF
ur,u0

=
∑

u1,...,ur−1

r∏
i=1

CFi
ui,ui−1

. (2)

This equation expresses the correlation of a linear approximation as a sum of the correla-
tions of trails, where a trail is a sequence (u0, . . . , ur) and its correlation is the product∏r

i=1 CFi
ui,ui−1

. By only considering a subset of the trails from u0 to ur with dominant
absolute correlation, it is possible to approximate the actual correlation. Let Λ be this
chosen set of dominant trails and let Λc be the set of all other trails. The correlation of a
linear approximation can then be approximated as:

CF
ur,u0

=
∑

(u1,...,ur−1)∈Λ

r∏
i=1

CFi
ui,ui−1

+
∑

(u1,...,ur−1)∈Λc

r∏
i=1

CFi
ui,ui−1

(3)

≈
∑

(u1,...,ur−1)∈Λ

r∏
i=1

CFi
ui,ui−1

. (4)

The absolute error of this approximation is
∣∣ ∑

(u1,...,ur−1)∈Λc
∏r

i=1 CFi
ui,ui−1

∣∣ and the ap-
proximation only holds under the assumption that this error term is small.

2.3 Binary Möbius Transformation
The coefficients in the ANF of a Boolean function can be viewed as coordinates in the basis
of monomials. The elements of this basis are denoted by µu(x) = xu. The change-of-basis
transformation from the Kronecker delta basis to the monomial basis is known as the
binary Möbius transformation.

Definition 4 (Binary Möbius Transformation). The binary Möbius transformation of a
Boolean function f ∈ FF

n
2

2 is the Boolean function Mn(f) = f◦ ∈ FF
n
2

2 , where f◦(u) is the
coordinate of f corresponding to µu in the monomial basis.

By applying the Möbius inversion formula [Rot64, Prop. 2] to Equation (1), the binary
Möbius transformation can be explicitly written as

f◦(u) =
∑
x≤u

f(x). (5)

The binary Möbius transformation is its own inverse. Furthermore, the matrix representa-
tion of the Möbius transformation derived from Equation (5) has a recursive structure
that can be exploited to compute the binary Möbius transformation in O(n2n) instead of
O(22n) operations. A description of this algorithm can be found in [Car20].

Theorem 3. The binary Möbius transformation Mn has the following properties:
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1. It is an involution: M −1
n = Mn.

2. Its matrix representation has the following structure: Mn =
[
1 0
1 1

]⊗n

.

Proof. These properties can, for example, be derived from [PWZ11, Thm. 2, Lem. 1].

Example 1. Let f ∈ FF
2
2

2 be a 2-bit Boolean function with a truth table equal to [0, 1, 0, 0]T.
The algebraic normal form coefficients of f can be computed by multiplication with M2:[

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

] [
0
1
0
0

]
=

[
0
1
0
1

]
.

This results in the truth table of f◦, from which one can read that xe1 = x1 and x1 = x1x2
are the only two monomials in the ANF of f . That is, f(x) = x1 + x1x2 with x = (x1, x2).
From the second property of Theorem 3, it follows that the ANF coefficients of f◦ are
given by the truth table of f , such that f◦(u) = u1 with u = (u1, u2). ▷

3 Algebraic Transition Matrices
Similar to correlation matrices, algebraic transition matrices are the result of applying
a change-of-basis transformation to transition matrices. The choice of basis can be best
understood from the perspective of integral cryptanalysis. Therefore, we first define integral
and generalized integral properties in Section 3.1. Then, algebraic transition matrices are
introduced in Section 3.3. Section 3.4 discusses algebraic trails and Section 3.5 discusses
key addition.

3.1 Integral Cryptanalysis
In this work we consider a general definition of integral properties that encompasses the
original integral properties from [KW02], division properties [Tod15, TM16] and, the
properties from the linearly equivalent S-boxes method of [LDF20].

Definition 5 (Integral Property). Let F : Fn
2 → Fm

2 be a vectorial Boolean function. An
integral property for F is a pair (X, r) with X ⊆ Fn

2 and r : Fm
2 → F2, and its evaluation

is equal to ∑
x∈X

r(F (x)) . (6)

For example, a division property consists of an affine subspace a+V that after evaluation
leads to a zero sum for the ith bit of the output. With Definition 5, this can be described
by taking X equal to the affine subspace and by taking r equal to the degree-one monomial
corresponding to that bit, i.e. X = a + V and r = xei . In [HLLT21], Hebborn et al.
consider similar integral properties to Definition 5, but only with functions r of degree 1.

To the best of the authors’ knowledge, no higher degree functions r have been considered
in the integral cryptanalysis literature, although existing division property techniques can
certainly find them. From the viewpoint of transition matrices, higher degree functions
r are a natural generalization. Indeed, the sum in Equation (6) can be rewritten as a
dot-product:

∑
x∈X r(F (x)) = (r ◦ F ) · 1X . Applying Property 4 from Theorem 1 gives∑

x∈X

r(F (x)) =
((

T F
)T

r
)
· 1X = r ·

(
T F1X

)
. (7)

Equation (7) shows that Equation (6) is in fact an evaluation of the bilinear form defined
by the transition matrix T F .
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In Section 5, a new algorithm is developed that searches for all constant-sum integral
properties of the form described in Definition 5 within a given subset. However, as will be
discussed in Section 5, it is actually simpler to first search for properties that are a further
generalization of Definition 5 and then search for the integral properties of Definition 5.
These generalized integral properties are defined in Definition 6. Any integral property
can be turned into a generalized integral property by taking r′ = 1X ⊗ r. Note that a
generalized integral property can also be defined as an integral property for x 7→ (x, F (x)).

Definition 6 (Generalized Integral Property). Let F : Fn
2 → Fm

2 be a vectorial Boolean
function. A generalized integral property for F is a function r′ : Fn

2 × Fm
2 → F2, and its

evaluation is equal to ∑
x∈Fn

2

r′(x, F (x)). (8)

3.2 Precursor Basis
Equation (7) can be modified further to simplify analysis by using the ANF of r. When
replacing r by r◦, an extra matrix multiplication M −1

m has to be inserted in the equation:(
T F

)T
r · 1X =

(
T F

)T
M −1

m r◦ · 1X .

However, to complete the change-of-basis transformation of the transition matrix, 1X has
to be described in the dual of the monomial basis. We call this basis, with change-of-basis
transformation Pn = M −T

n , the precursor basis. The name is due to the observation that
the precursor basis vectors πu, are the indicator functions of precursor sets: πu = 1Prec(u).

Definition 7 (Dual Binary Möbius Transformation). The dual binary Möbius transfor-
mation of a Boolean function f ∈ FF

n
2

2 is the Boolean function Pn(f) = f̃ ∈ FF
n
2

2 , where
f̃(u) is the coordinate of f corresponding to πu in the precursor basis.

Similar to the properties in Theorem 3 for the ordinary binary Möbius transformation,
the dual binary Möbius transformation is also its own inverse and its matrix representation
has an analogous recursive structure.

Theorem 4. The dual binary Möbius transformation Pn has the following properties:

1. It is an involution: P−1
n = Pn.

2. Its matrix representation has the following structure: Pn =
[
1 1
0 1

]⊗n

.

Using Definition 7, Equation (6) can be rewritten as∑
x∈X

r(F (x)) = r◦ ·PmT F P−1
n 1̃X .

This gives us the definition of the algebraic transition matrix.

3.3 Algebraic Transition Matrices
Algebraic transition matrices can now be defined by a change-of-basis of transition matrices
from the Kronecker delta basis to the precursor basis.

Definition 8. (Algebraic Transition Matrix) Let F : Fn
2 → Fm

2 . Define AF : FF
n
2

2 → F
Fm

2
2

as the dual binary Möbius transformation of T F . That is, AF = PmT F P−1
n . The

algebraic transition matrix of F is the coordinate representation of T F with respect to the
precursor bases of FF

n
2

2 and FF
m
2

2
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The algebraic transition matrix has similar properties to the transition matrix and
correlation matrix. However, note that Property 1 of Theorem 5 is weaker than Property 1
of Theorem 2, because Pn is not orthogonal.

Theorem 5 (Properties of Algebraic Transition Matrices). Let F : Fn
2 → Fm

2 be a vectorial
Boolean function. The algebraic transition matrix of F , AF , has the following properties:

1. If F is a bijection, then AF is invertible and
(
AF

)−1 = AF −1 .

2. If F = F1∥F2, then AF = AF2 ⊗AF1 .

3. If F = F2 ◦ F1, then AF = AF2AF1 .

4. Let g ∈ FF
m
2

2 , then (g ◦ F )◦ =
(
AF

)T
g◦.

Proof. Similar to Theorem 2, all these properties follow from Theorem 1, the change-of-basis
transformation AF = PmT F P−1

n and the fact that Pn = P⊗n
1 .

Using Property 4 of the theorem above, an exact formula for each element of the
algebraic transition matrix can also be derived.

Theorem 6. Let F : Fn
2 → Fm

2 . For all u ∈ Fn
2 and v ∈ Fm

2 , one has AF
v,u =

(
F v

)◦(u).

Proof. Consider Property 4 of Theorem 5. By choosing g = µv, we get
(
F v

)◦ =
(
AF

)T
δv.

This means that each column of
(
AF

)T is equal to
(
F v

)◦. Therefore, we can conclude that
AF

v,u =
(
F v

)◦(u).

Example 2. Let F : F2
2 → F2

2 be the vectorial Boolean function defined by F (x) =
(F1(x), F2(x)) = (x2 +1, x1 +x1x2), with x = (x1, x2). To compute the algebraic transition
matrix, the transition matrix has to be determined first:

T F =
[

0 0 1 1
1 0 0 0
0 0 0 0
0 1 0 0

]
.

The algebraic transition matrix can be calculated according to Definition 8. For larger
matrices, this computation can be sped up with the algorithm discussed in Section 2.3.

AF = PmT F P−1
n =

[
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

] [
0 0 1 1
1 0 0 0
0 0 0 0
0 1 0 0

] [
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

]
.

This results in 
1 x1 x2 x1x2

1 1 0 0 0
F1 1 0 1 0
F2 0 1 0 1
F1F2 0 1 0 1

 = AF .

From Theorem 6 it follows that each row of AF contains the ANF coefficients of a product
of component functions of F . Indeed, the first row of AF is the ANF of F 0 = 1. The
second and third rows are the ANFs of F1 and F2 respectively, and the last row is the
ANF of the product of F1 and F2. The composition of F with a Boolean function can also
easily be computed through Property 4 of Theorem 5. For example, let g(x) = x1 + x2,
then the ANF of g ◦ F can be computed as

(g ◦ F )◦ =
(
AF

)T
g◦ =

[
1 1 0 0
0 0 1 1
0 1 0 0
0 0 1 1

] [
0
1
1
0

]
=

[
1
1
1
1

]
.

In Appendix A, the algebraic transition matrix of the Present S-box is given. ▷
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3.4 Algebraic Trails
Using Theorem 6, the ANF coefficients of a function F : Fn

2 → Fm
2 can be read out from

the algebraic transition matrix of F . For a function of the form F = Fr ◦ · · · ◦F1, elements
of AF can be computed in the same way as in Equation (2):

AF
ur,u0

=
∑

u1,...,ur−1

r∏
i=1

AFi
ui,ui−1

. (9)

Analogous to Equation (2), Equation (9) decomposes the matrix product into trails. These
algebraic trails are defined by a tuple (u0, . . . , ur) ∈ Fn

2 × · · · ×Fm
2 and have an associated

correlation equal to
∏r

i=1 AFi
ui,ui−1

. Hence, any element of AF is a sum of algebraic trails.
Equation (9) and Equation (2) use the same decomposition and therefore, algebraic

trails can be treated in the same way as linear trails. However, their correlations are
defined over different fields. Unlike in linear cryptanalysis, that is defined over R, the field
F2 only has the trivial norm, which is not useful for approximations. The computation
can still be simplified by considering a set Λ containing – but not limited to – all algebraic
trails with a nonzero-correlation, such that

AF
ur,u0

=
∑

(u1,...,ur−1)∈Λ

r∏
i=1

AFi
ui,ui−1

. (10)

If Λ is shown to be empty, then it can be concluded that the sum is equal to zero. This
is very similar to zero-correlation linear or impossible differential cryptanalysis, where the
goal is also to show that there only exist trails or characteristics with respectively zero
correlation or zero probability. In some cases, Λ is not empty but all trails cancel each
other so that sum is still zero. In Section 4, the connection between algebraic trails and
other notions of trails in integral cryptanalysis, such as division trails and monomial trails,
is discussed as well as how these techniques can be applied to find nonzero-correlation
algebraic trails.

3.5 Key Addition and Key-Alternating Ciphers
Dependency on a key k that parameterizes a vectorial Boolean function Fk, such as a
block cipher, can be included in the algebraic normal form of Fk by parameterizing the
ANF coefficients:

Fk(x) =
∑

u

λu(k)xu . (11)

By Theorem 6, the coordinates of the algebraic transition matrix can similarly be parame-
terized by k. Furthermore, Equation (9) still holds for the composition of parameterized
vectorial Boolean functions, but the correlations of the algebraic trails will be functions of
the key.

In a block cipher, the key is often introduced through addition in Fn
2 . If we consider

the ANF coefficients to be functions of the key, the algebraic transition matrix of the
addition with a single bit k is equal to [

1 0
k 1

]
. (12)

Using Theorem 5, this can be extended to key addition on multiple bits. Theorem 7 gives
an explicit formula for each coordinate of the corresponding algebraic transition matrix.
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Theorem 7. Let τk : Fn
2 → Fn

2 be a vectorial Boolean function defined as τk(x) = x + k.
For each coordinate (u, v) ∈ Fn

2 ×Fm
2 of the algebraic transition matrix of τk, it holds that:

Aτk
v,u =

{
ku+v if u ≤ v ,

0 otherwise .

Proof. This follows directly from Property 2 of Theorem 5 and Equation (12).

Key-alternating ciphers are iterated ciphers that alternate the application of a round
function with the addition of a round key. Let k1, . . . , kr be r round keys, let F1, . . . , Fr be
the round functions and let Gi(x) = Fi(x) + ki, then F = Gr ◦ · · · ◦G1 is a key-alternating
cipher. By Theorem 7, the ANF coefficients of a key-alternating cipher can be written as

AF
vr,v0

=
∑

v0,u1,v1,...,ur−1,vr−1,ur

ui≤vi

r∏
i=1

kui+vi
i AFi

ui,vi−1
. (13)

As a consequence of modelling the key addition as a separate layer, the correlations of all
algebraic trails are either zero or a monomial function of the key.

4 Applications of Algebraic Transition Matrices
Algebraic transition matrices have implicitly been used in earlier work. In this section we
explain how algebraic transition matrices have been used before and what new insights
their definition brings. In Section 4.1, the connection between algebraic transition matrices
and existing search methods for integral properties is discussed, starting from [BC16].
Furthermore, new search methods derived from algebraic transition matrices and trails are
suggested. In Section 4.2, the connection between the integral properties of a permutation
and its inverse is discussed from the perspective of the Möbius transformation and the
dual Möbius transformation of the transition matrix. Section 4.3 establishes a connection
between algebraic transition matrices and invariants. For correlation matrices it has
already been shown that invariants are their eigenvectors [Bey18]. A similar result holds
for algebraic transition matrices.

4.1 Parity Sets, Monomial Trails and Algebraic Transition Matrices
In this section the connection between parity sets [BC16], monomial trails [HSWW20]
and algebraic transition matrices is discussed and Equation (10) is used to develop an
improved method for computing elements of algebraic transition matrices.

Parity Sets In [BC16], Boura and Canteaut introduce parity sets as a new approach
to understanding division properties of sets, and as an improved technique to search
for integral properties. For every set X ⊆ Fn

2 , they define a corresponding parity set
U(X) =

{
u :

∑
x∈X xu = 1

}
[BC16, Def. 2]. The parity set of a set can also be described

as an involutive linear transformation of the indicator vector of X [BC16, Thm. 1]. In
fact, this transformation is equal to the change-of-basis transformation Pn. Therefore 1̃X ,
is equal to 1U(X).

To find integral properties, parity sets can be propagated through a function F : Fn
2 →

Fm
2 using the inclusion U(F (X)) ⊆

⋃
u∈U(X) VF (u), where VF (u) =

{
v : F v(x) contains xu

}
[BC16, Prop. 7]. Since xu is contained in F v(x) if and only if AF

v,u is nonzero, VF (u) is
also equal to the support of the column of AF at index u. This is also reflected in [BC16,
Table 2], which, up to the order of rows and columns, is equal to the transpose of the
algebraic transition matrix of the Present S-box given in Appendix A. This shows that



254 Integral Cryptanalysis Using Algebraic Transition Matrices

[BC16, Prop. 7] can be improved upon by considering it as a matrix-vector product with
the transition matrix:

U(F (X)) = △
u∈U(X)

VF (u) , (14)

where △ denotes the symmetric difference of sets. Furthermore, parity sets can also be
propagated through the addition with a secret key. By [BC16, Prop. 6], it holds that
U(k + X) ⊆

⋃
u∈U(X) Succ(u). This can directly be deduced from the algebraic transition

matrix of the key addition operation, which is given in Theorem 7.
To find integral properties for a key alternating cipher F , [BC16, Prop. 6 and Prop. 7]

can repeatedly be applied to a growing superset of the parity set, starting from an initial
set X. Any element, v that is not present in the final superset then leads to an integral
property of the form

∑
x∈X F v(x) = 0. However, [BC16, Prop. 7] also gives rise to a

trail based approach. Consider F = Fr ◦ · · · ◦ F1, then there is a parity-set derived trail
(u0, . . . , ur) if and only if for all ui it holds that ui ∈ VFi

(ui−1). Since ui is an element of
VFi(ui−1) if and only if AF

ui,ui−1
is nonzero, the trails derived from parity sets coincide

with the algebraic trails with a nonzero correlation. Therefore, parity set propagation can
be used to model the set Λ of all nonzero-correlation algebraic trails in Equation (10).

Monomial Trails The work on monomial trails by Hu et al. [HSWW20] can be seen as
dual to the parity set approach. Whereas parity sets are propagated in the forward direction
through a function, monomial trails result from the backward propagation of monomials.
That is, a monomial trail through F (x) = y is defined by the relation that xu propagates
to yv if and only if the ANF of F v(x) contains the monomial xu. Again, this holds if and
only if AF

ui,ui−1
is nonzero. However, since the propagation of monomial trails happens in

the backwards direction, the monomial trails correspond to the nonzero-correlation trails
resulting from the decomposition of (AF )T like in Equation (9). By undoing the transpose,
which corresponds to reversing the monomial trails, the corresponding algebraic trail can
be found. In this way, every monomial trail corresponds to a nonzero-correlation algebraic
trail and every nonzero-correlation algebraic trail corresponds to a monomial trail.

New Method Due to the relationship between parity sets, monomial trails and the division
property, techniques based on the division property [Tod15, TM16] and their efficient
trail-based implementations as MILP or SAT problems [XZBL16, EKKT19, Udo21, DL22]
can also be used to model Λ or show that it is empty. However, algebraic transition matrices
allow for greater flexibility in the design of new methods to find integral properties or to
evaluate coordinates of AF . We propose a new method that improves upon [HSWW20] by
using Equation (10). This method will also be used in Section 5.

The goal of this method is to evaluate the value of AF
v,u or, if this is not feasible, to

determine whether or not AF
v,u is key-dependent. The method starts by enumerating up

to N1 different algebraic trails with a key-dependent correlation. If N1 is reached, the
algorithm cannot conclude anything. If there are less than N1 key dependent trails, the
sum of the correlations of the enumerated trails can be computed and a conclusion about
the key dependence of AF

v,u can be made. This process can also be sped up by enumerating
the key-dependent trails per monomial in the key. Since Equation (13) indicates that the
correlation all trails is either zero or a monomial in the key, an odd number of trails for a
specific monomial of the key implies that AF

v,u is key dependent.
Then, as a second step, up to N2 algebraic trails with correlation one are enumerated.

If N2 trails are enumerated, then only the conclusion of the previous step can be used. If
less than N2 trails are enumerated, then their sum can be computed, which results in the
value of AF

v,u. This method is easy in use, as it requires only up to N1 + N2 calls to a
SAT or MILP solver with similar models as used in [XZBL16, EKKT19, HSWW20, DL22],
with some slight tweaks to keep track of the key dependence and to remove enumerated
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trails. It is also more flexible, as it can compute AF
v,u exactly as long as there less than N1

key-dependent algebraic trails and less than N2 algebraic trails with correlation one. This
is unlike most previous methods, which can only differentiate between zero and nonzero or
constant and non-constant.

4.2 Duality
Due to the non-orthogonality of Pn, two different but related change-of-basis transfor-
mations of the transition matrix exist. Definition 8 is specifically chosen to coincide
with the algebraic normal form as well as the parity set approach. However, the dual
change-of-basis transformation is also meaningful. This raises the question whether or not
more key-independent integral properties can be found by analyzing a cipher in this other
basis. In this section, the connection between the two bases is discussed and this question
is answered.

Let EF = MmT F M −1
n with F : Fn

2 → Fm
2 . In the setting of integral properties, EF

swaps the bases of 1X and r compared to AF . That is, r is expressed in the basis of
indicators of precursor sets and X is expressed as a symmetric difference of the support of
monomial functions: ∑

x∈X

r(F (x)) =
((

EF
)T

r̃
)
· 1◦

X = r̃ ·
(
EF1◦

X

)
. (15)

Since both the precursor sets and the monomials are a basis for the space of Boolean
functions, properties of EF can be translated to properties of the algebraic transition
matrix AF and vice-versa. Therefore, with complete knowledge of AF or EF , the choice
between them is arbitrary, as it will not result in any new information.

AF EF ∗

EF AF ∗

T

MP−1 PM −1

T

Figure 1: Relations between the algebraic transition matrix and EF .

Figure 1 shows the relations between EF and AF . In the diagram, we also refer to

EF ∗
= Mn

(
T F

)T
M −1

m and AF ∗
= Pn

(
T F

)T
P−1

m .

Note by Property 1 of Theorem 1, if F is a bijection then (T F )T is equal to T F −1 . Hence,
if F is a bijection, then EF ∗ is equal to EF −1 and AF ∗ is equal to AF −1 . The horizontal
arrows indicate that the transpose of AF and EF are equal to the change-of-basis of
(T F )T with the dual basis. That is, (AF )T = EF ∗ and (EF )T = AF ∗ . Hence, any integral
property on a bijection can be converted to an equivalent integral property on its inverse.

Theorem 8. Let F : Fn
2 → Fn

2 be a bijection. Every integral property on F corresponds
to an integral property on F −1 as follows:∑

x∈X

r(F (x)) =
∑

x∈supp(r)

1X

(
F −1(x)

)
.

Conversely, any integral property on F −1 corresponds to an integral property on F .
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Proof. This follows by substituting (T F )T = T F −1 in Equation (7):∑
x∈X

r(F (x)) =
((

T F
)T

r
)
· 1X = 1X ·

(
T F −1

r
)

=
∑

x∈supp(r)

1X

(
F −1(x)

)
.

The vertical arrows in Figure 1 indicate the change-of-basis from the precursor set basis
to the monomial basis or vice-versa. That is, MnP−1

n AF PnM −1
n = EF . By exploiting

the structure of MnP−1
n , Theorem 9 shows that some elements of AF and EF are equal.

Note that Equation (13) implies that independent pre- and post-whitening keys guarantee
that the conditions in Theorem 9 are met.

Theorem 9. Let F : Fn
2 → Fm

2 be a vectorial Boolean function and let u ∈ Fn
2 and

v ∈ Fm
2 . It holds that EF

v,u =
∑

v′≤v

∑
u′≥u AF

v′,u′ and AF
v,u =

∑
v≤v′

∑
u≥u′ EF

v′,u′ . In
particular, if for all u′ > u and for all v′ < v it holds that AF

v′,u′ = 0 then AF
v,u = EF

v,u.
Conversely, if for all u′ < u and for all v′ > v it holds that EF

v′,u′ = 0, then EF
v,u = AF

v,u.

Proof. By Property 2 of Theorems 3 and 4 and multiplication of 2× 2 matrices,

MnP−1
n =

[
1 1
1 0

]⊗n

and PnM −1
n =

[
0 1
1 1

]⊗n

.

Hence, it holds that EF
v,u =

∑
v′≤v

∑
u′≥u AF

v′,u′ and AF
v,u =

∑
v≤v′

∑
u≥u′ EF

v′,u′ . The
second part follows immediately from the first part.

Due to Theorem 8, it suffices to analyze either AF and EF , AF and AF −1 , EF and
EF −1 or AF −1 and EF −1 when searching for key-independent integral properties. When
pre- and post-whitening keys are present, it further suffices to analyze any of AF , EF ,
AF −1 and EF −1 , due to Theorem 9. However, this only holds if every element of these
matrices is computed exactly. In the case of trail-based analysis without computing the
exact sum in Equation (9), such as the methods discussed in Section 4.1, different trails
and thus potentially different results, are expected in each case. However, when every
modelled round has a pre- and post-whitening key, Theorem 9 applies on a per-trail basis
and the analysis of one of AF , EF , AF −1 and EF −1 is sufficient.

In [Udo21, Prop. 6], Udovenko remarks that if u propagates to v through F then v
propagates to u through F −1 given bit-based division propagation. Since bit-based division
propagation is equivalent to parity sets propagation with the assumption of a full-state pre-
and post-whitening key in every round, Theorems 8 and 9 can be applied consecutively to
construct an alternative explanation for this phenomenon. Furthermore, this explanation
also shows that bit-based division propagation in the dual basis does not result in new
properties either.

4.3 Invariants
A nonlinear invariant [TLS16] of a function F : Fn

2 → Fn
2 is a Boolean function g : Fn

2 → F2
such that there exists a constant c where for all x ∈ Fn

2 ,

g(F (x)) = g(x) + c. (16)

In [TLS16], nonlinear invariants are computed by solving a system of linear equations
derived from Equation (16). Indeed, the algebraic normal form of g satisfies∑

u∈Fn
2

g◦(u)
(
xu + F u(x)

)
= c .
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Solving this system in g◦ for both values of c comes down to finding the kernel of (AF +I)T

and a single solution to the system (AF + I)Tf = 1. Note that the kernel of (AF + I)T is
equal to the eigenspace of (AF )T corresponding to eigenvalue one.

From Beyne’s work [Bey18], it is known that nonlinear invariants correspond to
eigenvectors of the correlation matrix of F with corresponding eigenvalues ±1. This can
be explained by rewriting Equation (16) in terms of correlation matrices and f = (−1)g,
which results in the eigenvalue problem(

CF
)T

f̂ = (−1)c f̂ . (17)

If F is a permutation, then the eigenvectors of (CF )T and CF coincide. Although the
eigenvectors can be different for general functions F , the matrices (CF )T and CF both fully
characterize the invariants of F . This is clear from the following more general definition of
invariants given by Beyne in later work [Bey21].

Definition 9 (Invariant [Bey21]). Let F : Fn
2 → Fn

2 . A subspace V of RFn
2 such that

CF V ⊆ V , is called an invariant of F .

If V is an invariant of CF , then the orthogonal complement V ⊥ of V satisfies
(CF )T V ⊥ ⊆ V ⊥. Beyne further notes that if F is a permutation, then any invariant
V splits into one-dimensional eigenspaces of CF . Since the correlation matrix and alge-
braic transition matrix are both a change-of-basis of the transition matrix, it is no surprise
that the eigenvectors of the correlation matrix and the eigenvectors of the algebraic
transition matrix correspond to the same invariants.

Definition 10 (Invariant (alternative definition)). Let F : Fn
2 → Fn

2 . A subspace V of
F
Fn

2
2 such that AF V ⊆ V , is called an invariant of F .

However, since algebraic transition matrices are not defined over an algebraically closed
field, a full eigendecomposition is in general not possible, even for permutations. Hence, it
is not enough to look at eigenvectors alone. To circumvent this problem, we propose a
new method that directly computes the invariants from the primary decomposition and
generalized Jordan form of the algebraic transition matrix.

Theorem 10 (Primary Decomposition [Dum04, p. 465-466]). Let L be a linear operator
on Fn

2 . The module FF
n
2

2 over the principal ideal domain F2[L] is isomorphic to the direct
sum of the quotients of F2[L] with the module’s primary ideals, (fi): F

Fn
2

2
∼=

⊕
i F2[L]/(fi).

These primary ideals are called the elementary divisors of the F2[L]-module FF
n
2

2 .

In practice, Theorem 10 implies that the space Fn
2 is a direct sum of invariant subspaces

of the linear operator L. Hence, up to choosing arbitrary bases for these subspaces, the
matrix representation of L is of the form

M(f1)
M(f2)

. . .
M(fl)

 ,

where M(fi) is a matrix with minimal polynomial equal to fi.
Since F2[L] is a principal ideal domain, fi = gr with g an irreducible polynomial and r

a positive integer. If r > 1, then the corresponding invariant subspace Vfi contains smaller
invariants subspaces corresponding to the kernels of the restriction of g(L)j to Vfi

, for
j between 1 and r. This gives rise to chains of invariant subspaces that can be seen as
a generalization of Jordan chains. To express these additional subspaces in the matrix
representation of L, each matrix M(fi) is chosen to equal the hypercompanion matrix or
generalized Jordan block of fi. Up to arbitrary reordering of the invariant subspaces, this
fixes the decomposition of L completely.
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Theorem 11 (Hypercompanion Matrix or Generalized Jordan Block [Rob70]). Let g =
xd+

∑d−1
i=0 αix

i be an irreducible polynomial of degree d and let f = gr. The hypercompanion
matrix or generalized Jordan block of f is the following block matrix of size rd× rd:

Cg N
. . . . . .

Cg N
Cg

 ,

where Cg is the companion matrix of g, which is a matrix of the form
0 1

. . . . . .
0 1

−α0 −α1 · · · −αd−1

 ,

and where all entries of N are zero except the bottom left, which is equal to 1. The basis
in which a linear transformation L with minimal polynomial f is represented by the above
hypercompanion matrix is of the form

⋃d−1
i=0 gi(L)B, where B is the basis of the smallest

non-trivial invariant subspace of L relative to which the restriction of L is represented by
the companion matrix Cg.

Theorem 10 and Theorem 11 can be applied to find all invariants of a vectorial Boolean
function F : Fn

2 → Fn
2 in the following manner. First compute the elementary divisors of

T F and use them to construct the matrix in Theorem 10 with the hypercompanion matrices
of Theorem 11. Let us denote this matrix by D. One can compute a change-of-basis
matrix P such that T F = PDP −1. By Theorem 10, for each diagonal block in D, the
corresponding columns in P span an invariant subspace. Furthermore, for each such
invariant subspace, Theorem 11 yields a chain of invariant subspaces that grows from left
to right with each companion matrix on the diagonal of the hypercompanion matrix. Any
invariant subspace of T F and therefore, any invariant of F is a direct sum of the invariants
resulting from Theorems 10 and 11. Since AF is a change-of-basis of T F it suffices to find
the invariant subspaces of T F ; their representation in the monomial or precursor basis can
be computed by multiplication with Mn or Pn.
Example 3. To show how this method works in practice, all invariants of the LowMC
S-box, that are not a direct sum of other invariants, will be enumerated. The S-box of
LowMC is defined by the following permutation [ARS+15]:

F =
(

0 1 2 3 4 5 6 7
0 1 3 6 7 4 5 2

)
.

This can also be written in cycle notation as F = (0)(1)(2 3 6 5 4 7). Note that the
LowMC S-box has two fixed points and a cycle of length six.

The elementary divisors of T F are x + 1, x + 1, (x + 1)2 and (x2 + x + 1)2. The two
irreducible factors present in the elementary divisors are x + 1 and x2 + x + 1, which have
companion matrices respectively equal to[

1
]

and
[
0 1
1 1

]
.

These companion matrices can be used to construct the hypercompanion matrices of the
three distinct elementary divisors x + 1, (x + 1)2 and (x2 + x + 1)2. Respectively, these are

[
1
]

,

[
1 1
0 1

]
and


0 1 0 0
1 1 1 0
0 0 0 1
0 0 1 1

 .
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Finally, their direct sum leads to the matrix D and change-of-basis matrix P :

D =



1
1

1 1
0 1

0 1 0 0
1 1 1 0
0 0 0 1
0 0 1 1


and P =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 1 0 1 1 1 1
0 0 1 1 1 1 1 0
0 0 1 0 1 0 1 1
0 0 1 1 0 1 1 0
0 0 1 0 0 1 0 0


.

The invariants can now be read from left to right. The first two blocks, both derived from
an elementary divisor x + 1, give rise to two one-dimensional invariants corresponding to
the two fixed points. The block derived from (x + 1)2 is a hypercompanion matrix derived
from the second power of a linear function and therefore it provides both a one dimensional
and a two dimensional invariant, which correspond to saturating the cycle of length 6 and
taking every second element of that cycle respectively. Finally, the last block is derived
from (x2 + x + 1)2, resulting in an invariant of dimension 2 and an invariant of dimension
4, corresponding to different cycles of sets that can be obtained from the 6-cycle. The
nonlinear invariants of the LowMC S-box are equal to its three one-dimensional invariants.
In general, all two-dimensional invariants containing a balanced Boolean function and
its complement would also correspond to nonlinear invariants. In Appendix B, a more
complex example with the Present S-box is given. ▷

5 Finding Integral Properties
In this section an algorithm is constructed that can efficiently find integral properties
(X, r) such that

∑
x∈X r(Fk(x)) = 0, with Fk : Fn

2 → Fm
2 a vectorial Boolean function

parameterized by k. When X or r is fixed this problem can conceptually be solved
by finding the largest subspace of the kernel of r 7→ r◦ · AFk 1̃X , respectively 1X 7→
(AFk )Tr◦ · 1̃X , that is independent of k. This approach cannot be directly applied to
find 1X and r simultaneously, as the function (1X , r) 7→ r◦ · AFk 1̃X is quadratic. This
can be overcome by considering the vectorization of AFk , since for any pair (1X , r) it
holds that r◦ · (AFk 1̃X) = vec(AFk ) · (1̃X ⊗ r◦), where vec(AFk ) · (δu ⊗ δv) = AFk

v,u for all
u ∈ Fn

2 and v ∈ Fm
2 . Therefore, the largest key-independent subspace of the kernel of

1X⊗r 7→ vec(AFk ) ·(1̃X⊗r◦) contains all integral properties such that
∑

x∈X r(Fk(x)) = 0
as well as all generalized integral properties of the form

∑
x∈Fn

2
r(Fk(x), x) = 0.

In practice, the computation of the null space is infeasible because of the size of AFk

and the difficulty of computing elements of AFk exactly. In Section 5.1, an algorithm is
described that searches for a subspace of generalized integral properties within a user-
specified vector space. However, the size of subspace that the method can find is ultimately
limited by the available memory and computing time. The method relies on a modelling
technique such as (three-subset) division property, monomial trails, or the new approach
from Section 4.1 as a subroutine. In Section 5.2 the algorithm is applied to Present. In
the rest of this section, all vectorial Boolean functions are assumed to be parameterized by
a key k, even when this parameter is not written as a subscript.
Remark 1. Interestingly, a concept similar to the vectorization of the algebraic transition
matrix was already described by Udovenko in [Udo21]. He considers the ANF of the
graph indicator of vectorial Boolean functions. The difference between the two is that
1◦

ΓF
= Mm+n1ΓF

whereas vec(AF ) = (M T
n ⊗Mm)1ΓF

, where ΓF = {(x, F (x)) : x ∈ Fn
2}

is the graph of the function F . They contain similar information in the sense that
vec(AF )(u, v) = 0 if and only if 1◦

ΓF
(u, v) = 0.
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Remark 2. Generalized integral properties r such that
∑

x∈Fn
2

r(x, F (x)) = 1 are also
of interest. Since these functions r are found by solving a linear system of equations,
it suffices to find a single solution and add it to the kernel to find all solutions. The
sum

∑
x∈Fn

2
F 0(x)0x is trivially equal to one and therefore yields a property r such that∑

x∈Fn
2

r(x, F (x)) = 1. Hence, all such properties can be derived with no additional effort.

5.1 Finding Generalized Integral Properties
In this section we construct an algorithm to compute a subspace of the kernel of 1X ⊗ r 7→
vec(AF ) · (1̃X ⊗ r◦) from a decomposition of F = F3 ◦F2 ◦F1, a user-supplied vector space
of candidate generalized integral properties, V ⊆ FF

n
2 ×Fm

2
2 , and an oracle A. The oracle

A : Fn
2
Fm

2 × Fn
2 × Fm

2 → F2 gives partial information on the elements of the algebraic
transition matrix of a parameterized function. In particular, if A(F, u, v) returns zero then
AF

v,u is zero. Note that the implication only goes in one direction, A can indicate that
AF

v,u is non-constant (by returning one) even though it is actually zero. This emulates the
information that can realistically be recovered with imperfect SAT/MILP models to find
algebraic trails, such as those described in Section 4.1.

The crux of this algorithm is the following decomposition:

vec(AF ) · (1̃X ⊗ r◦) = vec(AF2) ·
(
AF1 ⊗ (AF3)T) (

1̃X ⊗ r◦)
. (18)

Equation (18) can be used to compute a subspace of the kernel of 1X ⊗ r 7→ vec(AF ) ·
(1̃X ⊗ r◦) by computing the nullspace of SF2

(
AF1 ⊗ (AF3)T)

, where SF2 selects all the
rows (u, v) of AF1 ⊗ (AF3)T where A(F2, u, v) is equal to one. Given an embedding PV of
V into FF

n
2 ×Fm

2
2 , the original kernel computation is reduced to computing the kernel of the

smaller matrix SF2

(
AF1 ⊗ (AF3)T)

PV .
Ideally, to simplify the nullspace computation, all elements in SF2

(
AF1 ⊗ (AF3)T)

PV

should be independent of the key. This can be achieved by choosing V in such a way that
SF2

(
AF1 ⊗ (AF3)T)

PV is independent of the key. Such a space V with its basis a subset of
the standard basis can be efficiently found for functions F with pre- and post-whitening
key additions. Since the standard basis elements define integral properties of the form∑

x≤u F v(x) = AF
v,u, Lemma 1 below can be applied to dynamically discard large subsets

of basis elements. That is, for u and v such that AF
v,u is nonzero, every AF

u′,v′ with u′ ≤ u,
v ≤ v′ and (u′, v′) ̸= (u, v) will be key-dependent and every corresponding standard basis
function δu′ ⊗ δv′ can be discarded.

Lemma 1. Let Fk : Fn
2 → Fm

2 be a vectorial Boolean function parameterized by k =
(ki, k′, ko), with Fk(x) = F ′

k′(x + ki) + ko. For all pairs (u, v) ∈ Fn
2 × Fm

2 where AF
v,u ̸= 0

and for all pairs (u′, v′) such that u′∥v′ < u∥v, it holds that AF
v′,u′ is dependent on the key.

Proof. Using Equation (13), AF can be expressed in terms of AF ′ :

AF
v′,u′ =

∑
(a,b):a≥u′,b≤v′

ka+u′

i kb+v′

o AF ′

b,a. (19)

Since we know that AF
v,u ̸= 0 and therefore that AF ′

v,u ≠ 0, Equation (19) contains the
summand kv+u′

i kv+v′

o AF ′

v,u. Furthermore, because ka+u′

i kb+v′

o is unique for every summand
in Equation (19), kv+u′

i kv+v′

o AF ′

v,u cannot be cancelled by another term. Hence, AF
v′,u′ is

not constant in the key.

Algorithm 1 summarizes the complete algorithm. It takes as inputs a function F =
F3 ◦ F2 ◦ F1 and a set C ⊆ Fn

2 × Fm
2 , which represents the user-chosen subset of the

standard basis from which V will be derived. First, C is filtered, by going through it
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from high to low weight of u∥v (line 3) and removing any key-dependent basis elements
based on Lemma 1 (lines 4 to 9). As part of evaluating the criteria for Lemma 1, a sparse
representation of SF2

(
AF1 ⊗ (AF3)T)

(δu ⊗ δv) is computed (line 4). This is reused to
determine whether δu ⊗ δv is part of the basis that results in a key-independent nullspace
computation (lines 10-12). It is also reused in the kernel computation (lines 14-16).

In practice, a sparse data structure is used to keep track of the elements in C. Fur-
thermore, the computation in line 4 is performed by using a SAT model to enumerate
all a and b such that there exists a nonzero-correlation algebraic trail u

F1−→ a
F2−→ b

F3−→ v.
The values AF1

a,u and AF3
v,b are computed exactly and stored for later use by line 10. The

computation of A(F2, a, b) is also cached for reuse with other pairs (u, v). Line 16 is
necessary to transform the representation of the kernel in the basis B back to the complete
precursor and monomial bases.

Algorithm 1 Find generalized integral properties that evaluate to zero.
Input: F : Fn

2 → Fm
2 , F = F3 ◦ F2 ◦ F1 and C ⊆ Fn

2 × Fm
2

Output: A subspace of generalized integral properties that sum to zero.
1: B ← ∅
2: while |C| > 0 do ▷ Step 1: filter candidates
3: (u, v)← arg max(x,y)∈C wt(x∥y)
4: Wu,v ← supp

(
(a, b) 7→ AF1

a,uAF3
v,bA(F2, a, b)

)
5: if |Wu,v| > 0 then
6: C ← C \ (Prec(u)× Succ(v))
7: else
8: C ← C \ {(u, v)}
9: end if

10: if ∀(a, b) ∈Wu,v : AF1
a,u and AF3

v,b are key-independent then
11: B ← B ∪ {(u, v)}
12: end if
13: end while
14: Index the elements (ui, vi) of B from 1 to |B| ▷ Step 2: Compute basis
15: N ← ker

[
1Wu1,v1

· · · 1Wu|B|,v|B|

]
16: return PBN where PB is a matrix with the vectors δui

⊗ δvi
as columns.

There are two main factors that influence the results of Algorithm 1. The first factor is
the choice of F1 and F3. With increasing number of rounds, each bit of the output of F1
and F3 will be dependent on a larger part of their input. Therefore, the algorithm will find
generalized integral properties that are dependent on a larger part of the input and output
state. For example, in Present, the found generalized integral properties are localized to
a single S-box at the input and output, when F1 and F3 are one round. With more rounds,
generalized integral properties are found that use the input and output of multiple S-boxes.
However, increasing the number of rounds in F1 and F3 also increases the key-dependency
of AF1 ⊗ (AF3)T and hence reduces the size of V and the number of properties found. In
general, it is interesting to run the algorithm multiple times for different partitions of F
and take the union of the results.

The second factor that influences the result is how the oracle A is implemented. More
precise methods can give better results, but might be prohibitively expensive. In this
work, the models for nonzero-correlation trails have been expressed as SAT problems
with the pysat library [IMM18]. The CNF models of the components were computed by
finding the prime implicants with [Udo21, Alg. 5] and solving the resulting minimal set
cover problem with Google’s or-tools [PF23]. All code used in this work can be found at
https://github.com/michielverbauwhede/AlgebraicTransitionMatrices.

https://github.com/michielverbauwhede/AlgebraicTransitionMatrices
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Remark 3. Algorithm 1 can also be adapted to find constant generalized integral properties,
by replacing the oracle A in line 6 of Algorithm 1 with another oracle that determines
whether AF

v,u is constant. The nullspace computation then guarantees that any solution is
independent of the key, and therefore constant. However, the algorithm does not give any
information on what this constant is. This will result in non-trivial new results, because
unlike in Remark 2, the complete kernel is not computed.

Comparison to [LDF20] and [DF20] The only method comparable to Algorithm 1 is the
linearly equivalent S-boxes method of Lambin et al. [LDF20], that was further developed
by Derbez et al [DF20]. This method searches for integral properties (X, r) on functions
F : Fn

2 → Fm
2 , where X is a subspace of dimension n− 1 and r is a linear function. Apart

from the fact that Algorithm 1 can find integral properties in a larger space, it also provides
algorithmic improvements over [LDF20, DF20] when restricted to the same subspace and
instantiated with the same oracle A.

Similar to Algorithm 1, the linearly equivalent S-boxes method also requires that F is
split in three parts F = F3 ◦ F2 ◦ F1. For every pair of invertible linear functions Li, Lo on
Fn

2 and Fm
2 the method tries to find division properties for every Lo◦F ◦Li. To not have Li

and Lo introduce new trails, the propagation through F1◦Li and Lo◦F3 is modelled similar
to computing AF1AL1 π̃u or (ALoAF3)Tµ◦

v. For every pair (ei, ej), an integral property
exists if there is no pair (a, b) with a ∈ supp AF1AL1 π̃ei

and b ∈ supp(ALoAF3)Tµ◦
ej

such
that A(F2, a, b) = 1.

With perfect caching of the calls to division trail model of F2, the computational cost
is mainly determined by the matrix-vector multiplications that have to be performed for
every Li and Lo. To make this computation feasible, some optimizations are applied.
In particular, if the input set X ∈ {πe0 , . . . , πen−1} and r ∈ {µe0 , . . . , µen−1} then only
2n functions Li and 2m functions Lo have to be checked. If F1 and F3, are of the
form G1(x)∥ · · · ∥Gb(x), respectively H1(x)∥ · · · ∥Hc(x), then the linear functions can be
restricted to each of the functions Gi. Assuming all Gi have the same number of input bits,
n/b, and all Hi have m/c input bits, then a total number of n2n/b + m2m/c matrix-vector
multiplications are performed. Since Algorithm 1 only requires n + m matrix-vector
multiplications, the structure of F1 and F3 is not a bottleneck. Algorithm 1 is therefore
more flexible in the choice of F1 and F3, and the input and output exponents (u, v). This
makes it possible to choose F1 and F3 that consist of more than one round and to look for
properties that require less data.

5.2 Application to Present
Present [BKL+07] is a substitution-permutation network with a 64 bit state size. Its
round function consists of a full-state key-addition followed by a substitution layer consisting
of 16 parallel 4-bit S-boxes of degree 3 and a bit permutation. We analyze Present with
independent round keys reduced to R rounds but including the key-addition of round
R + 1. Integral properties with a constant sum are known for up to 9 rounds of Present.
The lowest data constant sum property was found using bit-based division property and
requires 260 data [XZBL16]. Furthermore, Lambin et al. [LDF20] note that even with
the linearly equivalent S-boxes method, they could not find any constant sum integral
properties on 10 rounds of Present.

Algorithm 1 was applied to both 9 and 10 rounds of Present. In both cases, the
algorithm was run 9 times, once for each combination of F1 and F3, consisting of 1 to 3
rounds. The algorithm was instantiated with the oracle from Remark 3, which is itself
based on the method described at the end of Section 4.1 with N1 = N2 = 1024. V was
chosen to remove trivial properties for permutations, V = F64

2 \ {1} × F64
2 \ {0}. For 9

rounds of Present, a subspace of constant generalized integral properties of dimension 470
was found. This includes the 260 data property of [XZBL16], but no lower data properties.
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Table 1: Statistics on experiments on 9 rounds of Present. Each column of the table
corresponds to a choice of F1, F2 and F3. Runtime is given in minutes and the number of
oracle calls in millions (M) or billions (B).

1, 7, 1 2, 6, 1 1, 6, 2 2, 5, 2 3, 5, 1 3, 4, 2 1, 5, 3 2, 4, 3
runtime 138 min 190 min 229 min 378 min 52 min 396 min 45 min 296 min
#A calls 2.67 M 22.9 M 19.1 M 705 M 159 M 220 B 119 M 141 B
dimension 455 425 420 401 338 331 338 331

Dividing out the space of properties that could be found with existing methods, such as
parity sets [BC16], monomial trails [HSWW20] and linearly-equivalent S-boxes [LDF20],
or that are a linear combination thereof, results in a quotient space of dimension 22. This
space contains all newly discovered properties. A subspace of dimension 14 contains all
properties that could be described, but not found, by [LDF20]. For example, Equation (20)
gives a second property with 260 data and with the same input set as the property from
[XZBL16]. Combining these properties results in a new distinguisher for 9 rounds of
Present with 260 data and an improved advantage of 1− 1/4 instead of 1− 1/2. Dividing
out this subspace of dimension 14 gives a final quotient space of dimension 8 containing
generalized integral properties. An example of such a property is given in Equation (21),
and a basis of the dimension 22 quotient space is given in Appendix C. No properties were
found for 10 rounds of Present.

∑
x≤(0,0,0,0,1,...,1)

F e5(x) + F e13(x) = c, where c is independent of the key. (20)

∑
x≤e5

F e5(x) +
∑

x≤e9

F e13(x) = c, where c is independent of the key. (21)

In Table 1, statistics on the experiments for 9 rounds of Present are given. All
experiments were run on a 40-core Intel(R) Xeon(R) Gold 6230 CPU at 2.10GHz. The
runtime of the algorithm increases when the number of rounds in F1 or F3 increases, except
for the cases of (3, 5, 1) and (1, 5, 3). This trend in the runtime can be explained by two
phenomena. First, as the number of rounds in F1 and F3 increases, AF1 ⊗ (AF3)T becomes
denser and the number of calls to the oracle increases. This can also be seen in the second
row of Table 1. Second, each oracle call becomes easier to evaluate because, with fewer
rounds in F2, the corresponding SAT models are simpler. As predicted, the dimension of
the resulting space decreases with increasing number of rounds, but new properties are
still found. Note that with our oracle implementation, up to two rounds for F1 and F3
suffices, as the other experiments did not result in new properties.
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A Algebraic Transition Matrix of PRESENT S-box
The Present S-box is defined by the following permutation:(

0 1 2 3 4 5 6 7 8 9 a b c d e f
c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

)
,

and its algebraic transition matrix is equal to:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0
0 0 0 1 0 0 0 1 1 1 0 1 1 0 0 0
1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0
0 1 0 1 0 1 0 0 0 1 1 0 0 0 1 0
0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0
1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0
0 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0
0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0
1 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1



.

https://eprint.iacr.org/2007/413
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B Invariants of the PRESENT S-box

The Present S-box is equal to F = (0, c, 4, 9, e, 1, 5) ◦ (2, 6, a, f) ◦ (3, b, 8) ◦ (7, d) in cycle
notation. The elementary divisors of T F are x + 1, x + 1, (x + 1)2, (x + 1)4, x2 + x + 1,
x3 + x + 1 and x3 + x2 + 1. The normal form after the primary and Jordan decomposition
is

D =



1
1

1 1
0 1

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

0 1
1 1

0 1 0
0 0 1
1 1 0

0 1 0
0 0 1
1 0 1


and the transformation matrix is

P =



1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0



.

Similar to Example 3, the invariants are related to the cycles of the S-box. The first,
second, third and fifth column of P are the invariants resulting from saturating the 7-cycle,
3-cycle, 2-cycle and 4-cycle respectively. The third and fourth column combined are the
invariant resulting from selecting a single element of the 2-cycle. The fifth, sixth, seventh
and eighth column are a Jordan chain. Growing from left to right, these invariants result
from the saturation of the 4-cycle, selecting every second element of the 4-cycle, selecting
two adjacent elements of the 4-cycle and selecting a single element of the 4-cycle. The
ninth and tenth column are an invariant related to selecting two elements of the 3-cycle.
The eleventh through 13th and 14th through 16th column are two invariants related to
selecting four elements from the 7-cycle.
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C Subspace of New Properties on 9-round PRESENT

Simple Properties on Linearly Equivalent Cipher

Let x = (x1, . . . , x64) ∈ F64
2 .

∑
x5=0

F e5(x) + F e13(x) = c.

∑
x9=0

F e5(x) + F e13(x) = c.

∑
x13=0

F e5(x) + F e13(x) = c.

∑
x6+x7=0

F e5(x) + F e13(x) = c.

∑
x10+x11=0

F e5(x) + F e13(x) = c.

∑
x14+x15=0

F e5(x) + F e13(x) = c.

∑
x1x2x3x4=0

F e5(x) + F e13(x) = c.

∑
x5+x9=0

F e5(x) = c.

∑
x5+x9=0

F e9(x) = c.

∑
x5+x9=0

F e13(x) = c.

∑
x5+x9=0

F e21(x) + F e53(x) = c.

∑
x5+x9=0

F e25(x) + F e57(x) = c.

∑
x5+x9=0

F e29(x) + F e61(x) = c.

∑
x5+x9=0

F e1(x)F e17(x)F e33(x)F e49(x) = c.
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Remaining Generalized Integral Properties
∑

x14=0
F e17(x) +

∑
x15=0

F e49(x) = c.

∑
x10=0

F e17(x) +
∑

x11=0
F e49(x) = c.

∑
x6=0

F e17(x) +
∑

x7=0
F e49(x) = c.

∑
x2=0

F e17(x) +
∑

x3=0
F e49(x) = c.

∑
x2=0

F e21(x) +
∑

x3=0
F e53(x) = c.

∑
x2=0

F e25(x) +
∑

x3=0
F e57(x) = c.

∑
x2=0

F e29(x) +
∑

x3=0
F e61(x) = c.

∑
x5=0

F e5(x) +
∑

x9=0
F e13(x) = c.


	Introduction
	Preliminaries
	Naming and Notation
	Linear Cryptanalysis
	Binary Möbius Transformation

	Algebraic Transition Matrices
	Integral Cryptanalysis
	Precursor Basis
	Algebraic Transition Matrices
	Algebraic Trails
	Key Addition and Key-Alternating Ciphers

	Applications of Algebraic Transition Matrices
	Parity Sets, Monomial Trails and Algebraic Transition Matrices
	Duality
	Invariants

	Finding Integral Properties
	Finding Generalized Integral Properties
	Application to Present

	Algebraic Transition Matrix of PRESENT S-box
	Invariants of the PRESENT S-box
	Subspace of New Properties on 9-round PRESENT

