Tighter trail bounds for Xoodoo

<u>Silvia Mella</u>¹, Joan Daemen¹, Gilles Van Assche²

¹Radboud University ²STMicroelectronics

▶ XOODOO is the cryptographic permutation used in XOODYAK and XOOFFF

- \blacktriangleright XOODOO is the cryptographic permutation used in XOODYAK and XOOFFF
- \blacktriangleright Lower bounds for the weight of trails in $\rm XOODOO$ were previously proven
- ▶ Using XooTools: a C++ tool based on the **Trail core tree search** strategy, that
 - scans the space of all r-round trail cores with weight below a given target
 - using a **tree**-based approach

- \blacktriangleright XOODOO is the cryptographic permutation used in XOODYAK and XOOFFF
- \blacktriangleright Lower bounds for the weight of trails in $\rm XOODOO$ were previously proven
- ▶ Using XooTools: a C++ tool based on the **Trail core tree search** strategy, that
 - scans the space of all r-round trail cores with weight below a given target
 - using a tree-based approach
- ▶ In this work, we
 - improve XooTools to get tighter lower bounds, and
 - present upper bounds for more than 3 rounds

- \blacktriangleright XOODOO is the cryptographic permutation used in XOODYAK and XOOFFF
- \blacktriangleright Lower bounds for the weight of trails in $\rm XOODOO$ were previously proven
- ▶ Using XooTools: a C++ tool based on the **Trail core tree search** strategy, that
 - scans the space of all r-round trail cores with weight below a given target
 - using a tree-based approach
- In this work, we
 - improve XooTools to get tighter lower bounds, and
 - present upper bounds for more than 3 rounds
- ▶ In this presentation, we talk about differential trails

Xoodoo

Trail cores and extension

Optimizing trail core extension

New bounds

Xoodoo

Trail cores and extension

Optimizing trail core extension

New bounds

▶ State: 3 horizontal planes each consisting of 4 lanes

 \blacktriangleright Iterated: n_r rounds that differ only by round constant

 $\boldsymbol{\theta}$:

$$\begin{split} & P \leftarrow A_0 + A_1 + A_2 \\ & E \leftarrow P \lll (1,5) + P \lll (1,14) \\ & A_y \leftarrow A_y + E \text{ for } y \in \{0,1,2\} \end{split}$$

► Column parity mixer, good average diffusion

 $\boldsymbol{\theta}$:

$$P \leftarrow A_0 + A_1 + A_2$$

$$E \leftarrow P \lll (1,5) + P \lll (1,14)$$

$$A_y \leftarrow A_y + E \text{ for } y \in \{0,1,2\}$$

 ρ_{west} :

$$A_1 \leftarrow A_1 \lll (1,0)$$
$$A_2 \leftarrow A_2 \lll (0,11)$$

▶ Plane shift

 $\boldsymbol{\theta}$:

$$P \leftarrow A_0 + A_1 + A_2$$

$$E \leftarrow P \lll (1,5) + P \lll (1,14)$$

$$A_y \leftarrow A_y + E \text{ for } y \in \{0,1,2\}$$

 ρ_{west} :

$$A_1 \leftarrow A_1 \lll (1,0)$$
$$A_2 \leftarrow A_2 \lll (0,11)$$

 ι :

 $A_{0,0} \leftarrow A_{0,0} + C_i$

round <i>i</i>	c _i in hex
-11	0x0000058
-10	0x0000038
-9	0x00003C0
-8	0x000000D0
-7	0x00000120
-6	0x0000014
-5	0x0000060
-4	0x0000002C
-3	0x0000380
$^{-2}$	0x00000F0
$^{-1}$	0x000001A0
0	0x0000012

▶ Round constant addition

 θ :

$$\begin{aligned} P \leftarrow A_0 + A_1 + A_2 \\ E \leftarrow P \lll (1,5) + P \lll (1,14) \\ A_y \leftarrow A_y + E \text{ for } y \in \{0,1,2\} \end{aligned}$$

 ho_{west} :

 $\begin{array}{l} A_1 \leftarrow A_1 \lll (1,0) \\ A_2 \leftarrow A_2 \lll (0,11) \end{array}$

 ι :

 $A_{0,0} \leftarrow A_{0,0} + C_i$

 $\chi:$

$$\begin{split} & B_0 \leftarrow \overline{A_1} \cdot A_2 \\ & B_1 \leftarrow \overline{A_2} \cdot A_0 \\ & B_2 \leftarrow \overline{A_0} \cdot A_1 \\ & A_y \leftarrow A_y + B_y \text{ for } y \in \{0, 1, 2\} \end{split}$$

- ▶ χ as in Keccak-p, operating on 3-bit columns
- Involution and same propagation differentially and linearly

 $\boldsymbol{\theta}$:

$$P \leftarrow A_0 + A_1 + A_2$$

$$E \leftarrow P \lll (1,5) + P \lll (1,14)$$

$$A_y \leftarrow A_y + E \text{ for } y \in \{0,1,2\}$$

 ρ_{west} :

 $\begin{array}{l} A_1 \leftarrow A_1 \lll (1,0) \\ A_2 \leftarrow A_2 \lll (0,11) \end{array}$

 ι :

 $A_{0,0} \leftarrow A_{0,0} + C_i$

 χ :

$$\begin{array}{l} B_0 \leftarrow \overline{A_1} \cdot A_2 \\ B_1 \leftarrow \overline{A_2} \cdot A_0 \\ B_2 \leftarrow \overline{A_0} \cdot A_1 \\ A_y \leftarrow A_y + B_y \text{ for } y \in \{0, 1, 2\} \end{array}$$

 ρ_{east} :

 $\begin{array}{l} A_1 \leftarrow A_1 \lll (0,1) \\ A_2 \leftarrow A_2 \lll (2,8) \end{array}$

▶ Plane shift

Xoodoo state representation in this work

Xoodoo

Trail cores and extension

Optimizing trail core extension

New bounds

 $\blacktriangleright \ \lambda = \rho_{\text{west}} \circ \theta \circ \rho_{\text{east}}$

- $\blacktriangleright \ \lambda = \rho_{\text{west}} \circ \theta \circ \rho_{\text{east}}$
- $\blacktriangleright \ \mathbf{w}_{\chi}(b_{i-1}, a_i) = -\log \mathrm{DP}_{\chi}(b_{i-1}, a_i)$

- $\blacktriangleright \ \lambda = \rho_{\text{west}} \circ \theta \circ \rho_{\text{east}}$
- $\blacktriangleright \ \mathbf{w}_{\chi}(b_{i-1}, a_i) = -\log \mathrm{DP}_{\chi}(b_{i-1}, a_i)$
- ▶ Weight of Q

$$w(Q) = w_{\chi}(b_0, a_1) + w_{\chi}(b_1, a_2) + \dots + w_{\chi}(b_{r-1}, a_r)$$

- $\blacktriangleright \ \lambda = \rho_{\text{west}} \circ \theta \circ \rho_{\text{east}}$
- $\blacktriangleright \ \mathbf{w}_{\chi}(b_{i-1}, a_i) = -\log \mathrm{DP}_{\chi}(b_{i-1}, a_i)$

▶ Weight of Q

$${
m w}({\it Q})={
m w}_{\chi}({\it b}_{0},{\it a}_{1})+{
m w}_{\chi}({\it b}_{1},{\it a}_{2})+\cdots+{
m w}_{\chi}({\it b}_{r-1},{\it a}_{r})$$

▶ For all valid differentials over χ_3 : $DP_{\chi_3} = \frac{1}{4}$ and $w_{\chi_3} = 2$

 $\implies w(Q) = 2 \cdot \# \text{ active S-boxes } (Q) = 2 \cdot (n_c(b_0) + n_c(b_1) + \dots + n_c(b_{r-1}))$

- $\blacktriangleright \ \lambda = \rho_{\text{west}} \circ \theta \circ \rho_{\text{east}}$
- $\blacktriangleright \ \mathbf{w}_{\chi}(b_{i-1}, a_i) = -\log \mathrm{DP}_{\chi}(b_{i-1}, a_i)$

▶ Weight of Q

$${
m w}({\it Q})={
m w}_{\chi}({\it b}_{0},{\it a}_{1})+{
m w}_{\chi}({\it b}_{1},{\it a}_{2})+\cdots+{
m w}_{\chi}({\it b}_{r-1},{\it a}_{r})$$

▶ For all valid differentials over χ_3 : $DP_{\chi_3} = \frac{1}{4}$ and $w_{\chi_3} = 2$

$$\implies w(Q) = 2 \cdot \# \text{ active S-boxes } (Q) = 2 \cdot (n_c(b_0) + n_c(b_1) + \dots + n_c(b_{r-1}))$$
$$= 2 \cdot (n_c(a_1) + n_c(b_1) + \dots + n_c(b_{r-1}))$$

▶ Trail core: equivalence class of trails with $(a_1, b_1, \dots, b_{r-1})$ in common and same weight

$$2 \cdot (n_c(a_1) + n_c(b_1) + \cdots + n_c(b_{r-1}))$$

- \blacktriangleright We can restrict the search to trail cores \implies avoid two non-linear layers
- ▶ Start from 2-round trail cores and extend

▶ Trail cores can be extended in the backward

▶ Trail cores can be extended in the backward and forward direction

- ▶ Trail cores can be extended in the backward and forward direction
- ▶ χ has degree 2

- ▶ Trail cores can be extended in the backward and forward direction
- ▶ χ has degree 2
 - Valid b_0 's form an affine space $\mathcal{B}(a_1)$ of dim $= 2 \cdot n_c(a_1)$

- ▶ Trail cores can be extended in the backward and forward direction
- ▶ χ has degree 2
 - Valid b_0 's form an affine space $\mathcal{B}(a_1)$ of dim = $2 \cdot n_c(a_1)$
 - Valid a_r 's form an affine space $\mathcal{A}(b_{r-1})$ of dim $= 2 \cdot n_c(b_{r-1})$

- ▶ Trail cores can be extended in the backward and forward direction
- ▶ χ has degree 2
 - Valid b_0 's form an affine space $\mathcal{B}(a_1)$ of dim $= 2 \cdot n_c(a_1)$
 - Valid a_r 's form an affine space $\mathcal{A}(b_{r-1})$ of dim $= 2 \cdot n_c(b_{r-1})$

Δ	0	v_1	<i>v</i> ₂				
100	100	001	010				
010	010	100	001				
110	010	110	001				
001	001	010	100				
101	100	101	010				
011	001	011	100				
111	001	011	101				
	over	χз					

Example

▶ Difference a_1 that we want to extend in the backward direction.

Example

▶ Difference a_1 that we want to extend in the backward direction.

$$\blacktriangleright \mathcal{B}(a_1) = O + \langle V_1, V_2, \dots, V_{14} \rangle:$$

Extension using the far view

- \blacktriangleright Since λ is linear, we can apply it to the offset and basis vectors
- ► Example with backward extension:

~

$$\begin{aligned} \mathcal{A}(a_1) &= O^{\mathsf{far}} + \left\langle V_1^{\mathsf{far}}, V_2^{\mathsf{far}}, \dots, V_w^{\mathsf{far}} \right\rangle \\ &= \lambda^{-1}(O) + \left\langle \lambda^{-1}(V_1), \lambda^{-1}(V_2), \dots, \lambda^{-1}(V_w) \right\rangle \end{aligned}$$

The resulting representation of $\mathcal{A}(a_1)$ is:

Extension as a tree-based search

$$\blacktriangleright \ \mathcal{A}(a_1) = O^{\mathsf{far}} + \left\langle V_1^{\mathsf{far}}, \dots, V_w^{\mathsf{far}} \right\rangle$$

- ▶ The root of the tree is the offset O^{far}
- ▶ To avoid duplicates, order relation among basis vectors: $V_i^{\text{far}} \prec V_i^{\text{far}}$ if and only if i < j

- ▶ Addition of V_i^{far} can turn active columns to passive columns
- ightarrow a node can have weight smaller than the weight of its parent

- ▶ Addition of V_i^{far} can turn active columns to passive columns
- $\blacktriangleright \implies$ a node can have weight smaller than the weight of its parent
- **Stable bits**: bits of a node that have same value in all node's descendants
- **Stability mask**: a state value S_i where a bit has a value 1 if it is stable and 0 otherwise

- ▶ Addition of V_i^{far} can turn active columns to passive columns
- $\blacktriangleright \implies$ a node can have weight smaller than the weight of its parent
- ▶ Stable bits: bits of a node that have same value in all node's descendants
- **Stability mask**: a state value S_i where a bit has a value 1 if it is stable and 0 otherwise
- ▶ $w(N \land S_i)$ lower bounds the weight of all descendants of N
- ▶ When $w(N \land S_i) > T$ we can safely prune

- ▶ Addition of V_i^{far} can turn active columns to passive columns
- $\blacktriangleright \implies$ a node can have weight smaller than the weight of its parent
- ▶ Stable bits: bits of a node that have same value in all node's descendants
- **Stability mask**: a state value S_i where a bit has a value 1 if it is stable and 0 otherwise
- ▶ $w(N \land S_i)$ lower bounds the weight of all descendants of N
- ▶ When $w(N \land S_i) > T$ we can safely prune
- ▶ We would like that the number of stable bits in S_i grows quickly with i
- ▶ How can we define good stability masks?

Original definition of stability masks [DHVV18a]

- ▶ Stability masks S_0, S_1, \ldots, S_w depend on the basis $\left\{ V_1^{\text{far}}, V_2^{\text{far}}, \ldots, V_w^{\text{far}} \right\}$
- ► Triangularize the basis $\left\{ V_1^{\text{far}}, V_2^{\text{far}}, \dots, V_w^{\text{far}} \right\}$
- Using lexicographic order relation of the bit positions p = (x, y, z)
- ▶ **Pivot bit** p_i : the smallest active bit in V_i^{far} (it is passive in all V_i^{far} with j > i)
- **Stability mask** S_i : all bits in positions $\leq p_i$

Example continued

These lead to the following stability masks:

The number of stable bits in each mask S_i :

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 384

Xoodoo

Trail cores and extension

Optimizing trail core extension

New bounds

Redefining stability masks

- ▶ For a node $N = O + ... + V_i^{far}$
- A bit that is 0 in all V_{i+1}^{far} to V_{w}^{far} is stable
- ▶ We redefine stability masks as:

$$S_i = \bigwedge_{j>i} \overline{V_j^{\text{far}}} \ . \tag{1}$$

Example continued

By applying (1) we obtain the following stability masks:

The number of stable bits grows more quickly with *i*:

0, 1, 4, 7, 10, 13, 15, 27, 46, 49, 66, 85, 122, 212, 384

Triangularization at the mid view

► A whole active column in the mid view as a pivot to stabilize three bits in three different columns in the far view

- A whole active column in the mid view as a pivot to stabilize three bits in three different columns in the far view
- ► Further improvements
 - Prioritize *go-columns*
 - Following a diagonal order

Example continued

Combining all optimizations, we obtain the following stability masks:

The number of stable bits increases by at least 3 with each *i*:

0, 3, 6, 9, 18, 27, 33, 43, 58, 86, 119, 251, 369, 379, 384

Xoodoo

Trail cores and extension

Optimizing trail core extension

New bounds

		Previous	s worl	This work					
# rounds	lo	wer bound	b	est known	lower bound	best known			
1	2	[DHVV18a]	2	[DHVV18a]	-	-			
2	8	[DHVV18a]	8	[DHVV18a]	-	-			
3	36	[DHVV18a]	36	[DHVV18a]	-	-			
4	74	[DHP+20]	-		80	80			
5	94	[DHP+20]	-		98	120			
6	108	[The21]	-		132	160			
8	148	[DHP+20]	-		176	264			
10	188	[DHP+20]	-		220	400			
12	222	[DHP+20]	-		264	568			

Trails with weight ... + 48 + 40 + 32 + 24 + 16 + 8

- ▶ We introduced optimizations to improve trail core tree search in Xoodoo
- ▶ We proved tighter lower bounds for the weight of differential and linear trails
 - tight bound for 4 rounds
 - beyond 128 for 6 rounds and 256 for 12 rounds
- ▶ We proved upper bounds using staircase trail cores

Thank you for your attention!

Backup: weight profiles for best trails

1:	2																								
2:	4	+	4			=	8																		
3:	12	$^+$	12	+	12	=	36																		
4:															32	+	24	+	16	+	8			=	80
5:															32	$^+$	24	+	16	+	8	$^+$	40	=	120
6:													40	+	32	$^+$	24	+	16	+	8	$^+$	40	=	160
7:											48	+	40	+	32	$^+$	24	+	16	+	8	$^+$	40	=	208
8:									56	$^+$	48	+	40	+	32	$^+$	24	+	16	+	8	$^+$	40	=	264
9:							64	$^+$	56	+	48	+	40	+	32	$^+$	24	+	16	+	8	$^+$	40	=	328
10:					72	+	64	+	56	$^+$	48	+	40	+	32	$^+$	24	+	16	+	8	$^+$	40	=	400
11:			80	+	72	+	64	+	56	$^+$	48	+	40	+	32	$^+$	24	+	16	+	8	$^+$	40	=	480
12:	88	+	80	+	72	+	64	+	56	+	48	+	40	+	32	+	24	+	16	+	8	+	40	_	564