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Abstract. Determining bounds on the differential probability of differential trails and
the squared correlation contribution of linear trails forms an important part of the
security evaluation of a permutation. For Xoodoo, such bounds were proven using
the trail core tree search technique, with a dedicated tool (XooTools) that scans the
space of all r-round trails with weight below a given threshold Tr. The search space
grows exponentially with the value of Tr and XooTools appeared to have reached
its limit, requiring huge amounts of CPU time to push the bounds a little further.
The bottleneck was the phase called trail extension where short trails are extended to
more rounds, especially in the backward direction. In this work, we present a number
of techniques that allowed us to make extension much more efficient and as such to
increase the bounds significantly. Notably, we prove that the minimum weight of any
4-round trail is 80, the minimum weight of any 6-round trail is at least 132 and the
minimum weight of any 12-round trail is at least 264, both for differential and linear
trails. As a byproduct we found families of trails that have predictable weight once
extended to more rounds and use them to compute upper bounds for the minimum
weight of trails for arbitrary numbers of rounds.
Keywords: lightweight cryptography · permutation-based cryptography · differential
cryptanalysis · linear cryptanalysis · trail bounds

1 Introduction
The Xoodoo cryptographic permutation [DHVV18a] is the core of Xoodyak [DHP+20,
DHP+21] and Xoofff [DHP+20]. Xoodyak is a versatile cryptographic object based
on the Cyclist construction [DHP+20], intended for lightweight applications, and notably
one of the ten finalists of the NIST Lightweight Crypto Standardization process [Nat21].
It can be used to build most symmetric-key functionalities, including hashing, pseudo-
random bit generation, authentication, encryption and authenticated encryption. Another
cryptographic object that internally uses Xoodoo is the deck function Xoofff [DHVV18a],
an instance of Farfalle [BDH+17]. Xoofff is very efficient on a wide range of platforms
and can be used for building stream ciphers, MAC functions and (session) authenticated
encryption schemes.

The Xoodoo permutation has a classical iterated structure, namely it repeatedly
applies a round function to a state, where the number of rounds is a parameter. The choice
for the number of rounds is motivated by performance and security requirements. Namely,
when plugged in a construction, the resulting permutation shall offer sufficient security
margin and still be fast. The number of rounds was chosen such that the constructed
primitive (Xoofff or Xoodyak) offers a comfortable safety margin with respect to all
known attacks. In Xoofff this is 6 rounds and in Xoodyak this is 12 rounds.

In terms of differential and linear cryptanalysis, this means that it shall not have high-
probability differential trails or high-correlation linear trails (or equivalently, low-weight
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trails), that can be exploited in attacks. Roughly speaking, the data and/or computational
complexity of an attack that uses a given trail is exponential in the weight of the trail. So,
the higher the weight, the higher the cost of the attack.

The non-existence of low-weight trails is usually proved by determining lower bounds
on the weight of trails. This is not enough to guarantee security for the function built on
top of the permutation, but it can help in evaluating the resistance against some specific
attacks. For instance, in the Farfalle construction used by Xoofff, the expected data
complexity to generate internal collisions is directly linked to bounds on the weight of
differential trails [DHVV18a, FRD23].

1.1 Prior art
An initial analysis on the differential and linear propagation properties of Xoodoo was
presented in [DHVV18a], where lower bounds on the weight of trails were proved for several
numbers of rounds. The analysis was later extended and improved bounds were reported
in [DHP+20] an in [The21]. We summarize these results in Table 1.

All these results were obtained by using a computer-aided approach for scanning the
space of all trails with weight below a given threshold Tr and for a given number of
rounds r in a tree based fashion. Since this approach is used in different works [MDV17,
DHVV18a, MMGD22, HMMD22, BFR22], we decided to give it a name: Trail core tree
search. If such space of trails is non-empty, then the trail with the smallest weight defines
a tight bound on the weight of all r-round trails. Otherwise Tr defines a bound that is not
necessarily tight. The size of the search space increases exponentially with increasing Tr,
and so does the computational cost of the search. It follows that the value of Tr that can
be achieved in practical time is usually below the actual minimum weight of the trails. In
particular, for Keccak-p, Xoodoo, and Ascon, up to now no tight bounds were found
for more than 3 rounds.

1.2 The contribution of this paper
In this work, we present a number of methods that allow us to make the search more
efficient and, as a consequence, target higher values of Tr in a time that is still practical.

In Section 5 we improve the definition of stability masks introduced in [DHVV18a]
and present an optimization technique to extend trails more efficiently in the backward
direction, which is the main bottleneck in trail core tree search as conducted until now.
This technique leverages the propagation properties of column parity mixers to compute a
more accurate lower bound on the weight of trails, allowing us to discard non-useful trails
earlier in the search.

In Section 6.3, we present a new approach to scan the space of all 6-round trails with
weight below T6 starting from the space of all 2-round trails with weight below T6/3 instead
of the usual approach of starting from 3-round trails of weight below T6/2. This approach
allows us to split the search space in subspaces that are smaller and partially overlap,
making their exploration faster.

Thanks to such methods, we can improve over known bounds for Xoodoo for different
numbers of rounds and we present such results in Section 6. Notably, we prove tight
bounds for the weight of linear and differential trails over 4 rounds. Whereas, for 6 and 12
rounds, we prove for the first time (non-tight) bounds beyond 128 and 256, respectively.
We summarize our improved bounds in Table 1.

In Section 7 we report on all differential and linear trails we found for 2, 3, and 4
rounds. It is worth noticing that the histograms for the linear trails and the differential
trails are very close to each other.

During our search, we encountered some trails with interesting properties. The weight
profile of such trails presents a regular and predictable behavior through the rounds. We
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Table 1: Lower bounds on the weight of differential and linear trails and the weight of
best trails as a function of the number of rounds.

Previous works This work
# rounds lower bound best known lower bound best known

1 2 [DHVV18a] 2 [DHVV18a] - -
2 8 [DHVV18a] 8 [DHVV18a] - -
3 36 [DHVV18a] 36 [DHVV18a] - -
4 74 [DHP+20] - 80 80
5 94 [DHP+20] - 98 120
6 108 [The21] - 132 160
8 148 [DHP+20] - 176 264
10 188 [DHP+20] - 220 400
12 222 [DHP+20] - 264 568
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Figure 1: Toy version of the Xoodoo state, with lanes reduced to 8 bits, and different
parts of the state highlighted.

discuss such trails in Section 8 and use them to provide upper bounds, which are reported
in the last column of Table 1.

The methods that we introduce in this work already appeared in its pre-print ver-
sion [DMA22] and some of them were later also used to perform trail search in Ascon
in [HMMD22]. In fact, these methods are more widely applicable. In particular, the
technique used to explore the space of 6-round trail cores (Section 6.3) can be applied to
any iterated cipher. The new definition of stability mask, (Eq. 1 in Section 5.1), can be
applied to permutations where the set of compatible differences forms an affine space. This
is the case in Keccak-f and Ascon for forward extension, but also in ciphers with S-boxes
that are differentially 4-uniform. This is not the case in backward extension in Keccak-f
and Ascon, but there the definition can be adapted in a natural way by replacing the
basis vectors in Eq. 1 by all the compatible differences per S-box. The technique presented
in Section 5.2 is instead limited to permutations that have a column parity mixer as mixing
layer, like Xoodoo and Keccak-f .

2 Xoodoo
Xoodoo is a bit-oriented iterated permutation operating on a three-dimensional state of
4×3×32 bits. A bit of the state is specified by (x, y, z) coordinates. A column is composed
by 3 bits with given (x, z) coordinates, while a plane is composed by 128 bits with given y
coordinate. The Xoodoo state is illustrated in Figure 1 with its different parts. In the
following examples, we depict the states as seen from the top with columns collapsing to
single cells. The value in a column is indicated by a number: a value (a0, a1, a2), with
indices denoting the plane, is encoded as a0 + 2a1 + 4a2. Additionally we give them colors
to make the figures easier to read. For simplicity, cells with value 0 are left empty. An
example is given in Figure 2.
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Figure 2: A Xoodoo state seen from the top. Column (0,0) has all bits set to 0. Column
(0,1) has bit y = 0 set to 1 and the other two set to 0. Column (0,2) has bit y = 1 set to 1
and the other two set to 0. Column (0,3) has bit y = 0 and y = 1 set to 1 and bit y = 2
set to 0. Etc.

The round function of Xoodoo is composed by five steps: the mixing layer θ, two
plan shifting ρwest and ρeast, the round constants addition ι, and the non-linear layer χ.
The number of rounds is a parameter. It is 12 in Xoodyak, and 6 in Xoofff. The i-th
round function is defined as Ri = ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ with

θ :
P ← A0 + A1 + A2
E ← P ≪ (1, 5) + P ≪ (1, 14)
Ay ← Ay + E for y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0 ← A0 + Ci

χ :
B0 ← A1 ·A2
B1 ← A2 ·A0
B2 ← A0 ·A1
Ay ← Ay + By for y ∈ {0, 1, 2}

ρeast :
A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8).

The step θ is a column parity mixer [SD18]. It adds a plane E, called θ-effect, to each
plane Ay of the state. The θ-effect is computed as the sum of two translated versions of
the parity plane P , which is obtained by adding the three planes of the state together. On
states whose parity plane is all-zero, θ acts as the identity. Such states are those with zero
or two non-zero bits in all columns. We say that such states are in the (column parity)
kernel. Otherwise, we say that a state is outside the kernel.

The nonlinear layer χ can be seen as the parallel application of 4× 32 3-bit S-boxes
operating on 3-bit columns, that we denote by χ3. It is an instance of the transformation
χ that was described and analyzed in [Dae95], with interesting propagation properties.

The two steps ρeast and ρwest act as dispersion layers after every application of θ and of
χ. Both consists in plane translations over a given offset. Since the state bits interact only
within columns in θ and χ, ρeast and ρwest are used to dislocate bits of the same column
to different columns. Such breaking up of columns results in weak alignmet [BDPV11].

The step ι consists in the addition of a round constant Ci, that is a plane with a single
non-zero lane at x = 0.

All steps, except ι, are translation-invariant, that is they operate on bits of the state
independently of their position. More formally, a step α is translation-invariant over
(x, y, z) if α ◦ τ(x,y,z) = τ(x,y,z) ◦ α, where τ(x,y,z) is a (cyclic) translation of the state by
(x, y, z). The translation-invariance in horizontal directions of the step mappings results in
high symmetry, which is destroyed by the addition of round constants in the step ι. In
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Table 2: Offset o and basis vectors v1, v2 for the affine spaces A(∆in) and A(uout).
∆in/uout o v1 v2

001 001 010 100
011 001 011 100
111 001 011 101

trail search, the round constants additions can be ignored and we can take advantage of
this symmetry properties.

2.1 Propagation properties of χ

In Xoodoo, the χ transformation operates on state columns independently. Therefore, its
propagation properties can be analyzed at column level through χ3. The mapping χ3 is
an involution and its propagation properties hold also for its inverse.

Difference propagation As for any transformation with domain Zb
2, the restriction weight

of a differential (∆in, ∆out) over χ is defined as the inverse of the logarithm of its differential
probability (DP):

wr(∆in, ∆out) = b− log2|{x : χ(x)⊕ χ(x + ∆in) = ∆out}|.

If the DP is non-zero, we say that ∆in and ∆out are compatible, or that ∆out is an output
difference compatible with ∆in, or that ∆in is an input difference compatible with ∆out.
We refer to a non-zero column in a difference as an active column. Since χ acts on each
column independently, the DP and weight of a differential are the product and sum of
the column differentials over χ3. For any given input difference δin, the set of compatible
differences over χ3 forms an affine space A(δin) of size 4 [Dae95]. Table 2 gives such affine
spaces in form of offset and basis vectors, for any possible input of χ3 up to rotation. For
a given compatible difference δout, the restriction weight of (δin, δout) depends only on δin
and is equal to log2|A(δin)| = 2 [Dae95]. As a consequence, the weight of a differential
over χ is twice the number of non-zero columns in the input (or output) state difference in
the differential.

Linear masks propagation As for any transformation with domain Zb
2, the correlation

weight of a linear approximation (uin, uout) over χ is defined as the inverse of the logarithm
of its squared correlation (C):

wc(uin, uout) = − log2
|{x ∈ Zb

2 | uin
T x + uout

T f(x) = 0|
2b−1 − 1 .

If the correlation is non-zero, we say that uin and uout are compatible, or that uout is an
output mask compatible with uin, or that uin is an input mask compatible with uout. We
refer to a non-zero column in a mask as an active column. A state mask over χ is composed
by column masks over χ3 and its correlation and correlation weight depend on the active
columns. For any given output mask uout, the set of compatible input masks over χ3 forms
an affine space A(uout) of size 4 [Dae95]. Offset and basis vectors specifying such affine
space are again those in Table 2. The correlation weight of any pair of masks (uin, uout)
depends only on uout and is equal to log2|A(uout)| = 2 [Dae95]. As in the differential case,
the weight of a state mask is twice the number of non-zero columns in the mask.
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3 Trail cores and search strategy
When looking for all trails with weight below a given threshold Tr, the search space grows
exponentially with increasing Tr. Trail search can take advantage of the fact that the set
of r-round trails can be split in equivalence classes, so that the weight of trails in the same
class can be easily bounded. Generating one representative for each class is thus enough
for the purpose of proving bounds. Even if the number of such representatives still grows
exponentially with Tr, we can reach higher values of Tr compared to what we can achieve
when we generate all trails. In [DV12], the set of trails is split in equivalence classes called
trail cores and methods to lower bound the weight of all trails in a core are presented. In
Xoodoo, all trails in a trail core have the same weight and its value can be immediately
derived by the number of active columns in the states composing the trail [DHVV18a]. In
this section we first recall what trail cores are and how their weight can be computed for
Xoodoo, as discussed in [DHVV18a]. Then, we recall the generic strategy introduced
in [DV12] to perform trail search, that we will use also in this work.

3.1 Differential probability and differential trail cores

For the study of difference propagation, it is convenient [DHVV18a] to rephase Xoodoo
round function as starting with ρeast and ending in χ. Therefore, the round function
becomes χ ◦ ι ◦ ρwest ◦ θ ◦ ρeast. The sequence of linear mappings are grouped in λ =
ρwest ◦ θ ◦ ρeast and we call λ the linear layer. Therefore, the re-phased round function
becomes χ ◦ ι ◦ λ. Since constant addition does not influence the trail weight, ι can be
ignored.

An r-round differential trail is a sequence (a0, a1, . . . , ar) of r round differentials and
its restriction weight is the sum of the restriction weights of the round differentials that
compose the trail. We use a redundant representation of trails, where we also specify the
differences after the linear layer: (a0, b0, a1, b1 . . . , br−1, ar) with bi = λ(ai).

Since λ is linear, the restriction weight of the trail only depends on the differentials
over χ and is given by

∑
i wr(bi−1, ai).

Two differences bi and ai+1 are compatible over χ only if they have the same column
activity pattern, i.e., they have the same active column indexes, and each pair of columns
is compatible over χ3. As shown in Section 2.1, the restriction weight wr(bi, ai+1) is twice
the number of active columns in bi, or equivalently, in ai+1. It follows that the restriction
weight of an r-round trail (a0, b0, a1, b1, . . . , br−1, ar) is fully determined by the sequence
b1, . . . , br−1 and can be expressed as wr(a1) +

∑
1≤i<r wr(bi). It is thus independent of the

value of a0, b0, and ar. As in [DV12], we call differential trail core the sequence:

Q = a1
λ−→ b1

χ−→ a2
λ−→ b2

χ−→ a3
λ−→ . . . ar−1

λ−→ br−1 .

We call the sequence wr(a1), wr(b1), . . . , wr(br) the weight profile of the trail core.
A differential trail core defines a set of 2wr(a1) × 2wr(br−1) r-round trails with the same

weight. Such trails are all trails of the form (a0, b0, Q, ar) for any value of a0, b0, and ar

such that b0 is compatible with a1, a0 = λ−1(b0) and ar is compatible with br−1. With
the goal of lower bounding the weight of trails, in our analysis we can thus limit ourselves
to bound the weight of trail cores.

A differential trail core can be extended to an r + 1-round differential trail core by
either pre-pending a couple a0, b0 with b0 compatible with a1 and a0 = λ−1(b0), or by
appending a couple ar, br with ar compatible with br−1 and br = λ(ar). In the former
case, we speak about extension in the backward direction, while in the latter case we speak
about extension in the forward direction.
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3.2 Correlation and linear trail cores
An r-round linear trail is a sequence of r linear approximations. A linear approximation
over round i is defined by a mask ai at its output and a mask ai+1 at its input and we
denote its correlation value C(ai, ai+1). The correlation weight of trail is the sum of the
correlation weight of its round linear approximations.

As for differential trails, we use a redundant representation of trails by including the
masks after the linear layer. Also in this case, it is convenient to rephase the Xoodoo round
function to make notation consistent between linear and differential trails [DHVV18a]. As
linear propagation is studied from the output to the input, the round is rephased starting
with χ and ending with λ, so that the trail first encounters λ and then χ of each round
(as in the differential case).

A trail is of the form (a0, b0, a1, b1 . . . , br−1, ar), where a0 is the mask after the last
round and ar the mask before the first round. A mask ai at the output of λ maps to a mask
bi = λ⊤(ai) before λ, where λ⊤ denotes the linear mapping obtained by the multiplication
of a matrix that is the transpose of the matrix defining the linear mapping λ. It follows
that λ⊤ = ρ⊤

east ◦ θ⊤ ◦ ρ⊤
west = ρ−1

east ◦ θ⊤ ◦ ρ−1
west since the inverse of a bit transposition

matrix is its transpose.
The correlation weight of a round linear approximation (ai, ai+1) depends only on the

correlation weight of (bi, ai+1) over χ, which is non-zero only if bi and ai+1 have the same
column activity pattern. Since the weight of each column is 2, the correlation weight is
twice the number of active columns in bi, or equivalently, in ai+1. Therefore, the correlation
weight of an r-round trail (a0, b0, a1, b1, . . . , br−1, ar) is fully determined by the sequence
b1, . . . , br−1 and is given by wc(a1) +

∑
1≤i<r wc(bi). A linear trail core is defined as the

sequence
Q = a1

λ⊤

−→ b1
χ−→ a2

λ⊤

−→ b2
χ−→ a3

λ⊤

−→ . . . ar−1
λ⊤

−→ br−1 .

It defines a set of 2wc(a1) × 2wc(br−1) r-round trails that share the sequence Q and that
differ by the initial masks a0, b0 and the final mask ar. Similarly to differential trail cores,
linear trail cores can be extended to r + 1 rounds by extension in the forward or backward
direction. We call the sequence wc(a1), wc(b1), . . . , wc(br) the weight profile of the trail
core.

3.3 Trail search strategy
Given the similarities between the study of differential and linear trails, a unified notation
is introduced in [DHVV18a] and we adopt that notation in this paper. A trail core is
denoted by

Q = a1
λ⋆

−→ b1
χ−→ a2

λ⋆

−→ b2
χ−→ a3

λ⋆

−→ . . . ar−1
λ⋆

−→ br−1

where λ⋆ = ρlate ◦ θ⋆ ◦ ρearly and

• λ⋆ = λ, ρearly = ρeast , θ⋆ = θ and ρlate = ρwest for differential trails, and

• λ⋆ = λ⊤, ρearly = ρ−1
west, θ⋆ = θ⊤ and ρlate = ρ−1

east for linear trails.

This convention is illustrated in Figure 3.
We denote the weight of a trail by w, where w = wr for differential trails and w = wc

for linear trails.
Let r be an even number. For any r-round trail core (a1, b1, . . . , br−1) of weight below

Tr, either w(a1, . . . , br/2) < Tr/2 or w(ar/2, . . . , br−1) < Tr/2, otherwise their sum would
exceed Tr. It follows that such r-round trail cores can be generated by generating all r

2 -
round trail cores with weight below Tr/2 and extending them in the forward and backward
direction to reach the desired number of rounds.
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Figure 3: Conventions for differential (DC) and linear (LC) trails in the round function.

This reasoning can of course be generalized to other partitionings, and it can be iterated
until reaching the shortest trail cores which are 2-round trail cores. See Section 6 for more
details.

A 2-round trail core is fully specified by a state a and its weight is given by w(a) +
w(λ⋆(a)). If τ is a translation over x and z directions, then w(τ(a)) + w(λ⋆(τ(a))) =
w(a) + w(λ⋆(a)). In other words, the 2-round trail cores specified by a and τ(a) have the
same weight. We can thus partition all states a in equivalence classes where states in the
same class are translated versions of each other. For the goal of lower bounding the weight
of trails, it is thus sufficient to generate only one representative per class. We call such
representative state (and its corresponding trail core) canonical.

Canonical states a such that w(a) + w(λ⋆(a)) < T2 are iteratively generated by using
a tree-based approach with an efficient method to lower bound the weight of nodes that
allows to efficiently prune branches. In this work we rely on the 2-round trail cores
generation of [DHVV18a] and refer to that paper for details.

Once 2-round trail cores are generated, they have to be extended. Extension is in
general an expensive operation, whose cost depends on the number of trail cores to extend
and the number of active columns in each trail core. In fact, for any state b at the input
of χ there are 2w(b) compatible states at the output of χ. In the next sections we recall
how trail extension works for Xoodoo and how we optimized it in order to achieve higher
target weights.

4 Trail core extension
In this section we recall the methods presented in [DHVV18a] to extend trail cores. These
are up to now the most efficient ones to perform trail core extension in Xoodoo.

4.1 Affine space of compatible states
Extending a trail core means looking for all the possible states that are compatible through
χ with its first or with its last state. The latter is called forward extension, while the
former is backward extension.

In forward extension, each active column b[x, z] at the input of χ defines an affine space
o + ⟨v1, v2⟩ in the same column at the output of χ, according to Table 2. Gathering all the
active columns, a description of the affine space A(b) of states a at the output of χ is given
by A(b) = O + ⟨V1, . . . , Vw⟩, where the offset O and the basis vectors Vi’s are defined as
follows. The offset is a state O with column (x, z) equal to the offset specified by column
b[x, z]; if the column is passive, then also the corresponding column in O is passive. The
offset has thus the same number of active columns as b. Then, for the two column vectors
v1, v2 specified by the active column b[x, z], we build two states V1, V2 whose columns
are all zero except column (x, z) that gets the value of one of the two column vectors:
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V1[x, z] = v1 and V2[x, z] = v2. The dimension of the basis is the weight of b, that is twice
the number of its active columns.

Backward extension works similarly since χ is an involution. From a state a at the
output of χ, we define the set of states b at the input of χ as an affine space B(a).

Example 1. Consider the following difference a that we want to extend in the backward
direction.

5
2 5 2 5

2 2

a

The state a has seven active columns, each with value 2 or 5. Therefore, the affine
space B(a) has an offset with seven active columns and fourteen basis vectors. They are
the following:

4
2 4 2 4

2 2

O

5

V1

2

V2

4

V3

1

V4

5

V5

2

V6

4

V7

1

V8

5

V9

2

V10

4

V11

1

V12

4

V13

1

V14

△

4.2 Extension as a tree-based search

The affine space A(b) or B(a) = O + ⟨V1, . . . , Vw⟩ can be scanned in a tree-based search.
At the root of the tree there is the offset O. A node at level i is composed by the offset
plus i vectors of the basis. To avoid duplicates, we introduce an order relation among basis
vectors; arbitrarily, we say that Vi ≺ Vj if and only if i < j. The children of a node are
obtained by adding a new basis vector to the node, running over all remaining vectors that
are larger than the last vector composing the node, according to the order relation adopted.
More formally, let a node be defined by O + Vi1 + . . . + Vik

. Its children are all the nodes of
the form O + Vi1 + . . . + Vik

+ Vik+1 with ik+1 ∈ {ik + 1, . . . , w}. Alternatively, the parent
of node O + Vi1 + . . . + Vik−1 + Vik

is O + Vi1 + . . . + Vik−1 if ik = max{i1, . . . , ik}.

Example 2. Consider the affine space in Example 1 and consider the node N = O+V3+V11.
The parent of this node is O +V3 and its children are O +V3 +V11 +V12, O +V3 +V11 +V13
and O + V3 + V11 + V14. They are depicted below with the other descendants of N .
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O + V3

N = O + V3 + V11

O + V3 + V11 + V13O + V3 + V11 + V12 O + V3 + V11 + V14

O + V3 + V11 + V13 + V14O + V3 + V11 + V12 + V13 O + V3 + V11 + V12 + V14

O + V3 + V11 + V12 + V13 + V14

△

4.3 Limiting the search using the far view

Scanning the entire affine space takes 2w(a) (or 2w(b)) iterations and becomes prohibitively
expensive if a (or b) has high weight. However, we do not need to scan the whole space,
but we need to build only the compatible states with a weight below the target, when we
look at them after λ⋆ (or λ⋆−1 for backward extension). As a convention, we say that the
near view is when we look at states just after χ (or just before χ for backward extension),
and the far view after λ⋆ (or λ⋆−1).

Since λ⋆ is a linear operation, we can easily transpose the affine space A(b) through
the different steps mappings by applying the step mappings to the offset and the basis
elements. This goes up to the input to the next χ and we obtain the spaces ρearly(A(b)),
θ⋆(ρearly(A(b))), and λ⋆(A(b)). If

A(b) = Onear + ⟨V near
1 , . . . , V near

w ⟩ .

then we have
B(b) = λ⋆(A(b)) = Ofar +

〈
V far

1 , V far
2 , . . . , V far

w
〉

with Ofar = λ⋆(Onear) and V far
i = λ⋆(V near

i ). This is depicted in Figure 4.

b A(b)

ρearly(A(b)) θ⋆(ρearly(A(b)))

B(b)

=

Ofar +
〈
V far

1 , V far
2 , . . . , V far

w
〉

=

Onear + ⟨V near
1 , . . . , V near

w ⟩
χ λ⋆ χ

ρearly

θ⋆

ρlate

Figure 4: Near view and far view for forward extension.
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aB(a)

ρ−1
late(B(a))θ⋆−1(ρ−1

late(B(a)))

A(a)

=

Ofar +
〈
V far

1 , V far
2 , . . . , V far

w
〉

=

Onear + ⟨V near
1 , . . . , V near

w ⟩
χλ⋆χ

ρ−1
late

θ⋆−1

ρ−1
early

Figure 5: Near view and far view for backward extension.

Similarly for the backward extension, we can transpose

B(a) = Onear + ⟨V near
1 , . . . , V near

w ⟩

to ρ−1
late(B(a)), θ⋆−1(ρ−1

late(B(a))), and

A(a) = λ⋆−1(B(a)) = Ofar +
〈
V far

1 , V far
2 , . . . , V far

w
〉

with Ofar = λ⋆−1(Onear) and V far
i = λ⋆−1(V near

i ). This is depicted in Figure 5.

Example 3. Consider the difference a of Example 1 and assume we want to extend it in
the backward direction. Therefore the offset and basis vectors in Example 1 represent the
space B(a) in the near view. We consider the basis vector V1 in the near view and we map
it through the different steps of λ⋆−1. We obtain the following differences.

5

V1

1 4

ρ−1
late(V1)

1 7 7 7 7 7 7 4 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

θ⋆−1(ρ−1
late(V1))

7 1 4 6 1 4 2 7 5 4 6 1 4 4 4 2 5 4 4 4 6 1 4 6 5 4
4 4 2 5 2 3 7 5 6 5 6 1 2 1 2 5 2 7 5 4 4 2 3 5 6 1 4 6 1 4
5 4 2 3 7 1 2 3 1 2 3 1 4 6 1 2 3 7 3 1 2 7 1 2 5 2 7 3 3 3
1 6 1 4 2 5 2 7 3 5 6 1 2 7 7 3 7 1 6 1 2 3 3 7 1 4 6 7

V far
1

λ⋆

ρ−1
late

θ⋆−1

ρ−1
early

Similarly, we obtain the offset and the other basis vectors in the far view. The resulting
representation of A(a) is the following.
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6 3 3 7 6 5 6 1 4 6 7 1 2 4 4 4 4 4 6 7 1 2 1 6 1 6 5 6 7 3 3 1
2 5 2 5 2 5 2 5 4 2 5 2 1 2 5 2 1 2 5 2 1

2 3 7 7 1 2 1 2 5 7 7 5 2 7 3 5 4 7 7 7 3 7 7 5 4 2 5
4 4 2 5 4 4 4 2 1 2 1 2 1 2 5 2 5 2 1 4 2 1 4

Ofar

7 1 4 6 1 4 2 7 5 4 6 1 4 4 4 2 5 4 4 4 6 1 4 6 5 4
4 4 2 5 2 3 7 5 6 5 6 1 2 1 2 5 2 7 5 4 4 2 3 5 6 1 4 6 1 4
5 4 2 3 7 1 2 3 1 2 3 1 4 6 1 2 3 7 3 1 2 7 1 2 5 2 7 3 3 3
1 6 1 4 2 5 2 7 3 5 6 1 2 7 7 3 7 1 6 1 2 3 3 7 1 4 6 7

V far
1

6 5 6 5 4 4 2 1 4 4 2 7 5 4 6 3 1 4 4 2 5 6 7 1 4 4 4
5 2 5 2 1 2 1 4 2 1 2 1 2 1 2 1 2 5 2 1 2
3 5 2 3 3 5 4 2 7 5 2 3 3 7 1 6 7 1 2 3 3 3 1 6 3 1 6 1 2
4 4 2 1 4 2 5 4 2 1 4 2 5 4 4 4 2

V far
2

2 7 5 2 3 3 7 1 6 7 1 2 3 3 3 1 6 3 1 6 1 2 3 5 2 3 3 5 4
2 5 4 2 1 4 2 5 4 4 4 4 4 2 1 4
4 2 1 4 4 2 7 5 4 6 3 1 4 4 2 5 6 7 1 4 4 4 6 5 6 5 4
2 1 2 1 4 2 1 2 1 2 1 2 1 4 2 5 2 1 2 5 2 5

V far
3

1 6 1 2 3 5 2 3 3 5 4 2 7 5 2 3 3 7 1 6 7 1 2 3 3 3 1 6 3
4 5 4 2 1 4 2 5 4 2 1 4 2 5 4 4
4 4 6 5 6 5 4 4 2 1 4 4 2 7 5 4 6 3 1 4 4 2 5 6 7 1 4
5 2 1 2 5 2 5 2 1 2 1 4 2 1 2 1 2 1 2 1 2

V far
4

7 1 4 6 7 1 6 1 4 2 5 2 7 3 5 6 1 2 7 7 3 7 1 6 1 2 3 3
4 6 5 4 7 1 4 6 1 4 2 7 5 4 6 1 4 4 4 2 5 4 4 4 6 1

6 1 4 4 4 2 5 2 3 7 5 6 5 6 1 2 1 2 5 2 7 5 4 4 2 3 5 6 1 4
2 7 3 3 3 5 4 2 3 7 1 2 3 1 2 3 1 4 6 1 2 3 7 3 1 2 7 1 2 5

V far
5

4 2 4 4 2 1 4 2 5 4 2 1 4 2 5 4 4
4 4 4 6 5 6 5 4 4 2 1 4 4 2 7 5 4 6 3 1 4 4 2 5 6 7 1
2 5 2 1 2 5 2 5 2 1 2 1 4 2 1 2 1 2 1 2 1
3 1 6 1 2 3 5 2 3 3 5 4 2 7 5 2 3 3 7 1 6 7 1 2 3 3 3 1 6

V far
6

1 2 3 5 2 3 3 5 4 2 7 5 2 3 3 7 1 6 7 1 2 3 3 3 1 6 3 1 6
4 4 2 1 4 2 5 4 2 1 4 2 5 4 4 4

6 5 6 5 4 4 2 1 4 4 2 7 5 4 6 3 1 4 4 2 5 6 7 1 4 4 4
1 2 5 2 5 2 1 2 1 4 2 1 2 1 2 1 2 1 4 2 5 2

V far
7

1 2 3 3 3 1 6 3 1 6 1 2 3 5 2 3 3 5 4 2 7 5 2 3 3 7 1 6 7
2 5 4 4 4 5 4 2 1 4 2 5 4 2 1 4
4 4 2 5 6 7 1 4 4 4 6 5 6 5 4 4 2 1 4 4 2 7 5 4 6 3 1

2 1 2 5 2 1 2 5 2 5 2 1 2 1 4 2 1 2 1 2 1

V far
8

1 6 1 2 3 3 7 1 4 6 7 1 6 1 4 2 5 2 7 3 5 6 1 2 7 7 3 7
2 5 4 4 4 6 1 4 6 5 4 7 1 4 6 1 4 2 7 5 4 6 1 4 4 4

5 4 4 2 3 5 6 1 4 6 1 4 4 4 2 5 2 3 7 5 6 5 6 1 2 1 2 5 2 7
3 1 2 7 1 2 5 2 7 3 3 3 5 4 2 3 7 1 2 3 1 2 3 1 4 6 1 2 3 7

V far
9

2 5 4 4 4 2 4 4 2 1 4 2 5 4 2 1 4
1 4 4 2 5 6 7 1 4 4 4 6 5 6 5 4 4 2 1 4 4 2 7 5 4 6 3
1 2 1 2 5 2 1 2 5 2 5 2 1 2 1 4 2 1 2 1 2
7 1 2 3 3 3 1 6 3 1 6 1 2 3 5 2 3 3 5 4 2 7 5 2 3 3 7 1 6

V far
10

6 5 6 5 4 4 2 1 4 4 2 7 5 4 6 3 1 4 4 2 5 6 7 1 4 4 4
2 5 2 5 2 1 2 1 4 2 1 2 1 2 1 2 1 4 2 5 2 1
2 3 5 2 3 3 5 4 2 7 5 2 3 3 7 1 6 7 1 2 3 3 3 1 6 3 1 6 1

4 4 2 1 4 2 5 4 2 1 4 2 5 4 4 4

V far
11

4 2 5 6 7 1 4 4 4 6 5 6 5 4 4 2 1 4 4 2 7 5 4 6 3 1 4
2 1 2 5 2 1 2 5 2 5 2 1 2 1 4 2 1 2 1 2 1

2 3 3 3 1 6 3 1 6 1 2 3 5 2 3 3 5 4 2 7 5 2 3 3 7 1 6 7 1
5 4 4 4 5 4 2 1 4 2 5 4 2 1 4 2

V far
12

5 6 7 1 4 4 4 6 5 6 5 4 4 2 1 4 4 2 7 5 4 6 3 1 4 4 2
1 4 2 5 2 1 2 5 2 5 2 1 2 1 4 2 1 2 1 2 1 2
3 3 1 6 3 1 6 1 2 3 5 2 3 3 5 4 2 7 5 2 3 3 7 1 6 7 1 2 3
4 4 4 4 4 2 1 4 2 5 4 2 1 4 2 5

V far
13

4 2 7 5 4 6 3 1 4 4 2 5 6 7 1 4 4 4 6 5 6 5 4 4 2 1 4
4 2 1 2 1 2 1 2 1 2 5 2 1 2 5 2 5 2 1 2 1

2 3 3 7 1 6 7 1 2 3 3 3 1 6 3 1 6 1 2 3 5 2 3 3 5 4 2 7 5
2 1 4 2 5 4 4 4 5 4 2 1 4 2 5 4

V far
14

△

All the elements of the space in the far view can again be built by a tree-based approach,
and naturally we say that V far

i ≺ V far
j if and only if i < j.

Notice that a node can have weight smaller than the weight of its parent, since the
addition of a new basis vector can turn some active bits into passive bits, possibly decreasing
the number of active columns. This means that when a node is encountered whose weight
is higher than the target weight, we still need to build all its descendants and check if
their weight is below the target. However, it is possible to lower bound the weight of the
descendants of a node, so that if such lower bound is higher than the target weight, we
can safely discard them [DHVV18a]. The more accurate such bound is, the more efficient
the search becomes. In this work, we will use the term score to refer to such lower bound,
as introduced in [MMGD22].

4.4 Computing the score based on stability masks
For a given node O + Vi1 + . . . + Vik

in the far view (we omit the “far” superscript here),
we define its stable bits as the set of bits that have in all the node’s descendants the same
value as the bits in the node. Note that the stability of bits depends only on the index of
the last basis element in the node encountered, in this case ik, as only basis elements with
index j > ik can be further added.

We represent the stable bits as a stability mask, i.e., a state value where a bit has a
value 1 if it is stable and 0 otherwise. We denote the stability mask of a node with last
basis element with index i by Si. S0 is the stable bit mask for the entire basis and Sw is
the all-one mask.

For a given node N = O + Vi1 + . . . + Vik
, we therefore have that N ∧ Sik

gives the
active bits of N that are guaranteed to remain active in all its descendants. It follows that
the weight of any descendant of N has weight at least w(N ∧ Sik

). This is the score of the
node N , which lower bounds the weight of all nodes in the subtree under N . Similarly,
the score of the root node is w(O ∧ S0).

4.5 Triangularization
The stability masks S0 through Sw depend on the basis ⟨V1, V2, . . . , Vw⟩ in the far view.
To limit the search as much as possible, we would like that the number of stable bits in Si

grows quickly with i. This way, the score computes the weight over many columns and the
search can prune early.

To this end, we proposed in [DHVV18a] to triangularize the basis ⟨V1, V2, . . . , Vw⟩.
Triangularization of the basis ⟨V1, V2, . . . , Vw⟩ requires the establishment of an order
relation of the bit positions p = (x, y, z) in the state, for instance the lexicographic order
relation. Let ⟨V1, V2, . . . , Vw⟩ be a triangularized basis and let pi be the smallest active
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bit in Vi. Then by construction, all bits in positions ≤ pi are passive in all vectors in
Vi+1, . . . , Vw, and they are consequently included in the stability mask Si.

Example 4. Consider the basis of Example 3. If we triangularize it following the lexico-
graphic order [y, x, z] we obtain the following offset and vectors.

6 3 3 7 6 5 6 1 4 6 7 1 2 4 4 4 4 4 6 7 1 2 1 6 1 6 5 6 7 3 3 1
2 5 2 5 2 5 2 5 4 2 5 2 1 2 5 2 1 2 5 2 1

2 3 7 7 1 2 1 2 5 7 7 5 2 7 3 5 4 7 7 7 3 7 7 5 4 2 5
4 4 2 5 4 4 4 2 1 2 1 2 1 2 5 2 5 2 1 4 2 1 4

Ofar

7 1 4 6 1 4 2 7 5 4 6 1 4 4 4 2 5 4 4 4 6 1 4 6 5 4
4 4 2 5 2 3 7 5 6 5 6 1 2 1 2 5 2 7 5 4 4 2 3 5 6 1 4 6 1 4
5 4 2 3 7 1 2 3 1 2 3 1 4 6 1 2 3 7 3 1 2 7 1 2 5 2 7 3 3 3
1 6 1 4 2 5 2 7 3 5 6 1 2 7 7 3 7 1 6 1 2 3 3 7 1 4 6 7

V far
1

6 7 5 4 2 5 6 1 4 6 3 3 1 2 3 7 7 3 5 2 3 5 4 2 3 7 7 5 6 7
4 2 5 7 3 3 7 7 5 2 3 7 1 6 7 3 7 1 4 4 2 3 7 3 1 4 6 1 4

1 2 3 7 7 7 3 7 7 7 5 6 7 5 6 1 6 5 4 4 4 6 7 5 2 1 4 2 7
4 4 6 7 5 2 5 6 5 6 3 1 6 7 7 5 2 1 2 7 1 2 1 2 7 1 4 6 5

V far
2

4 2 5 4 6 7 3 3 1 2 3 3 5 6 7 5 2 1 2 7 3 3 1 4 4 4 6 7 7 5 4
7 5 6 7 1 6 1 2 1 6 7 1 6 1 6 1 6 1 4 6 7 3 1 6
7 7 3 7 7 7 3 5 6 1 6 3 7 7 5 4 6 7 7 3 1 6 1 4 6
6 1 6 3 1 4 6 3 7 1 6 3 1 6 1 4 2 7 5 6 1 6 5 6 5 2

V far
3

2 5 6 5 4 4 4 4 4 6 1 6 5 4 6 3 5 4 6 5 4 2 1
3 5 4 6 6 3 5 4 4 2 7 5 4 4 4 6 5 4 4 2 1 4 6 3 3 5 6
3 3 3 1 2 1 4 6 1 2 3 7 7 3 3 7 1 2 5 2 3 1 6 3 1 6
2 1 2 1 4 6 3 1 2 3 7 3 1 2 3 3 5 4 2 7 7 7 3 7 7 5 6 7 5 2

V far
4

6 1 2 3 3 7 1 4 6 7 1 6 1 4 2 5 2 7 3 5 6 1 2 7 7 3 7
2 7 5 6 4 6 1 4 6 5 6 7 1 4 6 1 4 2 7 5 4 4 4 4 4

5 4 4 2 3 5 6 1 4 6 1 4 4 2 5 2 3 7 5 6 5 6 1 2 1 2 5 2 7
3 1 2 7 1 6 5 2 7 3 3 3 5 4 2 3 7 1 2 3 1 2 3 1 4 6 1 6 3 7

V far
5

4 4 2 5 6 3 5 2 3 1 6 7 5 2 3 7 7 7 3 5 4 4 4 2 7 7 5
1 2 2 5 4 4 6 5 2 3 2 5 2 7 5 4 2 3 1 6 7 5 4 2 3 3 1 6
7 7 1 2 7 7 1 4 4 6 7 5 6 7 5 2 1 4 6 7 3 1 2 3 3 1 6 3
3 3 5 4 4 6 1 4 4 2 7 7 1 6 3 1 4 6 5 6 3 3 1 4 4 2 1

V far
6

4 4 4 2 7 1 6 1 4 2 2 3 5 2 1 2 7 3 5 4 4 6 7 3 3 7
4 6 3 5 6 4 4 2 3 1 4 4 6 5 4 6 5 4 4 4 2 1 4 6 7 5
7 1 6 3 1 2 1 6 5 6 3 1 6 5 2 1 2 5 4 4 4 6 1 2 1 2 7

4 6 3 3 3 7 3 1 2 7 3 1 2 1 4 6 3 3 7 5 2 3 7 5 2 7 3 3

V far
7

4 4 4 2 7 1 6 1 4 2 2 3 5 2 1 2 7 3 5 4 4 6 7 3 3 7
4 6 3 5 6 4 4 2 3 1 4 4 6 5 4 6 5 4 4 4 2 1 4 6 7 5
7 1 6 3 1 2 1 6 5 6 3 1 6 5 2 1 2 5 4 4 4 6 1 2 1 2 7

4 6 3 3 3 7 3 1 2 7 3 1 2 1 4 6 3 3 7 5 2 3 7 5 2 7 3 3

V far
8

4 2 5 4 4 4 4 4 2 1 4 2 5 4 2
2 5 6 5 4 3 1 4 4 2 5 6 5 1 4 4 4 6 5 4 6 5 4 2 1 4 4
4 2 1 2 1 2 1 2 1 4 2 5 2 1 2 5 2 5 2 1 2 1
3 3 7 1 6 3 1 2 3 3 3 1 6 3 1 6 1 2 3 5 2 3 3 5 4 2 3 5 2

V far
9

4 2 4 4 2 1 4 2 5 4 2 1 4 2 5 4 4
4 4 4 6 5 6 5 4 4 2 1 4 4 2 7 5 4 6 3 1 4 4 2 5 6 7 1
2 5 2 1 2 5 2 5 2 1 2 1 4 2 1 2 1 2 1 2 1
3 1 6 1 2 3 5 2 3 3 5 4 2 7 5 2 3 3 7 1 6 7 1 2 3 3 3 1 6

V far
10

4 4 2 4 4 4 2 3 1 1 4 6 1 2 1 2 3 3 5 4 4 2 3
5 2 7 3 3 6 7 3 7 5 4 6 5 4 6 7 1 2 1 4 4 4 4 4 4 2 1 6 3 3

2 7 7 1 4 2 3 1 4 4 2 7 3 5 4 4 2 5 4 2 1
5 4 4 2 5 2 5 6 1 4 2 3 1 2 7 7 3 7 3 7 7 5 4 6 7 7 3 7

V far
11

4 4 4 4 4 4 6 5 6 3 1 4 6 7 5 4 6 3 1 4 4 6
6 7 7 5 3 6 5 4 4 5 5 4 2 1 4 6 3 5 4 6 7 1 6 5 2 5
2 3 1 4 2 7 7 3 3 7 5 4 2 5 4 2 3 1 2 1 6 3 3 3 3 3 1
1 2 3 1 2 1 2 3 7 3 1 7 7 1 6 5 4 2 7 3 7 1 6 3 1 2 7 7 3

V far
12

4 4 6 4 4 4 7 7 5 4 6 7 5 4 6 1 2 3 3 7 5 4 4 4
1 2 5 2 5 2 3 7 1 4 4 4 5 1 4 4 2 7 7 5 4 2 3 1 4 2 7 5 6 7

2 3 3 3 7 7 5 2 7 5 4 2 7 5 4 6 3 3 3 3 3 3 3 3 3 1
6 7 1 2 3 3 3 1 4 6 5 2 5 6 3 3 7 5 2 5 6 1 2 7 3 7 1 6

V far
13

4 4 4 4 4 4 4 6 7 5 4 6 7 1 4 4 2 3 3 7 5 4
7 1 6 5 5 4 2 3 7 3 5 4 5 4 4 6 7 5 4 2 7 1 4 6 5 6

2 3 3 1 2 7 5 2 7 5 2 7 5 4 6 3 3 3 3 3 3 1 2 3 1
4 4 6 5 2 3 3 3 1 2 3 6 5 2 5 6 3 1 3 5 2 5 6 5 2 3 3 3 1

V far
14

These lead to the following stability masks.

S0

1

S1

1 1

S2
1 1 1

S3

1 1 1 1

S4

1 1 1 1 1

S5
1 1 1 1 1 1

S6

1 1 1 1 1 1 1

S7

1 1 1 1 1 1 1 1

S8
1 1 1 1 1 1 1 1 1

S9

1 1 1 1 1 1 1 1 1 1

S10

1 1 1 1 1 1 1 1 1 1 1 1

S11
1 1 1 1 1 1 1 1 1 1 1 1 1

S12

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S13

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

S14

The number of stable bits in each mask Si is given by the Hamming weight of Si. The
sequence of such Hamming weights is therefore

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 384.

△

5 Optimizing the trail core extension
In this section we describe optimization techniques to make the number of stable bits grow
more quickly.

5.1 Redefining stability masks
We noticed that the implementation of the trail extension in [DHVV18a] is suboptimal. It
computes the score using a stability mask that includes the bits in positions smaller than
pi+1, but there can be more bits that are stable. As a matter of fact, for a given node
with last basis vector Vi, all bits in positions where the basis vectors Vi+1 to Vw are all
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zero, are stable. Hence, we define the stability mask of a node as the bitwise AND of the
complements of the basis vectors that can be added to the node to form its descendents:

Si =
∧
j>i

Vj . (1)

The example below shows how, with this new definition of stability mask, the number
of stable bits grows more quickly with i.

Example 5. Consider the triangularized basis given in Example 4. By applying the
definition given in (1) we obtain the following stability masks.

S0

1

S1

3 1

4

S2
3 3 1

4 4

S3

3 3 3 1

4 4 4

S4

3 3 3 3 1

4 4 4 4

S5
3 3 3 3 1 1

4 4 4 4 4

S6

3 3 3 3 1 3 5 2 1
2 1

4 2 1 4 4 4 4 4 4
4

S7

3 3 3 3 1 3 7 1 2 1 2 2 1 2 1 4 2 1
2 1 2 1

1 4 4 2 5 4 4 4 4 4 4 4 6
4 4

S8
3 3 3 3 1 3 7 3 1 2 1 2 2 1 2 1 4 2 1

2 1 2 1
5 4 4 2 5 4 4 4 4 4 4 4 6

4 4

S9

3 3 3 3 1 3 7 3 3 3 1 2 3 2 1 2 1 4 2 1
2 1 2 2 1 2 1 2 1 2 1

5 4 4 4 4 2 5 4 4 4 4 4 4 4 6
4 4 4 4 4 4

S10

3 3 3 3 1 3 7 3 7 3 3 1 2 3 2 1 2 1 4 2 3 1
2 4 2 3 2 2 3 1 2 1 2 1 2 1

5 4 4 4 4 4 2 5 2 1 4 4 4 4 4 4 4 4 6
4 4 4 4 4 4 2 5 4 4

S11
3 3 7 3 1 3 7 7 7 3 3 3 7 3 2 1 2 1 2 5 4 4 2 3 3

4 2 2 1 4 2 3 2 2 3 3 3 1 2 1 4 2 1
7 7 5 4 4 4 2 5 2 7 3 5 2 1 4 4 4 4 4 4 4 4 4 6
1 4 4 4 4 6 7 5 1 2 5 4 4 4

S12

3 3 7 7 3 3 7 7 7 7 3 3 7 7 3 1 2 3 1 6 3 3 7 5 4 4 2 3 7
6 1 2 2 7 3 5 4 4 2 3 7 2 7 3 7 3 7 1 2 3 5 6 3 7 1 2 1

7 7 7 5 4 4 6 5 2 7 5 2 7 7 7 5 2 3 1 4 4 4 4 4 4 6 5 4 6
3 3 1 2 5 4 4 4 6 7 5 4 7 1 2 7 5 2 1 4 6 4 2 5 2 1 2 5 4 4 4 6

S13

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

S14

The sequence of Hamming weights of the stability masks, for increasing i, is therefore

0, 1, 4, 7, 10, 13, 15, 27, 46, 49, 66, 85, 122, 212, 384

△

5.2 Triangularization based on θ-effect
To speed things up even further, we introduce new ideas to improve the triangularization.
The bottleneck is the backward extension, so we focus on that one.

As shown in Table 2, the affine basis elements of B(a) contain only one or two active
bits each in the near view. In the latter case, the two bits end up in different columns
at the input of θ⋆−1 because of ρ−1

late, so in both cases none of the basis elements are in
the kernel. As the inverse of θ⋆ is dense on states outside the kernel, computing (λ⋆)−1

over such a basis gives elements with many active bits. See for instance Example 3. As all
basis vectors have many active bits, their complements typically have only half of their
bits equal to 1 and due to the fact that the stability masks are the bitwise AND, they are
rather sparse unless i is close to w. See for instance Example 5.

We can make the triangularization more effective by adopting a different ordering of
bit positions, leading to more dense stability masks. For this purpose, we are going to look
at columns before and after θ⋆. When we look at states at the input of θ⋆ we call it the
mid view.

The θ-effect is defined as the sum of an input and an output of θ⋆, i.e., E(x) =
x ⊕ (θ⋆)−1(x) for a given output x of θ⋆. Because θ⋆ is a column parity mixer, the bits
in any given column of E(x) are either all three active or all three passive. So, the basis
elements in the mid view have one or two active bits plus a number of completely active
columns.
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aB(a)

ρ−1
late(B(a))θ⋆−1(ρ−1

late(B(a)))

A(a)

=

Ofar +
〈
V far

1 , V far
2 , . . . , V far

w
〉

=

Onear + ⟨V near
1 , . . . , V near

w ⟩

⊕

E(a)
=

OE +
〈
V E

1 , . . . , V E
w

〉

=
Omid +

〈
V mid

1 , . . . , V mid
w

〉

χλ⋆χ

ρ−1
late

θ⋆−1

ρ−1
early

Figure 6: Mid view and θ-effect for backward extension.

Example 6. Consider the basis vector V near
1 as in Example 3. In the mid view,

V mid
1 = θ⋆−1(ρ−1

late(V near
1 )) has two columns with one active bit and all other active

columns have three active bits. It is in fact given by the sum of ρ−1
late(V near

1 ) and the
corresponding θ-effect V E

1 = E(ρ−1
late(V near

1 )):
7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
1

△

The idea is therefore to triangularize in a way that takes a whole active column in
the mid view as a pivot. This eliminates the three bits of the column in all other basis
elements, and therefore stabilizes three bits in three different columns in the far view, i.e.,
after going through ρ−1

early. To do this, we perform triangularization over the θ-effect.
Let us describe this procedure more precisely. First, we let

E(a) = E(ρ−1
late(B(a)))

be the affine space representing the θ-effect of B(a). In other words, if

B(a) = Onear + ⟨V near
1 , . . . , V near

w ⟩ .

then
E(a) = OE +

〈
V E

1 , . . . , V E
w

〉
with OE = E(ρ−1

late(Onear)) and V E
i = E(ρ−1

late(V near
i )). This is depicted in Figure 6.

Then, we triangularize
〈
V E

1 , . . . , V E
w

〉
and modify the representation of B accordingly:

Every time we add V E
i to V E

j in E(a), we add V near
i to V near

j in B(a). Finally, we transpose
B(a) to A(a) = λ⋆−1(B(a)).
Example 7. Consider the basis given in Example 1. For each basis vector V near

i we can
compute the corresponding ρ−1

late(V near
i ), V mid

i , and V E
i as we did in Example 3 and 6 for

V near
1 . Then, by performing triangularization based on the θ-effect following the lexico-

graphic order [y, x, z], we obtain the following basis for the mid view.
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7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 1 7 7 7 7 7 7 4 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V mid
1

1 7 7 7 7 7 7 4 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V mid
2

7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
2 7 7 7 7

V mid
3

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 4 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V mid
4

1 7 7 7 7 7 7 3 7 7 7 7 7
7 7 7 6 6 7 7 7 7 7 7 7 4 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V mid
5

1 7 7 7 7 7 7 7 7 3 7 7 7 7 7 7 7
7 3 7 1 7 7 7 7 7 7 7 7 4 4 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V mid
6

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 6 7 7 7 6 7 7 7 7 7 7 3 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
5 7 7 7 7 7 7 7 7 7 7 7 7 7

V mid
7

1 7 7 2 7 7 7 3 7 7 7 7 7 7
7 3 7 1 7 7 7 7 7 7 7 4 4 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V mid
8

1 7 7 7 7 7 5 7 7 4 7 7 7 7 7 7
7 7 3 7 7 1 7 7 7 7 7 7 7 7 4 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7
7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V mid
9

2 7 7 7 7
7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V mid
10

1 2 7 5 7 7 7 4 7 7 7 7 7
7 7 4 7 6 6 7 7 7 7 7 6 7 7 7 7 7 7 3 3 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
4 7 7 7 7 7 7 1 7 7 7 7 7 7 7 7

V mid
11

1 2 5 7 7 7 7 4 7 7 7 7 7
7 3 7 1 7 7 7 1 7 7 7 7 7 7 3 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
2 3 7 7 7 7 7 4 7 7 7 7 7 7 7 7 7 7 7 7

V mid
12

1 7 7 7 3 7 7 7 7
7 7 4 1 6 7 7 7 7 7 7 7 7 4 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
4 7 7 7 7 7 4 7 6 7 7 7 7 1 7 7 7 7 7 7 7

V mid
13

1 4
3 6 6 3

V mid
14

The corresponding θ-effects are the following. We can notice that the pivot column for
E1 is in position (0, 0), for E2 it is in position (0, 1), for E3 it is in position (0, 2), and so on.

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
1

7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
2

7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7

V E
3

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
4

7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
5

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
6

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
7

7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
8

7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
9

7 7 7 7
7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
10

7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
11

7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
12

7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

V E
13

7 7 7 7

V E
14

Once the basis for the mid view is mapped to the far view, we obtain the following sequence
of stability masks.

S0

2

4

S1

2 1 2

4 4

S2
2 3 1 2

4 4 4

S3

2 3 3 1 2

4 4 4 4

S4

2 3 3 3 1 2

4 4 4 4 4

S5
2 3 3 3 1 1 2

4 4 4 4 4 4

S6

2 3 3 3 1 3 5 2 1 2
2 1

4 2 1 4 4 4 4 4 4 4
4

S7

2 3 7 3 1 3 7 1 2 1 2 2 1 2 1 4 2 1 2
2 1 2 1

1 4 2 5 2 5 4 4 4 4 4 4 4 4 6
4 4

S8
2 3 7 3 1 3 7 3 1 2 1 2 1 2 2 1 2 1 4 2 1 2

2 1 2 1 2 1
5 4 4 2 5 2 5 4 4 4 4 4 4 4 4 6

4 4 4

S9

2 3 7 3 1 3 7 7 3 3 1 2 3 3 2 1 2 1 4 2 1 2
2 1 2 1 2 3 1 2 1 4 2 1

5 4 4 4 4 2 5 2 7 1 4 4 4 4 4 4 4 4 6
1 4 4 6 5 4 4

S10

2 3 7 3 1 3 7 7 7 3 3 3 7 3 2 1 2 1 2 5 4 4 2 3 3
4 2 2 1 4 2 3 2 3 3 3 1 2 1 4 2 1

7 7 5 4 4 4 2 5 2 7 3 5 2 1 4 4 4 4 4 4 4 4 4 6
1 4 4 4 6 7 5 1 2 5 4 4 4

S11
2 3 7 7 3 3 7 7 7 7 3 3 7 7 3 1 2 3 1 6 3 3 7 5 4 4 2 3 7

6 1 2 7 3 5 4 4 2 3 5 2 7 3 7 3 7 1 2 3 5 6 3 7 1 2 1
7 7 7 5 4 4 6 5 2 7 5 2 7 7 7 5 2 3 1 4 4 4 4 4 4 6 5 4 6
3 3 1 2 5 4 4 6 7 5 4 7 1 2 7 5 2 1 4 6 4 2 5 2 1 2 5 4 4 6

S12

6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 5 6 5 7 7 7 7 7 7 7 7 5 7 7 7 7 7 7 7 7 7 7 7 5 6 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 7 7

S13

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

S14

The sequence of Hamming weights of the stability masks, for increasing i, is therefore

0, 2, 5, 8, 11, 14, 16, 28, 50, 59, 81, 119, 207, 374, 384

△

We can notice that the number of active bits in the stability masks in Example 7 does
not increase by at least 3 for each i, which would be the optimal behavior. Moreover, we
can also notice that even if the number of stable bits increases by 3 from Si to Si+1, some
of these bits may end up in the same column. Hence, the number of new active columns
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can be smaller than 3, and the score will be computed on less active columns than the
optimal situation.

We now discuss what are the conditions that lead to such and other non-optimal behavior
and explain how we can refine our method to overcome them. Both our refinements are
related to the order in which we consider the columns (x, z) when choosing a pivot.

5.2.1 Refinement based on go-columns

First, we notice that vector V mid
i cannot lead to 3 new stable bits when there are active

bits in V mid
j in the same pivot column of V mid

i for some j > i.

Example 8. Consider the basis for the mid view in Example 7. The pivot column of V mid
1

is column (0, 0). The basis vectors V mid
j with j ∈ {2, 5, 6, 8, 9, 11, 12, 13, 14} all have an

active bit in this column, i.e. the bit (0, 0, 0). Therefore, the three bits of V E
1 [0, 0] cannot

be considered all stable, but only the two bits in y = 1 and y = 2. These are in fact the
two bits that appear in S1 (mapped through ρ−1

early).
△

Moreover, if the offset Omid already contains one or more bits in the pivot column of
V mid

i , the addition of V mid
i will cancel them. It follows that less bits will be considered

when computing the score.
To overcome these problems, when looking at ρ−1

late(B(a)), we divide the columns (x, z)
in two sets: the go columns are those that do not contain any active bit in either the offset
or the basis elements of ρ−1

late(B(a)), and the no-go columns are the remaining ones. When
choosing a pivot in the triangularization of E(a), we look at go columns in priority. Only
if there are no more go columns available, then we choose a no-go column.

The reason for favoring go columns can be explained more formally as follows. Assume
that (x, z) is a go column and that it is taken as a pivot in the triangularization of E(a).
Because it is a go column, we have:

ρ−1
late(b)[x, z] = (0, 0, 0) for all b ∈ B(a).

Since it is taken as pivot, it means that

V E
i [x, z] = 1 and V mid

i [x, z] = (1, 1, 1)

for some basis vector V near
i of B(a), and that the column (x, z) is going to be inverted by

θ⋆−1 when adding ρ−1
late(V near

i ). Then ρ−1
early will move these three bits to three different

columns in the far view. Furthermore, they are stable after taking the i-th basis element
as pivot, because they do not appear in any later basis vector. So Si includes them. Three
stable active bits in three different columns count as 6 in the score w(N ∧ Si), so this is
optimal when aiming at pruning the tree as soon as possible.

Choosing a no-go column is less favorable, so they are used as pivot near the end of the
triangularization procedure. When the offset ρ−1

late(Onear)[x, z] is non-zero, the active bits
in that column will be turned passive after applying θ⋆−1, therefore counting as less than
6 in the score. As another case, assume that V near

i with V E
i [x, z] = 1 is taken as pivot and

that some basis vector ρ−1
late(V near

j )[x, z] with j > i is non-zero. Then, at least one of these
bits will not be stable and cannot be taken into account when computing the score.

5.2.2 Refinement based on a diagonal pattern

Another non-optimal situation that can happen is due to the fact that we usually follow
a horizontal pattern during triangularization, i.e., after pivot column (x, z), we consider
pivot column (x, z + 1). In the differential case, the three bits (x, 0, z), (x, 1, z), (x, 2, z) of
the first pivot column will be mapped to (x, 0, z), (x, 1, z− 1), (x + 2, 2, z− 8), respectively,
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after ρ−1
early = ρ−1

east. But for the second pivot column, (x, 1, z + 1) will be mapped to
(x, 1, z), sitting in the same column as (x, 0, z) after ρ−1

early. Hence, because of this overlap,
the score will be computed on at most 5 columns in the far view instead of 6.

Example 9. Consider the basis in the mid view given in Example 7. The pivot column
of V mid

2 is (0, 1). Its three bits are mapped to bits (0, 0, 1), (0, 1, 0), (2, 2, 25) after ρ−1
early.

They are the bits that appear in S2 but not in S1. The pivot column of V mid
3 is (0, 2). Its

three bits are mapped to bits (0, 0, 2), (0, 1, 1), (2, 2, 26) after ρ−1
early. They are the bits that

appear in S3 but not in S2. Bit (0, 1, 1) goes in the same column of bit (0, 0, 1). Therefore
the number of active columns increases from 5 in S2 to 7 in S3.

△

To limit this effect, when we look for a pivot column we follow a diagonal pattern in
the θ-view. Namely, we loop over (x, z) = (k mod 4, (k + ⌊k/32⌋) mod 32) for k ∈ Z128.

To avoid potential misunderstanding due to similar terminology, we highlight that this
diagonal pattern differs from the diagonal coordinate introduced in [BFR22, Section 5.3].
In fact, the authors of [BFR22] adopt a diagonal ordering of units to maximize the number
of stable coordinates in their 2-round trail cores generation, whereas our ordering is meant
for trail extension instead. Therefore, while the final goal of both approaches is to compute
more accurate lower bounds for the weight during the trail search, they focus on different
aspects of the search.

Example 10. Consider the affine space given in Example 1. By applying the new trian-
gularization technique based on the θ-effect and the refinements based on the go-columns
and the diagonal pattern, we finally obtain the following stability masks.

S0

2 1

4

S1

4
2 1

2 1
4

S2
4

2 1 4
2 1

2 1 4

S3

4 4 4
2 1 2 1 4

2 1 2 1 2 1
2 1 4 4

S4

4 4 4 4
2 1 4 2 1 4 4

2 1 2 1 2 3 1
2 1 2 1 4 4 2 1

S5
2 1 4 4 4 4

2 1 4 4 2 1 4 4
4 2 1 2 1 2 3 1

2 1 2 1 4 6 3 1

S6

2 1 4 4 4 4
2 1 4 2 1 1 4 4 4 2 1 4 4
4 2 1 2 1 2 3 1

4 2 1 2 1 2 1 4 6 3 3 1

S7

4 4 2 1 2 1 6 5 4 4 4
2 1 4 2 1 1 4 4 4 2 1 4 4
5 2 1 6 1 2 3 5 2 3 1 2

4 2 1 2 1 2 1 4 6 3 3 1

S8
4 4 2 1 2 1 6 5 4 4 4 4 4 6 1

2 1 4 4 2 5 2 5 6 1 4 4 4 2 1 4 4
5 2 1 2 7 1 2 3 5 4 2 3 1 2 1 2 3

4 2 1 4 2 5 2 1 2 1 6 1 2 2 1 6 3 3 1

S9

6 5 2 1 2 5 2 3 1 4 6 5 2 1 4 6 5 4 4 6 7
2 1 4 4 2 5 4 2 5 7 1 4 4 4 4 2 1 4 4
5 2 1 6 7 3 1 2 3 5 4 2 5 6 7 3 5 2 1 6 3

4 2 1 4 2 5 2 1 2 1 6 3 1 2 2 1 6 3 3 1 2 1

S10

6 7 5 2 5 6 5 2 7 7 5 2 7 7 4 6 5 6 7 3 5 6 5 6 5 6 7 7 5 6 7 7
7 1 4 6 5 6 5 4 2 5 4 4 2 5 7 5 2 5 4 4 6 7 1 6 5 4 4 4 6
7 7 7 3 7 7 3 3 7 3 5 6 7 3 5 2 7 3 5 6 7 3 7 7 7 7 5 2 7 3 7 3

6 3 3 3 7 3 7 1 2 7 3 2 3 3 5 6 3 3 5 2 2 3 1 4 6 3 3 5 2 7 1

S11
6 7 7 7 7 6 7 7 7 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 5 6 5 7 7 7 7 7 7 7 7 5 7 7 7 7 7 7 7 7 7 7 7 5 6 7 7 7 7 7
7 7 7 7 7 7 3 7 7 7 7 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 7 7
7 7 7 7 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 7 5

S12

7 7 7 7 7 6 7 7 7 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 3 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

S13

7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

S14

The sequence of Hamming weights of the stability masks, for increasing i, is therefore

0, 3, 6, 9, 18, 27, 33, 43, 58, 86, 119, 251, 369, 379, 384 .

We can notice that the number of stable bits in this example increases by at least 3 with
each i, unlike in the previous examples.

△

Clearly, we can see that the number of stable bits increases much faster in Example 10
than in Example 4. As active columns count for 2 in the weight, each stability bits
potentially contributes to 2 to the score. Once the score reaches the threshold weight of
the extension, the entire subtree of descendants is pruned. Since the number of states to
investigate increases exponentially as we go down the tree, it is clear that pruning earlier
has a direct and significant reduction on the search time. This highlights the benefits of
having a tighter score and a faster increasing number of stability bits.
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Table 3: Details on the generation of r-round canonical differential trail cores with weight
below Tr. Timings are rounded to the closest integer and in the fourth column they are
meant to be incremental. Timings between parenthesis means that the same computation
has been already done in a previous step, so it is counted only once. - means that the step
is not performed since the starting set is empty. * the time with XooTools on a desktop
PC equipped with an Intel® Core™ i5-6500 CPU.

search space details
r Tr # cores found time step r Tr # cores found time

4 88 4 95d

generation 2 44 2,983,444,980 301h
forw.ext. 3 86 2,283,985 27h
forw.ext. 4 88 3 3m
back.ext. 3 86 291,994 1942h
back.ext. 4 88 1 1m

5 98 0 21d

generation 2 44 2,983,444,980 (301h)
forw.ext. 5 98 0 28h
generation 3 54 201 480h*
back.ext. 5 98 0 1s

6 132 0 21s

generation 3 54 201 (480h*)
forw.ext. 6 132 0 3s
back.ext. 6 132 0 1s
generation 2 44 2,983,444,980 (301h)
ext. from start 6 132 0 (27h+) 16s
ext. from middle 6 132 0 (27h+) 1s
ext. from end 6 132 0 (1942h)

8 176 0 2s
generation 4 88 4 (95d)
forw.ext. 8 176 0 1s
back.ext. 8 176 0 1s

10 220 0 12m

generation 4 88 4 (95d)
forw.ext. 10 220 0 12m
generation 6 132 0 (115d)
back.ext. 10 220 0 -

12 264 0 -
generation 6 132 0 (115d)
forw.ext. 12 264 0 -
back.ext. 12 264 0 -

6 Improved bounds
In this section, we report on our results for both differential and linear trail cores. The
improved bounds resulting from our search are reported in Table 1. Details on our search,
as the number of (canonical) trail cores found and the execution time for the different
steps, are reported in Table 3 for differential trails and in Table 4 for linear trails.

We will integrate our optimizations into the public software XooTools [DHVV18b].
All our experiments are run on a server equipped with an AMD EPYC 7552 48-Core
Processor @2.2GHz. We exploited the multicore architecture to run some of our experiments
in parallel. However, execution times are reported as single-core time.

As starting point, we consider the set of all 2-round trail cores with weight w(a1) +
w(b1) < 44 and all 3-round trail cores below weight 54. The former are generated using
XooTools. The latter were produced at the end of 2021 [The21] and can be found in the
XooTools repository [DHVV18b].



206 Tighter Trail Bounds for Xoodoo

Table 4: Details on the generation of r-round canonical linear trail cores with weight below
Tr. Timings are rounded to the closest integer and in the fourth column they are meant
to be incremental. Timings between parenthesis means that the same computation has
been already done in a previous step, so it is counted only once. - means that the step is
not performed since the starting set is empty. * the time with XooTools on a desktop
PC equipped with an Intel® Core™ i5-6500 CPU.

search space details
r Tr # cores found time step r Tr # cores found time

4 88 3 94d

generation 2 44 2,983,073,628 344h
forw.ext. 3 86 2,456,384 27h
forw.ext. 4 88 2 3m
back.ext. 3 86 274,104 1878h
back.ext. 4 88 1 1m

5 98 0 21d

generation 2 44 2,983,073,628 (344h)
forw.ext. 5 98 0 28h
generation 3 54 204 480h*
back.ext. 5 98 0 1s

6 132 0 23s

generation 3 54 204 (480h*)
forw.ext. 6 132 0 3s
back.ext. 6 132 0 2s
generation 2 44 2,983,073,628 (344h)
ext. from start 6 132 0 (27h+) 17s
ext. from middle 6 132 0 (27h+) 1s
ext. from end 6 132 0 (1878h)

8 176 0 4s
generation 4 88 3 (94d)
forw.ext. 8 176 0 1s
back.ext. 8 176 0 3s

10 220 0 2m

generation 4 88 3 (94d)
forw.ext. 10 220 0 2m
generation 6 132 0 (114d)
back.ext. 10 220 0 -

12 264 0 -
generation 6 132 0 (114d)
forw.ext. 12 264 0 -
back.ext. 12 264 0 -

6.1 Bounds on 4 rounds

We generated all 4-round differential and linear trail cores with w(a1) + w(b1) + w(b2) +
w(b3) < 88. We found 2 differential trail cores of weight 80, one of weight 82, and one
of weight 86. We also found 2 linear trail cores of weight 80 and one of weight 82. This
finally solves the open problem of proving a tight bound for 4-round trails in Xoodoo.
The trails of weight 80 that we found have some interesting properties that we will discuss
in Section 8.

To perform our search, we observe that any 4-round trail core with weight w(a1) +
w(b1) + w(b2) + w(b3) < 88 has w(a1) + w(b1) < 44 or w(b2) + w(b3) < 44, otherwise their
sum would give at least 88. Therefore, all 4-round trail cores with weight smaller than 88
can be generated by extending all 2-round trail cores with w(a) + w(b) < 44 either in the
forward or backward direction. Extension is performed by first extending all 2-round trail
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cores to 3 rounds below 86 (because the remaining round will contribute at least 2 to the
weight) and then by extending the obtained 3-round trail cores to 4 rounds below weight
88. This search took in total 95 CPU days.

6.2 Bounds on 5 rounds
We scanned the space of all 5-round differential and linear trail cores with w(a1) + w(b1) +
w(b2) + w(b3) + w(b4) < 98. We found that both spaces are empty. It follows that any
5-round trail has weight at least 98.

We split our search space into two sub-spaces. The first sub-space contains the 5-round
trail cores with w(a1) + w(b1) < 44. This space can be covered by extending all 2-round
trail cores with w(a)+w(b) < 44 in the forward direction to 5 rounds below weight 98. The
second sub-space contains the 5-round trail cores with w(a1) + w(b1) ≥ 44. For such trail
cores, w(b2) + w(b3) + w(b4) < 54 otherwise their weight would be at least 98. We can thus
cover this space by extending all 3-round trail cores with weight below 54 in the backward
direction to 5 rounds below weight 98. This search took 21 CPU days, considering that we
reused the 2-round trail cores with w(a) + w(b) < 44 already generated.

6.3 Bounds on 6 rounds
We scanned the space of all 6-round differential and linear trail cores with w(a1) + w(b1) +
w(b2) + w(b3) + w(b4) + w(b6) < 132. We found that such spaces are empty. It follows
that any 6-round trail has weight at least 132.

We split our search space into two sub-spaces. The first sub-space contains the 6-round
trail cores with w(a1) + w(b1) + w(b2) < 54 or w(b3) + w(b4) + w(b5) < 54. Such trail cores
can be generated by extending all 3-round trail cores with w(a1) + w(b1) + w(b2) < 54 in
the forward and backward direction by three rounds below T6.

The second sub-space contains the 6-round trail cores with w(a1) + w(b1) + w(b2) ≥ 54
and w(b3) + w(b4) + w(b5) ≥ 54. We further split this space into three parts. In fact, we
observe that any 6-round trail core of weight w(a1)+w(b1)+w(b2)+w(b3)+w(b4)+w(b5) <
132 has w(a1) + w(b1) < 44, or w(b2) + w(b3) < 44, or w(b4) + w(b5) < 44. Otherwise their
sum would give at least 132. Any such 6-round trail core can be built by starting from a
2-round trail core with w(a) + w(b) < 44 placed at the beginning, or in the middle, or at
the end of the trail. When such 2-round trail core is at the beginning, we extend it by
four rounds in the forward direction. When it is in the middle, we extend it by two rounds
in the forward direction and two rounds in the backward direction. When it is at the end,
we extend it by four rounds in the backward direction.

Notice that we could start from any of these three positions, but we tried to prioritize
forward extension over backward extension, since it is cheaper. When we extended a trail
core, we performed extension by one round at a time, limiting the weight up to which we
perform extension, taking into account the minimal weight contribution of the remaining
rounds. A detailed description of the steps performed is given in the following.

1 Starting from w(a1) + w(b1) < 44 and forward extension by 4 rounds:

1a First, we extend to 3 rounds in the forward direction with 54 ≤ w(a1) + w(b1) +
w(b2) < 132−54 = 78, because we are in the case where w(a1)+w(b1)+w(b2) ≥
54 and w(b3) + w(b4) + w(b5) ≥ 54.

1b Then, we extend the obtained 3-round trail cores to 4 rounds in the forward
direction with w(a1) + w(b1) + w(b2) + w(b3) < 132− 8 = 124, because we know
that w(b4) + w(b5) ≥ 8.

1c Then, we extend the obtained 4-round trail cores to 5 rounds in the forward
direction with w(a1) + w(b1) + w(b2) + w(b3) + w(b4) < 132− 2 = 130, because
w(b5) ≥ 2.
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1d Finally, we extend the obtained 5-round trail cores to 6 rounds in the forward
direction with w(a1) + w(b1) + w(b2) + w(b3) + w(b4) + w(b5) < 132.

2 Starting from w(a3) + w(b3) < 44 and forward extension by 2 rounds and
backward extension by 2 rounds: we can assume that w(a1) + w(b1) ≥ 44
because the opposite is already covered in the previous step.

2a First, we extend to 3 rounds in the forward direction with w(a3)+w(b3)+w(b4) <
132− 44− 2 = 86, because w(a1) + w(b1) ≥ 44 and w(b5) ≥ 2.

2b Then, we extend the obtained 3-round trail cores to 4 rounds in the forward
direction with w(a3) + w(b3) + w(b4) + w(b5) < 132− 44 = 88, because w(a1) +
w(b1) ≥ 44. Among the trail cores found, we consider only those satisfying
w(b3) + w(b4) + w(b5) ≥ 54. Moreover, we consider only the lightest trail for a
given state a3, since any other will lead to a trail core with higher weight once
extended.

2c Then, we extend the remaining 4-round trail cores to 5 rounds in the backward
direction with w(a2)+w(b2)+w(b3)+w(b4)+w(b5) < 132−2 because w(a1) ≥ 2.

2d Finally, we extend the obtained 5-round trail cores to 6 rounds in the backward
direction with w(a1) + w(b1) + w(b2) + w(b3) + w(b4) + w(b5) < 132.

3 Starting from w(a5) + w(b5) < 44 and backward extension by 4 rounds: we
can assume that w(a1) + w(b1) ≥ 44 and w(b2) + w(b3) ≥ 44 because the opposite is
already covered in the previous steps.

3a First, we extend to 3 rounds in the backward direction with 54 ≤ w(a4) +
w(b4) + w(b5) < 132 − 54 = 78, because w(a1) + w(b1) + w(b2) ≥ 54 and
w(b3) + w(b4) + w(b5) ≥ 54.

3b Then, we extend the obtained 3-round trail cores to 4 rounds in the backward
direction with w(a3) + w(b3) + w(b4) + w(b5) < 132 − 44, because w(a1) +
w(b1) ≥ 44. Among the trail cores found, we consider only those satisfying
w(a3) + w(b3) ≥ 44.

3c Then, we extend the remaining 4-round trail cores to 5 rounds in the backward
direction with w(a2)+w(b2)+w(b3)+w(b4)+w(b5) < 132−2, because w(a1) ≥ 2.

3d Finally, we extend the obtained 5-round trail cores to 6 rounds in the backward
direction with w(a1) + w(b1) + w(b2) + w(b3) + w(b4) + w(b5) < 132.

We observe that the set of trail cores in step 1a is a subset of the set of trail cores in
step 2a. Such set is already covered when we prove bounds for 4 rounds. Also, the set
of trail cores in steps 2b, 3a, and 3b are already covered during that search. Therefore,
we did not need to perform these steps, but we extracted the trail cores satisfying the
required properties from the previously built sets.

Both in the differential and linear case, step 1c did not output any trail core. Therefore,
we did not perform step 1d. Similarly, we did not need to perform step 3c and 3d since
the output of step 3b was empty. All in all, this search took a few seconds for both the
differential and linear case.

6.4 Bounds on 8 rounds
We generated all 8-round differential and linear trail cores with weight below 176 and
found that there are no such trail cores. Therefore, 176 defines a (non-tight) lower bound
on the weight of any 8-round trail.

To perform our search, we observe that a 8-round trail core with weight below 176 has
w(a1) + w(b1) + w(b2) + w(b3) < 88 or w(b4) + w(b5) + w(b6) + w(b7) < 88, otherwise their
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sum would give at least 176. Therefore, all 8-round trail core with weight smaller than 176
can be generated by extending all 4-round trail cores with weight below 88 by four rounds
in the forward or backward direction. Since there are only four 4-round differential trail
cores and three 4-round linear trail cores with weight below 88, extension to 8 rounds took
a few seconds in each case.

6.5 Bounds on 10 rounds
We scanned the space of all 10-round differential and linear trail cores with weight below
220. We found that both spaces are empty. It follows that any 10-round trail has weight
at least 220.

We split our search space into two sub-spaces. The first sub-space contains the 10-round
trail cores with w(a1)+w(b1)+w(b2)+w(b3) < 88. This space can be covered by extending
all 4-round trail cores with weight below 88 in the forward direction to 10 rounds below
weight 220. The second sub-space contains the 10-round trail cores with w(a1) + w(b1) +
w(b2)+w(b3) ≥ 88. For such trail cores, w(b4)+w(b5)+w(b6)+w(b7)+w(b8)+w(b9) < 132
otherwise their weight would be at least 220. We can thus cover this space by extending
all 6-round trail cores with weight below 132 in the backward direction to 10 rounds below
weight 220. However, there are no such 6-round trail cores. For this reason and given that
we already generated all 4-round trail cores with weight below 88, proving the bound on
10 rounds took only 12 minutes for differential trails, and 2 minutes for linear trails.

6.6 Bounds on 12 rounds
Any 12-round trail core with weight below 264 has w(a1) + w(b1) + w(b2) + w(b3) + w(b4) +
w(b6) < 132 or w(b7) + w(b8) + w(b9) + w(b10) + w(b11) + w(b12) < 132. Since there are no
6-round trails with weight below 132, we can conclude that there are no 12-round trails
with weight below 264.

7 Trail core distributions
In Figure 7, 8, and 9, we report on all canonical trail cores that we found for 2, 3, and
4 rounds, respectively. For 2 rounds, we found a total of 2,983,444,980 differential trail
cores and 2,983,073,628 linear trail cores with weight below 44. It is worth noticing that
these numbers are close to each other within 0.05%. Similarly, for 3 and 4 rounds we can
notice that for each weight, the difference between the number of linear and differential
trail cores with that weight is only 1 or 2. This is a consequence of the choice of 3-bit χ
over, for instance, 5-bit χ as in Keccak-p.

8 Staircase trail cores
In our search we found four families of (canonical) trail cores, two differential and two
linear, that have interesting properties. Due to their weight profiles, we call them staircase
trail cores. Each family of staircase trail cores has a member for each length. For r rounds,
they have weight

(
r
2
)
8. Put differently, extending an r − 1-round staircase trail core by

one round will add weight 8r. For two staircase trail cores this extension can only be done
forward and these have weight profile (8, 16, 24, 32, . . .). We call these upstairs trail cores.
For the two other staircase trail cores this extension can only be done backward and these
have weight profile (. . . , 32, 24, 16, 8) and we call them downstairs trail cores.

We illustrate the differential staircase trail cores in Figure 10 and Figure 11.
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Figure 7: Number of canonical 2-round trail cores with weight w.
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Figure 8: Number of canonical 3-round trail cores with weight w.

80 82 84 86
0

1

2

2

1 1

2

1

0

weight w

#
tr

ai
lc

or
es

w
ith

we
ig

ht
w

differential
linear

Figure 9: Number of canonical 4-round trail cores with weight w.
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Figure 10: Differential staircase trail that goes downstairs
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Figure 11: Differential staircase trail that goes upstairs

It can be seen that both depicted staircase trail cores are in the θ-kernel: the states
between ρeast and ρwest have always an even number of active bits in each column. For
such trails, θ behaves as the identity and we therefore omit it from our figures.

Mask propagation and difference propagation through the χ layer of Xoodoo is
governed by the same laws and masks and differences also propagate the same through bit
shuffles. As a consequence, the differential trail cores in Figure 10 and Figure 11 can also
be interpreted as linear trail cores. So, despite the fact that we have four staircase trail
cores, we only have two different staircase trail structures.

We will discuss the downstairs trail core in Figure 10 because it is easiest to understand
thanks to its simple geometry. However, the upstairs trail core in Figure 11 is structurally
very similar to it.

The states of the trail core are only active in two planes: plane 0 and 1, limiting the
differences in the active columns to 1, 2 and 3, where 3 is in the kernel. The seed of
the trail core is in the last round: we see that the state at θ there has 4 active columns
in the same slice. ρwest leaves plane 0 where it is and shifts plane 1 one position up in
the direction of the x-axis, vertical in the figure. So the pattern is invariant under ρwest.
ρeast

−1 also leaves plane 0 where it is and shifts plane 1 one position left in the direction
of the z-axis, horizontal in the figure. This leads to 8 active columns in a5, each with a
single active bit. This state is compatible with b4, that is again in the kernel: it consists of
two copies of the structure of b5. This state is invariant under ρwest and θ. ρeast

−1 shifts
plane 1 and this results in a three-slice state: one slice with all bits in plane 0 active, one
slice with all bits in plane 1 active and in between one slice with all bits in both planes
active. Through χ the two outer slices propagate to in-kernel patterns and the middle one
to an alternating pattern of active bits in plane 0 and 1. This value of b3 propagates to
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Figure 12: Forward extension of the differential staircase trail that goes downstairs

an in-kernel pattern through ρwest
−1 as it aligns the alternating pattern in two columns.

The effect of ρeast
−1 on this state results in a state similar to a4 but now there are two

middle slices with alternating structures. Through χ the two outer slices propagate again
to in-kernel patterns and the middle ones to alternating patterns of active bits in plane 0
and 1.

In general, the weight profile can be understood as follows. In any round except the
last, the state at θ consists of a tablecloth pattern boarded by two fully active slices. ρwest
moves plane 1 one position up resulting in a different tablecloth pattern of the same width.
ρeast

−1 moves plane 1 one position to the left resulting in yet another tablecloth pattern
that is one slice wider. The tablecloth patterns at bi are compatible with the ones as ai+1
through χ as the compatible pairs are (1, 1), (1, 3), (3, 1), (2, 2), (2, 3), (3, 2). Note that (3, 3)
is not a compatible pair. So with each round the pattern gets one slice wider, increasing
the weight by 8. From b5 one cannot extend this trail inside the kernel anymore: after χ
only a single slice will be active and ρeast will move bits in the same column to columns in
different slices. Still, as illustrated in Figure 12, forward extension yields in a relatively
light difference with weight 40, resulting in a weight profile (. . . , 48, 40, 32, 24, 16, 8, 40).
This is the weight profile that determines the upper bounds to the minimum trail weight
reported in Table 1.

The upstairs trail core in Figure 11 looks very different. It has states that are only
active in the cross sections of plane 0 and plane 2 and sheet 0 and 2, its weight profile is
increasing and it has a different symmetry. But on the other hand it is also very similar
and can be explained in a similar way: it is in the kernel in all rounds and exhibits a
regularly expanding pattern over the rounds. As opposed to the downstairs trail, extending
this trail from the seed with weight 8 in the opposite direction does not lead to a relatively
light difference. This is due to the fact that this extension requires the dense inverse of θ.

9 Conclusions
This work further develops the trail core tree search technique to prove bounds on differential
and linear trails. In particular, we presented new methods to make trail extension in
Xoodoo more efficient. To this end, we further exploited the propagation properties
of χ and θ. Once coupled with the 2-round trail core generation techniques presented
in [DHVV18a], these new methods allowed us to scan in practical time larger spaces of
trails than before. As a direct consequence, we could improve over known bounds for
differential and linear trails. We prove a tight bound of 80 for the weight of 4-round
trails, both linear and differential. For 6 and 12 rounds, we proved bounds of 132 and 264,
respectively.
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