# Algebraic Attacks on RAIN and AIM Using Equivalent Representations

Fukang Liu<sup>1</sup>, Mairon Mahzoun<sup>2</sup>, Morten Øygarden<sup>3</sup>, Willi Meier<sup>4</sup>

Tokyo Institute of Technology, Tokyo, Japan
 <sup>2</sup> Eindhoven University of Technology
 <sup>3</sup> Simula UiB, Bergen, Norway
 <sup>4</sup> FHNW, Windisch, Switzerland

28th March 2024

# Introduction

### AIMer and Rainier

Post-quantum secure digital signature schemes based on the MPC-in-the-Head paradigm.

#### AIMer

- ▶ Round 1 candidate for NIST PQC.
- One of the 4 round 2 candidates for KpqC.
- ► Security relies on AIM (CCS 2023).

### Rainier

- Shorter Signatures Based on Tailor-Made Minimalist Symmetric-Key Crypto.
- Security relies on RAIN (CCS 2022).

### Security Analysis

Analyze the security of AIM and RAIN against algebraic attacks.

# **Multivariate Polynomial Equations**

Model the cryptographic primitive as a set of polynomials:

$$\begin{cases} f_1(x_1,\ldots,x_n) = 0 \\ \vdots \\ f_m(x_1,\ldots,x_n) = 0 \end{cases} \quad deg(f_i) = d_i, i \in \mathbb{K}[x_1,\ldots,x_n] \end{cases}$$

Find the set of solutions:

$$V(f_1,\ldots,f_m) = \left\{ (x_1,\ldots,x_n) \in \overline{\mathbb{K}}^n : f_i(x_1,\ldots,x_n) = 0, \forall i \in [1,m] \right\}$$

### **Finding solutions**

- ► Fast Exhaustive Search.
- Crossbred Algorithm.
- Polynomial Method.

## Fast Exhaustive Search

#### **Exhaustive Search**

Idea: Compute  $f_i(x_1, \ldots, x_n)$  for all  $(x_1, \ldots, x_n) \in \{0, 1\}^n$ .

$$2^n \cdot \sum_{j=0}^{\deg(f_i)} \binom{n}{j},$$

for each  $f_i$ .

### Fast Exhaustive Search

**Idea**: Compute  $f_i(x_1, ..., x_n)$  for all  $(x_1, ..., x_n) \in \{0, 1\}^n$ .

 $deg(f_i) \cdot 2^n$ .

| Time Complexity(bits)         | Memory Complexity                     |
|-------------------------------|---------------------------------------|
| $4d \cdot \log_2 n \cdot 2^n$ | $n^2 \cdot \sum_{j=0}^d \binom{n}{j}$ |

## **Crossbred Algorithm**

Macaulay Matrix:

$$\mathcal{F} = \begin{cases} f_1(x_1, \dots, x_n) = 0 & & \vdots \\ \vdots & & & Mac_D(\mathcal{F}) = uf_i \\ f_m(x_1, \dots, x_n) = 0 & & \\ deg(uf_i) \leq D \\ c_i: \text{ coefficient of } x_i \text{ in } uf_i \end{cases}$$

**Crossbred Idea** 

Guess k variables, and derive an easy system of degree d' < D to solve.

.... X<sub>i</sub> ...

# **Polynomial Method**

Find the solutions to a smaller number of equations and check the solutions.

Accurate time complexity.

| Time Complexity(bits)  | Memory Complexity     |
|------------------------|-----------------------|
| $n^2 \cdot 2^{0.815n}$ | $n^2 \cdot 2^{0.63n}$ |

► No gain if the system is over-defined.

▶ More polynomials in the system, more information about the solution.

We analyze the security of AIM, and Rain using the approaches described.

### Rain



**Figure:** The r-round Rain: Rain<sub>r</sub>.

$$M_i(x) = \sum_{j=0}^{n-1} a_{i,j} x^{2^j}$$

### $M_i(x)$ :

High degree polynomial over  $\mathbb{F}_{2^n}$ , linear over  $\mathbb{F}_2$ .

#### Attack Goal

- Recover k from  $(s_0, s_1)$  with O(1) data complexity.
- ▶ We are interested in Rain<sub>2</sub> and Rain<sub>3</sub>.

**Rain<sub>2</sub>: Low Degree Representation** 



Derive n boolean equations in n variables:

| n   | Time Complexity(bits) | Memory Complexity |
|-----|-----------------------|-------------------|
| 128 | 2 <sup>118</sup>      | 2 <sup>95</sup>   |
| 192 | 2 <sup>172</sup>      | 2 <sup>136</sup>  |
| 256 | 2 <sup>225</sup>      | 2 <sup>177</sup>  |

The polynomial system describing Rain<sub>2</sub> is:

$$F(\mathbf{v_1}) = \mathbf{v_1} M_1(\mathbf{v_1}) + t_1 \mathbf{v_1}^2 M_1(\mathbf{v_1}) = 1 + t_1 \mathbf{v_1} + t_0 \mathbf{v_1} + t_0 t_1 \mathbf{v_1}^2 + \mathbf{v_1}^2 \quad (1)$$

We derive:

$$G(\mathbf{v_1}) = M_1(\mathbf{v_1})F(\mathbf{v_1})$$
(2)  
$$H(\mathbf{v_1}) = (\mathbf{v_1} + t_1\mathbf{v_1}^2)F(\mathbf{v_1})$$
(3)

- (1)-(3) form a quadratic polynomial system with 3n equations in n variables.
- Solve using Crossbred algorithm.

### **Complexity of Crossbred**

- Polynomials F, G, H are related, and have structure.
- ► In a higher degree, syzygies can appear.

Rank of degree D Macaulay matrix:

$$\operatorname{Rank}(\mathcal{M}_{\leq D}(\mathcal{F})) \begin{cases} 3n & D = 2, \\ n(3n-8) + \operatorname{Rank}(\mathcal{M}_{\leq 2}(\mathcal{F})) & D = 3, \\ 3n\binom{n}{2} - \binom{3n+1}{2} - 8n^2 + 17n + \operatorname{Rank}(\mathcal{M}_{\leq 3}(\mathcal{F})) & D = 4. \end{cases}$$

Number of degree  $\leq D$ -monomials in *n* variables that have degree  $\geq 2$  in the first i < n variables:

$$\mathsf{Mon}_{n,D}(i) = \begin{cases} \binom{i}{2} & D = 2, \\ \binom{i}{3} + (n-i)\binom{i}{2} + \mathsf{Mon}_{n,2}(i) & D = 3, \\ \binom{i}{4} + (n-i)\binom{i}{3} + \binom{n-i}{2}\binom{i}{2} + \mathsf{Mon}_{n,3}(i) & D = 4. \end{cases}$$

- ► Find k and eliminate Mon<sub>n,D</sub>(k) monomials with Gaussian elimination.
- Guess n k variables.
- ► Solve linear system in the first *k* variables.

$$k = k(\mathcal{F}) = \max\left\{i \in \mathbb{Z}_{>0} \mid \mathsf{Rank}(M_{\leq D}(\mathcal{F})) - \mathsf{Mon}_{n,D}(i) \geq i
ight\}.$$

Table: Cost analysis of various methods for solving

| Method            | п   | k  | Time (bits)      | Memory (bits)    |
|-------------------|-----|----|------------------|------------------|
|                   | 128 | _  | 2 <sup>118</sup> | 2 <sup>95</sup>  |
| Polynomial Method | 192 | _  | 2 <sup>172</sup> | 2 <sup>136</sup> |
| -                 | 256 | -  | 2 <sup>225</sup> | 2 <sup>177</sup> |
|                   | 128 | 27 | 2 <sup>115</sup> | 2 <sup>22</sup>  |
| Crossbred $D = 2$ | 192 | 33 | 2 <sup>174</sup> | 2 <sup>23</sup>  |
|                   | 256 | 38 | 2 <sup>234</sup> | 2 <sup>25</sup>  |
|                   | 128 | 30 | 2 <sup>113</sup> | 2 <sup>35</sup>  |
| Crossbred $D = 3$ | 192 | 36 | 2 <sup>172</sup> | 2 <sup>37</sup>  |
|                   | 256 | 41 | 2 <sup>231</sup> | 2 <sup>40</sup>  |
|                   | 128 | 32 | 2 <sup>111</sup> | 2 <sup>45</sup>  |
| Crossbred $D = 4$ | 192 | 38 | 2 <sup>170</sup> | 2 <sup>50</sup>  |
|                   | 256 | 44 | 2 <sup>228</sup> | 2 <sup>52</sup>  |

## Rain<sub>3</sub>

Can the same approach be used to attack more rounds?

$$\left(M_1(v_1) + \frac{1}{v_1} + t_0\right) \left(\frac{1}{v_1} + s_0 + c_1 + c_3 + M_2^{-1} \left(\frac{1}{\frac{1}{v_1} + s_0 + c_1 + s_3}\right)\right) = 1$$

Let

$$t_2 = s_0 + c_1 + c_3, \quad t_3 = s_0 + c_1 + s_3.$$

Then, we have

$$\left(v_1 M_1(v_1) + 1 + t_0 v_1\right) \left(1 + t_2 v_1 + v_1 M_2^{-1} \left(\frac{v_1}{1 + t_3 v_1}\right)\right) = v_1^2.$$

• 
$$M_2^{-1}\left(\frac{v_1}{1+t_3v_1}\right)$$
 has large algebraic degree.

• If either of  $M_2^{-1}(x)$  or  $M_1(x)$  are sparse, attack will be successful.

### AIM



Figure: The AIM one-way function.

### AIM



Figure: The AIM one-way function.

| Scheme  | п   | Field                  | т | $e_1$ | $e_2$ | e <sub>3</sub> | $e_*$ |  |
|---------|-----|------------------------|---|-------|-------|----------------|-------|--|
| AIM-I   | 128 | $\mathbb{F}_{2^{128}}$ | 2 | 3     | 27    |                | 5     |  |
| AIM-III | 192 | $\mathbb{F}_{2^{192}}$ | 2 | 5     | 29    |                | 7     |  |
| AIM-V   | 256 | $\mathbb{F}_{2^{256}}$ | 3 | 3     | 53    | 7              | 5     |  |

Table: Instances of AIM for different security levels.

## Fast Exhaustive Search



$$\boldsymbol{\mathcal{X}} = \boldsymbol{\mathcal{S}}^{2^{e_*}-1} + \boldsymbol{\mathcal{Y}}$$
(4)

$$\mathcal{Z}_{i} = \left(\mathcal{S}^{2^{e_{*}}-1} + \mathcal{Y}\right)^{2^{e_{i}}-1}$$
(5)

$$\mathcal{Z}_{i} = \sum_{j=0}^{2^{e_{i}-1}} \mathcal{Y}^{j} \mathcal{S}^{2^{e_{*}-1}(2^{e_{j}}-1-j)}$$
(6)

16 / 20

### Fast Exhaustive Search

$$\mathcal{Z}_{m} = B_{m}^{-1} \left( c + S + \sum_{i=1}^{m-1} B_{i} \left( \left( S^{2^{e_{*}-1}} + \mathcal{Y} \right)^{2^{e_{i}}-1} \right) \right)$$
(7)  
$$\mathcal{Z}_{m} = \left( S^{2^{e_{*}}-1} + \mathcal{Y} \right)^{2^{e_{m}}-1}$$
(8)

with algebraic degree of  $d_{max}$ 

$$B_{m-1}^{-1}\left(c+\mathcal{S}+\sum_{i=1}^{m-1}B_{i}\left(\left(\mathcal{S}^{2^{e_{*}}-1}+\mathcal{Y}\right)^{2^{e_{i}}-1}\right)\right)\left(\mathcal{S}^{2^{e_{*}}-1}+\mathcal{Y}\right)=\left(\mathcal{S}^{2^{e_{*}}-1}+\mathcal{Y}\right)^{2^{e_{m}}} (9)$$

*n* boolean equations of algebraic degree upper bounded by  $d_{max} + e_m$ .

## AIM

| Scheme  | n   | m+1 | Algebraic Degree | Time        | Memory            | Complexity |
|---------|-----|-----|------------------|-------------|-------------------|------------|
| AIM-I   | 128 | 3   | 10               | $2^{136.2}$ | 2 <sup>61.7</sup> | $2^{115}$  |
| AIM-III | 192 | 3   | 14               | 2200.7      | 204.5             | 2170       |
| AIM-V   | 256 | 4   | 15               | 2205.0      | 295.1             | 2241       |

Table: Summary of results for AIM

## Conclusion

Smart ways to model a cryptographic primitive  $\Rightarrow$  Lower complexity to recover the secrets.

#### Rain<sub>2</sub>

Using the Polynomial method, and Crossbred, all instances are broken.

#### Rain<sub>3</sub>

If the linear layer is sparse, it is not secure.

#### AIM

Using Fast Exhaustive Search, all instances of AIM are broken.

### The end

Thank you for your attention!<sup>1</sup>

Photo of Alpine Choughs in Italian Alps.

ar (136)