
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2023, No. 4, pp. 112–142. DOI:10.46586/tosc.v2023.i4.112-142

Automating Collision Attacks on RIPEMD-160
Yingxin Li1, Fukang Liu2 and Gaoli Wang1(�)

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China
liyx1140@163.com, glwang@sei.ecnu.edu.cn
2 Tokyo Institute of Technology, Tokyo, Japan

liu.f.ad@m.titech.ac.jp

Abstract. As an ISO/IEC standard, the hash function RIPEMD-160 has been used
to generate the Bitcoin address with SHA-256. However, due to the complex double-
branch structure of RIPEMD-160, the best collision attack only reaches 36 out of 80
steps of RIPEMD-160, and the best semi-free-start (SFS) collision attack only reaches
40 steps. To improve the 36-step collision attack proposed at EUROCRYPT 2023, we
explored the possibility of using different message differences to increase the number of
attacked steps, and we finally identified one choice allowing a 40-step collision attack.
To find the corresponding 40-step differential characteristic, we re-implement the
MILP-based method to search for signed differential characteristics with SAT/SMT.
As a result, we can find a colliding message pair for 40-step RIPEMD-160 in practical
time, which significantly improves the best collision attack on RIPEMD-160. For the
best SFS collision attack published at ToSC 2019, we observe that the bottleneck
is the probability of the right-branch differential characteristics as they are fully
uncontrolled in the message modification. To address this issue, we utilize our
SAT/SMT-based tool to search for high-probability differential characteristics for
the right branch. Consequently, we can mount successful SFS collision attacks on
41, 42 and 43 steps of RIPEMD-160, thus significantly improving the SFS collision
attacks. In addition, we also searched for a 44-step differential characteristic, but the
differential probability is too low to allow a meaningful SFS collision attack.
Keywords: Semi-free-start collision · collision · RIPEMD-160 · SAT/SMT

1 Introduction
As components of cryptographic primitives, hash functions are important for building
secure systems. Generally, a hash function takes an arbitrarily long message as input and
outputs a fixed-length hash value of size n bits. Three fundamental security properties
of a hash function are collision resistance, preimage resistance and second-preimage
resistance. Since 2005, many hash functions in the MD-SHA hash family have been broken,
including MD4 [WLF+05], MD5 [WY05], SHA-0 [WYY05b, BCJ+05], SHA-1 [WYY05a,
LP20, SBK+17, LP19] and RIPEMD-128 [LP13]. However, the security of RIPEMD-160
and SHA-2 has not been compromised. Especially, RIPEMD-160 is an ISO/IEC standard
that is now used to generate the Bitcoin address with SHA-256. In this sense, further
studying the security of RIPEMD-160 is meaningful.

RIPEMD-160 has a complex double-branch structure, which causes the slow progress of
the collision attack. The first collision attack on RIPEMD-160 presented at ASIACRYPT
2017 [LMW17] only reached 30 steps with a time complexity of 270. Subsequently at
CRYPTO 2019 [LDM+19a], two different collision attack frameworks were proposed,
namely, the dense-left-and-sparse-right (DLSR) framework and the sparse-left-and-dense-
right (SLDR) framework. Based on the DLSR framework, the practical 30/31-step collision

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-09-01 Accepted: 2023-11-01 Published: 2023-12-08

https://doi.org/10.46586/tosc.v2023.i4.112-142
mailto:liyx1140@163.com
mailto:glwang@sei.ecnu.edu.cn
mailto:liu.f.ad@m.titech.ac.jp
http://creativecommons.org/licenses/by/4.0/


Yingxin Li, Fukang Liu and Gaoli Wang 113

attacks and the theoretic 34-step collision attack were achieved for the first time. At
EUROCRYPT 2023 [LWS+23], a new strategy to choose the message differences was
proposed, based on which the collision attack on 36-step RIPEMD-160 was achieved.

For the SFS collision attack on RIPEMD-160, the first SFS security analysis was
presented at ISC 2012 [MNSS12], including practical examples of SFS near-collisions for 48
steps and SFS collisions for 36 steps, where the two attacks start from an intermediate step.
The first major improvement was achieved at ASIACRYPT 2013 [MPS+13], where the
authors presented two results: a 42-step SFS collision attack starting from an intermediate
step with time complexity of 275.5 and a 36-step SFS collision attack starting from the first
step with time complexity of 270.4. Then, a 48-step SFS collision attack starting from an
intermediate step was presented at ToSC 2017 [WSL17]. Moreover, at the ASIACRYPT
2017 [LMW17], the complexity of the 36-step SFS collision attack in [MPS+13] was further
improved to 255.1. Another major progress was made at ToSC 2019 [LDM+19b], where the
first practical SFS collision attack on 36/37-step RIPEMD-160 starting from the first step
was achieved, and the best attack could reach 40 steps with time complexity of 274.6. It is
noted that the whole time complexity of the SFS collision attacks in [LDM+19b] is almost
dominated by the probability of the right-branch differential characteristics. However, the
right-branch differential characteristics are deduced by hand and whether they are optimal
is unknown. Thus, it becomes important to study this problem in order to further increase
the number of attacked steps.

To mount (SFS) collision attacks on RIPEMD-160, or more generally, the MD-SHA
hash family, it is essential to first search for signed differential characteristics. While this
problem has been efficiently solved with the guess-and-determine technique [CR06, MNS11,
MNS12, MNS13, MPS+13, EMS14, DEM15], the corresponding tools are not open-source.
This has motivated the authors of [LWS+23] to create a new MILP-based tool that is both
open-source and easy-to-use. In particular, all the details to write this MILP-based tool
are provided in [LWS+23], which makes it easy to re-implement it with other languages
such as SAT/SMT.

To increase the diversity of automatic tools, we re-implement the MILP-based tool
proposed at EUROCRYPT 2023 [LWS+23] with SAT/SMT. This SAT/SMT-based tool
will be used in all our attacks and it has excellent performance to search for RIPEMD-160
differential characteristics. We do not treat this as a main contribution, but it enriches
the available tools pool.

Our contributions. The contributions of this paper are summarized as below:
1. We shed new insight into the collision attack on RIPEMD-160. Specifically, we are able

to propose the first practical colliding message pair for 40-step RIPEMD-160, improv-
ing the previously best theoretic collision attacks at EUROCRYPT 2023 [LWS+23]
by 4 steps;

2. To improve the SFS attacks on RIPEMD-160, we utilize our SAT/SMT-based tool
to find the most sparse differential characteristics for the right branch. In this way,
we are able to find high-probability differential characteristics for the right branch,
which allows us to address the above mentioned issue to improve the attacks.

3. Based on the newly found 41/42/43-step differential characteristics, we could obtain
the first SFS collision attacks on 41, 42 and 43 steps of RIPEMD-160 with time
complexity of 259.7, 267.3 and 274.8, respectively. This is the first time to mount
SFS collision attacks on more than half of the total steps (80 steps) of RIPEMD-160
starting from the first step.

We also attempted to attack 44-step RIPEMD-160, but the probability of the right-branch
differential characteristic is too low to allow a successful SFS attack in the classical setting.
Our results for RIPEMD-160 are summarized in Table 1.



114 Automating Collision Attacks on RIPEMD-160

Table 1: Summary of attacks on RIPEMD-160

Attack type Steps Time Memory References
preimage 34 2158.91 \ [WS14]

Distinguishing 43 2151 \ [WLC+20]
52∗ 2151 \ [WLC+20]

SFS collision

48∗ 276.5 264 [WSL17]
36/37 practical negligible [LDM+19b]

40 274.6 negligible [LDM+19b]
41 259.7 negligible Sect.5.4
42 267.3 negligible Sect.5.4
43 274.8 negligible Sect.5.4

collision

30/31 practical practical [LP19]
34 274.3 232 [LP19]
36 264.5 negligible [LWS+23]
40 practical negligible Sect.4.3

∗ An attack starts at an intermediate step.

The source code to find the (SFS) collisions differential characteristics for RIPEMD-160
is available at https://github.com/Peace9911/ripemd160_attack.git

Organization. This paper is organized as follows. The notation and description of
RIPEMD-160 are given in Section 2. Then, we revisit the MILP-based method to search
for signed differential characteristics for RIPEMD-160 in Section 3. Next, we describe the
collision attack on 40-step RIPEMD-160 in Section 4. In Section 5, we show how to improve
the SFS collision attack with newly discovered differential characteristics. Finally, the
paper is concluded in Section 6.

2 Preliminaries
2.1 Notations
For a better understanding of this paper, we introduce the following notations.

1. ⊞ and ⊟ represent modular addition and modular subtraction on 32 bits, respectively.

2. ≪, ≫, ≪, ⊕, ¬, ∨ and ∧ represent shift left, rotate right, rotate left, exclusive or,
not, or, and and, respectively.

3. x[i] denotes the i-th bit of x and x[0] is the least significant bit.

4. δx denotes the modular difference, i.e. δx = x′ ⊟ x.

5. ∆x denotes the signed difference between x′ and x. We use the notation as follows,

∆x[i] =



n (x[i] = 0, x′[i] = 1)
u (x[i] = 1, x′[i] = 0)
= (x[i] = x′[i])
0 (x[i] = x′[i] = 0)
1 (x[i] = x′[i] = 1)

(1)

https://github.com/Peace9911/ripemd160_attack.git


Yingxin Li, Fukang Liu and Gaoli Wang 115

6. ϕl
j and ϕr

j represent the 32-bit Boolean function at the left and right branches for
round j, respectively.

7. Kl
j and Kr

j represent the constants used at the left and right branches for round j,
respectively.

8. sl
i and sr

i represent the rotation constants for the left and right branches of step i,
respectively.

9. πl
i and πr

i represent the index of the message word for the left and right branches of
step i, respectively.

10. M = (m0, m1, · · · , m15) and M ′ = (m′
0, m′

1, · · · , m′
15) represent two 512-bit message

blocks, respectively.

11. Xi and Yi represent the 32-bit internal state of the left and right branches updated
during step i for compressing M , respectively.

12. LQi and RQi represent the 32-bit temporary states of the left and right branches
updated in step i for compressing M , respectively.

13. The Hamming weight of the signed difference ∆x is denoted by H(∆x) and H(∆x)
is the number of indices i such that ∆x[i] ∈ {n, u} [LWS+23].

2.2 Description of RIPEMD-160
Dobbertin et al. proposed a 160-bit hash function RIPEMD-160 at FSE 1996 [DBP96] as
a stronger hash function than RIPEMD [BP95]. The compression function of RIPEMD-160
denoted by H(CV, M) uses a 512-bit message block M and a 160-bit chaining value CV
as inputs and generates a 160-bit output.

For our collision attacks on RIPEMD-160, we aim to find two message blocks (M0, M1)
and (M0, M ′

1) such that

H (H(CV0, M0), M1) = H (H(CV0, M0), M ′
1)

where M1 ̸= M ′
1 and CV0 is a prefixed constant.

For the SFS collision for RIPEMD-160, we need to find a pair (M, M ′) satisfying

M ̸= M ′ H(CV, M) = H(CV, M ′),

where CV can be any 160-bit constant.

On the compression function H(CV, M). The compression function H consists of 80
steps, divided into 5 rounds of 16 steps each in both branches. The input M is composed of
16 message words (m0, m1, . . . , m15) and CV is divided into five 32-bit words (h0, . . . , h4).
Especially, we have

X−5 = h≫10
0 , X−4 = h≫10

4 , X−3 = h≫10
3 , X−2 = h2, X−1 = h1

Y−5 = h≫10
0 , Y−4 = h≫10

4 , Y−3 = h≫10
3 , Y−2 = h2, Y−1 = h1

For the prefixed constant CV0, the corresponding (h0, . . . , h5) are as follows:

h0 = 0x67452301,

h1 = 0xEFCDAB89,

h2 = 0x98BADCFE,

h3 = 0x10325476,

h4 = 0xC3D2E1FO.



116 Automating Collision Attacks on RIPEMD-160

Table 2: Boolean functions and round constants in RIPEMD-160

Round j ϕl
j ϕr

j Kl
j Kr

j Function Expression
0 XOR ONX 0x00000000 0x50a28be6 XOR(x, y, z) x ⊕ y ⊕ z
1 IFX IFZ 0x5a827999 0x5c4dd124 IFX(x, y, z) (x ∧ y) ⊕ (¬x ∧ z)
2 ONZ ONZ 0x6ed9eba1 0x6d703ef3 ONX(x, y, z) x ⊕ (y ∨ ¬z)
3 IFZ IFX 0x8f1bbcdc 0x7a6d76e9 IFZ(x, y, z) (x ∧ z) ⊕ (y ∧ ¬z)
4 ONX XOR 0xa953fd4e 0x00000000 ONZ(x, y, z) (x ∨ ¬y) ⊕ z

The step function of RIPEMD-160 at step i is shown below:

LQi = X≪10
i−5 ⊞ ϕl

j(Xi−1, Xi−2, X≪10
i−3 ) ⊞ ml

π1
⊞ Kl

j ,

Xi = X≪10
i−4 ⊞ (LQi)≪sl

i .

RQi = Y ≪10
i−5 ⊞ ϕr

j(Yi−1, Yi−2, Y ≪10
i−3 ) ⊞ mr

π2
⊞ Kr

j ,

Yi = Y ≪10
i−4 ⊞ (RQi)≪sr

i .

where i = (0, 1, 2, ..., 79) and j = (0, 1, 2, 3, 4). The details of the Boolean functions and
round constants for RIPEMD-160 are displayed in Table 2. The other parameters can be
found in the specification [DBP96].

After iterating the step function for 80 steps, the 160-bit output (h′
0, h′

1, . . . , h′
4) is

computed as follows:

h′
0 = h1 ⊞ X78 ⊞ Y ≪10

77 ,

h′
1 = h2 ⊞ X≪10

77 ⊞ Y ≪10
76 ,

h′
2 = h3 ⊞ X≪10

76 ⊞ Y ≪10
75 ,

h′
3 = h4 ⊞ X≪10

75 ⊞ Y79,

h′
4 = h0 ⊞ X79 ⊞ Y78.

3 Finding RIPEMD-160 Differential Characteristics
Recently, at EUROCRYPT 2023 [LWS+23], a novel MILP-based method to search for
signed differential characteristics has been proposed. The main motivation behind that
work [LWS+23] is to create an easy-to-use and open-source tool for the MD-SHA hash
family. To increase the diversity of such open-source tools, we re-implement the MILP-
based method with SAT/SMT, i.e. all constraints will be described with conjunctive
normal form (CNF) rather than linear inequalities. The implementation details will be
omitted from this paper as they generally follow the pseudo-code given for the MILP-based
method in [LWS+23].

3.1 The Automatic Method in [LWS+23]
For completeness, we first briefly revisit the technique in [LWS+23] to search for RIPEMD-160
differential characteristics with MILP. In our new implementation with SAT/SMT, we are
following the same idea.

Specifically, the form of the step function of RIPEMD-160 can be described as below:

di+5 = (d≪10
i+1 ) ⊞ (F (di+4, di+3, d≪10

i+2 ) ⊞ (d≪10
i ) ⊞ m ⊞ ci)≪s,

where (di, . . . , di+5, m) are all 32-bit variables, c is a 32-bit constant, s ∈ [0, 31] is an
integer and F is a Boolean function.



Yingxin Li, Fukang Liu and Gaoli Wang 117

Denote the signed difference of (di, . . . , di+5, m) by (∆di, . . . , ∆di+5, ∆m). Then, each
of (∆di, . . . , ∆di+5, ∆m) can be represented with a vector of size 32. In this sense, it is
only required to study the following step function because the rotation (≪ 10) only affects
the order of variables:

a5 = a1 ⊞ (F (a4, a3, a2) ⊞ a0 ⊞ m ⊞ c)≪s. (2)

With some intermediate 32-bit variables (b0, . . . , b5), Equation 2 can be further decomposed
as:

b0 = m ⊞ c,

b1 = F (a4, a3, a2),
b2 = b0 ⊞ b1,

b3 = b2 ⊞ a0,

b4 = b≪s
3 ,

b5 = a1 ⊞ b4,

a5 = b5.

In [LWS+23], the authors described how to model the signed difference transitions through
the step function, i.e. how to use constraints to describe the propagation:

(∆a0, . . . , ∆a4, ∆m) → ∆a5.

In particular, the model can be briefly summarized as follows:

• Model the deterministic signed difference addition

∆z = ∆x ⊞ ∆y.

Specifically, although we indeed have many possible ∆z for a given (∆x, ∆y), we
only consider one valid ∆z. This is based on the feature of the step function of the
MD-SHA hash family, and it indeed also follows the way to deduce such a differential
characteristic by hand.

• Model the signed difference transitions for the Boolean function F , i.e.

(∆a4, ∆a3, ∆a2) → ∆b1.

This is captured by the so-called fast filtering model for F in [LWS+23]

• Model the signed difference transitions for ∆z = 0 ⊞ ∆z′, i.e. this is called modelling
the expansion of the modular difference. In other words, for a given ∆z′, how to
compute all possible ∆z such that they correspond to the same modular difference.

• Model the update a5 = a1 ⊞ b≪s
3 . The authors [LWS+23] introduced two different

ways to model it, i.e. the first strategy and the second strategy, such that the model
can handle as many cases as possible.

However, simply using the above models is insufficient because contradictions easily
occur, especially in the Boolean function. Hence, they introduced the so-called monitoring
variable, which can be used to monitor whether contradictions occur in the difference
transitions through the Boolean functions over different steps. Roughly speaking, by using
three additional variables (a4, a3, a2) and constructing another model only to capture
the relations between (∆a4, ∆a3, ∆a2, ∆b1) and (a4, a3, a2), it is possible to detect the
contradictions in the Boolean functions over different steps. In [LWS+23], if (a4, a3, a2) is
involved, it is called the full model for F .



118 Automating Collision Attacks on RIPEMD-160

Another place where contradictions occur is at the operation

a5 = a1 ⊞ b≪s
3 ,

especially when the conditions on (a5, a1) are dense. This is a special operation in
RIPEMD-160 and makes it more difficult to find valid signed differential characteristics.
Detecting the contradictions in this operation is a bit complex and we refer the interested
readers to [LWS+23] for more details.

4 New Collision Attacks on RIPEMD-160
With the automatic tool at hand, we first show how to use it to significantly improve the
collision attacks on RIPEMD-160. In particular, the currently best collision attack [LWS+23]
only reaches 36 out of 80 steps of RIPEMD-160, and it has a time complexity of 264.5.
In what follows, we show a practical collision attack on 40-step RIPEMD-160 and give
the corresponding colliding message pair. This is the first time to practically violate
the collision resistance of half of the full-round RIPEMD-160. Note that the currently
best SFS collision attack on RIPEMD-160 only reaches 40 steps with a time complexity
of 274.6 [LDM+19b]. Consequently, our new collision attack also updates the best SFS
collision attack on RIPEMD-160.

4.1 Choosing New Message Differences
Our new collision attack relies on a new way to choose the message differences. First, we
revisit the collision attack on 36-step RIPEMD-160 in [LWS+23], and we generalize their
way to construct the 36-step differential characteristic. As shown in Figure 1, there are 3
places to construct local collisions:

• the first local collision spans from Xi0 to Xi1 where i0 < i1 < 16;

• the second local collision spans from Xi2 to Xi3 where 16 < i2 < i3 < 32;

• the third local collision spans from Yi4 to Yi5 where 0 < i4 < i5 < 32;

local collision local collision

local collision

Yr

unknown difference

zero difference

Y32Yi4 Yi5

Xi0 Xi1 X16

Y16

Xi2 Xi3 X32 Xr

Figure 1: The pattern of the RIPEMD-160 differential characteristic.

In [LWS+23], the differences are injected in (m0, m6, m9), which results in

i0 = 0, i1 = 9, i2 = 21, i3 = 26, i4 = 3, i5 = 29.

Since (m0, m6, m9) are not used to update the internal states Xi and Yi where 32 ≤ i ≤ 35,
a 36-step collision-generating differential characteristic can possibly be constructed by
injecting message differences in these 3 message words. For such a way to construct a
differential characteristic, the authors of [LWS+23] also proposed an efficient message



Yingxin Li, Fukang Liu and Gaoli Wang 119

modification technique. In brief, the cost to fulfill all differential conditions on (Xi)0≤i≤9
and (Yi)0≤i≤12 can be amortized, and the degrees of freedom in (Y13, Y15) can be utilized to
fulfill the remaining uncontrolled differential conditions. Roughly speaking, the number of
differential conditions on (Xi)16≤i≤35 and (Yi)16≤i≤35 dominate the whole time complexity
of the attack.

Based on the above analysis, if we aim to mount a collision attack based on a differential
characteristic of a similar shape, we need to ensure

• the differential characteristic of the second local collision should be as sparse as
possible;

• the message words to inject differences should be used to update the internal states
(Xi, Yi) as late as possible where i ≥ 32;

Our strategy for the second local collision. To mount a collision attack on r + 1 (r ≥ 36)
steps of RIPEMD-160, we first utilize our SAT/SMT-based tool to find a better choice of
the message differences. Specifically, we can build a very simple model to search for the
differential characteristic of the second local collision where the message words to inject
differences are not allowed to update Xi and Yi where 32 ≤ i ≤ r. In this way, we find 3
possible ways to construct the second local collision, as shown in Table 3.

Table 3: Three ways to construct the second local collision

message words (i2, i3) number of conditions r attacked steps
(m0, m6, m8, m11) (21, 31) 8 37 38
(m0, m2, m11, m12) (24, 30) 8 39 40

(m0, m12, m13) (18, 25) 44 41 42

Although the results indicate that a 42-step collision attack is possible, we could not
find an efficient message modification for the corresponding differential characteristic due
to a large number of differential conditions in the second local collision. Hence, we target
the 40-step collision attack by injecting message differences in (m0, m2, m11, m12).

4.2 Finding the 40-Step Differential Characteristic
To ensure the second local collision and the minimal number of differential conditions on
it, (δm0, δm2, δm11, δm12) should satisfy:

δm0 = 0 ⊟ 2i, δm2 = 0 ⊟ 2(i+4)%32, δm11 = 2(i+22)%32, δm12 = 2(i+30)%32,

where 0 ≤ i ≤ 31.
To further optimize the whole time complexity of the collision attack, i.e., we expect that∑31

i=15 ∆H(Yi) is also as small as possible, after several trials, we eventually determined
the following message differences:

δm0 = 0⊟217, δm2 = 0⊟221, δm11 = 27, δm12 = 215.

With the above message differences, we give a high-level description of how to utilize
our tool to search for the corresponding 40-step differential characteristic, as shown below:

Step 1: Find a valid solution of (∆Xi)0≤i≤12 to ensure (δXi = 0)8≤i≤12, and we minimize∑7
i=0 H(∆Xi).

Step 2: Find a valid solution of (∆Yi)11≤i≤31.



120 Automating Collision Attacks on RIPEMD-160

Step 3: Choose a sparse differential characteristic manually for (∆Yi)3≤i≤5 and fix it.
Find a valid solution of (∆Yi)6≤i≤10 to connect (∆Yi)3≤i≤5 and (∆Yi)11≤i≤31.

To improve the efficiency of the message modification technique, we have tried three
strategies for the Step 2, as detailed below:

Strategy 1: Directly find a valid solution of (∆Yi)11≤i≤31 to ensure (δYi = 0)25≤i≤31, and
we minimize

∑31
i=11 H(∆Yi).

Strategy 2: First, find a valid solution of (∆Yi)16≤i≤31 such that (δYi = 0)25≤i≤31, and
we minimize

∑31
i=16 H(∆Yi).

Then, find a valid solution of (∆Yi)11≤i≤15 to connect (∆Yi)16≤i≤31, and we
minimize

∑15
i=11 H(∆Yi).

Strategy 3: First, find a valid solution of (∆Yi)15≤i≤31 such that (δYi = 0)25≤i≤31, and
we minimize

∑31
i=15 H(∆Yi).

Then, find a valid solution of (∆Yi)11≤i≤14 to connect (∆Yi)15≤i≤31, and we
minimize

∑14
i=11 H(∆Yi).

It is found that we can benefit more from Strategy 3. The corresponding 40-step differential
characteristic is displayed in Table 4. Some extra conditions for the differential characteristic
are shown in Table 5.

4.3 Finding Conforming Message Pairs
For our 40-step collision attack, two message blocks (M0, M1) will be used. Specifically,
our goal is to find a tuple (M0, M1, M ′

1) where M1 ̸= M ′
1 such that

CV1 = H(CV0, M0), H(CV1, M1) = H(CV1, M ′
1).

This is mainly because in our 40-step differential characteristic, there are some conditions
on CV1. The general procedure to find the conforming message pair for the 40-step
differential characteristic is summarized as follows:

Step 1: Find a valid M0 such that the conditions on CV1 can hold, i.e., the conditions on
(X−5, X−4, X−3, X−2, X−1) in the 40-step differential characteristic can hold.

Step 2: Similar to [MZ06], use an SAT/SMT model to describe the value transitions for
RIPEMD-160. By adding the differential conditions on the internal states to the
model, we can then find a valid solution of (Xi)0≤i≤9 and (Yi)0≤i≤12 satisfying all
the corresponding conditions by solving the model. For convenience, this solution
is called the starting point1 for the collision attack.

Step 3: Reuse the degrees of freedom of (Y10, Y11) to generate more starting points.
Specifically, although (Y10, Y11) have been fixed at Step 2, we can traverse all
their possible values, recompute (X8, X9, Y12), and check whether the conditions
on them hold. In this way, we can reduce the workload of the SAT/SMT solver
to generate many such solutions at Step 1−2. For each starting point, move to
the next step. Return to Step 1 if all starting points are used up.

Step 4: Traverse all possible values of Y13, compute Y14 and check the differential condi-
tions on (Y14, LQ10, LQ11). If they hold, move to the next step.

1Abusing the notation, in our SFS collision, we will also define the starting point as the solution of
different internal states.



Yingxin Li, Fukang Liu and Gaoli Wang 121

Table 4: The 40-step differential characteristic for RIPEMD-160, where δm0 =
0⊟217, δm2 = 0⊟221, δm11 = 27, δm12 = 215

i ∆Xi mi
l i ∆Yi mi

r

-5 ================================ -5 ================================
-4 ================================ -4 ================================
-3 ================================ -3 ================================
-2 ================================ -2 ================================
-1 ================================ -1 ================================

0 unnn============================ 0 0 ================================ 5
1 ===============nuuuu=n========== 1 1 ================================ 14
2 u=uun=u==========n==u====un=nnnn 2 2 =============0================== 7
3 =====nnn===unun==u==u====nn===== 3 3 0==u============================ 0
4 u=u==uu==u==================n=nu 4 4 0====1===========0==1=n==1===010 9
5 ============nuuu=n======u=n===== 5 5 101====u==0=00=1===0000=100u0000 2
6 ==u====nuu====================== 6 6 0110=1===nnuu1nuuuuuuuuuu10100=0 11
7 ================unnnnnnnnnn===== 7 7 1unnnnn11000unn00unn10nunn11=110 4
8 ================================ 8 8 =1011nu001nu111nuu=unnn0101nuuuu 13
9 ================================ 9 9 00u==nu00u010===1000101u=0101n0= 6
10 ================================ 10 10 111====0==u=n10=0u01=1n01=010==1 15
11 ================================ 11 11 0=0=n1=0=10n0===u====n1=1===0=== 8
12 ================================ 12 12 11u===10=0=1u=0======1==0=1u===0 1
13 ================================ 13 13 ==0======1==0=n=10=0====1=10===n 10
14 ================================ 14 14 ==1====0========u1=1===========u 3
15 ================================ 15 15 =======1=n==============n======= 12
16 ================================ 7 16 =============================u== 6
17 ================================ 4 17 ================================ 11
18 ================================ 13 18 ================================ 3
19 ================================ 1 19 =====================0========== 7
20 ================================ 10 20 =====================1========== 0
21 ================================ 6 21 ===========u==================== 13
22 ================================ 15 22 ================================ 5
23 ================================ 3 23 ===========1==================== 10
24 =========n====================== 12 24 ===========1=============010000= 14
25 ==u======0====================== 0 25 =u=======================111111= 15
26 ==0============================1 9 26 ===============nuuuuu=========== 8
27 ========================1======= 5 27 ======1========================= 12
28 ================================ 2 28 ======0========================= 4
29 ================================ 14 29 ================================ 9
30 ================================ 11 30 ================================ 1
31 ================================ 8 31 ================================ 2
32 ================================ 3 32 ================================ 15
33 ================================ 10 33 ================================ 5
34 ================================ 14 34 ================================ 1
35 ================================ 4 35 ================================ 3
36 ================================ 9 36 ================================ 7
37 ================================ 15 37 ================================ 14
38 ================================ 8 38 ================================ 6
39 ================================ 1 39 ================================ 9

Y15[10] = Y14[10], Y15[27] = Y14[27], Y16[10] = Y15[10], Y16[25] = Y15[25]
Y17[0] = Y16[0], Y17[17] = Y16[17], Y18[12] = Y17[12], Y23[30] = Y22[30],
Y27[8] = Y26[8], Y28[i] = Y27[i](i ∈ {21, 22, 23, 24, 26})
X23[22] = X22[12], X24[29] = X23[19]



122 Automating Collision Attacks on RIPEMD-160

Table 5: Some extra conditions for the 40-step differential characteristic

Conditions on LQi and RQi:
(LQi ⊞ inl

i)≪sl
i = LQi

≪sl
i ⊞ outl

i

(RQi ⊞ inr
i )≪sr

i = RQi
≪sr

i ⊞ outr
i

i inl
i outl

i πi
l si

l i inr
i outr

i πi
r si

r

0 0xfffe0000 0xf0000000 0 11 0 0x0 0x0 5 8
1 0x50000000 0x1400 1 14 1 0x0 0x0 14 9
2 0x6fdeac00 0x560037ef 2 15 2 0x0 0x0 7 9
3 0x86006f5b 0x6f5b860 3 12 3 0xfffe0000 0xf0000000 0 11
4 0x4ace0003 0x59c00049 4 5 4 0x10000000 0x200 9 13
5 0x9fffb13f 0xffb13fa0 5 8 5 0xffdffe00 0xfefffff0 2 15
6 0x4fbec08d 0xdf6046a8 6 7 6 0x1000090 0x480080 11 15
7 0xe1948f3f 0x291e7fc4 7 9 7 0xffefef90 0xfdfdf200 4 5
8 0xd31ffffc 0xffffde99 8 11 8 0x204107c 0x2083e01 13 7
9 0xffffd80c 0xfb018000 9 13 9 0xfc3807e 0xe1c03f08 6 7
10 0x1fc0000 0x7f 10 14 10 0xfedfe5c2 0xdfe5c1ff 15 8
11 0x1 0x8000 11 15 11 0x81020911 0x10488408 8 11
12 0x0 0x0 12 6 12 0x101e7800 0x9e000408 1 14
13 0x0 0x0 13 7 13 0x217f7f8 0xfdfe0086 10 14
14 0x0 0x0 14 9 14 0xfff60f78 0x60f77fff 3 12
15 0x0 0x0 15 8 15 0x7f08c001 0xc2300060 12 6
16 0x0 0x0 7 7 16 0x3e100020 0x2000407c 6 9
17 0x0 0x0 4 6 17 0xdfffc000 0xf7fffc00 11 13
18 0x0 0x0 13 8 18 0x8000400 0x2000400 3 15
19 0x0 0x0 1 13 19 0xfdfffc00 0xfffdffff 7 7
20 0x0 0x0 10 11 20 0x1 0x1000 0 12
21 0x0 0x0 6 9 21 0xfffff000 0xfff00000 13 8
22 0x0 0x0 15 7 22 0x0 0x0 5 9
23 0x0 0x0 3 15 23 0x0 0x0 10 11
24 0x8000 0x400000 12 7 24 0x0 0x0 14 7
25 0xfffe0000 0xe0000000 0 12 25 0x0 0x0 15 7
26 0x0 0x0 9 15 26 0x80000000 0x800 8 12
27 0x0 0x0 5 9 27 0x0 0x0 12 7
28 0xffe00000 0xffffffff 2 11 28 0x0 0x0 4 6
29 0x1 0x80 14 7 29 0x2000000 0x100 9 15
30 0x0 0x0 11 13 30 0xffffff00 0xffe00000 1 13
31 0x0 0x0 8 12 31 0x0 0x0 2 11
32 0x0 0x0 3 11 32 0x0 0x0 15 9
33 0x0 0x0 10 13 33 0x0 0x0 5 7
34 0x0 0x0 14 6 34 0x0 0x0 1 15
35 0x0 0x0 4 7 35 0x0 0x0 3 11
36 0x0 0x0 9 14 36 0x0 0x0 7 8
37 0x0 0x0 15 9 37 0x0 0x0 14 6
38 0x0 0x0 8 13 38 0x0 0x0 6 6
39 0x0 0x0 1 15 39 0x0 0x0 9 14



Yingxin Li, Fukang Liu and Gaoli Wang 123

Step 5: Traverse all possible values of Y15 and compute the corresponding m12. Then, all
message words (mi)0≤i≤15 are fixed. Check the remaining uncontrolled differential
conditions. If all of them hold, a colliding message pair is found and exits.
Otherwise, move to Step 4.

Based on the above procedure, we found the first colliding message pair for 40-step
RIPEMD-160, as shown in Table 6. The whole procedure takes about 16 hours with 115
threads. A theoretic analysis of the time complexity is given below.

Table 6: The colliding message pair (M0, M1) and (M0, M ′
1) for 40 steps of RIPEMD-160

M0
4b1de304 f52a5a3e bbd7d814 6454a1d6 a5571007 6c4151f5 8970f768 32c48fd1
54c428ea 113b00cf 3db1bb85 1d2b2de6 89157118 89157118 d22f990b 6db9f321

M1
0a179ed0 582e9fee 8c68cd3d 0d120a6e de43af57 df2e7a6f 2b40967e df302947
ee7f066f d7b7707d 9f1cc8a9 eaecfcb8 0b449f1a ec058b69 996ee0d2 994ef6b1

M ′
1

0a159ed0 582e9fee 8c48cd3d 0d120a6e de43af57 df2e7a6f 2b40967e df302947
ee7f066f d7b7707d 9f1cc8a9 eaecfd38 0b451f1a ec058b69 996ee0d2 994ef6b1

hash a76b7982 e39826f9 52eb6b63 6b48ecdd 4ddca6c5

Complexity evaluation. There are only 4 bit conditions on (Xi)−5≤i≤−1 and hence Step
1 takes about time 24. Furthermore, it is found that the cost to find a starting point by
simply using the SAT/SMT solver is equivalent to about 232.6 calls of RIPEMD-160. We
found in total 100 such starting points with the SAT/SMT solver. Then, for each such
starting point, we reuse the degrees of freedom in (Y10, Y11) to generate more starting
points. We randomly chose 80 out of 100 starting points and generated in total about
1000 starting points with the degrees of freedom in (Y10, Y11) in a few minutes on a single
core. Based on each of these starting points, we further utilize the degree of freedom in
(Y13, Y15) to satisfy the remaining uncontrolled differential conditions. Note that the time
complexity to fulfill the conditions on (Y14, LQ10, LQ11) can be amortized because there
are sufficiently many free bits in Y15. The total time complexity is almost dominated by
the conditions on (Xi, Yi) where i ≥ 16, which hold with a probability of about 2−49.9.
Theoretically, the time complexity of our attack is 249.9.

5 Improved SFS Collision Attacks on RIPEMD-160
After improving the collision attacks on RIPEMD-160 by 4 steps, we feel interested whether
it is possible to further utilize this automatic tool to improve the SFS collision attack on
RIPEMD-160. In particular, we aim to improve the SFS collision attack published at ToSC
2019 [LDM+19b], where the authors could only attack at most 40 steps of RIPEMD-160
with their technique.

5.1 Finding New Differential Characteristic for SFS Collision Attacks
Our improved SFS collision attack on RIPEMD-160 still follows the attack framework
proposed in [LDM+19b], as shown in Figure 2.

In this framework, the message difference is only injected at the message word m12,
and the right-branch differential characteristic should be as sparse as possible because
the time complexity of the SFS collision attack is almost dominated by its probability.
However, in the previous SFS collision attacks on RIPEMD-160 [LDM+19b], the right-
branch differential characteristics are deduced by hand and whether they are optimal
is unknown. In particular, in their 40-step SFS collision attack, the probability of the
right-branch differential characteristic is 2−74.6, which makes it infeasible to further extend
the attack for more steps.



124 Automating Collision Attacks on RIPEMD-160

IV

2 1

3

Figure 2: SFS collision attack framework

Intuitively, if better right-branch differential characteristics can be found, the SFS
collision attack can be improved. Hence, we feel interested whether it is possible to find
such differential characteristics with the new automatic tool to increase the number of
attacked steps because it is relatively easy to solve optimization problems with these tools.

In the following, we give the details of how we use the automatic tool to find left/branch
differential characteristics for t + 1 steps of RIPEMD-160 where t ≥ 40.

Finding right-branch differential characteristics. Finding (∆Y15,· · · , ∆Yt) is simply
done with the SAT/SMT-based tool. Specifically, for each possible t, we set the objective
function as minimizing

∑i=t
i=15 H(∆Yi).

The authors of [LDM+19b] pointed out that the conditions on the right branch will
influence the whole time complexity. To ensure a valid attack, the probability of the right-
branch differential characteristic should be higher than 2−80. Experimental results indicate
that the minimal values of

∑t
i=15 H(∆Yi) are 15, 18 and 20 for t = 40, t = 41, and t = 42,

respectively, and the corresponding right-branch differential characteristics hold with
probability higher than 2−80. However, when t = 43, the minimal value of

∑i=43
i=15 H(∆Yi)

is 22, and the corresponding differential characteristic holds with a probability smaller
than 2−80. Therefore, we could possibly perform SFS collision attacks on 41, 42 and 43
steps of RIPEMD-160 under the attack framework [LDM+19b]. This is because the final
time complexity is indeed affected by several factors and they should be analyzed in a
more careful way.

Finding left-branch differential characteristics. After determining the right-branch
differential characteristics, we need to find the corresponding left-branch differential
characteristics such that the differences (∆Xt−5, . . . , ∆Xt) should cancel the differences
(∆Yt−5, . . . , ∆Yt) to allow an SFS collision attack on t + 1 steps of RIPEMD-160. For this
purpose, we first find the solutions of (∆X12, . . . , ∆X20) and (∆X35, . . . , ∆Xt), respectively,
and make them as sparse as possible. This can be achieved by setting the objective functions
of the SAT/SMT-based tool as minimizing

∑20
i=12 H(∆Xi) and

∑t
i=35 H(∆Xi), respectively.

Then, we find a valid solution of (∆X21, . . . , ∆X34) to connect (∆X12, · · · , ∆X20) and
(∆X35, · · · , ∆Xt).

The new differential characteristics. The corresponding 41/42/43/44-step differential
characteristics are given in Table 7, Table 8, Table 9 and Table 10, respectively.

5.2 The General Message Modification Technique
We mainly use a similar strategy proposed in [LDM+19b] to perform the message modifi-
cation, as the shape of the 41/42/43-step differential characteristics is almost the same as
the 40-step one in [LDM+19b].

Specifically, it consists of two phases, and a graphic illustration for the strategy is given
in Figure 3.



Yingxin Li, Fukang Liu and Gaoli Wang 125

Table 7: The 41-step differential characteristic, where δm12 = 215.

i ∆Xi mi
l i ∆Yi mi

r

-5 ================================ -5 ================================
-4 ================================ -4 ================================
-3 ================================ -3 ================================
-2 ================================ -2 ================================
-1 ================================ -1 ================================

0 ================================ 0 0 ================================ 5
1 ================================ 1 1 ================================ 14
2 ================================ 2 2 ================================ 7
3 ================================ 3 3 ================================ 0
4 ================================ 4 4 ================================ 9
5 ================================ 5 5 ================================ 2
6 ================================ 6 6 ================================ 11
7 ================================ 7 7 ================================ 4
8 ================================ 8 8 ================================ 13
9 ================================ 9 9 ================================ 6
10 ================================ 10 10 ================================ 15
11 ================================ 11 11 ================================ 8
12 ==========n===================== 12 12 ================================ 1
13 ==nu============================ 13 13 ====================0=========== 10
14 =n========0===============u===== 14 14 ====================1=========== 3
15 10=0========00====u=====110u==== 15 15 ==========n===================== 12
16 n1==============1=0====1=1=0==== 7 16 ================================ 6
17 0=======1====1===11====0=n=1==== 4 17 ==========1===================== 11
18 1==1====0========0====1n=0====== 13 18 ==========1===================== 3
19 ==1u====u======1=u====00=1====== 1 19 u=============================== 7
20 ===0====0====100=0====n1======== 10 20 ================================ 0
21 ===1===1=====1=n=1====0==1====1= 6 21 1==============================0 13
22 =1=====0====1n00===0==1==1==1=== 15 22 1==============================1 5
23 ==10=1=u=0==00=1==1====10u====== 3 23 =====================un========= 10
24 ===11010=n00n1====u====u=0====== 12 24 ================================ 14
25 =1110n11=0==0=01==1=100010=01110 0 25 ====================001========= 15
26 0111110010011101=11000=101000100 9 26 ====================111========= 8
27 1000011100unnnnn0nuuuu0uuuunuu01 5 27 ==========nnn=================== 12
28 nnnnnu=uuu111100nuu1nuuuuuuuuu=u 2 28 ================================ 4
29 101unn=1010uuun001=nuuu000nnu010 14 29 ============1=================== 9
30 =1111n0110110=000011010u1u110110 11 30 ==1============================= 1
31 =000001n==100100u=1==000=0u0==u0 8 31 ==u============================= 2
32 011=1=11====n00=n===1u111n11100= 3 32 ==1============================= 15
33 01n=n0n===000=10u===00=1=1====== 10 33 ==1======0====================== 5
34 001=0=0===n===n=1====u=u1=010=== 14 34 =========n==============1======= 1
35 ======n===1===1======1=1===u==== 4 35 =========1==============u======1 3
36 1===0=0====1=n================== 9 36 =========1==============10=====0 7
37 =============0===0=======0====== 15 37 ========0================n=====1 14
38 =====================0===u====0= 8 38 ========n=====01=========1=====n 6
39 =====================u===1====u= 1 39 ========1=====u0===============1 9
40 ==============n================= 2 40 ===u============================ 11

IV

2 1

3

2

1 :2−p1 2 :2−p2 3 :2−p3

Figure 3: The general message modification technique



126 Automating Collision Attacks on RIPEMD-160

Table 8: The 42-step differential characteristic, where δm12 = 215.

i ∆Xi πi
l i ∆Yi πi

r

-5 ================================ -5 ================================
-4 ================================ -4 ================================
-3 ================================ -3 ================================
-2 ================================ -2 ================================
-1 ================================ -1 ================================

0 ================================ 0 0 ================================ 5
1 ================================ 1 1 ================================ 14
2 ================================ 2 2 ================================ 7
3 ================================ 3 3 ================================ 0
4 ================================ 4 4 ================================ 9
5 ================================ 5 5 ================================ 2
6 ================================ 6 6 ================================ 11
7 ================================ 7 7 ================================ 4
8 ================================ 8 8 ================================ 13
9 ================================ 9 9 ================================ 6
10 ================================ 10 10 ================================ 15
11 ================================ 11 11 ================================ 8
12 ==========n===================== 12 12 ================================ 1
13 ==un============================ 13 13 ====================0=========== 10
14 =n========1===============n===== 14 14 ====================1=========== 3
15 00=0=========1====n=====110n==== 15 15 ==========n===================== 12
16 u0==============1=0====1=1=0==== 7 16 ================================ 6
17 0=======1====1===11====1=u=1==== 4 17 ==========1===================== 11
18 1==1====0========0====0n=0====== 13 18 ==========1===================== 3
19 ==1n====n======1=n====00=1====== 1 19 u=============================== 7
20 ===0====0===01=0=0====u0======== 10 20 ================================ 0
21 ===1===11====1=u=1====0==1====1= 6 21 1==============================0 13
22 =======0====0n=0===0==1==0====0= 15 22 1==============================1 5
23 ====01=n=0==00=1=========n====n= 3 23 =====================un========= 10
24 ===1=0=0=n==u0===========0====0= 12 24 ================================ 14
25 1==00u=0=0==0==1====100001===11= 0 25 ====================001========= 15
26 ==0n=0===1=1110011010=1=0110=1=0 9 26 ====================111========= 8
27 01011100100nuuuu=10nu=n=1=u10n=0 5 27 ==========nnn=================== 12
28 1nuu1=nuu=1011un0n000001n000=0=n 2 28 ================================ 4
29 uu01u110n1n=1001n0u1=unnnnnn=10u 14 29 ============0=================== 9
30 000n00110=011001101u010nn1001011 11 30 ==1============================= 1
31 =1n0n=0n01010011uu10=1=00u===00= 8 31 ==u=====================0======= 2
32 1u111011uu1u=00n00=n=0==010==0== 3 32 ==1=====================u======= 15
33 u100=uu001=1=111===0=0==n11==n10 10 33 ==1=====================0======= 5
34 01==1010=0=u==0====n==110u=00100 14 34 ===0====================1======= 1
35 ====u======0===1===1==0==01==n== 4 35 ===n==========1=========u======= 3
36 ====0=0=======00=========n===0== 9 36 ===1==========u=========11====== 7
37 ======u========1=========1===1== 15 37 ===1==========0====0====10====== 14
38 ======1=======00===1==1==0==1=== 8 38 ==============1====n==0==1====== 6
39 ====1=======1==1=01u========0=== 1 39 ====1====1====u====1==n==n====== 9
40 ====n1======u==u===1============ 2 40 ====u====0====1=======1==1====== 11
41 ====n=========================== 7 41 ============================n=== 8



Yingxin Li, Fukang Liu and Gaoli Wang 127

Table 9: The 43-step differential characteristic, where δm12 = 215.

i ∆Xi mi
l i ∆Yi mi

r

-5 ================================ -5 ================================
-4 ================================ -4 ================================
-3 ================================ -3 ================================
-2 ================================ -2 ================================
-1 ================================ -1 ================================

0 ================================ 0 0 ================================ 5
1 ================================ 1 1 ================================ 14
2 ================================ 2 2 ================================ 7
3 ================================ 3 3 ================================ 0
4 ================================ 4 4 ================================ 9
5 ================================ 5 5 ================================ 2
6 ================================ 6 6 ================================ 11
7 ================================ 7 7 ================================ 4
8 ================================ 8 8 ================================ 13
9 ================================ 9 9 ================================ 6
10 ================================ 10 10 ================================ 15
11 ================================ 11 11 ================================ 8
12 ==========n===================== 12 12 ================================ 1
13 ==nu============================ 13 13 ====================0=========== 10
14 =n========0===============u===== 14 14 ====================1=========== 3
15 10=0==============u=====110n==== 15 15 ==========n===================== 12
16 u1==============1=0====1=1=0==== 7 16 ================================ 6
17 0=======1====1===11====0=n=1==== 4 17 ==========1===================== 11
18 1==1====0========0====1n=0====== 13 18 ==========1===================== 3
19 ===u====u======1=n0===00=1====== 1 19 u=============================== 7
20 ===0====0====1=0=1====u1======== 10 20 ================================ 0
21 =======1n====1=n=1====0==1====1= 6 21 1==============================0 13
22 =======01===1n=0===0==1=====0=== 15 22 1==============================1 5
23 =====1=n10==00=1==0===========0= 3 23 =====================un========= 10
24 ===1=0=0=n==u=====u===========0= 12 24 ================================ 14
25 =010=n11=0==0===10111010000101n= 0 25 ====================001========= 15
26 ==1==1011000011010100=1110=00010 9 26 ====================111========= 8
27 100=00nuuuuuuuuuuuuuu11uuu0uun00 5 27 ==========nnn=================== 12
28 10u1nn1n0n00u0nu1u01110100=uun=1 2 28 ================================ 4
29 un1000u1000nnu10u01nuunuu0=11u1n 14 29 ============1=================== 9
30 1110n10n=1n1001u010100011n0000=n 11 30 ==1============================= 1
31 1101110u=0000100===0=u=0010==0=0 8 31 ==u============================= 2
32 1=0=01=1===1u0=0===u=0==uu1=11=u 3 32 ==1============================= 15
33 0=n0=n1=0==01u11==110==000u=u0=0 10 33 ==1======0====================== 5
34 ==10=u==n1==01u0==u=u110u101u=1= 14 34 =========n==============1======= 1
35 0=n=11==1011=n1=1=n=10n=1u=0n=11 4 35 =========1==============u======= 3
36 1=010=0=1=0n00u===00u=1=10==1=uu 9 36 =========1==============10====== 7
37 ===0==n=0110n=1===0=1=n=0=====10 15 37 ========0================u=====1 14
38 ==1===1=1u0=1=======0=0=====1==u 8 38 ========n=====0==========1=====n 6
39 ==0=====u1====0=============0==u 1 39 ===0====1====1u======1====1===11 9
40 ========1=====n======1===0====10 2 40 ===u====0=====1=10===0========0= 11
41 ==============1======0===n====0= 7 41 ===0====n=======uu============== 8
42 ========u=======nn============== 0 42 =====================n=========n 12



128 Automating Collision Attacks on RIPEMD-160

Table 10: The 44-step differential characteristic, where δm12 = 215.

i ∆Xi πi
l i ∆Yi πi

r

-5 ================================ -5 ================================
-4 ================================ -4 ================================
-3 ================================ -3 ================================
-2 ================================ -2 ================================
-1 ================================ -1 ================================

0 ================================ 0 0 ================================ 5
1 ================================ 1 1 ================================ 14
2 ================================ 2 2 ================================ 7
3 ================================ 3 3 ================================ 0
4 ================================ 4 4 ================================ 9
5 ================================ 5 5 ================================ 2
6 ================================ 6 6 ================================ 11
7 ================================ 7 7 ================================ 4
8 ================================ 8 8 ================================ 13
9 ================================ 9 9 ================================ 6
10 ================================ 10 10 ================================ 15
11 ================================ 11 11 ================================ 8
12 ==========n===================== 12 12 ================================ 1
13 ==un============================ 13 13 ====================0=========== 10
14 =u========1===============n===== 14 14 ====================1=========== 3
15 00=0==============n=====110n==== 15 15 ==========n===================== 12
16 u01=============1=0====1=1=0==== 7 16 ================================ 6
17 1=======1====0===1=====11u=1==== 4 17 ==========1===================== 11
18 1==0===0=========0====0un0====== 13 18 ==========1===================== 3
19 ===n===========1=n====0001===0== 1 19 u=============================== 7
20 ===0=========110=0====u=1====n== 10 20 ================================ 0
21 ===1===1======0u=0====0==1===0== 6 21 1==============================0 13
22 =======1====1=u0===1==1==0===1== 15 22 1==============================1 5
23 =====0=n=1==0=01===0=====n====== 3 23 =====================un========= 10
24 ====10=0=n==u======n=====0====== 12 24 ================================ 14
25 001=0u10=00=0==1===1=00110=11110 0 25 ====================001========= 15
26 1=0==1==00011001010011001=0=0100 9 26 ====================111========= 8
27 n1001101000nuuuu1nuuuuuun0n0nn1= 5 27 ==========nnn=================== 12
28 nun1uuuun=n11110u010nu11011011n0 2 28 ================================ 4
29 0nuu1111n1n1nn1nu=1nn01=unuu==uu 14 29 ============1=================== 9
30 1010=01=0110n0=011=00u0111n01101 11 30 ==1============================= 1
31 0=10=u0=n0n101101u==01=1111=1=0n 8 31 ==u============================= 2
32 ==11=10=1=10==u100==uu===u=1u=10 3 32 ==1============================= 15
33 1=1n1u=1==10=10==01000==00=01=n1 10 33 ==1======0====================== 5
34 ===1u0=u=10==1=11uu10u==n100n=1= 14 34 =========n==============1======= 1
35 ===u10101u=1==1=100=n0==00=111=1 4 35 =========1==============u======= 3
36 ===0=0u01010==00u=1=1n=====u101= 9 36 =======011========1=====10====== 7
37 =====11=n=01====11n==0=====11nn= 15 37 ========1================u===111 14
38 =====u0=1==0=====001=0=====u001= 8 38 ========n================10==nuu 6
39 =====1==0========1=0=u====01==0= 1 39 ===0====1====1============u==111 9
40 ===0=============0===1====n0==== 2 40 ===u====0=======00========1===01 11
41 ===n==00========1=========1===0= 7 41 ===0====u=======uu===1========== 8
42 ===1==nn========0=============n= 0 42 ========1=======11===n========== 12
43 =====================u========== 6 43 ===========n==================== 2

Y17[31] = Y16[31], Y20[9] = Y21[9], Y25[20, 19] = Y24[20, 19], Y29[31, 30, 29] = Y28[31, 30, 29],
Y33[7] ∨ ¬Y32[7] = 1, Y36[0] ∨ ¬Y35[0] = 1, Y37[17] ∨ ¬Y36[17] = 1,
Y39[16] ∨ ¬Y38[16] = 1, Y40[10] ∨ ¬Y39[10] = 1, Y40[11] ∨ ¬Y39[11] = 1,
Y40[12] ∨ ¬Y39[12] = 1, Y42[6] ∨ ¬Y41[6] = 1



Yingxin Li, Fukang Liu and Gaoli Wang 129

Phase 1: Find a valid solution of (X12, . . . , X40). For convenience, this solution is called a
starting point for the SFS collision attack. For this starting point, all message
words except m7 are fixed. We present partial information of the message
expansion, as illustrated in Figure 4.

Phase 2: Verify the remaining uncontrolled parts by exhausting all valid values of X11.
The underlying reason is that after X11 is fixed, m7 will be fixed for each starting
point. This phase can be more efficient via an early-abort strategy. Repeat this
phase with another starting point if all valid values of X11 are used.

The details of Phase 1 and Phase 2 are specified below.

Efficiently generating more starting points. We observe that in the 41/42/43-step dif-
ferential characteristics, the conditions on (X24, . . . , X38) are dense. With this observation
in mind, we can generate an initial starting point as follows. For better understanding, we
refer the readers to Figure 4 when reading this part.

X12 X13 X14 X15 X16

m12 m13 m14 m15 m7

X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29 X30 X31

m4 m13 m1 m10 m6 m15 m3 m12 m0 m9 m5 m2 m14 m11 m8

X32 X33 X34 X35 X36

m3 m10 m14 m4 m9

X37 X38 X39 X40

m15 m8 m1 m2

Figure 4: Partial information of the message expansion of RIPEMD-160

Step 1: Find a solution for (X24, . . . , X38) such that all the conditions on them hold. This
can be similarly done with the model to describe the value transitions. After this
step, the message words

(m11, m8, m3, m10, m14, m9, m15)

are fixed.

Step 2: Then, we utilize the available degrees of freedom in (m2, m5) to fulfill the conditions
on (X23, X22, X21). It can be found that there are only a few conditions on
(X23, X22, X21) and hence there are many possible choices of (m2, m5).

Step 3: Next, we use (m0, m12) to fulfill the conditions on (X20, X19, X18, X17) and there
are also many possible values of (m0, m12) due to the sparsity in these 4 states.

Step 4: Then, we use m6 to fulfill the conditions on (X16, X15), and use m1 to fulfill the
conditions on (X14, X39, X40).

Step 5: Finally, we use m13 to fulfill the conditions on (X13, X12).

The main reason to give such a detailed procedure to find the initial starting point is to
better understand the available number of initial starting points, which will be important
to the 43-step attack. Especially, from what follows, it will become clear that we are
interested in the possible number of solutions for (X15, . . . , X38) because we can efficiently
generate new starting points from it. Due to the sparsity in (X15, X23), i.e. the sufficiently
many available degrees of freedom in (m2, m5, m0, m12, m6), we can expect to generate



130 Automating Collision Attacks on RIPEMD-160

many solutions of (X15, . . . , X38) with the above method, and this number will be much
larger than 232 by simply counting the conditions on (X23, X22, X21).

After the initial starting point is generated, with the technique in [LDM+19b], we can
generate more starting points from it in a much more efficient way:

Step 1: Keep (X15, X16, X17) unchanged. Randomly choose a valid value of (X13, X14)
and recompute X12 as follows:

X12 = ((X17 ⊟ X≪10
13 )≫sl

17 ⊟ IFX(X16, X15, X≪10
14 ) ⊟ m4 ⊟ Kl

1)≫10

Then, check the conditions on (X12, LQ16, LQ17, LQ18). If they do not hold,
randomly choose a new valid value of (X13, X14) and repeat until they hold.

Step 2: Modify m13 and m1 to keep X18 and X19 unchanged:

m13 = (X18 ⊟ X≪10
14 )≫sl

18 ⊟ IFX(X17, X16, X≪10
15 ) ⊟ X≪10

13 ⊟ Kl
1,

m1 = (X19 ⊟ X≪10
15 )≫sl

19 ⊟ IFX(X18, X17, X≪10
16 ) ⊟ X≪10

14 ⊟ Kl
1.

In this way, (X15, . . . , X38) will be kept the same as in the initial starting point.
However, (X39, X40) should be updated as X39 is computed from m1. Therefore,
we need to further check whether the conditions on (X39, X40) hold. If not, we
need to move to Step 1 to use a different value of (X13, X14).

Verifying the uncontrolled part. For Phase 2, we utilize the available degrees of freedom
in m7 to fulfill the remaining uncontrolled conditions. The details are as follows:

Step 1: Assume that there are n1 bit conditions on X11. In this way, we can exhaust
232−n1 possible values of X11 in total. For each possible value of X11, compute
m7 as follows:

m7 = (X16 ⊟ X≪10
12 )≫7 ⊟ IFX(X15, X14, X≪10

13 ) ⊟ X≪10
11 ⊟ Kl

0.

In this way, all message words are fixed. Then, we first verify the remaining
uncontrolled conditions on the left branch via the early-abort strategy. Specifically,
we first check the conditions on (X41, . . . , Xt) since X41 is updated with m7. Then,
compute backward until X8 and check the conditions on

(X11, X10, LQ12, LQ13, LQ14, LQ15).

If these conditions hold, move to the next step. Otherwise, choose another possible
value for X11 and repeat.

Step 2: Compute backwards to obtain (X−5, . . . , X−1). Then, compute all the internal
states on the right branch. If the conditions on the right branch do not hold, move
to Step 1. Otherwise, an SFS collision is found.

Differences between this work and [LDM+19b]. The general idea of this work is the
same as [LDM+19b]. However, the right-branch differential characteristics are not optimal
in [LDM+19b] as they are deduced by hand, i.e. by experience. We addressed this
issue by using the recently proposed MILP/SAT/SMT-based tools to search for optimal
differential characteristics for the right branch. As the number of attacked steps increases,
the general message modification also slightly differs from [LDM+19b]. Specifically, to
efficiently generate more starting points, we further need to check the conditions on
(X39, X40). When verifying the remaining uncontrolled conditions on the left branch, we
also additionally need to check the conditions on (X41, . . . , Xt). It is unclear whether these
2 extra probabilistic parts will affect the whole time complexity, and hence it should be
carefully analyzed.



Yingxin Li, Fukang Liu and Gaoli Wang 131

5.3 Evaluating the Time Complexity
First, we emphasize that generating the initial starting point can be finished in practical
time. In our attacks, it is expected that only a few initial starting points are sufficient
because we can generate many more starting points from one initial starting point in
an efficient way. Hence, the time complexity to generate the initial starting points is
negligible.

Second, we evaluate the cost to generate new starting points from the initial starting
point. In this procedure, we will exhaust all possible values of (X13, X14) and then check
the conditions on

(X12, LQ16, LQ17, LQ18, X39, X40, LQ39, LQ40).

when t > 40. When t = 40, we only need to check the following conditions

(X12, LQ16, LQ17, LQ18, X39, LQ39, LQ40)

since we only need to ensure the modular difference of X40 in this case. Denote the
probability of these conditions by 2−p1 and the number of bit conditions on (X13, X14)
by n2. Then, we can expect to generate 264−n2−p1 new starting points from the initial
starting point. The time complexity to generating each new starting point is 2p1 .

Third, we estimate the cost to verify the remaining uncontrolled conditions on the
left branch. As already stated, we denote the number of conditions on X11 by n1 and
there will be 232−n1 possible values for X11. For each starting point, we first verify the
conditions on

(X11, X10, LQ15, LQ14, LQ13, LQ12, X41, . . . , Xt−1, LQ41, . . . , LQt).

Note that we only need to ensure the modular difference of Xt and therefore we only care
about whether LQt satisfies its condition. Denote the probability of these conditions by
2−p2 . In this way, for each starting point, we expect to find

232−n1−p2

many values of X11 such that all the conditions on the left branch hold. The cost to find
each such solution is then estimated as 2p2 times of evaluations of 4 + (t − 41 + 1) = t − 36
steps of the step function.

Finally, we need to verify the conditions on the right branch. Denote the probability of
the right-branch differential characteristic by 2−p3 . In this way, we need in total

2p3−(32−n1−p2)

starting points. This indicates that we need

T1 = max{1, 2p3−(32−n1−p2)−(64−n2−p1)}

initial starting points. Denote the time complexity to generate one initial starting point
by Ts. In this way, the whole time complexity of the attack is then estimated as

Tfinal = T1 · Ts + 2p3−(32−n1−p2) · 2p1 + t − 36
2(t + 1) · 2p2+p3 + t + 12

2(t + 1) · 2p3 .

5.4 Application to 41/42/43-Step Differential Characteristics
Apart from the conditions specified in Table 7, Table 8, Table 9, we will further list some
other conditions that will affect the whole time complexity.



132 Automating Collision Attacks on RIPEMD-160

On 41-step RIPEMD-160. As discussed above, we list the conditions in Table 11 that
affect the performance of SFS collision attacks and are not present in Table 7. All the
conditions on (LQi, RQi) for (0 ≤ i ≤ t) are also listed in Table 15 for completeness.
Consequently, for the 41-step differential characteristic in Table 7, we have

n1 = 3, n2 = 8, p1 = 8.2, p2 = 1.9, p3 = 57.2.

Since

p3 − (32 − n1 − p2) − (64 − n2 − p1) = (p1 + p2 + p3 + n1 + n2) − 96 < 0,

we only need one initial starting point. Consequently, the whole time complexity of the
SFS collision attack on 41-step RIPEMD-160 is about 257.2.

Table 11: Extra conditions influencing the attack for the 41-step differential characteristic

Conditions Pro.
Y17 Y17[31] = Y16[31] 2−1

Y21 Y20[9] = Y21[9] 2−1

Y25 Y25[19] = Y24[19], Y25[20] = Y24[20] 2−2

Y29 Y29[29] = Y28[29], Y29[30] = Y28[30], Y29[31] = Y28[31] 2−3

Y33 Y33[7] ∨ ¬Y32[7] = 1 2−0.5

Y37 Y37[17] ∨ ¬Y36[17] = 1 2−0.5

RQ15 (RQ15 ⊞ 0x8000)≪6 = RQ≪6
15 ⊞ 0x200000 ≈ 1

RQ27 (RQ27 ⊞ 0x8000)≪7 = RQ≪7
27 ⊞ 0x400000 ≈ 1

RQ34 (RQ34 ⊞ 0x80)≪15 = RQ≪15
34 ⊞ 0x400000 ≈ 1

RQ37 (RQ37 ⊞ 0x1)≪6 = RQ≪6
37 ⊞ 0x40 ≈ 1

RQ38 (RQ38 ⊞ 0x20000)≪6 = RQ≪6
38 ⊞ 0x800000 2−0.1

RQ40 (RQ40 ⊞ 0xffff0000)≪12 = RQ≪12
40 ⊞ 0xf0000000 2−0.1

2−p3 = 2−49−8.2 = 2−57.2

X12 X12[20] = X13[30], X12[27] = X13[5], X12[19] = X14[29], X12[18] ̸= X14[28] 2−4

LQ18 (LQ18 ⊞ 0x80)≪8 = LQ≪8
18 ⊞ 0x8000 2−0.1

LQ39 (LQ39 ⊞ 0x77ec0000)≪15 = LQ≪15
39 ⊞ 0x3bf6 2−1

LQ40 (LQ40 ⊞ 0xffffc008)≪14 = LQ≪14
40 ⊞ 0xf0020000 2−0.1

2−p1 = 2−4−3−1−0.1−0.1 = 2−8.2

X11 X11[18] ̸= X12[28], X11[19] ̸= X12[29], X11[11] = X13[21] 2−3

X10 X10[11] = X11[21] 2−1

LQ12 (LQ12 ⊞ 0x8000)≪6 = LQ≪6
12 ⊞ 0x200000 2−0.1

LQ13 (LQ13 ⊞ 0x200000)≪7 = LQ≪7
13 ⊞ 0x10000000 2−0.1

LQ14 (LQ14 ⊞ 0xf0200000)≪9 = LQ≪9
14 ⊞ 0x3fffffe0 2−0.6

LQ15 (LQ15 ⊞ 0xefffffe0)≪8 = LQ≪8
15 ⊞ 0xffffdff0 2−0.1

n1 = 3, 2−p2 = 2−1.9

X14 X14[31] = X13[31], X14[3] = X13[13], X14[26] = X13[4] 2−3

n2 = 3 + 5 = 8

On 42-step RIPEMD-160 Similarly, we list the extra conditions in Table 12 that affect
the performance of SFS collision attacks and are not present in Table 8. The conditions
on all (LQi, RQi) can be referred to Table 16. Consequently, we can obtain

n1 = 3, n2 = 8, p1 = 16.7, p2 = 2.0, p3 = 67.3.

Since
p3 − (32 − n1 − p2) − (64 − n2 − p1) = 1.0,

it means we need to generate T1 = 2 initial starting points and hence the whole time
complexity of the 42-step SFS collision attack is about 267.3.



Yingxin Li, Fukang Liu and Gaoli Wang 133

Table 12: Extra conditions influencing the attack for the 42-step differential characteristic

Conditions Prob.
Y17 Y17[31] = Y16[31] 2−1

Y21 Y21[9] = Y20[9] 2−1

Y25 Y25[19] = Y24[19], Y25[20] = Y24[20] 2−2

Y29 Y29[29] = Y28[29], Y29[30] = Y28[30], Y29[31] = Y28[31] 2−3

Y33 Y33[17] ∨ ¬Y32[17] = 1 2−0.5

Y37 Y38[27] ∨ ¬Y37[27] = 1 2−0.5

RQ15 (RQ15 ⊞ 0x8000)≪6 = RQ≪6
15 ⊞ 0x200000 ≈ 1

RQ27 (RQ27 ⊞ 0x8000)≪7 = RQ≪7
27 ⊞ 0x400000 ≈ 1

RQ35 (RQ35 ⊞ 0x20000)≪11 = RQ≪11
35 ⊞ 0x10000000 ≈ 1

RQ38 (RQ38 ⊞ 0x40)≪6 = RQ≪6
38 ⊞ 0x1000 2−0.1

RQ39 (RQ39 ⊞ 0x8000000)≪14 = RQ≪14
39 ⊞ 0x200 2−0.1

RQ41 (RQ40 ⊞ 0x400000)≪13 = RQ≪13
41 ⊞ 0x8 2−0.1

2−p3 = 2−67.3

X12 X12[20] ̸= X13[30], X12[27] = X13[5], X12[19] = X14[29], X12[18] ̸= X14[28] 2−4

LQ18 (LQ18 ⊞ 0xffffff80)≪8 = LQ≪8
18 ⊞ 0xffff8000 2−0.1

LQ39 (LQ39 ⊞ 0xc0400000)≪15 = LQ≪15
39 ⊞ 0xffffe020 2−0.5

LQ40 (LQ40 ⊞ 0x1fd8)≪14 = LQ≪14
40 ⊞ 0x7f60000 2−0.1

2−p1 = 2−12−4−0.7 = 2−16.7

X11 X11[18] ̸= X12[28], X11[19] ̸= X12[29], X11[11] = X13[21] 2−3

X10 X10[11] ̸= X11[21] 2−1

LQ12 (LQ12 ⊞ 0x8000)≪6 = LQ≪6
12 ⊞ 0x200000 2−0.1

LQ13 (LQ13 ⊞ 0xffe00000)≪7 = LQ≪7
13 ⊞ 0xf0000000 2−0.1

LQ14 (LQ14 ⊞ 0x10200000)≪9 = LQ≪9
14 ⊞ 0x40000020 2−0.6

LQ15 (LQ15 ⊞ 0x10000020)≪8 = LQ≪8
15 ⊞ 0x2010 2−0.1

LQ41 (LQ41 ⊞ 0x8080000)≪8 = LQ≪8
41 ⊞ 0x8000008 2−0.1

n1 = 3, 2−p2 = 2−2.0

X14 X14[31] = X13[31], X14[3] = X13[13], X14[26] = X13[4] 2−3

n2 = 8



134 Automating Collision Attacks on RIPEMD-160

Table 13: Extra conditions influencing the attack for the 43-step differential characteristic

Conditions Prob.
Y17 Y17[31] = Y16[31] 2−1

Y21 Y21[9] = Y20[9] 2−1

Y25 Y25[19] = Y24[19], Y25[20] = Y24[20] 2−2

Y29 Y29[29] = Y28[29], Y29[30] = Y28[30], Y29[31] = Y28[31] 2−3

Y33 Y33[7] ∨ ¬Y32[7] = 1 2−0.5

Y36 Y36[0] ∨ ¬Y35[0] = 1 2−0.5

Y37 Y37[17] ∨ ¬Y36[17] = 1 2−0.5

Y39 Y39[16] ∨ ¬Y38[16] = 1 2−0.5

Y41 Y41[27] ∨ ¬Y40[27] = 1 2−0.5

RQ15 (RQ15 ⊞ 0x8000)≪6 = RQ≪6
15 ⊞ 0x200000 ≈ 1

RQ27 (RQ27 ⊞ 0x8000)≪7 = RQ≪7
27 ⊞ 0x400000 ≈ 1

RQ34 (RQ35 ⊞ 0x80)≪15 = RQ≪15
34 ⊞ 0x400000 ≈ 1

RQ37 (RQ37 ⊞ 0xffffffff)≪6 = RQ≪6
37 ⊞ 0xffffffc0 ≈ 1

RQ38 (RQ38 ⊞ 0x20000)≪6 = RQ≪6
38 ⊞ 0x800000 2−0.1

RQ39 (RQ39 ⊞ 0x8000000)≪14 = RQ≪14
39 ⊞ 0x200 2−0.1

RQ40 (RQ40 ⊞ 0xffff0000)≪12 = RQ≪12
40 ⊞ 0xf0000000 2−0.1

RQ41 (RQ41 ⊞ 0x402)≪13 = RQ≪13
41 ⊞ 0x804000 2−0.1

RQ42 (RQ42 ⊞ 0xf8000000)≪5 = RQ≪5
42 ⊞ 0xffffffff ≈ 1

2p3 = 2−62−9.9 = 2−71.9

X12 X12[20] ̸= X13[30], X12[27] = X13[5], X12[19] = X14[29], X12[18] ̸= X14[28] 2−4

X39 X39[19] ∨ ¬X38[19] = 1 2−0.5

X40 X40[10] ∨ ¬X39[10] = 1 2−0.5

LQ18 (LQ18 ⊞ 0x80 )≪8 = LQ≪8
18 ⊞ 0x8000 2−0.1

LQ39 (LQ39 ⊞ 0xbefdddf2)≪15 = LQ≪15
39 ⊞ 0xeef8df7f 2−0.6

LQ40 (LQ40 ⊞ 0x2fff2088)≪14 = LQ≪14
40 ⊞ 0xc8220c00 2−0.7

2−p1 = 2−11−4−1−0.1−0.6−0.7 = 2−17.4

X11 X11[18] ̸= X12[28], X11[19] ̸= X12[29], X11[11] = X13[21] 2−3

X10 X10[11] ̸= X11[21] 2−1

LQ12 (LQ12 ⊞ 0x8000)≪6 = LQ≪6
12 ⊞ 0x200000 2−0.1

LQ13 (LQ13 ⊞ 0x200000)≪7 = LQ≪7
13 ⊞ 0x10000000 2−0.1

LQ14 (LQ14 ⊞ 0xf0200000)≪9 = LQ≪9
14 ⊞ 0x3fffffe0 2−0.6

LQ15 (LQ15 ⊞ 0xfffffe0)≪8 = LQ≪8
15 ⊞ 0xffffe010 2−0.1

LQ41 (LQ41 ⊞ 0x37dff800)≪8 = LQ≪8
41 ⊞ 0xdf80038 2−0.6

LQ42 (LQ42 ⊞ 0x2007fc06)≪13 = LQ≪13
42 ⊞ 0xff80c401 2−0.2

n1 = 3, 2−p2 = 2−1−4−0.1−0.1−0.6−0.1−0.6−0.2 = 2−6.7

X14 X14[31] = X13[31], X14[3] = X13[13], X14[26] = X13[4] 2−3

n2 = 8



Yingxin Li, Fukang Liu and Gaoli Wang 135

On 43-step RIPEMD-160. The extra conditions for the SFS collision attack on 43-step
RIPEMD-160 are given in Table 13, and the conditions on all (LQi, RQi) are shown in
Table 17. Therefore, we have

n1 = 3, n2 = 8, p1 = 17.4, p2 = 6.7, p3 = 71.9.

Since
p3 − (32 − n1 − p2) − (64 − n2 − p1) = 11,

it implies that we need to generate T1 = 211 initial starting points and hence the whole
time complexity of the 43-step SFS collision attack is about 274.8. As already mentioned,
we can generate much more than 211 different initial starting points and this is not a
problem for our 43-step attack.

On the initial starting points. As already mentioned, the initial starting points can be
efficiently found. For evidence, we provide the initial starting points for the 41/42/43-step
SFS collision attacks in Table 14. Indeed, in our experiments, we could generate one initial
starting point in 30 seconds. Hence, the time complexity T1 · Ts is negligible given that we
only need a few initial starting points.

Table 14: Solution for Xi(12 ≤ i ≤ 40)

41-step 42-step 43-step
X12 0000011000n011100110001111010011 0011000100n001100110000000100000 0100001101n101110110001100001100
X13 10nu0011110111110111011000001111 11un0011000100010111000010011011 10nu1010011100101000111100000111
X14 1n100001110000000110000010u00100 0n000011001101001110001010n01101 1n111010110101001100000011u01001
X15 100011001110001111u01000110u0010 000000001111010001n11011110n1101 101001100000111101u11111110n1100
X16 n1111111010011111101100101000100 u0001101100100011001101101000110 u1011011000100111100000111000010
X17 0010000010011110111111001n110000 0111001110010100111111111u110010 0110000011011111111011100n111100
X18 10010000001111001000101n10100000 11010010010000110010010n10010100 11011111010100110011101n10000001
X19 101u0110u01100010u00000011000011 001n0100n11111011n11010011010010 001u0000u01111111n00010011011101
X20 0000000100101100000101n101000001 1110111000000110000100u001101111 0100111101001100010011u110001000
X21 010111010110110n1101100001000011 011100111101011u0101110011011010 01010111n111010n0110110111000010
X22 1100010001101n000010111011001001 0100110000100n101100001110001100 0111010011111n001010111111000010
X23 1110011u00010011101101010u000010 0000010n00010011011001110n0100n1 0010110n101100011000110001110100
X24 111110100n00n11011u1010u00000000 000100100n00u0101000111110111100 110100001n10u00101u1110000011001
X25 01110n11101000010010100010001110 11100u00101100111001100001101111 00101n111000001110111010000101n0
X26 01111100100111010110000101000100 000n1000010111001101011101100110 01110101100001101010011110000010
X27 1000011100unnnnn0nuuuu0uuuunuu01 01011100100nuuuu110nu0n110u10n10 100000nuuuuuuuuuuuuuu11uuu0uun00
X28 nnnnnu1uuu111100nuu1nuuuuuuuuu1u 1nuu11nuu01011un0n000001n000001n 10u1nn1n0n00u0nu1u011101000uun11
X29 101unn01010uuun0011nuuu000nnu010 uu01u110n1n11001n0u11unnnnnn010u un1000u1000nnu10u01nuunuu0011u1n
X30 01111n01101100000011010u1u110110 000n001100011001101u010nn1001011 1110n10n11n1001u010100011n00001n
X31 0000001n01100100u011000010u011u0 01n0n00n01010011uu1011100u011000 1101110u0000010000101u0001011000
X32 011011110111n001n1001u111n111001 1u111011uu1u100n000n000101010011 110101011111u010011u0001uu11111u
X33 01n0n0n000000110u001001101100001 u1000uu00111111101000000n1101n10 00n00n1001101u111011011000u0u010
X34 0011000011n100n010001u0u10010001 01101010101u0100111n10110u100100 01101u10n11101u001u0u110u101u010
X35 101010n11110111011001111010u0001 0000u011001001011001000010100n10 01n1110110110n1110n110n11u10n111
X36 1001000000110n101101110110011000 0101010111010100101110110n001001 10010100100n00u01000u010101011uu
X37 01010111101110000000011000001000 100011u1111100010001010111100111 100010n00110n110000011n100011010
X38 0101000001001010100100110u111000 11011010100011001001111100101001 001010111u011000101001011010110u
X39 111010010111011111001u01010110u1 1001100000101101101u111011000010 01000010u1111101010011101110001u
X40 10000010110011n10110011000001010 0011n1100101u11u0111111000011001 11011101111101n00100010000001110

m0 =0xc408cf53,m1 =0x291e9252, m0 = 0xee3603a1, m1 = 0x8241ac1d, m0 = 0x5cfdf423,m1 = 0xa4524a12,
m2 =0xd523de93,m3 =0x8ba64003, m2 = 0xe4c6b917,m3 = 0x859fd0e6, m2 = 0x8ae6913d,m3 = 0x3281ae27,
m4 =0xe5b58a85,m5 =0xb99d6243, m4 = 0xd21a1098,m5 = 0xc9441e8b, m4 = 0x14487cb0,m5 = 0xb429816b,
m6 =0x54e6af34,m8 =0x27c09f39, m6 = 0xc08c06b8,m8 = 0xc662c263, m6 = 0x75b453bc,m8 = 0x8cd71d13,
m9 =0xe8300da6,m10 =0xa4fff494, m9 = 0x8b684af9,m10 = 0x877fd7e7, m9 = 0x4a7429e7,m10 = 0x8beaeaf4,
m11 =0x3efb77d4,m12 =0x4adaef9, m11 = 0xfb418343,m12 = 0x5b3b73a8. m11 = 0xd501b848,m12 = 0x6af25b11.
m13 =0x9204280d,m14 =0x8ae1c0fa, m13 = 0x66be3488,m14 = 0x27eebf4. m13 = 0x1499e711,m14 = 0x58157e02.

m15 =0xbc002a65. m15 = 0xf1f6cd2e. m15 = 0xc0cd54b4.

6 Conclusion
With the automatic SAT/SMT-based tools, we have significantly improved the (SFS)
collision attacks on RIPEMD-160. In particular, we found the practical colliding message
pair for 40-step RIPEMD-160 for the first time, and it practically breaks half of full-round
RIPEMD-160 after more than 20 years of its publication. For the SFS collision attack, by



136 Automating Collision Attacks on RIPEMD-160

searching for new right-branch differential characteristics with minimal Hamming weight,
we successfully improved the best attack 3 steps. It is interesting to investigate whether it
is possible to further improve the (SFS) collision attacks on RIPEMD-160 by using other
strategies different from [LDM+19b, LWS+23] since we seem to have reached the best of
the strategies proposed in these two papers. In addition, it may be possible to mount a
valid SFS collision attack on 44-step RIPEMD-160 in the quantum setting based on our
44-step differential characteristic. However, this is not our interest as the most important
step in the dedicated quantum collision attack is still to search for a high-probability
differential characteristic, and we have addressed this issue in this work.

Acknowledgments
We thank the reviewers for helping improve the quality of this paper. Yingxin Li and Gaoli
Wang are supported by the National Key Research and Development Program of China
(2022YFB2701900), the National Natural Science Foundation of China (No. 62072181)
and the “Digital Silk Road” Shanghai International Joint Lab of Trustworthy Intelligent
Software (No. 22510750100). Fukang Liu is supported by Grant-in-Aid for Research
Activity Start-up (Grant No. 22K21282).

References
[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet,

and William Jalby. Collisions of SHA-0 and reduced SHA-1. In Ronald
Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, 24th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of
Lecture Notes in Computer Science, pages 36–57. Springer, 2005.

[BP95] Antoon Bosselaers and Bart Preneel, editors. Integrity Primitives for Secure
Information Systems, Final Report of RACE Integrity Primitives Evalua-
tion RIPE-RACE 1040, volume 1007 of Lecture Notes in Computer Science.
Springer, 1995.

[CR06] Christophe De Cannière and Christian Rechberger. Finding SHA-1 charac-
teristics: General results and applications. In ASIACRYPT, volume 4284 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2006.

[DBP96] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A
strengthened version of RIPEMD. In Dieter Gollmann, editor, Fast Software
Encryption, Third International Workshop, Cambridge, UK, February 21-23,
1996, Proceedings, volume 1039 of Lecture Notes in Computer Science, pages
71–82. Springer, 1996.

[DEM15] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Analysis of
SHA-512/224 and SHA-512/256. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference
on the Theory and Application of Cryptology and Information Security, Auck-
land, New Zealand, November 29 - December 3, 2015, Proceedings, Part II,
volume 9453 of Lecture Notes in Computer Science, pages 612–630. Springer,
2015.

[EMS14] Maria Eichlseder, Florian Mendel, and Martin Schläffer. Branching heuristics
in differential collision search with applications to SHA-512. In Carlos Cid and



Yingxin Li, Fukang Liu and Gaoli Wang 137

Christian Rechberger, editors, Fast Software Encryption - 21st International
Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers,
volume 8540 of Lecture Notes in Computer Science, pages 473–488. Springer,
2014.

[LDM+19a] Fukang Liu, Christoph Dobraunig, Florian Mendel, Takanori Isobe, Gaoli
Wang, and Zhenfu Cao. Efficient collision attack frameworks for RIPEMD-160.
In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryp-
tology - CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part II, volume
11693 of Lecture Notes in Computer Science, pages 117–149. Springer, 2019.

[LDM+19b] Fukang Liu, Christoph Dobraunig, Florian Mendel, Takanori Isobe, Gaoli
Wang, and Zhenfu Cao. New semi-free-start collision attack framework for
reduced RIPEMD-160. IACR Trans. Symmetric Cryptol., 2019(3):169–192,
2019.

[LMW17] Fukang Liu, Florian Mendel, and Gaoli Wang. Collisions and semi-free-
start collisions for round-reduced RIPEMD-160. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd
International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I, volume 10624 of Lecture Notes in Computer Science, pages 158–186.
Springer, 2017.

[LP13] Franck Landelle and Thomas Peyrin. Cryptanalysis of full RIPEMD-128. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages
228–244. Springer, 2013.

[LP19] Gaëtan Leurent and Thomas Peyrin. From collisions to chosen-prefix collisions
application to full SHA-1. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, volume 11478
of Lecture Notes in Computer Science, pages 527–555. Springer, 2019.

[LP20] Gaëtan Leurent and Thomas Peyrin. SHA-1 is a shambles: First chosen-prefix
collision on SHA-1 and application to the PGP web of trust. In Srdjan Capkun
and Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020, pages 1839–1856. USENIX Association,
2020.

[LWS+23] Fukang Liu, Gaoli Wang, Santanu Sarkar, Ravi Anand, Willi Meier, Yingxin
Li, and Takanori Isobe. Analysis of RIPEMD-160: new collision attacks and
finding characteristics with MILP. In Carmit Hazay and Martijn Stam, editors,
Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lyon,
France, April 23-27, 2023, Proceedings, Part IV, volume 14007 of Lecture
Notes in Computer Science, pages 189–219. Springer, 2023.

[MNS11] Florian Mendel, Tomislav Nad, and Martin Schläffer. Finding SHA-2 charac-
teristics: Searching through a minefield of contradictions. In Dong Hoon Lee



138 Automating Collision Attacks on RIPEMD-160

and Xiaoyun Wang, editors, Advances in Cryptology - ASIACRYPT 2011 -
17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceed-
ings, volume 7073 of Lecture Notes in Computer Science, pages 288–307.
Springer, 2011.

[MNS12] Florian Mendel, Tomislav Nad, and Martin Schläffer. Collision attacks on
the reduced dual-stream hash function RIPEMD-128. In Anne Canteaut,
editor, Fast Software Encryption - 19th International Workshop, FSE 2012,
Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, volume
7549 of Lecture Notes in Computer Science, pages 226–243. Springer, 2012.

[MNS13] Florian Mendel, Tomislav Nad, and Martin Schläffer. Improving local colli-
sions: New attacks on reduced SHA-256. In Thomas Johansson and Phong Q.
Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of
Lecture Notes in Computer Science, pages 262–278. Springer, 2013.

[MNSS12] Florian Mendel, Tomislav Nad, Stefan Scherz, and Martin Schläffer. Differ-
ential attacks on reduced RIPEMD-160. In Dieter Gollmann and Felix C.
Freiling, editors, Information Security - 15th International Conference, ISC
2012, Passau, Germany, September 19-21, 2012. Proceedings, volume 7483 of
Lecture Notes in Computer Science, pages 23–38. Springer, 2012.

[MPS+13] Florian Mendel, Thomas Peyrin, Martin Schläffer, Lei Wang, and Shuang
Wu. Improved cryptanalysis of reduced RIPEMD-160. In Kazue Sako and
Palash Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013 - 19th
International Conference on the Theory and Application of Cryptology and
Information Security, Bengaluru, India, December 1-5, 2013, Proceedings,
Part II, volume 8270 of Lecture Notes in Computer Science, pages 484–503.
Springer, 2013.

[MZ06] Ilya Mironov and Lintao Zhang. Applications of SAT solvers to cryptanalysis
of hash functions. In SAT, volume 4121 of Lecture Notes in Computer Science,
pages 102–115. Springer, 2006.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full SHA-1. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Science,
pages 570–596. Springer, 2017.

[WLC+20] Gaoli Wang, Fukang Liu, Binbin Cui, Florian Mendel, and Christoph Dobrau-
nig. Improved (semi-free-start/near-) collision and distinguishing attacks on
round-reduced RIPEMD-160. Des. Codes Cryptogr., 88(5):887–930, 2020.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the hash functions MD4 and RIPEMD. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2005.



Yingxin Li, Fukang Liu and Gaoli Wang 139

[WS14] Gaoli Wang and Yanzhao Shen. (pseudo-) preimage attacks on step-reduced
HAS-160 and RIPEMD-160. In Sherman S. M. Chow, Jan Camenisch, Lucas
Chi Kwong Hui, and Siu-Ming Yiu, editors, Information Security - 17th
International Conference, ISC 2014, Hong Kong, China, October 12-14, 2014.
Proceedings, volume 8783 of Lecture Notes in Computer Science, pages 90–103.
Springer, 2014.

[WSL17] Gaoli Wang, Yanzhao Shen, and Fukang Liu. Cryptanalysis of 48-step
RIPEMD-160. IACR Trans. Symmetric Cryptol., 2017(2):177–202, 2017.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings,
volume 3494 of Lecture Notes in Computer Science, pages 19–35. Springer,
2005.

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005:
25th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in
Computer Science, pages 17–36. Springer, 2005.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search
attacks on SHA-0. In Victor Shoup, editor, Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture
Notes in Computer Science, pages 1–16. Springer, 2005.

A Additional Conditions for Differential Characteristic
The conditions on (LQi, RQi) are given in Table 15, Table 16, and Table 17, respectively.



140 Automating Collision Attacks on RIPEMD-160

Table 15: Some extra conditions for the 41-step differential characteristic

Conditions on LQi and RQi:
(LQi ⊞ inl

i)≪sl
i = LQi

≪sl
i ⊞ outl

i

(RQi ⊞ inr
i )≪sr

i = RQi
≪sr

i ⊞ outr
i

i inl
i outl

i πi
l si

l i inr
i outr

i πi
r si

r

0 0x0 0x0 0 11 0 0x0 0x0 5 8
1 0x0 0x0 1 14 1 0x0 0x0 14 9
2 0x0 0x0 2 15 2 0x0 0x0 7 9
3 0x0 0x0 3 12 3 0x0 0x0 0 11
4 0x0 0x0 4 5 4 0x0 0x0 9 13
5 0x0 0x0 5 8 5 0x0 0x0 2 15
6 0x0 0x0 6 7 6 0x0 0x0 11 15
7 0x0 0x0 7 9 7 0x0 0x0 4 5
8 0x0 0x0 8 11 8 0x0 0x0 13 7
9 0x0 0x0 9 13 9 0x0 0x0 6 7
10 0x0 0x0 10 14 10 0x0 0x0 15 8
11 0x1 0x0 11 15 11 0x0 0x0 8 11
12 0x8000 0x200000 12 6 12 0x0 0x0 1 14
13 0x200000 0x10000000 13 7 13 0x0 0x0 10 14
14 0xf0200000 0x3fffffe0 14 9 14 0x0 0x0 3 12
15 0xefffffe0 0xffffdff0 15 8 15 0x8000 0x200000 12 6
16 0x0 0x0 7 7 16 0x0 0x0 6 9
17 0x0 0x0 4 6 17 0x0 0x0 11 13
18 0x80 0x8000 13 8 18 0x0 0x0 3 15
19 0xffff8000 0xf0000000 1 13 19 0x0 0x0 7 7
20 0x0 0x0 10 11 20 0x0 0x0 0 12
21 0x0 0x0 6 9 21 0x0 0x0 13 8
22 0x0 0x0 15 7 22 0x0 0x0 5 9
23 0x40000 0x2 3 15 23 0x0 0x0 10 11
24 0x7fbe 0x3fdf00 12 7 24 0x0 0x0 14 7
25 0x0 0x0 0 12 25 0x0 0x0 15 7
26 0xffffe000 0xf0000000 9 15 26 0x0 0x0 8 12
27 0x14000001 0x228 5 9 27 0x8000 0x400000 12 7
28 0x3a5884 0xd2c42002 2 11 28 0x0 0x0 4 6
29 0x2ff7cc04 0xfbe60218 14 7 29 0x0 0x0 9 15
30 0xf6002000 0x3fffec0 11 13 30 0x0 0x0 1 13
31 0xfde04f6f 0x4f6efde 8 12 31 0x0 0x0 2 11
32 0x8edff10e 0xff886c77 3 11 32 0x0 0x0 15 9
33 0x7c8fb7 0x91f6e010 10 13 33 0x0 0x0 5 7
34 0xc0009bec 0x26faf0 14 6 34 0x80 0x400000 1 15
35 0xd8080110 0x40087ec 4 7 35 0x0 0x0 3 11
36 0xffff784c 0xde130000 9 14 36 0x0 0x0 7 8
37 0xac010000 0x1ffff58 15 9 37 0x1 0x40 14 6
38 0xfe03c0a0 0x7813ffc0 8 13 38 0x20000 0x800000 6 6
39 0x77ec0000 0x3bf6 1 15 39 0x0 0x0 9 14
40 0xffffc008 0xf0020000 2 14 40 0xffff0000 0xf0000000 11 12



Yingxin Li, Fukang Liu and Gaoli Wang 141

Table 16: Some extra conditions for the 42-step differential characteristic

Conditions on LQi and RQi:
(LQi ⊞ inl

i)≪sl
i = LQi

≪sl
i ⊞ outl

i

(RQi ⊞ inr
i )≪sr

i = RQi
≪sr

i ⊞ outr
i

i inl
i outl

i πi
l si

l i inr
i outr

i πi
r si

r

0 0x0 0x0 0 11 0 0x0 0x0 5 8
1 0x0 0x0 1 14 1 0x0 0x0 14 9
2 0x0 0x0 2 15 2 0x0 0x0 7 9
3 0x0 0x0 3 12 3 0x0 0x0 0 11
4 0x0 0x0 4 5 4 0x0 0x0 9 13
5 0x0 0x0 5 8 5 0x0 0x0 2 15
6 0x0 0x0 6 7 6 0x0 0x0 11 15
7 0x0 0x0 7 9 7 0x0 0x0 4 5
8 0x0 0x0 8 11 8 0x0 0x0 13 7
9 0x0 0x0 9 13 9 0x0 0x0 6 7
10 0x0 0x0 10 14 10 0x0 0x0 15 8
11 0x1 0x0 11 15 11 0x0 0x0 8 11
12 0x8000 0x200000 12 6 12 0x0 0x0 1 14
13 0xffe00000 0xf0000000 13 7 13 0x0 0x0 10 14
14 0x10200000 0x40000020 14 9 14 0x0 0x0 3 12
15 0x10000020 0x2010 15 8 15 0x8000 0x200000 12 6
16 0x0 0x0 7 7 16 0x0 0x0 6 9
17 0x0 0x0 4 6 17 0x0 0x0 11 13
18 0xffffff80 0xffff8000 13 8 18 0x0 0x0 3 15
19 0x8000 0x10000000 1 13 19 0x0 0x0 7 7
20 0x0 0x0 10 11 20 0x0 0x0 0 12
21 0x0 0x0 6 9 21 0x0 0x0 13 8
22 0x0 0x0 15 7 22 0x0 0x0 5 9
23 0x0 0x0 3 15 23 0x0 0x0 10 11
24 0x8000 0x400000 12 7 24 0x0 0x0 14 7
25 0x0 0x0 0 12 25 0x0 0x0 15 7
26 0x0 0x0 9 15 26 0x0 0x0 8 12
27 0xf0000001 0x1e0 5 9 27 0x8000 0x400000 12 7
28 0x10060fe8 0x307f4080 2 11 28 0x0 0x0 4 6
29 0xfe7140c0 0x38a05fff 14 7 29 0x0 0x0 9 15
30 0x8a008000 0xffff140 11 13 30 0x0 0x0 1 13
31 0xfc024d7b 0x24d7afc0 8 12 31 0x0 0x0 2 11
32 0x77b845e2 0xc22f0bbe 3 11 32 0xc0000000 0xffffff80 15 9
33 0x3d0fc402 0xf88047a2 10 13 33 0x0 0x0 5 7
34 0xa83e 0x2a0f80 14 6 34 0x0 0x0 1 15
35 0xbff601ff 0xfb00ff60 4 7 35 0x20000 0x10000000 3 11
36 0x50cef00 0x3bc00143 9 14 36 0x0 0x0 7 8
37 0xbfefef9 0xfdfdf218 15 9 37 0x0 0x0 14 6
38 0x1fe08 0x3fc10000 8 13 38 0x40 0x1000 6 6
39 0xc0400000 0xffffe020 1 15 39 0x8000000 0x200 9 14
40 0x1fd8 0x7f60000 2 14 40 0x0 0x0 11 12
41 0x8080000 0x8000008 7 8 41 0x400000 0x8 8 13



142 Automating Collision Attacks on RIPEMD-160

Table 17: Some extra conditions for the 43-step differential characteristic

Conditions on LQi and RQi:
(LQi ⊞ inl

i)≪sl
i = LQi

≪sl
i ⊞ outl

i

(RQi ⊞ inr
i )≪sr

i = RQi
≪sr

i ⊞ outr
i

i inl
i outl

i πi
l si

l i inr
i outr

i πi
r si

r

0 0x0 0x0 0 11 0 0x0 0x0 5 8
1 0x0 0x0 1 14 1 0x0 0x0 14 9
2 0x0 0x0 2 15 2 0x0 0x0 7 9
3 0x0 0x0 3 12 3 0x0 0x0 0 11
4 0x0 0x0 4 5 4 0x0 0x0 9 13
5 0x0 0x0 5 8 5 0x0 0x0 2 15
6 0x0 0x0 6 7 6 0x0 0x0 11 15
7 0x0 0x0 7 9 7 0x0 0x0 4 5
8 0x0 0x0 8 11 8 0x0 0x0 13 7
9 0x0 0x0 9 13 9 0x0 0x0 6 7
10 0x0 0x0 10 14 10 0x0 0x0 15 8
11 0x0 0x0 11 15 11 0x0 0x0 8 11
12 0x8000 0x200000 12 6 12 0x0 0x0 1 14
13 0x200000 0x10000000 13 7 13 0x0 0x0 10 14
14 0xf0200000 0x3fffffe0 14 9 14 0x0 0x0 3 12
15 0xfffffe0 0xffffe010 15 8 15 0x8000 0x200000 12 6
16 0x0 0x0 7 7 16 0x0 0x0 6 9
17 0x0 0x0 4 6 17 0x0 0x0 11 13
18 0x80 0x8000 13 8 18 0x0 0x0 3 15
19 0xffff8000 0xf0000000 1 13 19 0x0 0x0 7 7
20 0x0 0x0 10 11 20 0x0 0x0 0 12
21 0x4000 0x800000 6 9 21 0x0 0x0 13 8
22 0x0 0x0 15 7 22 0x0 0x0 5 9
23 0x840000 0x42 3 15 23 0x0 0x0 10 11
24 0x7fc0 0x3fe000 12 7 24 0x0 0x0 14 7
25 0x0 0x0 0 12 25 0x0 0x0 15 7
26 0xffffe000 0xf0000000 9 15 26 0x0 0x0 8 12
27 0x14000003 0x628 5 9 27 0x8000 0x400000 12 7
28 0xfd61b718 0xdb8bfeb 2 11 28 0x0 0x0 4 6
29 0xd97c26f9 0xbe137c6d 14 7 29 0x0 0x0 9 15
30 0x20848f8 0x91f0041 11 13 30 0x0 0x0 1 13
31 0xbfefee75 0xfee74bff 8 12 31 0x0 0x0 2 11
32 0xf1439f08 0x1cf83f8a 3 11 32 0xc0000000 0xffffff80 15 9
33 0x66feaf50 0xd5ea0ce0 10 13 33 0x0 0x0 5 7
34 0x5201f34d 0x807cd354 14 6 34 0x80 0x400000 1 15
35 0x98402844 0x201421cc 4 7 35 0x0 0x0 3 11
36 0xeff48144 0x2050fbfd 9 14 36 0x0 0x0 7 8
37 0xb8090451 0x1208a170 15 9 37 0xffffffff 0xffffffc0 14 6
38 0x684311 0x862200d 8 13 38 0x20000 0x800000 6 6
39 0xbefdddf2 0xeef8df7f 1 15 39 0x0 0x0 9 14
40 0x2fff2088 0xc8220c00 2 14 40 0xffff0000 0xf0000000 11 12
41 0x37dff800 0xdff80038 7 8 41 0x402 0x804000 8 13
42 0x2007fc06 0xff80c401 0 13 42 0xf8000000 0xffffffff 12 5


	Introduction
	Preliminaries
	Notations
	Description of RIPEMD-160

	Finding RIPEMD-160 Differential Characteristics
	The Automatic Method in DBLP:conf/eurocrypt/LiuWSAMLI23

	New Collision Attacks on RIPEMD-160
	Choosing New Message Differences
	Finding the 40-Step Differential Characteristic
	Finding Conforming Message Pairs

	Improved SFS Collision Attacks on RIPEMD-160
	Finding New Differential Characteristic for SFS Collision Attacks
	The General Message Modification Technique
	Evaluating the Time Complexity
	Application to 41/42/43-Step Differential Characteristics

	Conclusion
	Additional Conditions for Differential Characteristic

