
Improved Fast Correlation Attacks on the Sosemanuk
Stream Cipher

Bin Zhang, Ruitao Liu, Xinxin Gong and Lin Jiao

Chinese Academy of Sciences & State Key Laboratory of Cryptology

Leuven, FSE 2024
29-03-2024



Outline

1 Motivation and Contribution

2 Correlation Attacks, Linear Cryptanalysis and Solving LPN

3 New Algorithmic Procedures

4 Application to Sosemanuk

5 Conclusions



Background

The European eSTREAM project, a multi-year effort running from
2004 to 2008, has a sustaining effect on the design and analysis of
modern stream ciphers, which provides some typical design paradigms

NFSR(nonlinear feedback shift register)-based: Grain v1 and Trivium

ARX-based: Salsa20/12, Rabbit

LFSR+FSM: Sosemanuk which combines SNOW 2.0 with Serpent
block cipher

The conclusion from the eSTREAM final report on Sosemanuk is that
it offers a very considerable margin for security as well as reasonable
performance trade-offs



Motivation

Correlation attack is a classical cryptanalysis method for LFSR-based
stream ciphers

Fast correlation attacks (FCA) speeds up the exhaustive search of the
involved LFSR state by some decoding algorithm from coding theory

Sosemanuk follows the LFSR + FSM design strategy of the SNOW
family of stream ciphers, thus a natural target to try FCA

Huge efforts have been made to cryptanalyze Sosemanuk since 2004,
e.g., Guess-and-determine attacks, Time/Memory/Data Tradeoff
attacks, Correlation attacks and linear cryptanalysis, → almost 20
years of work



Motivation

Given the correlation of the found linear approximation
p = 1

2 + 2−21.41 and the number of binary variables l = 320, the
information-theoretical bound of the complexity for any attack aiming
at the 320-bit entropy in the LFSR initial state is

4 · l · ln 2
1−H(p)

.
= 251.08,

where H(x) = −x · log(x)− (1− x) · log(1− x) is the binary entropy
function. The gap between the theoretical value 251.08 and the
cryptanalysis practice on Sosemanuk 2154 is huge and a natural
problem is whether we could narrow the gap by some improved
algorithm ?



Our Contributions

An improved algorithm for fast correlation attacks on stream ciphers
is proposed with new algorithmic procedures

Make the distribution transform to convert the distribution of the
LFSR initial state from uniform to the same biased distribution as
that of the found linear approximation by Gauss elimination, together
with BKW reduction to substitute the previous algorithm based on
generalized birthday problem and code-reduction to reduce the secret
dimension

Study the security of Sosemanuk by the newly developed algorithm,
launch a new state recovery attack with a time complexity of around
2134.8, which is about 220 times faster than the best previously known
results at Asiacrypt 2008 and the fastest attack among all known
attacks on Sosemanuk so far



Linear Codes

Definition

A [n, k, d] linear code C over GF(2) is a subspace with dimension k of the
vector space GF(2)n, where n is the codeword length, k is the dimension
of information bits and d is the minimum distance between any two
codewords or the minimum weight of a non-zero codeword in C,
sometimes we refer to a [n, k] linear code for simplicity.

A [n, k] linear code C is usually described by its generator matrix
Gk×n =

(
g0, . . . , gn−1

)
with gi (0 ≤ i ≤ n− 1) being the k × 1 column

vector of G as

x = (x0, x1, . . . , xn−1) = m ·Gk×n =
(
⟨m,g0⟩, . . . , ⟨m,gn−1⟩

)
,



Correlation Attacks

Correlation attacks usually exploit the correlation between the
keystream and the linear combinations of several LFSR sequences.

The core problem is regarded as the decoding of a low-rate linear
block code transmitted through a binary channel, usually symmetric
(BSC), as depicted in the Figure below



Correlation Attacks

The starting point is to look at the generator matrix G of the LFSR
[N, k] linear code, where N is the length of the codeword and k is the
dimension of the information, i.e., the LFSR length. Let
u = (u0, u1, · · · , uN−1), then we have

u = (u0, u1, · · · , uk−1) ·G (1)

= (u0, u1, · · · , uk−1) · [g0,g1, · · · ,gN−1]



Correlation Attacks

Regard the column vectors gi as random vectors over GF(2)k,
construct the parity-checks by

v−1⊕
j=0

uij = (u0, u1, · · · , uk−1) ·
v−1⊕
j=0

gij =

k1−1⊕
j=0

cjuj ,

Note that the above procedure is similar to the BKW collision in LPN
solvers, and the new noise variable is e =

⊕v−1
j=0 eij with a bias ϵv

when Pr{eij = 0} = 1
2(1 + ϵ)



Linear Cryptanalysis

Linear cryptanalysis (LC) is a known-plaintext attack proposed by
Matsui in 1993 to break DES, but can be seen as a more generic and
closely related method to correlation attacks in symmetric key
cryptanalysis

LC looks for bitwise linear approximations of the nonlinear
components with a deviation from 1

2 as much as possible and connect
them together to build some probabilistic linear equations between
several input/output bits and the key material

The key recovery routine in LC is unnecessarily be confined to the
above algorithmic routine. In general, we can loose the restrictions
and to establish a probabilistic linear system with the involved key as
variables



Covering Codes

Definition

For linear codes C1 = [n1, k1, d1] and C2 = [n2, k2, d2], the direct sum of
C1 and C2 is defined as C1 ∔ C2 = {(x1,x2)|x1 ∈ C1,x2 ∈ C2}. We have
C1∔ C2 is a new [n1+n2, k1+ k2] linear code with radius ⌊d1−1

2 ⌋+ ⌊
d2−1
2 ⌋.

From Definition 2, the direct sum of two known codes is a new linear code
constructed by concatenation, whose basic coding attribute can be
determined accordingly.

Definition

Some code C is a covering code if each vector in the vector space GF (2)n

is within the covering radius R(C) distance to some codeword x in C.

The technique of covering codes plays an important role in the
cryptographic hash function domain for memoryless near collision
detecting and for solving LPN, whose definition is as follows.



Solving LPN: Informal Definition

The LPN problem is believed to be hard even given quantum
computers, though no formal reduction from hard lattice problems
exists unlike the case of Learning with Errors (LWE) problem

The search LPN problem is as follows.

Definition : For a secret vector s ∈ GF(2)k, the adversary is given
many pairs of the form (g, ⟨s, g⟩ ⊕ e), where g ∈ GF(2)k is randomly
generated and e← Berη, the task of the adversary is to recover s
from the many given pairs.

FCA, LC and LPN solvers share the same mathematical model, and
thus we could consider and exploit the links to get improved results



Solving LPN: Gauss Elimination

Gauss Elimination : As in the LPN solvers, Gauss elimination can be
adopted here to transform the distribution of the secret
(u0, u1, · · · , uk−1) into the same distribution as that of the noise
variables ei.



Solving LPN: BKW Collision-reduction

BKW Collision-reduction : The BKW collision-reduction algorithm
is shown in Algorithm 1 below

Algorithm 1 BKW Reduction
Input: The matrix G0 = G = [g0, g1, . . . , gn−1], the parameters t and b
Online: Reduction phase in BKW algorithm
1: for i = 1 to t do
2: Partition the columns of Gi−1 according to the last b · i bits

Form pairs of the columns in each partition to obtain Gi

2a: LF1. Partition Gi−1 = V0 ∪ V1 ∪ · · · ∪ V2b−1.
Randomly choose v∗ ∈ Vj as the representative.
For v ∈ Vj ,v ̸= v∗, Gi = Gi ∪ (v ⊕ v∗)

2b: LF2. Partition Gi−1 = V0 ∪ V1 ∪ · · · ∪ V2b−1.
For each pair (v,v′) ∈ Vj ,v ̸= v′, Gi = Gi ∪ (v ⊕ v′)

Output: The matrix Gt



Solving LPN: Code-reduction

Code-reduction : Another algorithmic procedure is the
code-reduction that reduces the dimension of the secret information
without having the piling-up lemma penalty of the folded noise.

Gt = [I
(t)
k1×k1

, A
(t)
k1×(N1−k1)

] = [I
(t)
k1×k1

, g
(t)
k1+1, . . . , g

(t)
N1−1] (2)

= [I
(t)
k1×k1

, ck1+1 ⊕ ēk1+1, . . . , cN1−1 ⊕ ēN1−1],

We have

ẑ = û ·G⊕ e

= û · [Ik1×k1 , ck1+1 ⊕ ēk1+1, . . . , cN1−1 ⊕ ēN1−1]⊕ e,



Construct parity-check equations

Look for some t-tuple column vectors (gi0 ,gi1 , . . . ,git−1) such that

t−1⊕
j=0

ûij = (û0, û1, · · · , ûk−1) ·
t−1⊕
j=0

gij =

k1−1⊕
j=0

cj ûj ⊕
1⊕

j=v

ck−j ûk−j ,

where
⊕t−1

j=0 gij = (c0, c1, · · · , ck1−1, 0, · · · , 0, ∗, . . . , ∗︸ ︷︷ ︸
v

)t with ∗ being

an arbitrary value in GF(2) and k1 < k − v.



Construct parity-check equations

Accordingly, we have

t−1⊕
j=0

ẑij = (û0, û1, · · · , ûk−1) ·
t−1⊕
j=0

gij ⊕
t−1⊕
j=0

eij

=

k1−1⊕
j=0

cj ûj ⊕
1⊕

j=v

ck−j ûk−j ⊕
t−1⊕
j=0

eij ,

where Pr{
⊕t−1

j=0 eij = 0} = 1
2 (1 + ϵt).

To simplify the notations, let z′i =
⊕t−1

j=0 ẑij ⊕
⊕1

j=v ck−j ûk−j ,

g′
i =

⊕t−1
j=0 gij the truncated k1 × 1 column vector and e′i =

⊕t−1
j=0 eij and

taking the form of g′
i into account, we have

z′i = (û0, û1, · · · , ûk1−1) · g′
i ⊕ e′i,



Code reduction

Our aim is to construct a [k1, kc] linear code K with covering radius
dc to regroup the columns in G′, i.e., express g′

i = ci ⊕ ēi where
ci ∈ K is the nearest codeword to the random column vector g′

i



Code reduction

It is well-known that there is a very limited types of perfect codes in
binary domain, which is listed in the following table

Table: All the binary perfect codes with their codeword/information length and
the covering radius

Code Codeword Information Covering radius

Hamming 2i − 1 2i − i− 1 1

Repetition 2i+ 1 1 i

Golay 23 12 3

{0}i i 0 i

{0, 1}i i i 0



Code reduction

Algorithm 3 Computing Pr{ēti,j = 1} for a fixed position t

Parameter: [nj , k
′
j , dj ] code Cj with its parity-check matrix H, t

1: Initialize the array A[nj ] = {0}
2: for each 0 ≤ x ≤ 2nj − 1 do
3: compute the syndrome H · xt

4: decode x into the nearest codeword cx by syndrome-decoding
5: A[x] = x⊕ cx
6: Initialize a counter c = 0
7: for each 0 ≤ x ≤ 2nj − 1 do
8: if A[x]t = 1 then c← c+ 1
Output: Pr{ēti,j = 1} = c

2nj



Code reduction

We found that for a [2i − 1, 2i − i− 1, 3] Hamming code,
Pr{ēti,j = 1} = 1

2i
for 1 ≤ t ≤ 2i − 1; for the [23, 12, 7] Golay code

and each t-th coordinate in the error vector, Pr{ēti,j = 1} = 127
1024 ; for

a repetition code, the relevant value shown in the following table

Table: Coordinate distribution in the error vector of the Repetition Codes

Repetition Codes

i 2 3 4 5 6 7 8

Pr{ēti,j = 1} 5
16

11
32

95
256

193
512

793
2048

1619
4096

26333
65536



Code reduction

The optimal configuration of the direct sum is equivalent to the
maximized solution of

max
∑

i:2i−1≤k1
2i−i−1≤kc

λi
Hamming log ϵ

i
Hamming +

∑
i:2i+1≤k1

λi
Repet log ϵ

i
Repet

+λGolay log ϵGolay + λ{0}i log ϵ{0}i + λ{0,1}i log ϵ{0,1}i

under the constraint of



∑
i:2i−1≤k1
2i−i−1≤kc

(2i − 1)λi
Hamming +

∑
i:2i+1≤k1

(2i + 1)λi
Repet + 23λGolay + λ{0}i + λ{0,1}i = k1

∑
i:2i−1≤k1
2i−i−1≤kc

(2i − i − 1)λi
Hamming +

∑
i:2i+1≤k1

λi
Repet + 12λGolay + λ{0,1}i = kc



New Framework of FCA

Algorithm 2 Improved FCA
Input: A keystream z = (z0, z1, . . . , zk−1, zk, . . . , zN−1)
Online: Recover (partial) LFSR initial state which is consistent with z
1: Apply Gauss elimination to derive the equivalent model
2: Select a dimension reduction strategy from Section 4 and

build a new linear code accordingly
3: Decode the new code via FWHT
Output: The partial LFSR initial state involved in the new code



Complexity Analysis

Theorem

Let εg, εc be the correlations introduced in the BKW collision-reduction
and the code-reduction procedure, respectively. Denote εf = εg · εc, then
Algorithm 2 has the following complexities.

- The time complexity of one-round BKW collision-reduction is
O(N + (4·k1·ln 2

ε2
) · (k + 1− b)).

- The online decoding time complexity for recovering the kc-bit part of

the LFSR initial state is O
(

4·kc·ln 2
ε2f

+ kc2
kc

)
. The other bits in the

LFSR initial state can be recovered similarly with a much lower
complexity.

- The required length N of the observed keystream segment for
Algorithm 2 to have a non-negligible success probability higher than

0.5 has to satisfy the relation mv =
(
N/2b

2

)
· 2b = 4·kc·ln 2

ε2f
.



Brief Description of the Sosemanuk Stream Cipher



Application to the Sosemanuk Stream Cipher

The FSM state at time t is denoted by (R1t, R2t). The FSM is
updated as follows.

R1t = R2t−1 ⊞ (st+1 ⊕ lsb(R1t−1)st+8),
R2t = Trans(R1t−1) = (M× R1t−1)

≪7,

It is a 2-round approximation of the FSM i.e.

⟨Γ, ft⟩ ⊕ ⟨Γ, R2t⟩ = ⟨Γ, st+9⟩ ⊕ ⟨Γ, R2t+1⟩,
⟨Λ, ft+1⟩ ⊕ ⟨Λ, R2t+1⟩ = ⟨Λ, st+10⟩ ⊕ ⟨Λ, R2t⟩ ⊕ ⟨Λ, st+2⟩ ⊕ ⟨Λat, st+9⟩,

where at = lsb(R1t) and Γ,Λ ∈ GF(2)32 are the corresponding linear
masks.

When Γ = Λ = 0x03004001, the best found linear approximation is
of the correlation 2−21.41,

⟨Γ, zt⟩ ⊕ ⟨Γ, zt+3⟩ = ⟨Γ, st⟩ ⊕ ⟨Γ, st+2⟩ ⊕ ⟨Γ, st+3⟩ ⊕ ⟨Γ, st+10⟩.



Application to Sosemanuk

Adopt the table-based strategy to save the sum of 2 columns, each of
which has f dimensions. The n-dimensional xor is divided into ⌈nf ⌉
parts, and store a table of all possible xors of the f -dimensional
vectors and read it up to ⌈nf ⌉ times.



Application to Sosemanuk

Construct a covering code with the parameters n = 185, l = 127 that
have



∑
i:2i−1≤185

2i−i−1≤127

(2i − 1)λi
Hamming +

∑
i:2i+1≤185

(2i + 1)λi
Repet + 23λGolay + λ{0}i + λ{0,1}i = 185

∑
i:2i−1≤185

2i−i−1≤127

(2i − i − 1)λi
Hamming +

∑
i:2i+1≤185

λi
Repet + 12λGolay + λ{0,1}i = 127

we can construct a [185, 127] linear code

C = 2 · H4 ∔ H6 ∔ 4 · G



Application to Sosemanuk

The bias introduced in the covering code phase is:

εc = bias(15, 11, 1, 1
16

)2 · bias(63, 57, 1, 1
64

) · bias(23, 12, 3, 127
1024

)4

=

 ∑
0≤i≤1

i & 0x1=1

(
15
i

) (
1
16

)i
·
(

15
16

)15−i


2

·

 ∑
0≤i≤1

i & 0x1=1

(
63
i

) (
1
64

)i
·
(

63
64

)63−i


·

 ∑
0≤i≤3

i & 0x1=1

(
23
i

) (
127
1024

)i
·
(

897
1024

)23−i


4

= 2−19.53215483015486

we get about 4·l·ln2
ε2

= 2133.16 parity check equations and the data
complexity is N = 2135. By constructing the table, the time
complexities of pre-processing phase is
⌈n+1

f ⌉ ·
4k ln 2
ε2

+ f2f−1(2f − 2) = 2134.798 and the computational

complexity of the online decoding phase is 4l ln 2
ε2

+ l2l = 2134.634



Conclusions

Present a new framework for fast correlation attack on stream ciphers
with the integrated algorithmic procedures Gauss elimination, BKW
collision reduction and code-reduction

Improved cryptanalysis results on Sosemanuk with a time complexity
of 2134.8 which is 220 times faster than achievable before by FCA with
much less data complexity and is the fastest one among all known
attacks so far, which is experimentally verified on the essential
covering code step and on the reduced version of Sosemanuk

Our results indicate that the security margin of Sosemanuk is around
28 for the 128-bit security for the first time, somewhat contrary to the
conclusion of the European eSTREAM final report in 2008



Thank you!

Q & A


	Motivation and Contribution
	Correlation Attacks, Linear Cryptanalysis and Solving LPN
	New Algorithmic Procedures
	Application to Sosemanuk
	Conclusions

