Revisiting Yoyo Tricks on AES

Sandip Kumar Mondal, Mostafizar Rahman, Santanu Sarkar and Avishek Adhikari

Department of Pure Mathematics, University of Calcutta, Kolkata, FSE 2024

25th March, 2024

Revisiting Yoyo Tricks on AES

イロト イボト イヨト イヨト

э

Content

- Introduction
- Description of AES-128
- Distinguishing Game
- Yoyo Game on Substitution-Permutation Networks
- Revisiting Yoyo Attack on 5-round AES
- Revisiting Yoyo Attack on 6-round AES
- Results
- Conclusion

э

ヨト イヨト

Introduction

- At Asiacrypt 2017, Rønjom et al. presented key-independent distinguishers for different numbers of rounds of AES, ranging from 3 to 6 rounds, in their work titled "Yoyo Tricks with AES".
- The reported data complexities for these distinguishers were 3, 4, $2^{25.8}$, and $2^{122.83}$, respectively.
- In this work, we revisit those key-independent distinguishers and analyze their success probabilities.

イロト イヨト イヨト ・

Description of AES-128

- **SubBytes** (*SB*): This function replaces each byte in the state with a new byte, using an 8-bit Sbox table.
- ShiftRows (SR): This function cyclically shifts each row of the state by a different amount. In general, the *i*-th row of the state is rotated left by *i* bytes (for 0 ≤ *i* ≤ 3).
- **MixColumns** (*MC*): This function mixes the columns of the state using a linear transformation.
- AddRoundKey (ARK): This function adds the round subkey (generated from the secret key) to the state.

Figure: AES 128

イロト イヨト イヨト ・

Distinguishing Game: Distinguishing Oracles \mathcal{O}_0 and \mathcal{O}_1

 \mathbf{Adv} wins if b' = b

 x_i :i-th query, y_i :i-th response. After the query-response phase, **Adv** submits a bit b'

Success Probability of Adv: $SP_{\mathcal{O}_0,\mathcal{O}_1}(\mathsf{Adv}) = Pr[A^{\mathcal{O}_b} = b]$

			E 900
Sandip Kumar Mondal	Revisiting Yoyo Tricks on AES	25th March, 2024	5 / 27

Some Definitions

Definition

Zero Difference Pattern: Let $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \in \mathbb{F}_q^n$. Define $\nu(\alpha) = (z_0, z_1, \dots, z_{n-1}) \in \mathbb{F}_2^n$ where $z_i = 1$ if $\alpha_i = 0$ and $z_i = 0$ otherwise. Then $\nu(\alpha)$ is the Zero Difference Pattern for α .

For example if $\alpha = (0x12a4b534, 0x0000000, 0x0000000, 0x86af31bc) \in \mathbb{F}_{2^{32}}^4$ then $\nu(\alpha) = (0,1,1,0).$ Here $wt(\nu(\alpha)) = 2.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some Definitions

Definition

For a vector $v \in \mathbb{F}_2^n$ and a pair of states $\alpha, \beta \in \mathbb{F}_q^n$ define a new state $\rho^v(\alpha, \beta) \in \mathbb{F}_q^n$ such that the *i*-th component is defined by

$$ho^{\mathsf{v}}(lpha,eta)_i = egin{cases} lpha_i, & ext{if } \mathsf{v}_i = 1 \ eta_i, & ext{if } \mathsf{v}_i = \mathsf{0}. \end{cases}$$

For example, if we take $v = (0, 1, 0, 1) \in \mathbb{F}_2^4$ and if $\alpha = (\alpha_0, \alpha_1, \alpha_2, \alpha_3)$ and $\beta = (\beta_0, \beta_1, \beta_2, \beta_3)$ then $\rho^v(\alpha, \beta) = (\beta_0, \alpha_1, \beta_2, \alpha_3)$ and $\rho^v(\beta, \alpha) = (\alpha_0, \beta_1, \alpha_2, \beta_3)$

SIMPLESWAP

Algorithm 1: Swaps the first word where texts are different and returns one text

1 function SIMPLESWAP(x^0, x^1) $x'^0 \leftarrow x^1$ 3 for *i* from 0 to 3 do $| if x_i^0 \neq x_i^1$ then $| x_i'^0 \leftarrow x_i^0$ $| return x'^0$

3

(日)

Yoyo Game on Substitution-Permutation Networks

Reduced Round AES


```
S = SB \circ MC \circ SB
L = SR \circ MC \circ SR
Q = SR \circ MC \circ SB
R^{4} = S \circ L \circ S
R^{5} = S \circ L \circ S \circ Q
R^{6} = S \circ L \circ S \circ L \circ S
```

э

9/27

イロト 不得下 イヨト イヨト

Right Pair and Wrong Pair

- A pair p^0 , p^1 is said to be a RightPair if it satisfies some condition. Note that, this property is required to be satisfied in the intermediate round.
- A pair p^0, p^1 is considered a WrongPair if it does not meet the intermediate-round criteria.
- When the oracle is a random permutation, then every pair is supposed to be a WrongPair.
- Based on this intermediate-round property, some probabilistic property on the final output is derived to correctly detect a RightPair.

イロト 不得下 イヨト イヨト 二日

RightPair for 5-round AES

イロト イヨト イヨト

Distinguisher for 5-round AES

Algorithm 2: Distinguisher for 5-round AES

```
Input: x, y and t
  Output: 1 for the AES and -1 otherwise.
1 while i < x do
      i \leftarrow i + 1:
2
      p^{i,1}, p^{i,2} \leftarrow generate random pair with wt(\nu(p^{i,1} \oplus p^{i,2})) = 3;
3
      i \leftarrow 0, WrongPair \leftarrow False;
4
      while i < y and WrongPair = False do
5
6
          if condition not satisfied then
7
               WrongPair = True
8
      if WrongPair = False then
9
          return 1;
0
```

1 return -1;

Experimental Verification

#N	Blackbox Primitive	x	у	Detected as AES	Detected as RP	Experimental Success Probability
100	AES	2 ^{13.4}	2 ^{11.4}	100	0	0.5
100	RP	2 ^{13.4}	2 ^{11.4}	100	0	0.5

Table: Experimental results for 5-round AES when t=2. Here, #N denotes the number of experiments.

3

Discussion

イロト イヨト イヨト イヨト

Discussion

イロン イ理 とくほとう ほんし

Success Probability of Algorithm 2

$$\begin{split} \rho_{AES_5}^{x,y,t} &= 1 - (1 - (\sum_{\substack{m < t \\ m \in [0,3]}} (1 - \sum_{r \in [4-t,3-m]} \binom{4}{r} (q^{-1})^r (1 - q^{-1})^{(4-r)})^{4y} \times \kappa_m \\ &+ \sum_{\substack{m \ge t \\ m \in [0,3]}} \kappa_m))^x. \end{split}$$

where
$$\kappa_m={4 \choose m}(q^{-1})^m(1-q^{-1})^{4-m}$$
 and $q=2^8$

$$p_{\mathcal{RP}_5}^{x,y,t} = (1 - (1 - \sum_{r \in [4-t,3]} \binom{4}{r} (q^{-1})^r (1 - q^{-1})^{(4-r)})^{4y})^x.$$

イロン イヨン イヨン

Revisiting Yoyo Attack on 5-round AES

Success Probability of Algorithm 2

The success probability of Algorithm 2 is

$$\frac{p_{AES_5}^{x,y,t}+p_{\mathcal{RP}_5}^{x,y,t}}{2}.$$

<u> </u>					
Sandi	n K	umar	NЛ	onc	
Janua	P 13	unnai		one	a

э

17 / 27

イロト 不得下 イヨト イヨト

RightPair for 6-round AES

Distinguisher for 6-round AES

Algorithm 3: Distinguisher for 6-round AES

```
Input: x, y and t
  Output: 1 for the AES and -1 otherwise.
1 while i < x do
      i \leftarrow i + 1:
2
     p^{i,1}, p^{i,2} \leftarrow generate random pair with p^{i,1} \neq p^{i,2};
3
      i \leftarrow 0, WrongPair \leftarrow False;
4
      while i < y and WrongPair = False do
5
6
          if condition not satisfied then
7
              WrongPair = True
8
      if WrongPair = False then
9
          return 1;
0
1 return -1;
```

Success Probability of Algorithm 3

$$p_{AES_{6}}^{x,y,t} = 1 - (1 - (\sum_{\substack{m < t \\ m \in [0,3]}} (1 - \sum_{\substack{r \in [4-t,3-m]}} {4 \choose r} (q^{-4})^{r} (1 - q^{-4})^{(4-r)})^{2y} \times \mu_{m} + \sum_{\substack{m \ge t \\ m \in [0,3]}} \mu_{m}))^{x}.$$

where
$$\mu_m=inom{4}{m}(q^{-4})^m(1-q^{-4})^{4-m}$$
 and $q=2^8$

$$p_{\mathcal{RP}_6}^{x,y,t} = (1 - (1 - \sum_{r \in [4-t,3]} \binom{4}{r} (q^{-4})^r (1 - q^{-4})^{(4-r)})^{2y})^x.$$

3

20 / 27

イロト イヨト イヨト イヨト

Success Probability of Algorithm 3

Similar to the 5-round distinguisher, the success probability of Algorithm 3 is $x \times t = x \times t$

$$\frac{p_{AES_6}^{x,y,t}+p_{\mathcal{RP}_6}^{x,y,t}}{2}$$

イロト 不得 トイヨト イヨト 二日

Results

Results

Round	Value of X	Value of	Data Complexity	Time Complexity	Success Probability
5	2 ^{13.4}	2 ^{11.4}	2 ^{26.8}	2 ^{24.8} XOR + 2 ^{26.8} MAs	0.5
	2 ^{13.4}	2 ^{15.25}	2 ^{30.65}	2 ^{28.65} XOR + 2 ^{30.65} MAs	0.81
	2 ^{15.60}	2 ^{15.37}	2 ^{32.97}	2 ^{30.97} XOR + 2 ^{32.97} MAs	0.99
6	2 ^{61.4}	2 ^{60.4}	2 ^{123.8}	2 ^{122.8} XOR + 2 ^{123.8} MAs	0.5
	2 ^{61.4}	2 ^{65.76}	2 ^{129.15}	2 ^{128.15} XOR + 2 ^{129.15} MAs	0.50004

Table: Success probability and data complexity of Algorithm 2 and 3 for different values of x and y when t = 2.

Sandip Kumar Mondal

Average Data Complexity

25th March, 2024

イロン イ理 とく ヨン イヨン

Results

Average Data Complexity

Number of Experiments	Blackbox Cipher	Value of y	Found as AES	Found as Random	Success Probability (Theoretical)	Overall Success Probability (Experimental)	Overall Success Probability (Theoretical)
100	AES	2 ^{15.7}	61	39	0.6264		
100	RANDOM (AES20)	2 ^{15.7}	0	100	1.0	0.805	0.8132
100	RANDOM (drand48)	2 ^{15.7}	0	100	1.0		

Table: Results for 5-round distinguisher when t=2 and $x = 2^{13.4}$.

Value of y	Success Probability (When Oracle is AES)	Success Probability (When Oracle is Random Permutation)	Success Probability (Overall)
2 ^{66.12}	0.6283	0.9999	0.8141
2 ^{66.13}	0.6283	1.0	0.8141

Table: Theoretical results for 6-round distinguishers when t=2 and $x=2^{61.4}$

The average complexity for 5-round AES is $2^{26.82}$. The average complexity for 6-round AES is $2^{123.82}$

Sandip Kumar Mondal

Revisiting Yoyo Tricks on AES

25th March, 2024

= ► = • • • •

Conclusion

We would like to emphasize the significance of the success probability in cryptographic attack algorithms. It is crucial to establish the validity of these attacks by demonstrating a substantial success probability while maintaining a complexity lower than that of an exhaustive search.

25 / 27

イロト 不得 トイヨト イヨト

References

- Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo tricks with AES. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology- ASIACRYPT 2017 - 23rd International Conference on the Theory and Appli-cations of Cryptology and Information Security, Hong Kong, China, December3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in ComputerScience, pages 217–243. Springer, 2017.
- Dhiman Saha, Mostafizar Rahman, and Goutam Paul. New yoyo tricks with AES-based permutations. IACR Trans. Symmetric Cryptol., 2018(4):102–127, 2018.
- Joan Daemen and Vincent Rijmen. Plateau characteristics. IET Inf. Secur., 1(1):11–17, 2007.

イロト イヨト イヨト ・

э

Any Questions?

