## Classification of All *t*-Resilient Boolean Functions with t + 4 Variables

FSE 2024, Leuven, Belgium, March 29, 2024.

#### Shahram Rasoolzadeh Ruhr University Bochum

RUHR UNIVERSITÄT BOCHUM Gefördert durch DFG Deutsche Forschungsgemeinschaft



### Preliminaries

















#### Definition 1: Resilient Boolean Function [Sie84]

Let *f* to be a **balanced** Boolean function:

f is t-resilient  $\Leftrightarrow$   $\widehat{f}(u) = 0 \quad \forall u \text{ with } hw(u) \leq t$ .





#### Definition 1: Resilient Boolean Function [Sie84]

Let *f* to be a **balanced** Boolean function:

$$f \text{ is } t\text{-resilient} \iff \widehat{f}(u) = 0 \quad \forall u \text{ with } hw(u) \leq t$$
.  
Walsh Transform:  $\widehat{f}(u) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus \langle x, u \rangle}$ 

#### Equivalence Relation



#### Definition 2: Extended Variable-Permutation Equivalence

Let f and g to be two Boolean functions:

$$f \sim g \qquad \Leftrightarrow \qquad \forall x \in \mathbb{F}_2^n, \ g(x) = f \circ P(x \oplus a) \oplus b$$

with P, a mapping corresponding to a permutation of n variables, and  $a \in \mathbb{F}_2^n$ ,  $b \in \mathbb{F}_2$ .

#### Equivalence Relation



#### Definition 2: Extended Variable-Permutation Equivalence

Let f and g to be two Boolean functions:

$$f \sim g \qquad \Leftrightarrow \qquad \forall x \in \mathbb{F}_2^n, \ g(x) = f \circ P(x \oplus a) \oplus b$$

with P, a mapping corresponding to a permutation of n variables, and  $a \in \mathbb{F}_2^n$ ,  $b \in \mathbb{F}_2$ .

#### Definition 3: Representative Function

For each class of equivalence relation, it is the lexicographically smallest one.

#### Equivalence Relation



#### Definition 2: Extended Variable-Permutation Equivalence

Let f and g to be two Boolean functions:

$$f \sim g \qquad \Leftrightarrow \qquad \forall x \in \mathbb{F}_2^n, \ g(x) = f \circ P(x \oplus a) \oplus b$$

with P, a mapping corresponding to a permutation of n variables, and  $a \in \mathbb{F}_2^n$ ,  $b \in \mathbb{F}_2$ .

#### Definition 3: Representative Function

For each class of equivalence relation, it is the lexicographically smallest one.

#### Lemma 1:

f is t-resilient and  $f \sim g \quad \Rightarrow \quad g$  is t-resilient

#### Algebraic Degree





#### Algebraic Degree

### Lemma 2 [Sie84]:

$$f ext{ is } t ext{-resilient } \Rightarrow \quad \deg(f) = egin{cases} n-t-1 & ext{if } t < n-1 \,, \ 1 & ext{if } t = n-1 \,. \end{cases}$$





#### Lemma 2 [Sie84]:

$$f ext{ is } t ext{-resilient } \Rightarrow \quad \deg(f) = egin{cases} n-t-1 & ext{if } t < n-1 \,, \ 1 & ext{if } t = n-1 \,. \end{cases}$$

#### (n-1)-Resilient Function:

 $f(x_1,\ldots,x_n)=x_1\oplus\ldots\oplus x_n$ 

Algebraic Degree



#### Lemma 2 [Sie84]:

$$f ext{ is } t ext{-resilient } \Rightarrow \quad \deg(f) = egin{cases} n-t-1 & ext{if } t < n-1 \,, \ 1 & ext{if } t = n-1 \,. \end{cases}$$

#### (n-1)-Resilient Function:

$$f(x_1,\ldots,x_n)=x_1\oplus\ldots\oplus x_n$$

#### (n-2)-Resilient Function:

$$f(x_1,\ldots,x_n)=x_2\oplus\ldots\oplus x_n$$

### Siegenthaler's Construction [Sie84]



#### Theorem 1

Let f to be a balanced Boolean function with n + 1 variables:

$$f(x, x_{n+1}) = \overline{x_{n+1}} \cdot f_0(x) \oplus x_{n+1} \cdot f_1(x) \quad \forall x \in \mathbb{F}_2^n \text{ and } x_{n+1} \in \mathbb{F}_2.$$

### Siegenthaler's Construction [Sie84]



#### Theorem 1

Let f to be a balanced Boolean function with n + 1 variables:

$$f(x, x_{n+1}) = \overline{x_{n+1}} \cdot f_0(x) \oplus x_{n+1} \cdot f_1(x) \quad \forall x \in \mathbb{F}_2^n \text{ and } x_{n+1} \in \mathbb{F}_2.$$

f is a (t+1)-resilient if and only if

▶ both f<sub>0</sub> and f<sub>1</sub> are t-resilient functions, and

• for any  $\alpha \in \mathbb{F}_2^n$  with  $hw(\alpha) = t + 1$ ,  $\widehat{f_1}(\alpha) = -\widehat{f_0}(\alpha)$ .

### Siegenthaler's Construction [Sie84]



#### Theorem 1

Let f to be a balanced Boolean function with n + 1 variables:

$$f(x, x_{n+1}) = \overline{x_{n+1}} \cdot f_0(x) \oplus x_{n+1} \cdot f_1(x) \quad \forall x \in \mathbb{F}_2^n \text{ and } x_{n+1} \in \mathbb{F}_2.$$

f is a (t+1)-resilient if and only if

▶ both f<sub>0</sub> and f<sub>1</sub> are t-resilient functions, and

• for any  $\alpha \in \mathbb{F}_2^n$  with  $hw(\alpha) = t + 1$ ,  $\widehat{f_1}(\alpha) = -\widehat{f_0}(\alpha)$ .

#### Definition 4: Type-1 Extension

$$f_1(x) = f_0(x) \oplus 1 \quad \Rightarrow \quad f(x, x_{n+1}) = f_0(x) \oplus x_{n+1}$$

$$(n-3)$$
-Resilient Functions [CCCS91]



### (n-4)-Resilient Functions



### (n - 4)-Resilient Functions



### Theorem 2 (Tarannikov and Kirienko [TK00])

Any (n - m)-resilient n-variable representative function is in the form of  $g(x_1, \ldots, x_q) \oplus x_{q+1} \oplus \ldots \oplus x_n$  with  $q \le p(m)$ .

### (n-4)-Resilient Functions



### Theorem 2 (Tarannikov and Kirienko [TK00])

Any (n - m)-resilient n-variable representative function is in the form of  $g(x_1, \ldots, x_q) \oplus x_{q+1} \oplus \ldots \oplus x_n$  with  $q \le p(m)$ .

#### Example

$$p(3) = 4$$

### (n-4)-Resilient Functions



### Theorem 2 (Tarannikov and Kirienko [TK00])

Any (n - m)-resilient n-variable representative function is in the form of  $g(x_1, \ldots, x_q) \oplus x_{q+1} \oplus \ldots \oplus x_n$  with  $q \le p(m)$ .

#### Example

$$p(3) = 4$$

#### Tarannikov & Kirienko [TK00]

$$p(4) = 10$$

An Algorithm for Classifying (n - m)-Resilient Functions



#### Siegenthaler's Construction

$$f(x, x_{n+1}) = \overline{x_{n+1}} \cdot f_0(x) \oplus x_{n+1} \cdot f_1(x) \quad \forall x \in \mathbb{F}_2^n \text{ and } x_{n+1} \in \mathbb{F}_2$$
.



#### Siegenthaler's Construction

$$f(x, x_{n+1}) = \overline{x_{n+1}} \cdot f_0(x) \oplus x_{n+1} \cdot f_1(x) \quad \forall x \in \mathbb{F}_2^n \text{ and } x_{n+1} \in \mathbb{F}_2.$$

#### ▶ $\mathcal{R}_{n,t}$ : the set of *t*-resilient *n*-variable functions



#### Siegenthaler's Construction

$$f(x, x_{n+1}) = \overline{x_{n+1}} \cdot f_0(x) \oplus x_{n+1} \cdot f_1(x) \quad \forall x \in \mathbb{F}_2^n \text{ and } x_{n+1} \in \mathbb{F}_2.$$

- ▶  $\mathcal{R}_{n,t}$ : the set of *t*-resilient *n*-variable functions
- ▶  $\mathcal{R}_{n,t}^*$ : the set of **representative** *t*-resilient *n*-variable functions



#### Siegenthaler's Construction

$$f(x, x_{n+1}) = \overline{x_{n+1}} \cdot f_0(x) \oplus x_{n+1} \cdot f_1(x) \quad \forall x \in \mathbb{F}_2^n \text{ and } x_{n+1} \in \mathbb{F}_2.$$

- ▶  $\mathcal{R}_{n,t}$ : the set of *t*-resilient *n*-variable functions
- ▶  $\mathcal{R}_{n,t}^*$ : the set of **representative** *t*-resilient *n*-variable functions
- $\triangleright$   $\mathcal{R}_{n,t}^{\dagger}$ : the set of **non-type-1 extension representative** *t*-resilient *n*-variable functions



#### Siegenthaler's Construction

$$f(x, x_{n+1}) = \overline{x_{n+1}} \cdot f_0(x) \oplus x_{n+1} \cdot f_1(x) \quad \forall x \in \mathbb{F}_2^n \text{ and } x_{n+1} \in \mathbb{F}_2.$$

- ▶  $\mathcal{R}_{n,t}$ : the set of *t*-resilient *n*-variable functions
- $\blacktriangleright$   $\mathcal{R}_{n,t}^*$ : the set of **representative** *t*-resilient *n*-variable functions
- $\triangleright$   $\mathcal{R}_{n,t}^{\dagger}$ : the set of **non-type-1 extension representative** *t*-resilient *n*-variable functions

Computational Complexity of Building  $\mathcal{R}_{n+1,t+1}^{\dagger}$ :  $|\mathcal{R}_{n,t}|^2$ 





#### Siegenthaler's Construction

$$f(x,x_{n+1})=\overline{x_{n+1}}\cdot f_0(x)\,\oplus\, x_{n+1}\cdot f_1(x)\quad orall\, x\in\mathbb{F}_2^n ext{ and } x_{n+1}\in\mathbb{F}_2\,.$$

#### Lemma 3:

f is representative  $\Rightarrow$   $f_0$  is representative.



#### Siegenthaler's Construction

$$f(x, x_{n+1}) = \overline{x_{n+1}} \cdot f_0(x) \,\oplus\, x_{n+1} \cdot f_1(x) \quad orall \, x \in \mathbb{F}_2^n ext{ and } x_{n+1} \in \mathbb{F}_2 \,.$$

#### Lemma 3:

f is representative  $\Rightarrow$   $f_0$  is representative.

 $\Rightarrow$  Comp. Comp.:  $|\mathcal{R}_{n,t}^*| \cdot |\mathcal{R}_{n,t}|$ 



#### Siegenthaler's Construction

$$f(x, x_{n+1}) = \overline{x_{n+1}} \cdot f_0(x) \oplus x_{n+1} \cdot f_1(x) \quad \forall x \in \mathbb{F}_2^n \text{ and } x_{n+1} \in \mathbb{F}_2$$
 .

#### Lemma 3:

f is representative  $\Rightarrow$   $f_0$  is representative.

$$\Rightarrow \quad \mathsf{Comp. Comp.:} \quad |\mathcal{R}_{n,t}^*| \cdot |\mathcal{R}_{n,t}|$$

 $\Rightarrow \quad \text{Comp. Comp.:} \quad |\mathcal{R}_{n,t}^*| \cdot |\mathcal{R}_{n,t}^*| \cdot 2^{n+1} \cdot n!$ 

Classification of All t-Resilient Boolean Functions with t + 4 Variables | FSE 2024, Leuven, Belgium | March 29, 2024.

### Technique 1

Lemma 4:

### In Siegenthaler's construction:

Siegentilaler 3 construction.

 $f_0$  is a type-1 extension  $\Rightarrow f \notin \mathcal{R}_{n+1,t+1}^{\dagger}$ 

i.e., f cannot be a non-type-1 representative resilient function.



Classification of All t-Resilient Boolean Functions with t + 4 Variables | FSE 2024, Leuven, Belgium | March 29, 2024.

#### Technique 1

### Lemma 4:

In Siegenthaler's construction:

 $f_0$  is a type-1 extension  $\Rightarrow f \notin \mathcal{R}_{n+1,t+1}^{\dagger}$ 

i.e., f cannot be a non-type-1 representative resilient function.

Comp. Comp.:  $(|\mathcal{R}_{n,t}^{\dagger}| \cdot |\mathcal{R}_{n,t}^{*}|) \cdot (2^{n+1} \cdot n!)$ 





Technique 3



#### Lemma 6:

### In Siegenthaler's construction, the two functions $f_0$ and $f_1$ from $\mathcal{R}_{n,t}$ can form a function in $\mathcal{R}_{n+1,t+1}$ , if

$$\{|\widehat{f_0^*}(\alpha)| \, \big| \, \alpha \in \mathbb{F}_2^n, \mathsf{hw}(\alpha) = t+1\} = \{|\widehat{f_1^*}(\alpha)| \, \big| \, \alpha \in \mathbb{F}_2^n, \mathsf{hw}(\alpha) = t+1\}$$

#### Results on the Number of Representative Pairs



| Num   | ber of ı | represent | ative pair | s to be co | onsidered | for buildir | ig $\mathcal{R}_{n,n-4}^{\scriptscriptstyle \intercal}$ |
|-------|----------|-----------|------------|------------|-----------|-------------|---------------------------------------------------------|
| п     | 5        | 6         | 7          | 8          | 9         | 10          | 11                                                      |
| $N_0$ | 1711     | 32 896    | 167 331    | 259 560    | 284 635   | 289 180     | 289 941                                                 |
| $N_1$ | 1 429    | 26 385    | 89 855     | 43 874     | 8 0 0 9   | 773         | 62                                                      |
| $N_2$ | 1266     | 24 356    | 79631      | 28 450     | 1919      | 61          | 3                                                       |
| $N_3$ | 133      | 1911      | 6 423      | 1779       | 149       | 8           | 1                                                       |

#### Computations for Each Representative Pair



For each representative pair  $(f_0^*, f_1^*)$ , we need to consider all equivalent functions to  $f_1^*$ .

 $f_1(x) = f_1^* \circ P(x \oplus a) \oplus b$ 

with *P*, a mapping corresponding to a permutation of *n* variables,  $a \in \mathbb{F}_2^n$ , and  $b \in \mathbb{F}_2$ .

#### Computations for Each Representative Pair



For each representative pair  $(f_0^*, f_1^*)$ , we need to consider all equivalent functions to  $f_1^*$ .

 $f_1(x) = f_1^* \circ P(x \oplus a) \oplus b$ 

with P, a mapping corresponding to a permutation of n variables,  $a \in \mathbb{F}_2^n$ , and  $b \in \mathbb{F}_2$ .

Based on Siegenthaler's theorem, for all  $\alpha \in \mathbb{F}_2^n$  with  $\mathsf{hw}(\alpha) = t + 1$  we need

 $\widehat{f_1}(\alpha) = -\widehat{f_0^*}(\alpha) \quad \Rightarrow \quad |\widehat{f_1}(\alpha)| = |\widehat{f_0^*}(\alpha)|$ 

#### Computations for Each Representative Pair



For each representative pair  $(f_0^*, f_1^*)$ , we need to consider all equivalent functions to  $f_1^*$ .

$$f_1(x) = f_1^* \circ P(x \oplus a) \oplus b$$

with P, a mapping corresponding to a permutation of n variables,  $a \in \mathbb{F}_2^n$ , and  $b \in \mathbb{F}_2$ .

Based on Siegenthaler's theorem, for all  $\alpha \in \mathbb{F}_2^n$  with hw $(\alpha) = t + 1$  we need

$$\widehat{f_1}(\alpha) = -\widehat{f_0^*}(\alpha) \quad \Rightarrow \quad |\widehat{f_1}(\alpha)| = |\widehat{f_0^*}(\alpha)|$$

Since  $\widehat{f_1}(\alpha) = (-1)^{\langle a, \alpha \rangle \oplus b} \cdot \widehat{f_1^*}(P(\alpha))$ ,

 $|\widehat{f_1^*}(P(\alpha))| = |\widehat{f_0^*}(\alpha)|$ 



#### Summary

- Classification of all *t*-resilient functions with (*t* + 4) variables up-to the extended variable-permutation equivalence
- ► There are only 761 of such functions.

| п                         | 4  | 5   | 6   | 7   | 8   | 9   | 10  |
|---------------------------|----|-----|-----|-----|-----|-----|-----|
| $ \mathcal{R}^*_{n,n-4} $ | 58 | 256 | 578 | 720 | 754 | 760 | 761 |



#### Summary

- Classification of all *t*-resilient functions with (*t* + 4) variables up-to the extended variable-permutation equivalence
- ► There are only 761 of such functions.

| п                         | 4  | 5   | 6   | 7   | 8   | 9   | 10  |
|---------------------------|----|-----|-----|-----|-----|-----|-----|
| $ \mathcal{R}^*_{n,n-4} $ | 58 | 256 | 578 | 720 | 754 | 760 | 761 |

▶ Classification of  $\mathcal{R}^*_{6,1}$ : there are 1 035 596 784  $\approx 2^{30}$  of such functions.



#### Summary

- Classification of all *t*-resilient functions with (*t* + 4) variables up-to the extended variable-permutation equivalence
- ► There are only 761 of such functions.

| п                         | 4  | 5   | 6   | 7   | 8   | 9   | 10  |
|---------------------------|----|-----|-----|-----|-----|-----|-----|
| $ \mathcal{R}^*_{n,n-4} $ | 58 | 256 | 578 | 720 | 754 | 760 | 761 |

▶ Classification of  $\mathcal{R}^*_{6,1}$ : there are 1 035 596 784  $\approx 2^{30}$  of such functions.

# Thank you for your attention!