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Preliminaries
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Definition 1: Resilient Boolean Function [Sie84]
Let f to be a balanced Boolean function:

f is t-resilient ⇔ f̂ (u) = 0 ∀u with hw(u) ≤ t .

Walsh Transform: f̂ (u) =
∑

x∈Fn
2
(−1)f (x)⊕⟨x ,u⟩
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ỹf (x)

Definition 1: Resilient Boolean Function [Sie84]
Let f to be a balanced Boolean function:

f is t-resilient ⇔ f̂ (u) = 0 ∀u with hw(u) ≤ t .

Walsh Transform: f̂ (u) =
∑

x∈Fn
2
(−1)f (x)⊕⟨x ,u⟩

Classification of All t-Resilient Boolean Functions with t + 4 Variables | FSE 2024, Leuven, Belgium | March 29, 2024. 3/16



Resilient Functions

LFSR-1

LFSR-2

· · ·

LFSR-n

x1

x2

xn

yf (x)

LFSR-1

LFSR-2

· · ·

LFSR-n

x1

1

xn
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Equivalence Relation

Definition 2: Extended Variable-Permutation Equivalence
Let f and g to be two Boolean functions:

f ∼ g ⇔ ∀x ∈ Fn
2, g(x) = f ◦ P(x ⊕ a) ⊕ b

with P, a mapping corresponding to a permutation of n variables, and a ∈ Fn
2, b ∈ F2.

Definition 3: Representative Function
For each class of equivalence relation, it is the lexicographically smallest one.

Lemma 1:
f is t-resilient and f ∼ g ⇒ g is t-resilient

Classification of All t-Resilient Boolean Functions with t + 4 Variables | FSE 2024, Leuven, Belgium | March 29, 2024. 4/16



Equivalence Relation

Definition 2: Extended Variable-Permutation Equivalence
Let f and g to be two Boolean functions:

f ∼ g ⇔ ∀x ∈ Fn
2, g(x) = f ◦ P(x ⊕ a) ⊕ b

with P, a mapping corresponding to a permutation of n variables, and a ∈ Fn
2, b ∈ F2.

Definition 3: Representative Function
For each class of equivalence relation, it is the lexicographically smallest one.

Lemma 1:
f is t-resilient and f ∼ g ⇒ g is t-resilient

Classification of All t-Resilient Boolean Functions with t + 4 Variables | FSE 2024, Leuven, Belgium | March 29, 2024. 4/16



Equivalence Relation

Definition 2: Extended Variable-Permutation Equivalence
Let f and g to be two Boolean functions:

f ∼ g ⇔ ∀x ∈ Fn
2, g(x) = f ◦ P(x ⊕ a) ⊕ b

with P, a mapping corresponding to a permutation of n variables, and a ∈ Fn
2, b ∈ F2.

Definition 3: Representative Function
For each class of equivalence relation, it is the lexicographically smallest one.

Lemma 1:
f is t-resilient and f ∼ g ⇒ g is t-resilient

Classification of All t-Resilient Boolean Functions with t + 4 Variables | FSE 2024, Leuven, Belgium | March 29, 2024. 4/16



Algebraic Degree

Lemma 2 [Sie84]:

f is t-resilient ⇒ deg(f ) =
{

n − t − 1 if t < n − 1 ,

1 if t = n − 1 .

(n − 1)-Resilient Function:
f (x1, . . . , xn) = x1 ⊕ . . . ⊕ xn

(n − 2)-Resilient Function:
f (x1, . . . , xn) = x2 ⊕ . . . ⊕ xn
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Siegenthaler’s Construction [Sie84]

Theorem 1
Let f to be a balanced Boolean function with n + 1 variables:

f (x , xn+1) = xn+1 · f0(x) ⊕ xn+1 · f1(x) ∀ x ∈ Fn
2 and xn+1 ∈ F2 .

f is a (t + 1)-resilient if and only if
▶ both f0 and f1 are t-resilient functions, and
▶ for any α ∈ Fn

2 with hw(α) = t + 1, f̂1(α) = −f̂0(α).

Definition 4: Type-1 Extension

f1(x) = f0(x) ⊕ 1 ⇒ f (x , xn+1) = f0(x) ⊕ xn+1
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(n − 3)-Resilient Functions [CCCS91]

▶ f (x1, . . . , xn) = x3 ⊕ . . . ⊕ xn (n ≥ 3) ,

▶ f (x1, . . . , xn) = x1x2 ⊕ x3 ⊕ . . . ⊕ xn (n ≥ 3) ,

▶ f (x1, . . . , xn) = x1x2 ⊕ x1x3 ⊕ x2 ⊕ . . . ⊕ xn (n ≥ 3) ,

▶ f (x1, . . . , xn) = x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x4 ⊕ . . . ⊕ xn (n ≥ 3) ,

▶ f (x1, . . . , xn) = x1x2 ⊕ x1x3 ⊕ x2x4 ⊕ x3x4 ⊕ x3 ⊕ . . . ⊕ xn (n ≥ 4) .
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(n − 4)-Resilient Functions

Theorem 2 (Tarannikov and Kirienko [TK00])
Any (n − m)-resilient n-variable representative function is in the form of

g(x1, . . . , xq) ⊕ xq+1 ⊕ . . . ⊕ xn with q ≤ p(m).

Example

p(3) = 4

Tarannikov & Kirienko [TK00]

p(4) = 10

Classification of All t-Resilient Boolean Functions with t + 4 Variables | FSE 2024, Leuven, Belgium | March 29, 2024. 8/16



(n − 4)-Resilient Functions

Theorem 2 (Tarannikov and Kirienko [TK00])
Any (n − m)-resilient n-variable representative function is in the form of

g(x1, . . . , xq) ⊕ xq+1 ⊕ . . . ⊕ xn with q ≤ p(m).

Example

p(3) = 4

Tarannikov & Kirienko [TK00]

p(4) = 10

Classification of All t-Resilient Boolean Functions with t + 4 Variables | FSE 2024, Leuven, Belgium | March 29, 2024. 8/16



(n − 4)-Resilient Functions

Theorem 2 (Tarannikov and Kirienko [TK00])
Any (n − m)-resilient n-variable representative function is in the form of

g(x1, . . . , xq) ⊕ xq+1 ⊕ . . . ⊕ xn with q ≤ p(m).

Example

p(3) = 4

Tarannikov & Kirienko [TK00]

p(4) = 10

Classification of All t-Resilient Boolean Functions with t + 4 Variables | FSE 2024, Leuven, Belgium | March 29, 2024. 8/16



(n − 4)-Resilient Functions

Theorem 2 (Tarannikov and Kirienko [TK00])
Any (n − m)-resilient n-variable representative function is in the form of

g(x1, . . . , xq) ⊕ xq+1 ⊕ . . . ⊕ xn with q ≤ p(m).

Example

p(3) = 4

Tarannikov & Kirienko [TK00]

p(4) = 10

Classification of All t-Resilient Boolean Functions with t + 4 Variables | FSE 2024, Leuven, Belgium | March 29, 2024. 8/16



An Algorithm for Classifying
(n − m)-Resilient Functions



Basic Approach

Siegenthaler’s Construction

f (x , xn+1) = xn+1 · f0(x) ⊕ xn+1 · f1(x) ∀ x ∈ Fn
2 and xn+1 ∈ F2 .

▶ Rn,t : the set of t-resilient n-variable functions
▶ R∗

n,t : the set of representative t-resilient n-variable functions
▶ R†

n,t : the set of non-type-1 extension representative t-resilient n-variable functions

Computational Complexity of Building R†
n+1,t+1: |Rn,t |2
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Technique 1

Lemma 4:
In Siegenthaler’s construction:

f0 is a type-1 extension ⇒ f /∈ R†
n+1,t+1

i.e., f cannot be a non-type-1 representative resilient function.

⇒ Comp. Comp.:
(
|R†

n,t | · |R∗
n,t |

)
·
(
2n+1 · n!

)
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Technique 3

Lemma 6:
In Siegenthaler’s construction,

the two functions f0 and f1 from Rn,t can form a function in Rn+1,t+1, if

{|f̂ ∗
0 (α)|

∣∣ α ∈ Fn
2 , hw(α) = t + 1} = {|f̂ ∗

1 (α)|
∣∣ α ∈ Fn

2 , hw(α) = t + 1}
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Results on the Number of Representative Pairs

Number of representative pairs to be considered for building R†
n,n−4

n 5 6 7 8 9 10 11
N0 1 711 32 896 167 331 259 560 284 635 289 180 289 941
N1 1 429 26 385 89 855 43 874 8 009 773 62
N2 1 266 24 356 79 631 28 450 1 919 61 3
N3 133 1 911 6 423 1 779 149 8 1
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Computations for Each Representative Pair

For each representative pair (f ∗
0 , f ∗

1 ), we need to consider all equivalent functions to f ∗
1 .

f1(x) = f ∗
1 ◦ P(x ⊕ a) ⊕ b

with P, a mapping corresponding to a permutation of n variables, a ∈ Fn
2, and b ∈ F2.

Based on Siegenthaler’s theorem, for all α ∈ Fn
2 with hw(α) = t + 1 we need

f̂1(α) = −f̂ ∗
0 (α) ⇒ |f̂1(α)| = |f̂ ∗

0 (α)|

Since f̂1(α) = (−1)⟨a,α⟩⊕b · f̂ ∗
1

(
P(α)

)
,

|f̂ ∗
1

(
P(α)

)
| = |f̂ ∗

0 (α)|
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Summary

▶ Classification of all t-resilient functions with (t + 4) variables
up-to the extended variable-permutation equivalence

▶ There are only 761 of such functions.

n 4 5 6 7 8 9 10
|R∗

n,n−4| 58 256 578 720 754 760 761

▶ Classification of R∗
6,1:

there are 1 035 596 784 ≈ 230 of such functions.

Thank you for your attention!
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