On Boomerang Attacks on Quadratic Feistel Ciphers

Xavier Bonnetain and Virginie Lallemand

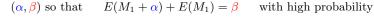
Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

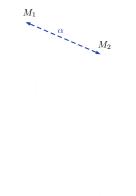
FSE 2024

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Differential Distinguisher

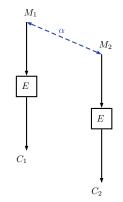

$$(\alpha, \beta)$$
 so that $E(M_1 + \alpha) + E(M_1) = \beta$ with high probability



Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Differential Distinguisher

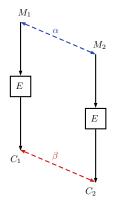


Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Differential Distinguisher

 (α, β) so that $E(M_1 + \alpha) + E(M_1) = \beta$ with high probability



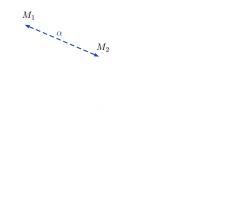
Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Differential Distinguisher

 (α, β) so that $E(M_1 + \alpha) + E(M_1) = \beta$ with high probability

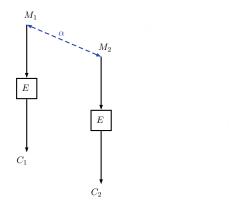
Quadratic Feistel Boomerangs


New Distinguishers and Attacks

Boomerang Distinguisher

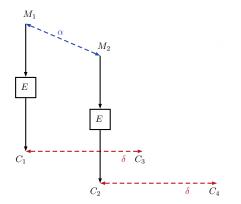
Quadratic Feistel Boomerangs

New Distinguishers and Attacks


Boomerang Distinguisher

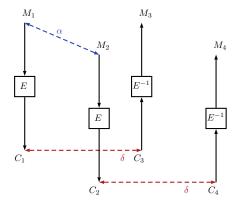
Quadratic Feistel Boomerangs

New Distinguishers and Attacks


Boomerang Distinguisher

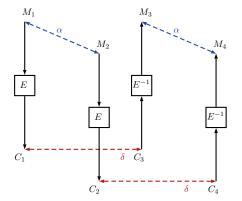
Quadratic Feistel Boomerangs

New Distinguishers and Attacks


Boomerang Distinguisher

Quadratic Feistel Boomerangs

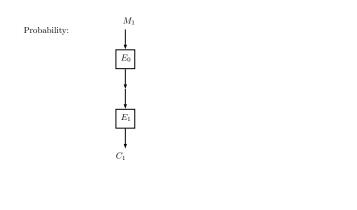
New Distinguishers and Attacks


Boomerang Distinguisher

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Boomerang Distinguisher



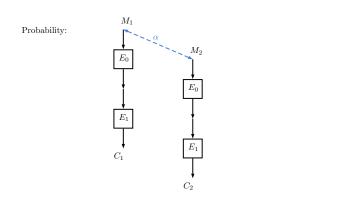
Quadratic Feistel Boomerangs

New Distinguishers and Attacks

- Rewrite $E = E_1 \circ E_0$
- Find good differentials:

•
$$\mathbb{P}(\alpha \longrightarrow_{E_0} \beta) = p$$

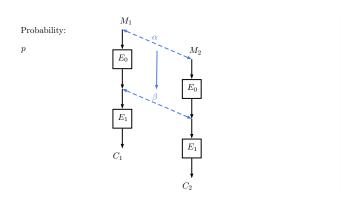
• $\mathbb{P}(\gamma \longrightarrow_{E_1} \delta) = q$



Quadratic Feistel Boomerangs

New Distinguishers and Attacks

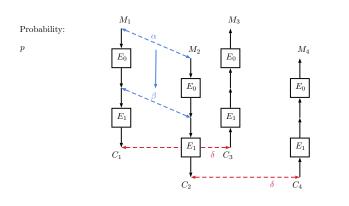
- Rewrite $E = E_1 \circ E_0$
- Find good differentials:


•
$$\mathbb{P}(\alpha \longrightarrow_{E_0} \beta) = p$$

• $\mathbb{P}(\gamma \longrightarrow_{E_1} \delta) = q$

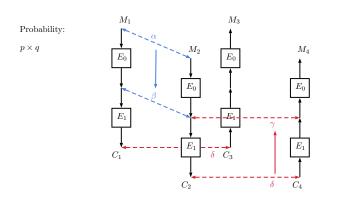
Quadratic Feistel Boomerangs

New Distinguishers and Attacks


- Rewrite $E = E_1 \circ E_0$
- Find good differentials:
 - $\mathbb{P}(\alpha \longrightarrow_{E_0} \beta) = p$ • $\mathbb{P}(\gamma \longrightarrow_{E_1} \delta) = q$

Quadratic Feistel Boomerangs

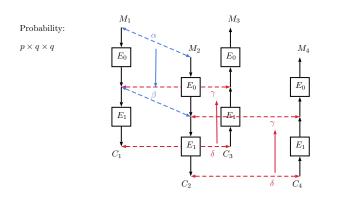
New Distinguishers and Attacks


- Rewrite $E = E_1 \circ E_0$
- Find good differentials:
 - $\mathbb{P}(\alpha \longrightarrow_{E_0} \beta) = p$ • $\mathbb{P}(\gamma \longrightarrow_{E_1} \delta) = q$

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

- Rewrite $E = E_1 \circ E_0$
- Find good differentials:
 - $\mathbb{P}(\alpha \longrightarrow_{E_0} \beta) = p$ • $\mathbb{P}(\gamma \longrightarrow_{E_1} \delta) = q$



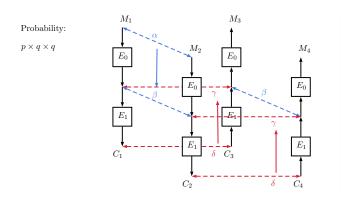
Quadratic Feistel Boomerangs

New Distinguishers and Attacks

- Rewrite $E = E_1 \circ E_0$
- Find good differentials:

•
$$\mathbb{P}(\alpha \longrightarrow_{E_0} \beta) = p$$

• $\mathbb{P}(\gamma \longrightarrow_{E_1} \delta) = q$



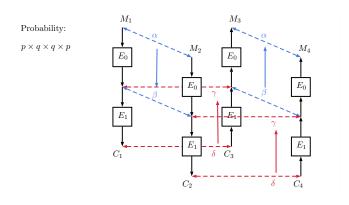
Quadratic Feistel Boomerangs

New Distinguishers and Attacks

- Rewrite $E = E_1 \circ E_0$
- Find good differentials:

•
$$\mathbb{P}(\alpha \longrightarrow_{E_0} \beta) = p$$

• $\mathbb{P}(\gamma \longrightarrow_{E_1} \delta) = q$



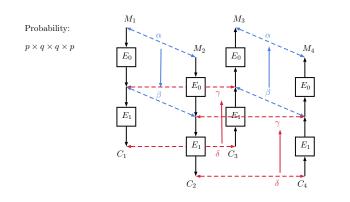
Quadratic Feistel Boomerangs

New Distinguishers and Attacks

- Rewrite $E = E_1 \circ E_0$
- Find good differentials:

•
$$\mathbb{P}(\alpha \longrightarrow_{E_0} \beta) = p$$

• $\mathbb{P}(\gamma \longrightarrow_{E_1} \delta) = q$


Quadratic Feistel Boomerangs

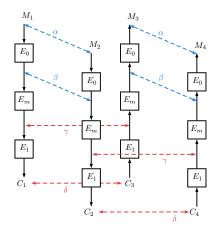
New Distinguishers and Attacks

Building a Boomerang Distinguisher

- Rewrite $E = E_1 \circ E_0$
- Find good differentials:

•
$$\mathbb{P}(\alpha \longrightarrow_{E_0} \beta) = p$$

• $\mathbb{P}(\gamma \longrightarrow_{E_1} \delta) = q$

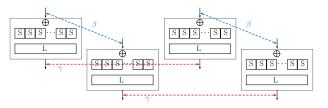


Expected probability of p^2q^2 if all the events are independent

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Careful Handling of the Middle: the Sandwich Framework

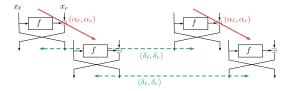


- $E = E_1 \circ E_m \circ E_0$
- \bullet estimated probability $p^2 \times r \times q^2$
- $r = Pr[E_m^{-1}(E_m(x_1) \oplus \gamma) \oplus E_m^{-1}(E_m(x_1 \oplus \beta) \oplus \gamma) = \beta]$

Boomerang Distinguishers ○○○○○● Quadratic Feistel Boomerangs

New Distinguishers and Attacks

BCT approach

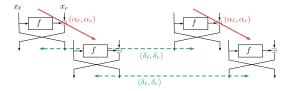

Systematic approach to compute boomerang probabilities for 1 round of SPN. Reduces to analyzing the Sbox.

Many variations:

- More rounds
- Different kind of cipher

New Distinguishers and Attacks

Generic 1-round Boomerang on a Feistel cipher


A boomerang returns from 1 round of Feistel cipher with round function f for the input x_{ℓ}, x_r if and only if

```
f(x_{\ell}) \oplus f(x_{\ell} \oplus \delta_r) \oplus f(x_{\ell} \oplus \alpha_{\ell}) \oplus f(x_{\ell} \oplus \delta_r \oplus \alpha_{\ell}) = 0,
```

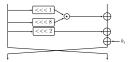
that is, the second derivative of f at points α_{ℓ}, δ_r must be zero.

New Distinguishers and Attacks

Generic 1-round Boomerang on a Feistel cipher

A boomerang returns from 1 round of Feistel cipher with round function f for the input x_{ℓ}, x_r if and only if

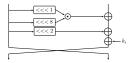
```
f(x_{\ell}) \oplus f(x_{\ell} \oplus \delta_r) \oplus f(x_{\ell} \oplus \alpha_{\ell}) \oplus f(x_{\ell} \oplus \delta_r \oplus \alpha_{\ell}) = 0,
```


that is, the second derivative of f at points α_{ℓ}, δ_r must be zero.

If f is a quadratic function, its second order derivative is a constant. Either the boomerang always returns, or never

Concrete study

Simon



- Many variants, from 32 bits size to 64 (KATAN) or 128 (Simon)
- Both Feistel-like
- Quadratic round function

Concrete study

Simon

$$\begin{cases} \alpha_{12} \cdot \delta_{11} \oplus \alpha_{10} \cdot \delta_{13} \oplus \alpha_8 \cdot \delta_4 \oplus \alpha_3 \cdot \delta_9 = 0\\ \alpha'_8 \cdot \delta'_6 \oplus \alpha'_5 \cdot \delta'_9 = 0 \end{cases}$$

Boomerang constraint for Simon

 $(\alpha_{\ell} \ll 8) \cdot (\delta_r \ll 1) \oplus (\alpha_{\ell} \ll 1) \cdot (\delta_r \ll 8) = 0$

- Many variants, from 32 bits size to 64 (KATAN) or 128 (Simon)
- Both Feistel-like
- Quadratic round function

Boomerang	Distinguishers
000000	

New Distinguishers and Attacks

Previous boomerang distinguishers on KATAN and Simon

- Identified 20 distinguishers in 6 articles
- All used the naive probability analysis

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Previous boomerang distinguishers on KATAN and Simon

- Identified 20 distinguishers in 6 articles
- All used the naive probability analysis

Trail check

• Check the trails using our formulas

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Previous boomerang distinguishers on KATAN and Simon

- Identified 20 distinguishers in 6 articles
- All used the naive probability analysis

Trail check

- Check the trails using our formulas
- Results:
 - All pairs are incompatible
 - Inconclusive
 - All pairs are compatible (Simon48)

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Previous boomerang distinguishers on KATAN and Simon

- Identified 20 distinguishers in 6 articles
- All used the naive probability analysis

Trail check

- Check the trails using our formulas
- Results:
 - All pairs are incompatible
 - Inconclusive
 - All pairs are compatible (Simon48)

Experimental verification

- Verification of the differences, not the characteristics
- Partial verification for low-probability distinguishers

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Previous boomerang distinguishers on KATAN and Simon

- Identified 20 distinguishers in 6 articles
- All used the naive probability analysis

Trail check

- Check the trails using our formulas
- Results:
 - All pairs are incompatible
 - Inconclusive
 - All pairs are compatible (Simon48)

Experimental verification

- Verification of the differences, not the characteristics
- Partial verification for low-probability distinguishers
- Results:
 - Distinguisher doesn't work at all $(P = 2^{-n})$
 - Distinguisher works much better than expected

Quadratic Feistel Boomerangs

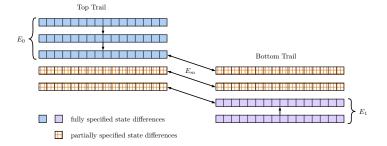
New Distinguishers and Attacks

Previous boomerang distinguishers on KATAN and Simon

- Identified 20 distinguishers in 6 articles
- All used the naive probability analysis

Trail check

- Check the trails using our formulas
- Results:
 - All pairs are incompatible
 - Inconclusive
 - All pairs are compatible (Simon48)


Experimental verification

- Verification of the differences, not the characteristics
- Partial verification for low-probability distinguishers
- Results:
 - Distinguisher doesn't work at all $(P = 2^{-n})$
 - Distinguisher works much better than expected

- Probabilities are inaccurate
- In most cases, the distinguisher doesn't work

New Distinguishers and Attacks

Our SMT Model

- E_0 and E_1 are considered independent one from the other
 - fully specified differential trails
 - p^2 and q^2 probability
- middle rounds cover the interactions
 - boomerang constraints are enforced
 - Truncated differentials (0,1,?)
 - the model can fix some non-deterministic transitions

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Results of our SMT model for RK Boomerang Distinguishers on KATAN 32

Rounds	140	141	142	143	144	145	146	147	148	149	150	151	152
Тор	40	40	41	41	42	40	43	43	44	45	45	45	46
Middle	60	61	60	61	60	65	60	61	60	59	60	61	60
Bottom	40	40	41	41	42	40	43	43	44	45	45	45	46
Model proba. [◊]				-21									
Exp. proba. [◇]	-16.2	-15.8	-20.2	-19.8	-19.1	-22.5	-24.3	-24.3	-26.3	-28.3	-30.2	-30.1	-31.7

◊ Binary logarithm of the probabilities.

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Results of our SMT model for RK Boomerang Distinguishers on KATAN 32

Rounds	140	141	142	143	144	145	146	147	148	149	150	151	152
Тор	40	40	41	41	42	40	43	43	44	45	45	45	46
Middle	60	61	60	61	60	65	60	61	60	59	60	61	60
Bottom	40	40	41	41	42	40	43	43	44	45	45	45	46
Model proba.°								-25					
Exp. proba. [◊]	-16.2	-15.8	-20.2	-19.8	-19.1	-22.5	-24.3	-24.3	-26.3	-28.3	-30.2	-30.1	-31.7

◊ Binary logarithm of the probabilities.

Previous boomerang(s) [JRS22]

- 140 Round
- Estimated 2^{-22}
- Experimental $2^{-15.8}$

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Results of our SMT model for RK Boomerang Distinguishers on KATAN 32

Rounds	140	141	142	143	144	145	146	147	148	149	150	151	152
Тор	40	40	41	41	42	40	43	43	44	45	45	45	46
Middle	60	61	60	61	60	65	60	61	60	59	60	61	60
Bottom	40	40	41	41	42	40	43	43	44	45	45	45	46
Model proba.°									-27				
Exp. proba. [◊]	-16.2	-15.8	-20.2	-19.8	-19.1	-22.5	-24.3	-24.3	-26.3	-28.3	-30.2	-30.1	-31.7

Binary logarithm of the probabilities.

Previous boomerang(s) [JRS22]

- 140 Round
- Estimated 2^{-22}
- Experimental $2^{-15.8}$

Best attack [RR16]

206 rounds, MITM, Single-key

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Rotational-Xor and Rotational-Xor Differential Rectangles

Normal Differences

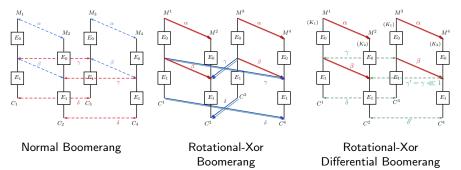
$$x \oplus x' = \alpha$$

Rotational-Xor differences

$$x \oplus (x' \lll 1) = \alpha$$

Quadratic Feistel Boomerangs

New Distinguishers and Attacks


Rotational-Xor and Rotational-Xor Differential Rectangles

Normal Differences

Rotational-Xor differences

 $x \oplus x' = \alpha$

Results of our SMT model on Simon-32/64

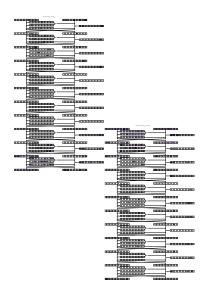
Related-key	boomerang	distinguishers	
-------------	-----------	----------------	--

Rounds	12	13	14	15	16	17
Cut	5+2+5	5+3+5	5+4+5	6+3+6	5+6+5	6+5+6
Model proba.	0	-3	-7	-11	-19	-25
Experimental proba.	0	-2.7	-6.7	-10.4	-18.8	-23.6

RX-boomerang distinguishers

Rounds	13	14	15	16	17	18	19
Starting round	3	3	10	3	3	3	3
Cut	4+5+4	5+4+5	5+5+5	5+6+5	6+5+6	6+6+6	7+5+7
Model proba.	0	-3	-6	-12	-16	-24	-30
Experimental proba.	0	-3	-6	-12	-16	-24	-29.5

RX-differential boomerang distinguishers

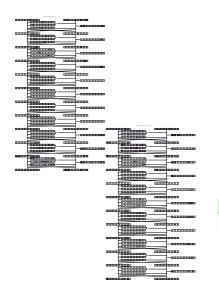

Rounds	13	14	15
Starting round	3	3	3
Cut	7+4+2	5+5+4	6+5+4
Model proba.	-17	-23	-28
Experimental proba.	-17.2	-21	-27.6

(Binary logarithm of the probabilities)

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Attacks against Simon32


- Start from an RX-boomerang distinguisher
- Add 3 rounds above and below
- Results:

Rounds	Data	Time
24	2^{31}	$2^{54.6}$
25	2^{34}	$2^{59.7}$

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Attacks against Simon32

- Start from an RX-boomerang distinguisher
- Add 3 rounds above and below
- Results:

Rounds	Data	Time
24	2^{31}	$2^{54.6}$
25	2^{34}	$2^{59.7}$

Previous best attack [CCW+18]

24 Rounds, Linear, Single key, 2^{32} Data

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Conclusion

Summary

- Found issues in most boomerangs against KATAN and Simon
- Obtained new, more accurate boomerang distinguishers
- First (related-key) attack against 25-round Simon 32

Quadratic Feistel Boomerangs

New Distinguishers and Attacks

Conclusion

Summary

- Found issues in most boomerangs against KATAN and Simon
- Obtained new, more accurate boomerang distinguishers
- First (related-key) attack against 25-round Simon 32

Advices to cryptanalysts

- Don't be naive with boomerangs!
- If possible, verify experimentally