

Multimixer-128: Universal Keyed Hashing Based on Integer Multiplication

<u>Koustabh Ghosh</u>, Parisa Amiri Eliasi, Joan Daemen Radboud University, Nijmegen, the Netherlands FSE presentation March 25, 2024 • Keyed hash functions are a class of cryptographic primitives that

- Keyed hash functions are a class of cryptographic primitives that
- Compress variable-length inputs to a fixed sized state under a secret key

- Keyed hash functions are a class of cryptographic primitives that
- Compress variable-length inputs to a fixed sized state under a secret key
- Keyed hash functions can be used to build

- Keyed hash functions are a class of cryptographic primitives that
- Compress variable-length inputs to a fixed sized state under a secret key
- Keyed hash functions can be used to build
 - Message authentication code (mac) functions [WC81]

- Keyed hash functions are a class of cryptographic primitives that
- Compress variable-length inputs to a fixed sized state under a secret key
- Keyed hash functions can be used to build
 - Message authentication code (mac) functions [WC81]
 - Doubly-extendable cryptographic keyed (deck) functions [Dae+18]

- Keyed hash functions are a class of cryptographic primitives that
- Compress variable-length inputs to a fixed sized state under a secret key
- Keyed hash functions can be used to build
 - Message authentication code (mac) functions [WC81]
 - Doubly-extendable cryptographic keyed (deck) functions $_{\scriptscriptstyle [Dae+18]}$
- The security of a keyed hash function $F_{\mathbf{K}}$ is determined by its universality [Sti95]:

- Keyed hash functions are a class of cryptographic primitives that
- Compress variable-length inputs to a fixed sized state under a secret key
- Keyed hash functions can be used to build
 - Message authentication code (mac) functions [WC81]
 - Doubly-extendable cryptographic keyed (deck) functions [Dae+18]
- The security of a keyed hash function F_{K} is determined by its universality [Sti95]:
 - F_{K} is ε -universal $\implies \forall \mathsf{M} \neq \mathsf{M}^*$, $\Pr[F_{\mathsf{K}}(\mathsf{M}) = F_{\mathsf{K}}(\mathsf{M}^*)] \leq \varepsilon$

- Keyed hash functions are a class of cryptographic primitives that
- Compress variable-length inputs to a fixed sized state under a secret key
- Keyed hash functions can be used to build
 - Message authentication code (mac) functions [WC81]
 - Doubly-extendable cryptographic keyed (deck) functions [Dae+18]
- The security of a keyed hash function F_{K} is determined by its universality [Sti95]:
 - $F_{\mathbf{K}}$ is ε -universal $\implies \forall \mathbf{M} \neq \mathbf{M}^*$, $\Pr[F_{\mathbf{K}}(\mathbf{M}) = F_{\mathbf{K}}(\mathbf{M}^*)] \leq \varepsilon$
 - F_{K} is ε - Δ universal $\implies \forall \mathsf{M} \neq \mathsf{M}^*$, $\Pr[F_{\mathsf{K}}(\mathsf{M}) F_{\mathsf{K}}(\mathsf{M}^*) = \Delta] \leq \varepsilon$

• Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$

- Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$
- That are efficient for software platforms

- Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$
- That are efficient for software platforms
- Our design strategy: Parallelization of a public function [Gho+23],

- Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$
- That are efficient for software platforms
- Our design strategy: Parallelization of a public function [Gho+23],
- Which is the generalization of the parallelization of a public permutations [FRD23]

- Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$
- That are efficient for software platforms
- Our design strategy: Parallelization of a public function [Gho+23],
- Which is the generalization of the parallelization of a public permutations [FRD23]
- From a public function $f: G \to G' \dots$

- Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$
- That are efficient for software platforms
- Our design strategy: Parallelization of a public function [Gho+23],
- Which is the generalization of the parallelization of a public permutations [FRD23]
- From a public function $f: G \to G' \dots$
- A keyed hash function F = Parallel [f] can be built with

- Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$
- That are efficient for software platforms
- Our design strategy: Parallelization of a public function [Gho+23],
- Which is the generalization of the parallelization of a public permutations [FRD23]
- From a public function $f: G \to G' \dots$
- A keyed hash function F = Parallel [f] can be built with
 - The key space is G^{κ}

- Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$
- That are efficient for software platforms
- Our design strategy: Parallelization of a public function [Gho+23],
- Which is the generalization of the parallelization of a public permutations [FRD23]
- From a public function $f: G \to G' \dots$
- A keyed hash function F = Parallel [f] can be built with
 - The key space is G^{κ}
 - The message space is $\bigcup_{\ell=1}^{\kappa} G^{\ell}$

- Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$
- That are efficient for software platforms
- Our design strategy: Parallelization of a public function [Gho+23],
- Which is the generalization of the parallelization of a public permutations [FRD23]
- From a public function $f: G \to G' \dots$
- A keyed hash function F = Parallel [f] can be built with
 - The key space is G^{κ}
 - The message space is $\bigcup_{\ell=1}^{\kappa} G^{\ell}$
 - The digest space is $G'^{\ell=1}$

- Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$
- That are efficient for software platforms
- Our design strategy: Parallelization of a public function [Gho+23],
- Which is the generalization of the parallelization of a public permutations [FRD23]
- From a public function $f: G \to G' \dots$
- A keyed hash function F = Parallel [f] can be built with
 - The key space is G^{κ}
 - The message space is $\bigcup_{\ell=1}^{\kappa} G^{\ell}$
 - The digest space is $G'^{\ell=1}$
- For a message $\mathbf{M} = (M_0, M_1, \dots, M_{|\mathbf{M}|-1})$ and key $\mathbf{K} = (K_0, K_1 \dots, K_{\kappa-1})$,

- Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$
- That are efficient for software platforms
- Our design strategy: Parallelization of a public function [Gho+23],
- Which is the generalization of the parallelization of a public permutations [FRD23]
- From a public function $f: G \to G' \dots$
- A keyed hash function F = Parallel [f] can be built with
 - The key space is G^{κ}
 - The message space is $\bigcup_{\ell=1}^{\kappa} G^{\ell}$
 - The digest space is $G'^{\ell=1}$
- For a message $\mathbf{M} = (M_0, M_1, \dots, M_{|\mathbf{M}|-1})$ and key $\mathbf{K} = (K_0, K_1 \dots, K_{\kappa-1})$,

• $\mathbf{M} + \mathbf{K} = (M_0 + K_0, M_1 + K_1, \dots, M_{|\mathbf{M}|-1} + K_{|\mathbf{M}|-1})$

- Our goal: Design ε - Δ universal keyed hash function with $\varepsilon \approx 2^{-128}$
- That are efficient for software platforms
- Our design strategy: Parallelization of a public function [Gho+23],
- Which is the generalization of the parallelization of a public permutations [FRD23]
- From a public function $f: G \to G' \dots$
- A keyed hash function F = Parallel [f] can be built with
 - The key space is G^{κ}
 - The message space is $\bigcup_{\ell=1}^{\kappa} G^{\ell}$
 - The digest space is $G'^{\ell=1}$
- For a message $\mathbf{M} = (M_0, M_1, \dots, M_{|\mathbf{M}|-1})$ and key $\mathbf{K} = (K_0, K_1 \dots, K_{\kappa-1})$,
 - $\mathbf{M} + \mathbf{K} = (M_0 + K_0, M_1 + K_1, \dots, M_{|\mathbf{M}|-1} + K_{|\mathbf{M}|-1})$
 - $F_{\mathbf{K}}(M) := F(\mathbf{M} + \mathbf{K})$

Parallel [f]

Figure: The parallelization of f: Parallel [f] [FRD23]

• For the fixed length public function $f \dots$

- For the fixed length public function $f \dots$
 - The DP of a differential (A, Δ) is: $DP_f(A, \Delta) = \frac{\#\{X \in G | f(X+A) f(X) = \Delta\}}{\#G}$

- For the fixed length public function $f \dots$
 - The DP of a differential (A, Δ) is: $DP_f(A, \Delta) = \frac{\#\{X \in G | f(X+A) f(X) = \Delta\}}{\#G}$
 - The IP of any output Z of f is: $IP_f(Z) = \frac{\#\{X \in G | f(X) = Z\}}{\#G}$

- For the fixed length public function $f \dots$
 - The DP of a differential (A, Δ) is: $DP_f(A, \Delta) = \frac{\#\{X \in G | f(X+A) f(X) = \Delta\}}{\#G}$
 - The IP of any output Z of f is: $IP_f(Z) = \frac{\#\{X \in G | f(X) = Z\}}{\#G}$
 - The maximum possible value of DP_f and IP_f are denoted as:

- For the fixed length public function $f \dots$
 - The DP of a differential (A, Δ) is: $DP_f(A, \Delta) = \frac{\#\{X \in G | f(X+A) f(X) = \Delta\}}{\#G}$
 - The IP of any output Z of f is: $IP_f(Z) = \frac{\#\{X \in G | f(X) = Z\}}{\#G}$
 - The maximum possible value of DP_f and IP_f are denoted as:
 - $\mathrm{MDP}_f = \max_{A \neq 0, \Delta} \mathrm{DP}_f(A, \Delta)$

- For the fixed length public function $f \dots$
 - The DP of a differential (A, Δ) is: $DP_f(A, \Delta) = \frac{\#\{X \in G | f(X+A) f(X) = \Delta\}}{\#G}$
 - The IP of any output Z of f is: $IP_f(Z) = \frac{\#\{X \in G | f(X) = Z\}}{\#G}$
 - The maximum possible value of DP_f and IP_f are denoted as:
 - $\mathrm{MDP}_f = \max_{A \neq 0, \Delta} \mathrm{DP}_f(A, \Delta)$
 - $\operatorname{MIP}_f = \max_{Z} \operatorname{IP}_f(Z)$

- For the fixed length public function $f \dots$
 - The DP of a differential (A, Δ) is: $DP_f(A, \Delta) = \frac{\#\{X \in G | f(X+A) f(X) = \Delta\}}{\#G}$
 - The IP of any output Z of f is: $IP_f(Z) = \frac{\#\{X \in G | f(X) = Z\}}{\#G}$
 - The maximum possible value of DP_f and IP_f are denoted as:
 - $MDP_f = \max_{A \neq 0, \Delta} DP_f(A, \Delta)$
 - $\operatorname{MIP}_f = \max_{Z} \operatorname{IP}_f(Z)$
- Parallel [f] is $\max{\{MDP_f, MIP_f\}}-\Delta universal [Gho+23]$

- For the fixed length public function f ...
 - The DP of a differential (A, Δ) is: $DP_f(A, \Delta) = \frac{\#\{X \in G | f(X+A) f(X) = \Delta\}}{\#G}$
 - The IP of any output Z of f is: $IP_f(Z) = \frac{\#\{X \in G | f(X) = Z\}}{\#G}$
 - The maximum possible value of DP_f and IP_f are denoted as:
 - $MDP_f = \max_{A \neq 0, \Delta} DP_f(A, \Delta)$
 - $\operatorname{MIP}_f = \max_{Z} \operatorname{IP}_f(Z)$
- Parallel [f] is $\max{\{MDP_f, MIP_f\}}-\Delta universal [Gho+23]$
- Obtaining universality of Parallel [f] is reduced to obtaining MDP_f and MIP_f

- For the fixed length public function f ...
 - The DP of a differential (A, Δ) is: $DP_f(A, \Delta) = \frac{\#\{X \in G | f(X+A) f(X) = \Delta\}}{\#G}$
 - The IP of any output Z of f is: $IP_f(Z) = \frac{\#\{X \in G | f(X) = Z\}}{\#G}$
 - The maximum possible value of DP_f and IP_f are denoted as:
 - $MDP_f = \max_{A \neq 0, \Delta} DP_f(A, \Delta)$
 - $\operatorname{MIP}_f = \max_{Z} \operatorname{IP}_f(Z)$
- Parallel [f] is $\max{\{MDP_f, MIP_f\}}-\Delta universal [Gho+23]$
- Obtaining universality of Parallel [f] is reduced to obtaining MDP_f and MIP_f
- Universality not only takes into account messages of equal length,

- For the fixed length public function f ...
 - The DP of a differential (A, Δ) is: $DP_f(A, \Delta) = \frac{\#\{X \in G | f(X+A) f(X) = \Delta\}}{\#G}$
 - The IP of any output Z of f is: $IP_f(Z) = \frac{\#\{X \in G | f(X) = Z\}}{\#G}$
 - The maximum possible value of DP_f and IP_f are denoted as:
 - $MDP_f = \max_{A \neq 0, \Delta} DP_f(A, \Delta)$
 - $\operatorname{MIP}_f = \max_{Z} \operatorname{IP}_f(Z)$
- Parallel [f] is $\max{\{MDP_f, MIP_f\}}-\Delta universal [Gho+23]$
- Obtaining universality of Parallel [f] is reduced to obtaining MDP_f and MIP_f
- Universality not only takes into account messages of equal length,
- But also messages of variable length

• $\mathbf{NH}[\kappa, w]$: very fast keyed hash function on software with

$\mathsf{NH}[\kappa, w]$ [Bla+99]

- $NH[\kappa, w]$: very fast keyed hash function on software with
- An even $\kappa \geq 2$ (blocksize) and $w \geq 1$ (wordsize)

$\mathsf{NH}[\kappa, w]$ [Bla+99]

- $NH[\kappa, w]$: very fast keyed hash function on software with
- An even $\kappa \geq 2$ (blocksize) and $w \geq 1$ (wordsize)
- Performance is due to fast integer multiplication instructions

$\mathsf{NH}[\kappa, w]$ [Bla+99]

- $\mathbf{NH}[\kappa, w]$: very fast keyed hash function on software with
- An even $\kappa \geq 2$ (blocksize) and $w \geq 1$ (wordsize)
- Performance is due to fast integer multiplication instructions
- $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ can be viewed as the parallelization of

 $M[w]: \ (\mathbb{Z}/2^w\mathbb{Z})^2 \to \mathbb{Z}/2^{2w}\mathbb{Z}: \ (x,y) \mapsto x \times y$
$\mathsf{NH}[\kappa, w]$ [Bla+99]

- $NH[\kappa, w]$: very fast keyed hash function on software with
- An even $\kappa \geq 2$ (blocksize) and $w \geq 1$ (wordsize)
- Performance is due to fast integer multiplication instructions
- $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ can be viewed as the parallelization of $M[w]: (\mathbb{Z}/2^w\mathbb{Z})^2 \to \mathbb{Z}/2^{2w}\mathbb{Z}: (x, y) \mapsto x \times y$
- For $\mathbf{M} = (M_0, M_1, \dots, M_{|\mathbf{M}|-1})$ with $M_i = (m_{2i}, m_{2i+1}) \in (\mathbb{Z}/2^w\mathbb{Z})^2$,

$\mathsf{NH}[\kappa, w]$ [Bla+99]

- $NH[\kappa, w]$: very fast keyed hash function on software with
- An even $\kappa \geq 2$ (blocksize) and $w \geq 1$ (wordsize)
- Performance is due to fast integer multiplication instructions
- NH_K[κ, w] can be viewed as the parallelization of
 M[w]: (Z/2^wZ)² → Z/2^{2w}Z: (x, y) → x × y
- For $\mathbf{M} = (M_0, M_1, \dots, M_{|\mathbf{M}|-1})$ with $M_i = (m_{2i}, m_{2i+1}) \in (\mathbb{Z}/2^w \mathbb{Z})^2$,
- And $\mathbf{K} = (K_0, K_1 \dots, K_{\kappa/2-1})$ with $K_i = (k_{2i}, k_{2i+1}) \in (\mathbb{Z}/2^w \mathbb{Z})^2$

$\mathsf{NH}[\kappa, w]$ [Bla+99]

- $NH[\kappa, w]$: very fast keyed hash function on software with
- An even $\kappa \geq 2$ (blocksize) and $w \geq 1$ (wordsize)
- Performance is due to fast integer multiplication instructions
- $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ can be viewed as the parallelization of $M[w]: (\mathbb{Z}/2^w\mathbb{Z})^2 \to \mathbb{Z}/2^{2w}\mathbb{Z}: (x, y) \mapsto x \times y$
- For $\mathbf{M} = (M_0, M_1, \dots, M_{|\mathbf{M}|-1})$ with $M_i = (m_{2i}, m_{2i+1}) \in (\mathbb{Z}/2^w \mathbb{Z})^2$,
- And $\mathbf{K} = (K_0, K_1 \dots, K_{\kappa/2-1})$ with $K_i = (k_{2i}, k_{2i+1}) \in (\mathbb{Z}/2^w\mathbb{Z})^2$

Figure: $\mathbf{NH}_{\mathbf{K}}[\kappa, w] = \text{Parallel}[M[w]]$

• $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ is 2^{-w}-universal on equal-length messages

- $NH_{K}[\kappa, w]$ is 2^{-w}-universal on equal-length messages
- $\mathbf{NH}_{\mathbf{K}_0}[\kappa, w](M) \mid\mid \ldots \mid\mid \mathbf{NH}_{\mathbf{K}_{t-1}}[\kappa, w](M)$ is 2^{-wt} -universal

- $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ is 2^{-w} -universal on equal-length messages
- $\mathbf{NH}_{\mathbf{K}_0}[\kappa, w](M) \parallel \ldots \parallel \mathbf{NH}_{\mathbf{K}_{t-1}}[\kappa, w](M)$ is 2^{-wt} -universal
- But, this requires a *tkw*-bit key

- $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ is 2^{-w}-universal on equal-length messages
- $\mathbf{NH}_{\mathbf{K}_0}[\kappa, w](M) \parallel \ldots \parallel \mathbf{NH}_{\mathbf{K}_{t-1}}[\kappa, w](M)$ is 2^{-wt} -universal
- But, this requires a $t\kappa w$ -bit key
- $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, w, t]$ is 2^{-wt} -universal on equal-length messages, and ...

- $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ is 2^{-w}-universal on equal-length messages
- $\mathbf{NH}_{\mathbf{K}_0}[\kappa, w](M) \parallel \ldots \parallel \mathbf{NH}_{\mathbf{K}_{t-1}}[\kappa, w](M)$ is 2^{-wt} -universal
- But, this requires a $t\kappa w$ -bit key
- $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, w, t]$ is 2^{-wt} -universal on equal-length messages, and ...
- Only requires 2w(t-1)-bits of extra key material

- $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ is 2^{-w}-universal on equal-length messages
- $\mathbf{NH}_{\mathbf{K}_0}[\kappa, w](M) \mid\mid \ldots \mid\mid \mathbf{NH}_{\mathbf{K}_{t-1}}[\kappa, w](M)$ is 2^{-wt} -universal
- But, this requires a $t\kappa w$ -bit key
- $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, w, t]$ is 2^{-wt} -universal on equal-length messages, and ...
- Only requires 2w(t-1)-bits of extra key material
- So, $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ is 2⁻¹²⁸-universal requiring only 192-bits of extra key material

- $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ is 2^{-w}-universal on equal-length messages
- $\mathbf{NH}_{\mathbf{K}_0}[\kappa, w](M) \mid\mid \ldots \mid\mid \mathbf{NH}_{\mathbf{K}_{t-1}}[\kappa, w](M)$ is 2^{-wt} -universal
- But, this requires a $t\kappa w$ -bit key
- $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, w, t]$ is 2^{-wt} -universal on equal-length messages, and ...
- Only requires 2w(t-1)-bits of extra key material
- So, $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ is 2⁻¹²⁸-universal requiring only 192-bits of extra key material
- And is the fastest option for keyed hashing on our target platforms

- $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ is 2^{-w}-universal on equal-length messages
- $\mathbf{NH}_{\mathbf{K}_0}[\kappa, w](M) \mid\mid \ldots \mid\mid \mathbf{NH}_{\mathbf{K}_{t-1}}[\kappa, w](M)$ is 2^{-wt} -universal
- But, this requires a $t\kappa w$ -bit key
- $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, w, t]$ is 2^{-wt} -universal on equal-length messages, and ...
- Only requires 2w(t-1)-bits of extra key material
- So, $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ is 2⁻¹²⁸-universal requiring only 192-bits of extra key material
- And is the fastest option for keyed hashing on our target platforms
- A mode is defined on top of $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ to

- $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ is 2^{-w}-universal on equal-length messages
- $\mathbf{NH}_{\mathbf{K}_0}[\kappa, w](M) \mid\mid \ldots \mid\mid \mathbf{NH}_{\mathbf{K}_{t-1}}[\kappa, w](M)$ is 2^{-wt} -universal
- But, this requires a $t\kappa w$ -bit key
- $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, w, t]$ is 2^{-wt} -universal on equal-length messages, and ...
- Only requires 2w(t-1)-bits of extra key material
- So, $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ is 2⁻¹²⁸-universal requiring only 192-bits of extra key material
- And is the fastest option for keyed hashing on our target platforms
- A mode is defined on top of $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ to
 - Handle messages of arbitrary length

- $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ is 2^{-w}-universal on equal-length messages
- $\mathbf{NH}_{\mathbf{K}_0}[\kappa, w](M) \mid\mid \ldots \mid\mid \mathbf{NH}_{\mathbf{K}_{t-1}}[\kappa, w](M)$ is 2^{-wt} -universal
- But, this requires a $t\kappa w$ -bit key
- $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, w, t]$ is 2^{-wt} -universal on equal-length messages, and ...
- Only requires 2w(t-1)-bits of extra key material
- So, $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ is 2⁻¹²⁸-universal requiring only 192-bits of extra key material
- And is the fastest option for keyed hashing on our target platforms
- A mode is defined on top of $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ to
 - Handle messages of arbitrary length
 - Ensure that universality bound holds in case of messages of variable length

• We analyze security of $\mathbf{NH}_{\mathbf{K}}[\kappa,w]$ in the parallelized public function framework

- We analyze security of $\mathbf{NH}_{\mathbf{K}}[\kappa,w]$ in the parallelized public function framework
- This reduces the problem to obtaining the values of $MIP_{M[w]}$ and $MDP_{M[w]}$

- We analyze security of $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ in the parallelized public function framework
- This reduces the problem to obtaining the values of $MIP_{M[w]}$ and $MDP_{M[w]}$
- We obtain $MIP_{M[w]} \leq 2^{-w+1}$ and $MDP_{M[w]} = 2^{-w}$

- We analyze security of $\mathbf{NH}_{\mathbf{K}}[\kappa, w]$ in the parallelized public function framework
- This reduces the problem to obtaining the values of $MIP_{M[w]}$ and $MDP_{M[w]}$
- We obtain $\operatorname{MIP}_{M[w]} \leq 2^{-w+1}$ and $\operatorname{MDP}_{M[w]} = 2^{-w}$
- This means that $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ is 2^{-124} - Δ Universal over all messages

- We analyze security of $\mathbf{NH}_{\mathbf{K}}[\kappa,w]$ in the parallelized public function framework
- This reduces the problem to obtaining the values of $MIP_{M[w]}$ and $MDP_{M[w]}$
- We obtain $MIP_{M[w]} \le 2^{-w+1}$ and $MDP_{M[w]} = 2^{-w}$
- This means that $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ is 2^{-124} - Δ Universal over all messages
- Our approach also leads to

- We analyze security of $\mathbf{NH}_{\mathbf{K}}[\kappa,w]$ in the parallelized public function framework
- This reduces the problem to obtaining the values of $MIP_{M[w]}$ and $MDP_{M[w]}$
- We obtain $MIP_{M[w]} \le 2^{-w+1}$ and $MDP_{M[w]} = 2^{-w}$
- This means that $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ is 2^{-124} - Δ Universal over all messages
- Our approach also leads to
 - A tight upper-bound for $\max_{\delta} DP_{M[w]}((a, b), \delta)$

- We analyze security of $\mathbf{NH}_{\mathbf{K}}[\kappa,w]$ in the parallelized public function framework
- This reduces the problem to obtaining the values of $MIP_{M[w]}$ and $MDP_{M[w]}$
- We obtain $MIP_{M[w]} \le 2^{-w+1}$ and $MDP_{M[w]} = 2^{-w}$
- This means that $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ is 2^{-124} - Δ Universal over all messages
- Our approach also leads to
 - A tight upper-bound for $\max_{\delta} \operatorname{DP}_{M[w]}((a, b), \delta)$
 - The value of $DP_{M[w]}((a, b), 0)$

- We analyze security of $\mathbf{NH}_{\mathbf{K}}[\kappa,w]$ in the parallelized public function framework
- This reduces the problem to obtaining the values of $MIP_{M[w]}$ and $MDP_{M[w]}$
- We obtain $MIP_{M[w]} \le 2^{-w+1}$ and $MDP_{M[w]} = 2^{-w}$
- This means that $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ is 2^{-124} - Δ Universal over all messages
- Our approach also leads to
 - A tight upper-bound for $\max_{\delta} \operatorname{DP}_{M[w]}((a, b), \delta)$
 - The value of $DP_{M[w]}((a, b), 0)$
- $DP_{M[w]}$ is upper-bounded by 2^{-w} , but ...

- We analyze security of $\mathbf{NH}_{\mathbf{K}}[\kappa,w]$ in the parallelized public function framework
- This reduces the problem to obtaining the values of $MIP_{M[w]}$ and $MDP_{M[w]}$
- We obtain $MIP_{M[w]} \le 2^{-w+1}$ and $MDP_{M[w]} = 2^{-w}$
- This means that $\mathbf{NH}_{\mathbf{K}}^{\mathsf{T}}[\kappa, 32, 4]$ is 2^{-124} - Δ Universal over all messages
- Our approach also leads to
 - A tight upper-bound for $\max_{\delta} DP_{M[w]}((a, b), \delta)$
 - The value of $DP_{M[w]}((a, b), 0)$
- $DP_{M[w]}$ is upper-bounded by 2^{-w} , but ...
- Only for input differences of the type (a, 0), (0, a), (a, a), (a, -a)

Figure: Upper-bound of $\max_{\delta} DP_{M[16]}((a, b), \delta)$, $DP_{M[16]}((a, b), 0)$ vs. Number of differences

• M[w] is an excellent choice due to the propagation properties

$\mathcal{F}\text{-}128\text{, the public function of Multimixer-}128$

- M[w] is an excellent choice due to the propagation properties
- We present the public function \mathcal{F} -128

- M[w] is an excellent choice due to the propagation properties
- We present the public function \mathcal{F} -128
- Multimixer-128 is simply Parallel [*F*-128]

- M[w] is an excellent choice due to the propagation properties
- We present the public function \mathcal{F} -128
- Multimixer-128 is simply Parallel [*F*-128]
- \mathcal{F} -128: $(\mathbb{Z}/2^{32}\mathbb{Z})^4 \times (\mathbb{Z}/2^{32}\mathbb{Z})^4 \to (\mathbb{Z}/2^{64}\mathbb{Z})^8$ is defined as

- M[w] is an excellent choice due to the propagation properties
- We present the public function \mathcal{F} -128
- Multimixer-128 is simply Parallel [*F*-128]
- \mathcal{F} -128: $(\mathbb{Z}/2^{32}\mathbb{Z})^4 \times (\mathbb{Z}/2^{32}\mathbb{Z})^4 \to (\mathbb{Z}/2^{64}\mathbb{Z})^8$ is defined as
- \mathcal{F} -128 $(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \odot \mathbf{y}, N_{\alpha} \cdot \mathbf{x} \odot N_{\beta} \cdot \mathbf{y})$

- M[w] is an excellent choice due to the propagation properties
- We present the public function \mathcal{F} -128
- Multimixer-128 is simply Parallel [*F*-128]
- \mathcal{F} -128: $(\mathbb{Z}/2^{32}\mathbb{Z})^4 \times (\mathbb{Z}/2^{32}\mathbb{Z})^4 \to (\mathbb{Z}/2^{64}\mathbb{Z})^8$ is defined as
- \mathcal{F} -128 $(\mathbf{x}, \mathbf{y}) = (\mathbf{x} \odot \mathbf{y}, N_{\alpha} \cdot \mathbf{x} \odot N_{\beta} \cdot \mathbf{y})$

Figure: \mathcal{F} -128, the public function of Multimixer-128

• We prove for $\mathbf{Z} \neq \mathbf{0}$, $\operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{Z}) \ll \operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{0}) = \frac{2^{129}-1}{2^{256}} \leq 2^{-127} = \operatorname{MIP}_{\mathcal{F}\text{-}128}$

- We prove for $\mathbf{Z} \neq \mathbf{0}$, $\operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{Z}) \ll \operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{0}) = \frac{2^{129}-1}{2^{256}} \leq 2^{-127} = \operatorname{MIP}_{\mathcal{F}\text{-}128}$
- $\mathrm{MDP}_{\mathcal{F}\text{-}128}$ is determined by the number of minimum active multiplications

- We prove for $\mathbf{Z} \neq \mathbf{0}$, $\operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{Z}) \ll \operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{0}) = \frac{2^{129}-1}{2^{256}} \leq 2^{-127} = \operatorname{MIP}_{\mathcal{F}\text{-}128}$
- $\mathrm{MDP}_{\mathcal{F}\text{-}128}$ is determined by the number of minimum active multiplications
- The minimum number of active multiplications is determined by N_{α} and N_{β}

- We prove for $\mathbf{Z} \neq \mathbf{0}$, $\operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{Z}) \ll \operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{0}) = \frac{2^{129}-1}{2^{256}} \leq 2^{-127} = \operatorname{MIP}_{\mathcal{F}\text{-}128}$
- $\mathrm{MDP}_{\mathcal{F}\text{-}128}$ is determined by the number of minimum active multiplications
- The minimum number of active multiplications is determined by N_{α} and N_{β}
- Branch number of an $n \times n$ matrix N over $\mathbb{Z}/2^w\mathbb{Z}$: $\min_{\mathbf{x}\neq \mathbf{0}}(w(\mathbf{x}) + w(N \cdot \mathbf{x}))$

- We prove for $\mathbf{Z} \neq \mathbf{0}$, $\operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{Z}) \ll \operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{0}) = \frac{2^{129}-1}{2^{256}} \leq 2^{-127} = \operatorname{MIP}_{\mathcal{F}\text{-}128}$
- $\mathrm{MDP}_{\mathcal{F}\text{-}128}$ is determined by the number of minimum active multiplications
- The minimum number of active multiplications is determined by N_{α} and N_{β}
- Branch number of an $n \times n$ matrix N over $\mathbb{Z}/2^w\mathbb{Z}$: $\min_{\mathbf{x}\neq\mathbf{0}}(w(\mathbf{x}) + w(N \cdot \mathbf{x}))$
- N_{α} and N_{β} both have branch number 4

- We prove for $\mathbf{Z} \neq \mathbf{0}$, $\operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{Z}) \ll \operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{0}) = \frac{2^{129}-1}{2^{256}} \leq 2^{-127} = \operatorname{MIP}_{\mathcal{F}\text{-}128}$
- $\mathrm{MDP}_{\mathcal{F}\text{-}128}$ is determined by the number of minimum active multiplications
- The minimum number of active multiplications is determined by N_{α} and N_{β}
- Branch number of an $n \times n$ matrix N over $\mathbb{Z}/2^w\mathbb{Z}$: $\min_{\mathbf{x}\neq \mathbf{0}}(w(\mathbf{x}) + w(N \cdot \mathbf{x}))$
- N_{α} and N_{β} both have branch number 4
- When (\mathbf{a}, \mathbf{b}) is such that 4 multiplications are active, $DP_{\mathcal{F}-128}((\mathbf{a}, \mathbf{b}), \Delta) \leq 2^{-128}$

- We prove for $\mathbf{Z} \neq \mathbf{0}$, $\operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{Z}) \ll \operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{0}) = \frac{2^{129}-1}{2^{256}} \leq 2^{-127} = \operatorname{MIP}_{\mathcal{F}\text{-}128}$
- $\mathrm{MDP}_{\mathcal{F}\text{-}128}$ is determined by the number of minimum active multiplications
- The minimum number of active multiplications is determined by N_{α} and N_{β}
- Branch number of an $n \times n$ matrix N over $\mathbb{Z}/2^w\mathbb{Z}$: $\min_{\mathbf{x}\neq \mathbf{0}}(w(\mathbf{x}) + w(N \cdot \mathbf{x}))$
- N_{α} and N_{β} both have branch number 4
- When (\mathbf{a}, \mathbf{b}) is such that 4 multiplications are active, $DP_{\mathcal{F}-128}((\mathbf{a}, \mathbf{b}), \Delta) \leq 2^{-128}$
- In particular for all $\mathbf{a} \neq \mathbf{0}$, $\mathrm{DP}_{\mathcal{F}\text{-}128}((\mathbf{a},\mathbf{0}),\mathbf{0}) = \mathrm{DP}_{\mathcal{F}\text{-}128}((\mathbf{0},\mathbf{a}),\mathbf{0}) = 2^{-128}$
Universality of Multimixer-128

- We prove for $\mathbf{Z} \neq \mathbf{0}$, $\operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{Z}) \ll \operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{0}) = \frac{2^{129}-1}{2^{256}} \leq 2^{-127} = \operatorname{MIP}_{\mathcal{F}\text{-}128}$
- $\mathrm{MDP}_{\mathcal{F}\text{-}128}$ is determined by the number of minimum active multiplications
- The minimum number of active multiplications is determined by N_{α} and N_{β}
- Branch number of an $n \times n$ matrix N over $\mathbb{Z}/2^w\mathbb{Z}$: $\min_{\mathbf{x}\neq \mathbf{0}}(w(\mathbf{x}) + w(N \cdot \mathbf{x}))$
- N_{α} and N_{β} both have branch number 4
- When (\mathbf{a}, \mathbf{b}) is such that 4 multiplications are active, $DP_{\mathcal{F}-128}((\mathbf{a}, \mathbf{b}), \Delta) \leq 2^{-128}$
- In particular for all $\mathbf{a} \neq \mathbf{0}$, $\mathrm{DP}_{\mathcal{F}\text{-}128}((\mathbf{a},\mathbf{0}),\mathbf{0}) = \mathrm{DP}_{\mathcal{F}\text{-}128}((\mathbf{0},\mathbf{a}),\mathbf{0}) = 2^{-128}$
- For all other differences, $DP_{\mathcal{F}-128}((\mathbf{a}, \mathbf{b}), \Delta) \leq 2^{-160}$

Universality of Multimixer-128

- We prove for $\mathbf{Z} \neq \mathbf{0}$, $\operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{Z}) \ll \operatorname{IP}_{\mathcal{F}\text{-}128}(\mathbf{0}) = \frac{2^{129}-1}{2^{256}} \leq 2^{-127} = \operatorname{MIP}_{\mathcal{F}\text{-}128}$
- $\mathrm{MDP}_{\mathcal{F}\text{-}128}$ is determined by the number of minimum active multiplications
- The minimum number of active multiplications is determined by N_{α} and N_{β}
- Branch number of an $n \times n$ matrix N over $\mathbb{Z}/2^w\mathbb{Z}$: $\min_{\mathbf{x}\neq \mathbf{0}}(w(\mathbf{x}) + w(N \cdot \mathbf{x}))$
- N_{α} and N_{β} both have branch number 4
- When (\mathbf{a}, \mathbf{b}) is such that 4 multiplications are active, $DP_{\mathcal{F}-128}((\mathbf{a}, \mathbf{b}), \Delta) \leq 2^{-128}$
- In particular for all $a \neq 0$, $DP_{\mathcal{F}-128}((a, 0), 0) = DP_{\mathcal{F}-128}((0, a), 0) = 2^{-128}$
- For all other differences, $\mathrm{DP}_{\mathcal{F}\text{-}128}((\mathbf{a},\mathbf{b}),\Delta) \leq 2^{-160}$
- Thus, Multimixer-128 is ε - Δ universal with

 $\varepsilon = \max{\{\mathrm{MDP}_{\mathcal{F}}\-128\}, \mathrm{MIP}_{\mathcal{F}}\-128\}} = 2^{-127}$

Implementation and Benchmarking Results

Algorithm	$\#$ ops.\ per 256-bit input			
	×	$+ \mod 2^{32}$	$+ \mod 2^{64}$	
$\mathbf{NH}_{\mathbf{K}}^{T}[\kappa, 32, 4]$	16	32	16	
Multimixer-128	8	20	8	

Table: Comparison of # arithmetic operations

Implementation and Benchmarking Results

Algorithm	$\#$ ops.\ per 256-bit input			
	×	$+ \mod 2^{32}$	$+ \mod 2^{64}$	
ΝΗ ^T _K [κ, 32, 4]	16	32	16	
Multimixer-128	8	20	8	

Table: Comparison of # arithmetic operations

Algorithm	# Instructions \setminus per	Input length in bytes		
Algorithm	256-bit input	512	4096	32768
$\mathbf{NH}_{\mathbf{K}}^{T}[\kappa, 32, 4]$	16	2.033	1.500	1.558
Multimixer-128	11	1.830	1.233	1.396

Table: Performance on 32-bit ARMv7 Cortex-A processor in cycles per byte

Implementation and Benchmarking Results

Algorithm	$\#$ ops.\ per 256-bit input			
	×	$+ \mod 2^{32}$	$+ \mod 2^{64}$	
ΝΗ ^T _K [κ, 32, 4]	16	32	16	
Multimixer-128	8	20	8	

Table: Comparison of # arithmetic operations

Algorithm	# Instructions \setminus per	Input	nput length in bytes		
Algorithm	256-bit input	512	4096	32768	
$\mathbf{NH}_{\mathbf{K}}^{T}[\kappa, 32, 4]$	16	2.033	1.500	1.558	
Multimixer-128	11	1.830	1.233	1.396	

Table: Performance on 32-bit ARMv7 Cortex-A processor in cycles per byte

Thank you for your attention!

References

- [WC81] Mark N. Wegman and Larry Carter. "New Hash Functions and Their Use in Authentication and Set Equality". In: J. Comput. Syst. Sci. 22.3 (1981), pp. 265–279.
- [Sti95] Douglas R. Stinson. "On the Connections Between Universal Hashing, Combinatorial Designs and Error-Correcting Codes". In: Electron. Colloquium Comput. Complex. TR95-052 (1995). ECCC: TR95-052.
- [Bla+99] John Black et al. "UMAC: Fast and Secure Message Authentication".
 In: Advances in Cryptology CRYPTO '99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings.
 Ed. by Michael J. Wiener. Vol. 1666. LNCS. Springer, 1999, pp. 216–233.
- [Dae+18] Joan Daemen et al. "The design of Xoodoo and Xoofff". In: IACR Trans. Symmetric Cryptol. 2018.4 (2018), pp. 1–38.
- [FRD23] Jonathan Fuchs, Yann Rotella, and Joan Daemen. **"On the Security of** Keyed Hashing Based on Public Permutations". In: Advances in

Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part III. Vol. 14083. Lecture Notes in Computer Science. Springer, 2023, pp. 607–627.

[Gho+23] Koustabh Ghosh et al. "Universal Hashing Based on Field Multiplication and (Near-)MDS Matrices". In: Progress in Cryptology -AFRICACRYPT 2023 - 14th International Conference on Cryptology in Africa, Sousse, Tunisia, July 19-21, 2023, Proceedings. Vol. 14064. Lecture Notes in Computer Science. Springer, 2023, pp. 129–150.