
Multimixer-128: Universal Keyed Hashing Based
on Integer Multiplication

Koustabh Ghosh, Parisa Amiri Eliasi, Joan Daemen

Radboud University, Nijmegen, the Netherlands

FSE presentation

March 25, 2024

1 / 12

Keyed hash functions

• Keyed hash functions are a class of cryptographic primitives that

• Compress variable-length inputs to a fixed sized state under a secret key

• Keyed hash functions can be used to build

• Message authentication code (mac) functions [WC81]

• Doubly-extendable cryptographic keyed (deck) functions [Dae+18]

• The security of a keyed hash function FK is determined by its universality [Sti95]:

• FK is ε-universal =⇒ ∀ M ̸= M∗, Pr[FK(M) = FK(M
∗)] ≤ ε

• FK is ε-∆universal =⇒ ∀ M ̸= M∗, Pr[FK(M)− FK(M
∗) = ∆] ≤ ε

2 / 12

Keyed hash functions

• Keyed hash functions are a class of cryptographic primitives that

• Compress variable-length inputs to a fixed sized state under a secret key

• Keyed hash functions can be used to build

• Message authentication code (mac) functions [WC81]

• Doubly-extendable cryptographic keyed (deck) functions [Dae+18]

• The security of a keyed hash function FK is determined by its universality [Sti95]:

• FK is ε-universal =⇒ ∀ M ̸= M∗, Pr[FK(M) = FK(M
∗)] ≤ ε

• FK is ε-∆universal =⇒ ∀ M ̸= M∗, Pr[FK(M)− FK(M
∗) = ∆] ≤ ε

2 / 12

Keyed hash functions

• Keyed hash functions are a class of cryptographic primitives that

• Compress variable-length inputs to a fixed sized state under a secret key

• Keyed hash functions can be used to build

• Message authentication code (mac) functions [WC81]

• Doubly-extendable cryptographic keyed (deck) functions [Dae+18]

• The security of a keyed hash function FK is determined by its universality [Sti95]:

• FK is ε-universal =⇒ ∀ M ̸= M∗, Pr[FK(M) = FK(M
∗)] ≤ ε

• FK is ε-∆universal =⇒ ∀ M ̸= M∗, Pr[FK(M)− FK(M
∗) = ∆] ≤ ε

2 / 12

Keyed hash functions

• Keyed hash functions are a class of cryptographic primitives that

• Compress variable-length inputs to a fixed sized state under a secret key

• Keyed hash functions can be used to build

• Message authentication code (mac) functions [WC81]

• Doubly-extendable cryptographic keyed (deck) functions [Dae+18]

• The security of a keyed hash function FK is determined by its universality [Sti95]:

• FK is ε-universal =⇒ ∀ M ̸= M∗, Pr[FK(M) = FK(M
∗)] ≤ ε

• FK is ε-∆universal =⇒ ∀ M ̸= M∗, Pr[FK(M)− FK(M
∗) = ∆] ≤ ε

2 / 12

Keyed hash functions

• Keyed hash functions are a class of cryptographic primitives that

• Compress variable-length inputs to a fixed sized state under a secret key

• Keyed hash functions can be used to build

• Message authentication code (mac) functions [WC81]

• Doubly-extendable cryptographic keyed (deck) functions [Dae+18]

• The security of a keyed hash function FK is determined by its universality [Sti95]:

• FK is ε-universal =⇒ ∀ M ̸= M∗, Pr[FK(M) = FK(M
∗)] ≤ ε

• FK is ε-∆universal =⇒ ∀ M ̸= M∗, Pr[FK(M)− FK(M
∗) = ∆] ≤ ε

2 / 12

Keyed hash functions

• Keyed hash functions are a class of cryptographic primitives that

• Compress variable-length inputs to a fixed sized state under a secret key

• Keyed hash functions can be used to build

• Message authentication code (mac) functions [WC81]

• Doubly-extendable cryptographic keyed (deck) functions [Dae+18]

• The security of a keyed hash function FK is determined by its universality [Sti95]:

• FK is ε-universal =⇒ ∀ M ̸= M∗, Pr[FK(M) = FK(M
∗)] ≤ ε

• FK is ε-∆universal =⇒ ∀ M ̸= M∗, Pr[FK(M)− FK(M
∗) = ∆] ≤ ε

2 / 12

Keyed hash functions

• Keyed hash functions are a class of cryptographic primitives that

• Compress variable-length inputs to a fixed sized state under a secret key

• Keyed hash functions can be used to build

• Message authentication code (mac) functions [WC81]

• Doubly-extendable cryptographic keyed (deck) functions [Dae+18]

• The security of a keyed hash function FK is determined by its universality [Sti95]:

• FK is ε-universal =⇒ ∀ M ̸= M∗, Pr[FK(M) = FK(M
∗)] ≤ ε

• FK is ε-∆universal =⇒ ∀ M ̸= M∗, Pr[FK(M)− FK(M
∗) = ∆] ≤ ε

2 / 12

Keyed hash functions

• Keyed hash functions are a class of cryptographic primitives that

• Compress variable-length inputs to a fixed sized state under a secret key

• Keyed hash functions can be used to build

• Message authentication code (mac) functions [WC81]

• Doubly-extendable cryptographic keyed (deck) functions [Dae+18]

• The security of a keyed hash function FK is determined by its universality [Sti95]:

• FK is ε-universal =⇒ ∀ M ̸= M∗, Pr[FK(M) = FK(M
∗)] ≤ ε

• FK is ε-∆universal =⇒ ∀ M ̸= M∗, Pr[FK(M)− FK(M
∗) = ∆] ≤ ε

2 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

The parallel construction

• Our goal: Design ε-∆universal keyed hash function with ε ≈ 2−128

• That are efficient for software platforms

• Our design strategy: Parallelization of a public function [Gho+23],

• Which is the generalization of the parallelization of a public permutations [FRD23]

• From a public function f : G → G ′ . . .

• A keyed hash function F = Parallel [f] can be built with

• The key space is Gκ

• The message space is
κ⋃

ℓ=1

G ℓ

• The digest space is G ′

• For a message M = (M0,M1, . . . ,M|M|−1) and key K = (K0,K1 . . . ,Kκ−1),

• M+K = (M0 + K0,M1 + K1, . . . ,M|M|−1 + K|M|−1)

• FK(M) := F (M+K)

3 / 12

Parallel [f]

M0 M1
M|M|−2 M|M|−1

K0 K1 K|M|−2 K|M|−1

f f f f

. . .

. . .

h

Figure: The parallelization of f : Parallel [f] [FRD23]

4 / 12

Universality of Parallel [f]

• For the fixed length public function f . . .

• The DP of a differential (A,∆) is: DPf (A,∆) = #{X∈G |f (X+A)−f (X)=∆}
#G

• The IP of any output Z of f is: IPf (Z) =
#{X∈G |f (X)=Z}

#G

• The maximum possible value of DPf and IPf are denoted as:

• MDPf = max
A ̸=0,∆

DPf (A,∆)

• MIPf = max
Z

IPf (Z)

• Parallel [f] is max{MDPf ,MIPf }-∆universal [Gho+23]

• Obtaining universality of Parallel [f] is reduced to obtaining MDPf and MIPf

• Universality not only takes into account messages of equal length,

• But also messages of variable length

5 / 12

Universality of Parallel [f]

• For the fixed length public function f . . .

• The DP of a differential (A,∆) is: DPf (A,∆) = #{X∈G |f (X+A)−f (X)=∆}
#G

• The IP of any output Z of f is: IPf (Z) =
#{X∈G |f (X)=Z}

#G

• The maximum possible value of DPf and IPf are denoted as:

• MDPf = max
A ̸=0,∆

DPf (A,∆)

• MIPf = max
Z

IPf (Z)

• Parallel [f] is max{MDPf ,MIPf }-∆universal [Gho+23]

• Obtaining universality of Parallel [f] is reduced to obtaining MDPf and MIPf

• Universality not only takes into account messages of equal length,

• But also messages of variable length

5 / 12

Universality of Parallel [f]

• For the fixed length public function f . . .

• The DP of a differential (A,∆) is: DPf (A,∆) = #{X∈G |f (X+A)−f (X)=∆}
#G

• The IP of any output Z of f is: IPf (Z) =
#{X∈G |f (X)=Z}

#G

• The maximum possible value of DPf and IPf are denoted as:

• MDPf = max
A ̸=0,∆

DPf (A,∆)

• MIPf = max
Z

IPf (Z)

• Parallel [f] is max{MDPf ,MIPf }-∆universal [Gho+23]

• Obtaining universality of Parallel [f] is reduced to obtaining MDPf and MIPf

• Universality not only takes into account messages of equal length,

• But also messages of variable length

5 / 12

Universality of Parallel [f]

• For the fixed length public function f . . .

• The DP of a differential (A,∆) is: DPf (A,∆) = #{X∈G |f (X+A)−f (X)=∆}
#G

• The IP of any output Z of f is: IPf (Z) =
#{X∈G |f (X)=Z}

#G

• The maximum possible value of DPf and IPf are denoted as:

• MDPf = max
A ̸=0,∆

DPf (A,∆)

• MIPf = max
Z

IPf (Z)

• Parallel [f] is max{MDPf ,MIPf }-∆universal [Gho+23]

• Obtaining universality of Parallel [f] is reduced to obtaining MDPf and MIPf

• Universality not only takes into account messages of equal length,

• But also messages of variable length

5 / 12

Universality of Parallel [f]

• For the fixed length public function f . . .

• The DP of a differential (A,∆) is: DPf (A,∆) = #{X∈G |f (X+A)−f (X)=∆}
#G

• The IP of any output Z of f is: IPf (Z) =
#{X∈G |f (X)=Z}

#G

• The maximum possible value of DPf and IPf are denoted as:

• MDPf = max
A ̸=0,∆

DPf (A,∆)

• MIPf = max
Z

IPf (Z)

• Parallel [f] is max{MDPf ,MIPf }-∆universal [Gho+23]

• Obtaining universality of Parallel [f] is reduced to obtaining MDPf and MIPf

• Universality not only takes into account messages of equal length,

• But also messages of variable length

5 / 12

Universality of Parallel [f]

• For the fixed length public function f . . .

• The DP of a differential (A,∆) is: DPf (A,∆) = #{X∈G |f (X+A)−f (X)=∆}
#G

• The IP of any output Z of f is: IPf (Z) =
#{X∈G |f (X)=Z}

#G

• The maximum possible value of DPf and IPf are denoted as:

• MDPf = max
A ̸=0,∆

DPf (A,∆)

• MIPf = max
Z

IPf (Z)

• Parallel [f] is max{MDPf ,MIPf }-∆universal [Gho+23]

• Obtaining universality of Parallel [f] is reduced to obtaining MDPf and MIPf

• Universality not only takes into account messages of equal length,

• But also messages of variable length

5 / 12

Universality of Parallel [f]

• For the fixed length public function f . . .

• The DP of a differential (A,∆) is: DPf (A,∆) = #{X∈G |f (X+A)−f (X)=∆}
#G

• The IP of any output Z of f is: IPf (Z) =
#{X∈G |f (X)=Z}

#G

• The maximum possible value of DPf and IPf are denoted as:

• MDPf = max
A ̸=0,∆

DPf (A,∆)

• MIPf = max
Z

IPf (Z)

• Parallel [f] is max{MDPf ,MIPf }-∆universal [Gho+23]

• Obtaining universality of Parallel [f] is reduced to obtaining MDPf and MIPf

• Universality not only takes into account messages of equal length,

• But also messages of variable length

5 / 12

Universality of Parallel [f]

• For the fixed length public function f . . .

• The DP of a differential (A,∆) is: DPf (A,∆) = #{X∈G |f (X+A)−f (X)=∆}
#G

• The IP of any output Z of f is: IPf (Z) =
#{X∈G |f (X)=Z}

#G

• The maximum possible value of DPf and IPf are denoted as:

• MDPf = max
A ̸=0,∆

DPf (A,∆)

• MIPf = max
Z

IPf (Z)

• Parallel [f] is max{MDPf ,MIPf }-∆universal [Gho+23]

• Obtaining universality of Parallel [f] is reduced to obtaining MDPf and MIPf

• Universality not only takes into account messages of equal length,

• But also messages of variable length

5 / 12

Universality of Parallel [f]

• For the fixed length public function f . . .

• The DP of a differential (A,∆) is: DPf (A,∆) = #{X∈G |f (X+A)−f (X)=∆}
#G

• The IP of any output Z of f is: IPf (Z) =
#{X∈G |f (X)=Z}

#G

• The maximum possible value of DPf and IPf are denoted as:

• MDPf = max
A ̸=0,∆

DPf (A,∆)

• MIPf = max
Z

IPf (Z)

• Parallel [f] is max{MDPf ,MIPf }-∆universal [Gho+23]

• Obtaining universality of Parallel [f] is reduced to obtaining MDPf and MIPf

• Universality not only takes into account messages of equal length,

• But also messages of variable length

5 / 12

Universality of Parallel [f]

• For the fixed length public function f . . .

• The DP of a differential (A,∆) is: DPf (A,∆) = #{X∈G |f (X+A)−f (X)=∆}
#G

• The IP of any output Z of f is: IPf (Z) =
#{X∈G |f (X)=Z}

#G

• The maximum possible value of DPf and IPf are denoted as:

• MDPf = max
A ̸=0,∆

DPf (A,∆)

• MIPf = max
Z

IPf (Z)

• Parallel [f] is max{MDPf ,MIPf }-∆universal [Gho+23]

• Obtaining universality of Parallel [f] is reduced to obtaining MDPf and MIPf

• Universality not only takes into account messages of equal length,

• But also messages of variable length

5 / 12

NH[κ,w] [Bla+99]

• NH[κ,w]: very fast keyed hash function on software with

• An even κ ≥ 2 (blocksize) and w ≥ 1 (wordsize)

• Performance is due to fast integer multiplication instructions

• NHK[κ,w] can be viewed as the parallelization of

M[w] : (Z/2wZ)2 → Z/22wZ : (x , y) 7→ x × y

• For M = (M0,M1, . . . ,M|M|−1) with Mi = (m2i ,m2i+1) ∈ (Z/2wZ)2,
• And K = (K0,K1 . . . ,Kκ/2−1) with Ki = (k2i , k2i+1) ∈ (Z/2wZ)2

(m0,m1) (m2,m3) (m2|M|−2,m2|M|−1)

(k0, k1) (k2, k3) (k2|M|−2, k2|M|−1)

M[w] M[w] M[w]

. . .

. . .

h

Figure: NHK[κ,w] = Parallel [M[w]]

6 / 12

NH[κ,w] [Bla+99]

• NH[κ,w]: very fast keyed hash function on software with

• An even κ ≥ 2 (blocksize) and w ≥ 1 (wordsize)

• Performance is due to fast integer multiplication instructions

• NHK[κ,w] can be viewed as the parallelization of

M[w] : (Z/2wZ)2 → Z/22wZ : (x , y) 7→ x × y

• For M = (M0,M1, . . . ,M|M|−1) with Mi = (m2i ,m2i+1) ∈ (Z/2wZ)2,
• And K = (K0,K1 . . . ,Kκ/2−1) with Ki = (k2i , k2i+1) ∈ (Z/2wZ)2

(m0,m1) (m2,m3) (m2|M|−2,m2|M|−1)

(k0, k1) (k2, k3) (k2|M|−2, k2|M|−1)

M[w] M[w] M[w]

. . .

. . .

h

Figure: NHK[κ,w] = Parallel [M[w]]

6 / 12

NH[κ,w] [Bla+99]

• NH[κ,w]: very fast keyed hash function on software with

• An even κ ≥ 2 (blocksize) and w ≥ 1 (wordsize)

• Performance is due to fast integer multiplication instructions

• NHK[κ,w] can be viewed as the parallelization of

M[w] : (Z/2wZ)2 → Z/22wZ : (x , y) 7→ x × y

• For M = (M0,M1, . . . ,M|M|−1) with Mi = (m2i ,m2i+1) ∈ (Z/2wZ)2,
• And K = (K0,K1 . . . ,Kκ/2−1) with Ki = (k2i , k2i+1) ∈ (Z/2wZ)2

(m0,m1) (m2,m3) (m2|M|−2,m2|M|−1)

(k0, k1) (k2, k3) (k2|M|−2, k2|M|−1)

M[w] M[w] M[w]

. . .

. . .

h

Figure: NHK[κ,w] = Parallel [M[w]]

6 / 12

NH[κ,w] [Bla+99]

• NH[κ,w]: very fast keyed hash function on software with

• An even κ ≥ 2 (blocksize) and w ≥ 1 (wordsize)

• Performance is due to fast integer multiplication instructions

• NHK[κ,w] can be viewed as the parallelization of

M[w] : (Z/2wZ)2 → Z/22wZ : (x , y) 7→ x × y

• For M = (M0,M1, . . . ,M|M|−1) with Mi = (m2i ,m2i+1) ∈ (Z/2wZ)2,
• And K = (K0,K1 . . . ,Kκ/2−1) with Ki = (k2i , k2i+1) ∈ (Z/2wZ)2

(m0,m1) (m2,m3) (m2|M|−2,m2|M|−1)

(k0, k1) (k2, k3) (k2|M|−2, k2|M|−1)

M[w] M[w] M[w]

. . .

. . .

h

Figure: NHK[κ,w] = Parallel [M[w]]

6 / 12

NH[κ,w] [Bla+99]

• NH[κ,w]: very fast keyed hash function on software with

• An even κ ≥ 2 (blocksize) and w ≥ 1 (wordsize)

• Performance is due to fast integer multiplication instructions

• NHK[κ,w] can be viewed as the parallelization of

M[w] : (Z/2wZ)2 → Z/22wZ : (x , y) 7→ x × y

• For M = (M0,M1, . . . ,M|M|−1) with Mi = (m2i ,m2i+1) ∈ (Z/2wZ)2,

• And K = (K0,K1 . . . ,Kκ/2−1) with Ki = (k2i , k2i+1) ∈ (Z/2wZ)2

(m0,m1) (m2,m3) (m2|M|−2,m2|M|−1)

(k0, k1) (k2, k3) (k2|M|−2, k2|M|−1)

M[w] M[w] M[w]

. . .

. . .

h

Figure: NHK[κ,w] = Parallel [M[w]]

6 / 12

NH[κ,w] [Bla+99]

• NH[κ,w]: very fast keyed hash function on software with

• An even κ ≥ 2 (blocksize) and w ≥ 1 (wordsize)

• Performance is due to fast integer multiplication instructions

• NHK[κ,w] can be viewed as the parallelization of

M[w] : (Z/2wZ)2 → Z/22wZ : (x , y) 7→ x × y

• For M = (M0,M1, . . . ,M|M|−1) with Mi = (m2i ,m2i+1) ∈ (Z/2wZ)2,
• And K = (K0,K1 . . . ,Kκ/2−1) with Ki = (k2i , k2i+1) ∈ (Z/2wZ)2

(m0,m1) (m2,m3) (m2|M|−2,m2|M|−1)

(k0, k1) (k2, k3) (k2|M|−2, k2|M|−1)

M[w] M[w] M[w]

. . .

. . .

h

Figure: NHK[κ,w] = Parallel [M[w]]

6 / 12

NH[κ,w] [Bla+99]

• NH[κ,w]: very fast keyed hash function on software with

• An even κ ≥ 2 (blocksize) and w ≥ 1 (wordsize)

• Performance is due to fast integer multiplication instructions

• NHK[κ,w] can be viewed as the parallelization of

M[w] : (Z/2wZ)2 → Z/22wZ : (x , y) 7→ x × y

• For M = (M0,M1, . . . ,M|M|−1) with Mi = (m2i ,m2i+1) ∈ (Z/2wZ)2,
• And K = (K0,K1 . . . ,Kκ/2−1) with Ki = (k2i , k2i+1) ∈ (Z/2wZ)2

(m0,m1) (m2,m3) (m2|M|−2,m2|M|−1)

(k0, k1) (k2, k3) (k2|M|−2, k2|M|−1)

M[w] M[w] M[w]

. . .

. . .

h

Figure: NHK[κ,w] = Parallel [M[w]]
6 / 12

Extending universality of NH

• NHK[κ,w] is 2−w -universal on equal-length messages

• NHK0 [κ,w](M) || . . . || NHKt−1 [κ,w](M) is 2−wt-universal

• But, this requires a tκw -bit key

• NHT
K[κ,w , t] is 2−wt-universal on equal-length messages, and . . .

• Only requires 2w(t − 1)-bits of extra key material

• So, NHT
K[κ, 32, 4] is 2

−128-universal requiring only 192-bits of extra key material

• And is the fastest option for keyed hashing on our target platforms

• A mode is defined on top of NHT
K[κ, 32, 4] to

• Handle messages of arbitrary length

• Ensure that universality bound holds in case of messages of variable length

7 / 12

Extending universality of NH

• NHK[κ,w] is 2−w -universal on equal-length messages

• NHK0 [κ,w](M) || . . . || NHKt−1 [κ,w](M) is 2−wt-universal

• But, this requires a tκw -bit key

• NHT
K[κ,w , t] is 2−wt-universal on equal-length messages, and . . .

• Only requires 2w(t − 1)-bits of extra key material

• So, NHT
K[κ, 32, 4] is 2

−128-universal requiring only 192-bits of extra key material

• And is the fastest option for keyed hashing on our target platforms

• A mode is defined on top of NHT
K[κ, 32, 4] to

• Handle messages of arbitrary length

• Ensure that universality bound holds in case of messages of variable length

7 / 12

Extending universality of NH

• NHK[κ,w] is 2−w -universal on equal-length messages

• NHK0 [κ,w](M) || . . . || NHKt−1 [κ,w](M) is 2−wt-universal

• But, this requires a tκw -bit key

• NHT
K[κ,w , t] is 2−wt-universal on equal-length messages, and . . .

• Only requires 2w(t − 1)-bits of extra key material

• So, NHT
K[κ, 32, 4] is 2

−128-universal requiring only 192-bits of extra key material

• And is the fastest option for keyed hashing on our target platforms

• A mode is defined on top of NHT
K[κ, 32, 4] to

• Handle messages of arbitrary length

• Ensure that universality bound holds in case of messages of variable length

7 / 12

Extending universality of NH

• NHK[κ,w] is 2−w -universal on equal-length messages

• NHK0 [κ,w](M) || . . . || NHKt−1 [κ,w](M) is 2−wt-universal

• But, this requires a tκw -bit key

• NHT
K[κ,w , t] is 2−wt-universal on equal-length messages, and . . .

• Only requires 2w(t − 1)-bits of extra key material

• So, NHT
K[κ, 32, 4] is 2

−128-universal requiring only 192-bits of extra key material

• And is the fastest option for keyed hashing on our target platforms

• A mode is defined on top of NHT
K[κ, 32, 4] to

• Handle messages of arbitrary length

• Ensure that universality bound holds in case of messages of variable length

7 / 12

Extending universality of NH

• NHK[κ,w] is 2−w -universal on equal-length messages

• NHK0 [κ,w](M) || . . . || NHKt−1 [κ,w](M) is 2−wt-universal

• But, this requires a tκw -bit key

• NHT
K[κ,w , t] is 2−wt-universal on equal-length messages, and . . .

• Only requires 2w(t − 1)-bits of extra key material

• So, NHT
K[κ, 32, 4] is 2

−128-universal requiring only 192-bits of extra key material

• And is the fastest option for keyed hashing on our target platforms

• A mode is defined on top of NHT
K[κ, 32, 4] to

• Handle messages of arbitrary length

• Ensure that universality bound holds in case of messages of variable length

7 / 12

Extending universality of NH

• NHK[κ,w] is 2−w -universal on equal-length messages

• NHK0 [κ,w](M) || . . . || NHKt−1 [κ,w](M) is 2−wt-universal

• But, this requires a tκw -bit key

• NHT
K[κ,w , t] is 2−wt-universal on equal-length messages, and . . .

• Only requires 2w(t − 1)-bits of extra key material

• So, NHT
K[κ, 32, 4] is 2

−128-universal requiring only 192-bits of extra key material

• And is the fastest option for keyed hashing on our target platforms

• A mode is defined on top of NHT
K[κ, 32, 4] to

• Handle messages of arbitrary length

• Ensure that universality bound holds in case of messages of variable length

7 / 12

Extending universality of NH

• NHK[κ,w] is 2−w -universal on equal-length messages

• NHK0 [κ,w](M) || . . . || NHKt−1 [κ,w](M) is 2−wt-universal

• But, this requires a tκw -bit key

• NHT
K[κ,w , t] is 2−wt-universal on equal-length messages, and . . .

• Only requires 2w(t − 1)-bits of extra key material

• So, NHT
K[κ, 32, 4] is 2

−128-universal requiring only 192-bits of extra key material

• And is the fastest option for keyed hashing on our target platforms

• A mode is defined on top of NHT
K[κ, 32, 4] to

• Handle messages of arbitrary length

• Ensure that universality bound holds in case of messages of variable length

7 / 12

Extending universality of NH

• NHK[κ,w] is 2−w -universal on equal-length messages

• NHK0 [κ,w](M) || . . . || NHKt−1 [κ,w](M) is 2−wt-universal

• But, this requires a tκw -bit key

• NHT
K[κ,w , t] is 2−wt-universal on equal-length messages, and . . .

• Only requires 2w(t − 1)-bits of extra key material

• So, NHT
K[κ, 32, 4] is 2

−128-universal requiring only 192-bits of extra key material

• And is the fastest option for keyed hashing on our target platforms

• A mode is defined on top of NHT
K[κ, 32, 4] to

• Handle messages of arbitrary length

• Ensure that universality bound holds in case of messages of variable length

7 / 12

Extending universality of NH

• NHK[κ,w] is 2−w -universal on equal-length messages

• NHK0 [κ,w](M) || . . . || NHKt−1 [κ,w](M) is 2−wt-universal

• But, this requires a tκw -bit key

• NHT
K[κ,w , t] is 2−wt-universal on equal-length messages, and . . .

• Only requires 2w(t − 1)-bits of extra key material

• So, NHT
K[κ, 32, 4] is 2

−128-universal requiring only 192-bits of extra key material

• And is the fastest option for keyed hashing on our target platforms

• A mode is defined on top of NHT
K[κ, 32, 4] to

• Handle messages of arbitrary length

• Ensure that universality bound holds in case of messages of variable length

7 / 12

Extending universality of NH

• NHK[κ,w] is 2−w -universal on equal-length messages

• NHK0 [κ,w](M) || . . . || NHKt−1 [κ,w](M) is 2−wt-universal

• But, this requires a tκw -bit key

• NHT
K[κ,w , t] is 2−wt-universal on equal-length messages, and . . .

• Only requires 2w(t − 1)-bits of extra key material

• So, NHT
K[κ, 32, 4] is 2

−128-universal requiring only 192-bits of extra key material

• And is the fastest option for keyed hashing on our target platforms

• A mode is defined on top of NHT
K[κ, 32, 4] to

• Handle messages of arbitrary length

• Ensure that universality bound holds in case of messages of variable length

7 / 12

Differential properties of M[w]

• We analyze security of NHK[κ,w] in the parallelized public function framework

• This reduces the problem to obtaining the values of MIPM[w] and MDPM[w]

• We obtain MIPM[w] ≤ 2−w+1 and MDPM[w] = 2−w

• This means that NHT
K[κ, 32, 4] is 2

−124-∆Universal over all messages

• Our approach also leads to

• A tight upper-bound for maxδ DPM[w]((a, b), δ)

• The value of DPM[w]((a, b), 0)

• DPM[w] is upper-bounded by 2−w , but . . .

• Only for input differences of the type (a, 0), (0, a), (a, a), (a,−a)

8 / 12

Differential properties of M[w]

• We analyze security of NHK[κ,w] in the parallelized public function framework

• This reduces the problem to obtaining the values of MIPM[w] and MDPM[w]

• We obtain MIPM[w] ≤ 2−w+1 and MDPM[w] = 2−w

• This means that NHT
K[κ, 32, 4] is 2

−124-∆Universal over all messages

• Our approach also leads to

• A tight upper-bound for maxδ DPM[w]((a, b), δ)

• The value of DPM[w]((a, b), 0)

• DPM[w] is upper-bounded by 2−w , but . . .

• Only for input differences of the type (a, 0), (0, a), (a, a), (a,−a)

8 / 12

Differential properties of M[w]

• We analyze security of NHK[κ,w] in the parallelized public function framework

• This reduces the problem to obtaining the values of MIPM[w] and MDPM[w]

• We obtain MIPM[w] ≤ 2−w+1 and MDPM[w] = 2−w

• This means that NHT
K[κ, 32, 4] is 2

−124-∆Universal over all messages

• Our approach also leads to

• A tight upper-bound for maxδ DPM[w]((a, b), δ)

• The value of DPM[w]((a, b), 0)

• DPM[w] is upper-bounded by 2−w , but . . .

• Only for input differences of the type (a, 0), (0, a), (a, a), (a,−a)

8 / 12

Differential properties of M[w]

• We analyze security of NHK[κ,w] in the parallelized public function framework

• This reduces the problem to obtaining the values of MIPM[w] and MDPM[w]

• We obtain MIPM[w] ≤ 2−w+1 and MDPM[w] = 2−w

• This means that NHT
K[κ, 32, 4] is 2

−124-∆Universal over all messages

• Our approach also leads to

• A tight upper-bound for maxδ DPM[w]((a, b), δ)

• The value of DPM[w]((a, b), 0)

• DPM[w] is upper-bounded by 2−w , but . . .

• Only for input differences of the type (a, 0), (0, a), (a, a), (a,−a)

8 / 12

Differential properties of M[w]

• We analyze security of NHK[κ,w] in the parallelized public function framework

• This reduces the problem to obtaining the values of MIPM[w] and MDPM[w]

• We obtain MIPM[w] ≤ 2−w+1 and MDPM[w] = 2−w

• This means that NHT
K[κ, 32, 4] is 2

−124-∆Universal over all messages

• Our approach also leads to

• A tight upper-bound for maxδ DPM[w]((a, b), δ)

• The value of DPM[w]((a, b), 0)

• DPM[w] is upper-bounded by 2−w , but . . .

• Only for input differences of the type (a, 0), (0, a), (a, a), (a,−a)

8 / 12

Differential properties of M[w]

• We analyze security of NHK[κ,w] in the parallelized public function framework

• This reduces the problem to obtaining the values of MIPM[w] and MDPM[w]

• We obtain MIPM[w] ≤ 2−w+1 and MDPM[w] = 2−w

• This means that NHT
K[κ, 32, 4] is 2

−124-∆Universal over all messages

• Our approach also leads to

• A tight upper-bound for maxδ DPM[w]((a, b), δ)

• The value of DPM[w]((a, b), 0)

• DPM[w] is upper-bounded by 2−w , but . . .

• Only for input differences of the type (a, 0), (0, a), (a, a), (a,−a)

8 / 12

Differential properties of M[w]

• We analyze security of NHK[κ,w] in the parallelized public function framework

• This reduces the problem to obtaining the values of MIPM[w] and MDPM[w]

• We obtain MIPM[w] ≤ 2−w+1 and MDPM[w] = 2−w

• This means that NHT
K[κ, 32, 4] is 2

−124-∆Universal over all messages

• Our approach also leads to

• A tight upper-bound for maxδ DPM[w]((a, b), δ)

• The value of DPM[w]((a, b), 0)

• DPM[w] is upper-bounded by 2−w , but . . .

• Only for input differences of the type (a, 0), (0, a), (a, a), (a,−a)

8 / 12

Differential properties of M[w]

• We analyze security of NHK[κ,w] in the parallelized public function framework

• This reduces the problem to obtaining the values of MIPM[w] and MDPM[w]

• We obtain MIPM[w] ≤ 2−w+1 and MDPM[w] = 2−w

• This means that NHT
K[κ, 32, 4] is 2

−124-∆Universal over all messages

• Our approach also leads to

• A tight upper-bound for maxδ DPM[w]((a, b), δ)

• The value of DPM[w]((a, b), 0)

• DPM[w] is upper-bounded by 2−w , but . . .

• Only for input differences of the type (a, 0), (0, a), (a, a), (a,−a)

8 / 12

Differential properties of M[w]

• We analyze security of NHK[κ,w] in the parallelized public function framework

• This reduces the problem to obtaining the values of MIPM[w] and MDPM[w]

• We obtain MIPM[w] ≤ 2−w+1 and MDPM[w] = 2−w

• This means that NHT
K[κ, 32, 4] is 2

−124-∆Universal over all messages

• Our approach also leads to

• A tight upper-bound for maxδ DPM[w]((a, b), δ)

• The value of DPM[w]((a, b), 0)

• DPM[w] is upper-bounded by 2−w , but . . .

• Only for input differences of the type (a, 0), (0, a), (a, a), (a,−a)

8 / 12

Figure: Upper-bound of maxδ DPM[16]((a, b), δ), DPM[16]((a, b), 0) vs. Number of differences

9 / 12

F-128, the public function of Multimixer-128

• M[w] is an excellent choice due to the propagation properties

• We present the public function F-128

• Multimixer-128 is simply Parallel [F-128]

• F-128:
(
Z/232Z

)4 × (
Z/232Z

)4 → (
Z/264Z

)8
is defined as

• F-128(x, y) = (x⊙ y,Nα · x⊙Nβ · y)

Figure: F-128, the public function of Multimixer-128

10 / 12

F-128, the public function of Multimixer-128

• M[w] is an excellent choice due to the propagation properties

• We present the public function F-128

• Multimixer-128 is simply Parallel [F-128]

• F-128:
(
Z/232Z

)4 × (
Z/232Z

)4 → (
Z/264Z

)8
is defined as

• F-128(x, y) = (x⊙ y,Nα · x⊙Nβ · y)

Figure: F-128, the public function of Multimixer-128

10 / 12

F-128, the public function of Multimixer-128

• M[w] is an excellent choice due to the propagation properties

• We present the public function F-128

• Multimixer-128 is simply Parallel [F-128]

• F-128:
(
Z/232Z

)4 × (
Z/232Z

)4 → (
Z/264Z

)8
is defined as

• F-128(x, y) = (x⊙ y,Nα · x⊙Nβ · y)

Figure: F-128, the public function of Multimixer-128

10 / 12

F-128, the public function of Multimixer-128

• M[w] is an excellent choice due to the propagation properties

• We present the public function F-128

• Multimixer-128 is simply Parallel [F-128]

• F-128:
(
Z/232Z

)4 × (
Z/232Z

)4 → (
Z/264Z

)8
is defined as

• F-128(x, y) = (x⊙ y,Nα · x⊙Nβ · y)

Figure: F-128, the public function of Multimixer-128

10 / 12

F-128, the public function of Multimixer-128

• M[w] is an excellent choice due to the propagation properties

• We present the public function F-128

• Multimixer-128 is simply Parallel [F-128]

• F-128:
(
Z/232Z

)4 × (
Z/232Z

)4 → (
Z/264Z

)8
is defined as

• F-128(x, y) = (x⊙ y,Nα · x⊙Nβ · y)

Figure: F-128, the public function of Multimixer-128

10 / 12

F-128, the public function of Multimixer-128

• M[w] is an excellent choice due to the propagation properties

• We present the public function F-128

• Multimixer-128 is simply Parallel [F-128]

• F-128:
(
Z/232Z

)4 × (
Z/232Z

)4 → (
Z/264Z

)8
is defined as

• F-128(x, y) = (x⊙ y,Nα · x⊙Nβ · y)

Figure: F-128, the public function of Multimixer-128

10 / 12

Universality of Multimixer-128

• We prove for Z ̸= 0, IPF-128(Z) ≪ IPF-128(0) =
2129−1
2256

≤ 2−127 = MIPF-128

• MDPF-128 is determined by the number of minimum active multiplications

• The minimum number of active multiplications is determined by Nα and Nβ

• Branch number of an n × n matrix N over Z/2wZ: min
x̸=0

(w(x) + w(N · x))

• Nα and Nβ both have branch number 4

• When (a,b) is such that 4 multiplications are active, DPF-128((a,b),∆) ≤ 2−128

• In particular for all a ̸= 0, DPF-128((a, 0), 0) = DPF-128((0, a), 0) = 2−128

• For all other differences, DPF-128((a,b),∆) ≤ 2−160

• Thus, Multimixer-128 is ε-∆ universal with

ε = max{MDPF-128,MIPF-128} = 2−127

11 / 12

Universality of Multimixer-128

• We prove for Z ̸= 0, IPF-128(Z) ≪ IPF-128(0) =
2129−1
2256

≤ 2−127 = MIPF-128

• MDPF-128 is determined by the number of minimum active multiplications

• The minimum number of active multiplications is determined by Nα and Nβ

• Branch number of an n × n matrix N over Z/2wZ: min
x̸=0

(w(x) + w(N · x))

• Nα and Nβ both have branch number 4

• When (a,b) is such that 4 multiplications are active, DPF-128((a,b),∆) ≤ 2−128

• In particular for all a ̸= 0, DPF-128((a, 0), 0) = DPF-128((0, a), 0) = 2−128

• For all other differences, DPF-128((a,b),∆) ≤ 2−160

• Thus, Multimixer-128 is ε-∆ universal with

ε = max{MDPF-128,MIPF-128} = 2−127

11 / 12

Universality of Multimixer-128

• We prove for Z ̸= 0, IPF-128(Z) ≪ IPF-128(0) =
2129−1
2256

≤ 2−127 = MIPF-128

• MDPF-128 is determined by the number of minimum active multiplications

• The minimum number of active multiplications is determined by Nα and Nβ

• Branch number of an n × n matrix N over Z/2wZ: min
x̸=0

(w(x) + w(N · x))

• Nα and Nβ both have branch number 4

• When (a,b) is such that 4 multiplications are active, DPF-128((a,b),∆) ≤ 2−128

• In particular for all a ̸= 0, DPF-128((a, 0), 0) = DPF-128((0, a), 0) = 2−128

• For all other differences, DPF-128((a,b),∆) ≤ 2−160

• Thus, Multimixer-128 is ε-∆ universal with

ε = max{MDPF-128,MIPF-128} = 2−127

11 / 12

Universality of Multimixer-128

• We prove for Z ̸= 0, IPF-128(Z) ≪ IPF-128(0) =
2129−1
2256

≤ 2−127 = MIPF-128

• MDPF-128 is determined by the number of minimum active multiplications

• The minimum number of active multiplications is determined by Nα and Nβ

• Branch number of an n × n matrix N over Z/2wZ: min
x̸=0

(w(x) + w(N · x))

• Nα and Nβ both have branch number 4

• When (a,b) is such that 4 multiplications are active, DPF-128((a,b),∆) ≤ 2−128

• In particular for all a ̸= 0, DPF-128((a, 0), 0) = DPF-128((0, a), 0) = 2−128

• For all other differences, DPF-128((a,b),∆) ≤ 2−160

• Thus, Multimixer-128 is ε-∆ universal with

ε = max{MDPF-128,MIPF-128} = 2−127

11 / 12

Universality of Multimixer-128

• We prove for Z ̸= 0, IPF-128(Z) ≪ IPF-128(0) =
2129−1
2256

≤ 2−127 = MIPF-128

• MDPF-128 is determined by the number of minimum active multiplications

• The minimum number of active multiplications is determined by Nα and Nβ

• Branch number of an n × n matrix N over Z/2wZ: min
x̸=0

(w(x) + w(N · x))

• Nα and Nβ both have branch number 4

• When (a,b) is such that 4 multiplications are active, DPF-128((a,b),∆) ≤ 2−128

• In particular for all a ̸= 0, DPF-128((a, 0), 0) = DPF-128((0, a), 0) = 2−128

• For all other differences, DPF-128((a,b),∆) ≤ 2−160

• Thus, Multimixer-128 is ε-∆ universal with

ε = max{MDPF-128,MIPF-128} = 2−127

11 / 12

Universality of Multimixer-128

• We prove for Z ̸= 0, IPF-128(Z) ≪ IPF-128(0) =
2129−1
2256

≤ 2−127 = MIPF-128

• MDPF-128 is determined by the number of minimum active multiplications

• The minimum number of active multiplications is determined by Nα and Nβ

• Branch number of an n × n matrix N over Z/2wZ: min
x̸=0

(w(x) + w(N · x))

• Nα and Nβ both have branch number 4

• When (a,b) is such that 4 multiplications are active, DPF-128((a,b),∆) ≤ 2−128

• In particular for all a ̸= 0, DPF-128((a, 0), 0) = DPF-128((0, a), 0) = 2−128

• For all other differences, DPF-128((a,b),∆) ≤ 2−160

• Thus, Multimixer-128 is ε-∆ universal with

ε = max{MDPF-128,MIPF-128} = 2−127

11 / 12

Universality of Multimixer-128

• We prove for Z ̸= 0, IPF-128(Z) ≪ IPF-128(0) =
2129−1
2256

≤ 2−127 = MIPF-128

• MDPF-128 is determined by the number of minimum active multiplications

• The minimum number of active multiplications is determined by Nα and Nβ

• Branch number of an n × n matrix N over Z/2wZ: min
x̸=0

(w(x) + w(N · x))

• Nα and Nβ both have branch number 4

• When (a,b) is such that 4 multiplications are active, DPF-128((a,b),∆) ≤ 2−128

• In particular for all a ̸= 0, DPF-128((a, 0), 0) = DPF-128((0, a), 0) = 2−128

• For all other differences, DPF-128((a,b),∆) ≤ 2−160

• Thus, Multimixer-128 is ε-∆ universal with

ε = max{MDPF-128,MIPF-128} = 2−127

11 / 12

Universality of Multimixer-128

• We prove for Z ̸= 0, IPF-128(Z) ≪ IPF-128(0) =
2129−1
2256

≤ 2−127 = MIPF-128

• MDPF-128 is determined by the number of minimum active multiplications

• The minimum number of active multiplications is determined by Nα and Nβ

• Branch number of an n × n matrix N over Z/2wZ: min
x̸=0

(w(x) + w(N · x))

• Nα and Nβ both have branch number 4

• When (a,b) is such that 4 multiplications are active, DPF-128((a,b),∆) ≤ 2−128

• In particular for all a ̸= 0, DPF-128((a, 0), 0) = DPF-128((0, a), 0) = 2−128

• For all other differences, DPF-128((a,b),∆) ≤ 2−160

• Thus, Multimixer-128 is ε-∆ universal with

ε = max{MDPF-128,MIPF-128} = 2−127

11 / 12

Universality of Multimixer-128

• We prove for Z ̸= 0, IPF-128(Z) ≪ IPF-128(0) =
2129−1
2256

≤ 2−127 = MIPF-128

• MDPF-128 is determined by the number of minimum active multiplications

• The minimum number of active multiplications is determined by Nα and Nβ

• Branch number of an n × n matrix N over Z/2wZ: min
x̸=0

(w(x) + w(N · x))

• Nα and Nβ both have branch number 4

• When (a,b) is such that 4 multiplications are active, DPF-128((a,b),∆) ≤ 2−128

• In particular for all a ̸= 0, DPF-128((a, 0), 0) = DPF-128((0, a), 0) = 2−128

• For all other differences, DPF-128((a,b),∆) ≤ 2−160

• Thus, Multimixer-128 is ε-∆ universal with

ε = max{MDPF-128,MIPF-128} = 2−127

11 / 12

Implementation and Benchmarking Results

Algorithm
ops.\ per 256-bit input

× + mod 232 + mod 264

NHT
K[κ, 32, 4] 16 32 16

Multimixer-128 8 20 8

Table: Comparison of # arithmetic operations

Algorithm
Instructions\ per Input length in bytes

256-bit input 512 4096 32768

NHT
K[κ, 32, 4] 16 2.033 1.500 1.558

Multimixer-128 11 1.830 1.233 1.396

Table: Performance on 32-bit ARMv7 Cortex-A processor in cycles per byte

Thank you for your attention!

12 / 12

Implementation and Benchmarking Results

Algorithm
ops.\ per 256-bit input

× + mod 232 + mod 264

NHT
K[κ, 32, 4] 16 32 16

Multimixer-128 8 20 8

Table: Comparison of # arithmetic operations

Algorithm
Instructions\ per Input length in bytes

256-bit input 512 4096 32768

NHT
K[κ, 32, 4] 16 2.033 1.500 1.558

Multimixer-128 11 1.830 1.233 1.396

Table: Performance on 32-bit ARMv7 Cortex-A processor in cycles per byte

Thank you for your attention!

12 / 12

Implementation and Benchmarking Results

Algorithm
ops.\ per 256-bit input

× + mod 232 + mod 264

NHT
K[κ, 32, 4] 16 32 16

Multimixer-128 8 20 8

Table: Comparison of # arithmetic operations

Algorithm
Instructions\ per Input length in bytes

256-bit input 512 4096 32768

NHT
K[κ, 32, 4] 16 2.033 1.500 1.558

Multimixer-128 11 1.830 1.233 1.396

Table: Performance on 32-bit ARMv7 Cortex-A processor in cycles per byte

Thank you for your attention!
12 / 12

References

[WC81] Mark N. Wegman and Larry Carter. “New Hash Functions and Their

Use in Authentication and Set Equality”. In: J. Comput. Syst. Sci. 22.3

(1981), pp. 265–279.

[Sti95] Douglas R. Stinson. “On the Connections Between Universal Hashing,

Combinatorial Designs and Error-Correcting Codes”. In: Electron.

Colloquium Comput. Complex. TR95-052 (1995). ECCC: TR95-052.

[Bla+99] John Black et al. “UMAC: Fast and Secure Message Authentication”.

In: Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings.

Ed. by Michael J. Wiener. Vol. 1666. LNCS. Springer, 1999, pp. 216–233.

[Dae+18] Joan Daemen et al. “The design of Xoodoo and Xoofff”. In: IACR

Trans. Symmetric Cryptol. 2018.4 (2018), pp. 1–38.

[FRD23] Jonathan Fuchs, Yann Rotella, and Joan Daemen. “On the Security of

Keyed Hashing Based on Public Permutations”. In: Advances in

12 / 12

TR95-052

Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference,

CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part

III. Vol. 14083. Lecture Notes in Computer Science. Springer, 2023, pp. 607–627.

[Gho+23] Koustabh Ghosh et al. “Universal Hashing Based on Field

Multiplication and (Near-)MDS Matrices”. In: Progress in Cryptology -

AFRICACRYPT 2023 - 14th International Conference on Cryptology in Africa,

Sousse, Tunisia, July 19-21, 2023, Proceedings. Vol. 14064. Lecture Notes in

Computer Science. Springer, 2023, pp. 129–150.

12 / 12

	References

