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Abstract. In this paper, we present an improved differential-linear cryptanalysis
of the ChaCha stream cipher. Our main contributions are new differential-linear
distinguishers that we were able to build thanks to the following improvements: a) we
considered a larger search space, including 2-bit differences (besides 1-bit differences)
for the difference at the beginning of the differential part of the differential-linear trail;
b) a better choice of mask between the differential and linear parts; c) a carefully
crafted MILP tool that finds linear trails with higher correlation for the linear part.
We eventually obtain a new distinguisher for ChaCha reduced to 7 rounds that requires
2166.89 computations, improving the previous record (ASIACRYPT 2022) by a factor
of 247. Also, we obtain a distinguisher for ChaCha reduced to 7.5 rounds that requires
2251.4 computations, being the first time of a distinguisher against ChaCha reduced
to 7.5 rounds. Using our MILP tool, we also found a 5-round differential-linear
distinguisher. When combined with the probabilistic neutral bits (PNB) framework,
we obtain a key-recovery attack on ChaCha reduced to 7 rounds with a computational
complexity of 2206.8, improving by a factor 214.2 upon the recent result published at
EUROCRYPT 2022.
Keywords: Cryptanalysis · Differential-Linear Attack · ChaCha20

1 Introduction
Symmetric-key cryptographic primitives are considered the workhorses of cryptography
and they represent a crucial element of the global security chain. While guarantees are
usually provided by the designers for some specific attacks, the confidence we have in the
security of most symmetric-key primitives is largely based on the amount of cryptanalysis
conducted by the research community. It is therefore very important to push these attacks
to their limits in order to better assess the security margin provided by the primitives,
especially the high-profile ones.

Different constructions are possible when building symmetric-key primitives such as
block ciphers or stream ciphers. Among these, Addition-Rotation-XOR (ARX) ciphers are
generally seen as very efficient functions for software scenarios, where modular addition,
word-wise rotation and eXclusive OR (XOR) are naturally available as processor instruc-
tions. Moreover, the combined usage of XORs and modular additions leads to interesting
cryptographic properties, with a rapid increase of the function degree and a good resistance
against differential and linear cryptanalysis. Typical examples of ARX primitives are
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the SHA-1 and SHA-2 hash functions [NIS15], the TEA [WN94] or SPECK [BSS+13] block
ciphers.

The Salsa [Ber08c] or ChaCha [Ber08a] stream ciphers are two other prominent exam-
ples of high-profile ARX-based primitives, as they are used in many commercial products
and crypto libraries [Ian]. Salsa was submitted as a candidate for eSTREAM (the
ECRYPT Stream Cipher Project [ECR08]) in 2005 and was selected two years later for
the final software portfolio. Bernstein then proposed ChaCha [Ber08b], a Salsa variant
aiming at improving its performance and security (via a faster diffusion). Both Salsa and
ChaCha have versions with 12 and 20 rounds and can handle 128 or 256-bit secret keys.

Related Works. Before ChaCha was proposed to the public, some attempts on applying
differential cryptanalysis to Salsa, ChaCha’s predecessor, were made, for example [Cro05,
TSK+07, FMB+06]. Also, two works explored rotational properties of the ChaCha internal
permutation [BBM21] and of the full stream cipher [BBB22], showing essentially that this
kind of techniques are deemed to fail due to the presence of constants injected into the
initial state.

All current best attacks on ChaCha are variations of the 2008 seminal work of Aumasson
et al. [AFK+08]. As we are going to describe below, in the time span of 14 years, these
works reduced the security of the best 7-round attack by approximately 26 bits, for an
average of 1.86 bits per year. Furthermore, practical distinguishers exist for up to 6 rounds
[CN21b], with a time complexity of 251.

The main technique proposed in [AFK+08] is inspired by correlation attacks and the
notion of neutral bits [BC04]. It is a chosen plaintext attack, and consists in the following
steps. First, build a distinguisher by applying some input difference to the initial state
and observe a differential correlation after some rounds. Then, select randomly chosen
keys to invert the ciphertext for a few round backwards in order to observe the differential
correlation. Determine which bits of the key are not affecting the observation of the
correlation (we call these bits the Probabilistic Neutral Bits or PNBs). Finally, find the
value of the non-PNBs of the key by means of exhaustive search filtered by the observation
of the correlation, and eventually the value of the remaining PNBs by exhaustive search.
The structure of all main attacks on ChaCha remains similar to the one above, where
attackers try to minimize the time complexity by either improving the success probability
of the distinguisher or by increasing the number of PNBs.

The first distinguisher proposed in [AFK+08] was a 3-round truncated differential of
a 1-bit input difference injected in the nonce and a 1-bit output difference. To attack R
rounds, the output difference was observed after inverting R − 3 rounds from an n-round
keystream block. The largest R Aumasson et al. were able to attack was 7, with a time
complexity of 2248 and a data complexity of 227. For future improvements, the authors
suggested that an attacker could use multi-bit differentials and/or combinations of several
biased output differences. On the other hand, their exhaustive search showed no bias
in 4-round ChaCha, be it with one, two, or three target output bits. The authors also
conjectured that four seems to be the highest number of rounds one can invert from a
partial key guess, while still observing a non-negligible bias after inversion, and such
that the overall cost improves from exhaustive key search. Indeed, this remains an open
problem as of today. They also foresaw that, in order to break further rounds by statistical
cryptanalysis, novel techniques and ideas are required, and 7 rounds is still the largest
number of rounds for which ChaCha has been attacked.

In 2012, Shi et al. [SZFW12] improved the attacks of [AFK+08] by a couple of bits
in time complexity, by considering a collection of distinguishers, called Column Chaining
Distinguishers (CCD), depending on sub-keys sharing common bits, and exhibiting new high
probability second-order differential trails. Overall, the attack can be seen as concurrent
applications of the attack in [AFK+08], using 3 to 4 CCDs. It whould be shown later in
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2016, by Maitra [Mai16], that the actual time complexity of this attack is 2246.7 making
the considerable effort of using CCDs not really worth it. Maitra was also able to reach a
time complexity of 2238.94 mostly by carefully picking IV values that yield higher biases
in the output difference when combined with the keys. In 2016, around the time of
ChaCha20 standardization, Choudhuri and Maitra [CM16a] proposed the first practical
distinguisher on ChaCha5 with time complexity of 216. They were able to do so by taking
into consideration the structure of the cipher and deriving 2-round correlations that
linked the 3-round 1-bit output difference to a 21-bit mask. This was the first explicit
example of differential-linear cryptanalysis of ChaCha, giving a time complexity of 2237.65

and a data complexity of 296 on 7-round ChaCha. The ideas in [CM16a] were inspired
by the work of [Leu16] and the differential-linear cryptanalysis techniques of [LH94]. All
subsequent significant attacks on ChaCha use differential-linear (DL) distinguishers. Note
that differential-linear cryptanalysis allowed to find the first known biases for 4, 4.5, and 5
rounds of ChaCha by exploiting masks of more than 3 bits, going beyond what had been
tried in [AFK+08].

Building on top of [CM16a], in 2017, Dey and Sarkar [DS17] improved the search of
PNBs by finding a combination of key bits which can act as good PNB as a whole set,
rather than choosing those key bits which act as good PNB alone.

In 2020, Beierle et al. [BLT20] improved the current attacks on many different levels.
They divided the DL distinguisher in 3 parts, by adding a middle layer of 2.5 rounds to
address the problem of the wrong estimates for the correlation due to the independence
assumption between the differential layer and the cipher. In the initial differential part,
made of only a single round, they generate only plaintext pairs that satisfy the correlation
of the differential-linear approximation with high probability, rather than picking them
randomly. This allowed the authors to display the first 3.5-round single bit differential
distinguisher (with probability 2−5 on average). In the linear part, they considered
multiple linear approximations and a partitioning technique for ARX ciphers, inspired by
[BC14, Leu16], that splits the space of ciphertexts into subsets in order to increase the
correlation of linear approximations. Finally, in the key recovery part, they used the Fast
Walsh-Hadamard Transform (FWHT) to recover key bits instead of guessing, due to the
linear relation (several key bits actually appear only linearly in the approximations). For
6 rounds, they do not use the PNBs, but their new technique. For 7 rounds, they use
standard PNBs technique, and reach a time complexity of 2230.86 and a data complexity
of 248.83.

In 2020, Coutinho and Souza [CN20] derived new linear approximations with worse
correlation, but yielding more PNBs. Expanding this work, in 2021, Coutinho and Souza
[CN21b] claimed to improve the attacks for 6 and 7 rounds of ChaCha, by explicitly deriving
linear approximations for 3 and 4 rounds. Unfortunately, their work was revisited and
invalidated by [DDSM21], who showed that the differential correlation for 3.5 rounds
was much smaller than the one claimed. A new revised version was posted on ePrint,
correcting the error [CN21a]. In that revised version, a 7-round distinguisher was found with
complexity 2224. Unfortunately, they did not improve the key-recovery attack presented
by [BLT20].

In [DS20, DS21], Dey et al. show a theoretical interpretation of previous DL distin-
guishers against ChaCha and Salsa: they develop a probabilistic framework focusing on
the non-linear component of the ARX cipher, the modular addition.

In [MIM21], Miyashita et al. deeply explores key-recovery attacks using single-bit
output masks. Specifically, they search for the best key-recovery attacks using the PNB
mentioned above attack and DL distinguishers with a single active bit in their output masks.
As a result, they found a key-recovery attacks against ChaCha reduced to 7 rounds and
7.25 rounds. For the 7-round attack the time complexity is 2231.63 of and data complexity
is 249.58. For the 7.25-round attack the time complexity is 2255.62 of and data complexity
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Table 1: Summary of the best attacks to ChaCha7 with 256-bit key.
Dist. Key Recovery

Ref. Rounds #PNBs Time Data Novelty/Comments
2008, Aumasson et al. [AFK+08] 3+0+0 35 2248 227 Truncated differential + PNB
2012, Shi et al. [SZFW12] 3+0+0 (35,34,32,28) 2246.5 227 Column chaining distinguisher (CCD)
2016, Maitra [Mai16] 3+0+0 41 2238.94 296 Chosen IV cryptanalysis
2017, Choudhuri et al. [CM16b] 4.5+0+1.5 50 2237.65 296 1st diff-lin using multi-bit distinguisher
2017, Dey et al. [DS17] 4.5+0+1.5 53 2235.22 - Global PNBs
2020, Beierle et al. [BLT20] 1+2.5+1.5 74 2230.86 248.83 1st 3.5-round single-bit differential
2021, Coutinho and Souza 2021,
Miyashita et al. [MIM21]

3.5+0+0 74 2231.63 249.58 Analysis of 1-bit masks on PNB attack

2021, Coutinho et al. [CN21b] 1+2.5+1.5 108 2228.51 280.51 Invalidated (2236.04, 287.99)
2022, Dey et al. [DGSS22] 1+2.5+0.5 79 2221.95 290.20 Better input pairs selection and new

PNBs strategy
Our work 1+2+2 160 2206.8 2110.81 Minimizing the Hamming weight of the

5-round diff-lin distinguisher’s output

is 248.36. Although, these last complexities values are like brute force their distinguishers
and analysis are valuable for future improvements.

In 2022, Dey et al. [DGSS22] improved the selection of right pairs in the differential part
used in [BLT20]. They also provided an original strategy to get a good set of PNBs, going
from 74 of [CN21b] to 79. This unlocked the first attack on 6.5 rounds of ChaCha. It is
worth noting that the complexity calculation formula given by Aumasson et al. [AFK+08]
was also revisited, in favor of a more accurate complexity.

In 2023, Coutinho et al. [CPV+22] improved the DL distinguisher correlation against
ChaCha reduced to 7 rounds by a factor of 210. They do this, by observing carefully half
rounds of ChaCha. Also, they manage to find, for first time ever, a distinguisher for Salsa
reduced to 8 rounds, and also they propose, for the first time ever, a key-recovery attack
against Salsa reduced to 8 rounds using the PNB technique. They found these attacks,
by taking into advantage the diffusion properties of Salsa. Specifically, by exploiting
the “hourglass structure” [MMH+14] presented in DL distinguihsers against ARX ciphers
presented in the previous works.

Finally, in 2023, Dey et al. improved the best 6 rounds attack by a factor of 240, to
299.48. This leap is made possible by combining multiple input and output difference pairs,
and considering different sets of PNBs for each of them.

We summarize the progress of the above described attacks in Table 1.

Our Contributions. In this article, we propose a new differential-linear cryptanalysis of
ChaCha, improving over the state-of-the-art.

First, in order to look for good linear approximations for the linear part of the
differential-linear attack, we designed a new MILP model for ChaCha based on techniques
similar to the ones proposed by Fu et al. [FWG+16] for the SPECK cipher (see Appendix A).
This automation allows us to better cover the search space and find linear trails with
higher correlation. As an example, the trail from round 3.5 to round 7 of ChaCha, as
presented in Lemma 1 and Lemma 2, was found by us, using the lemmas presented in
[CN20], with a theoretical probability of 2−47. However, by using our linear trail MILP
search model, a new candidate trail starting from the same input mask could be identified
with an improved theoretical probability of 2−37. Even better, a similar example occurs
with Lemma 3, Lemma 4 and Linear Trail 3, where a trail from round 3 to round 7 was
found by using the lemmas presented in [CN20] with a theoretical probability of 2−30.
However, by using our MILP search model for linear trails, a new candidate trail starting
from the same input mask could be identified with an improved theoretical probability of
2−26 (see Subsubsection 3.3.2).

Secondly, we show that better differential-linear trails can be found on ChaCha by
starting from a 2-bit difference at the beginning of the differential part of the trail (see
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Table 2: Time complexity of 7-round and 7.5 distinguishers of ChaCha with 256-bit key.
Rounds Rounds split Complexity Reference

7
1+2.5+3.5 2224 Coutinho et al. [CN21a]

3+4 2214 Coutinho et al.[CPV+22]
1+2+4 2166.89 This work

7.5 1+2+4.5 2251.54 This work

Subsection 3.2). Previously, all attacks only used a single bit flip on the input and this
was quite natural in order to minimize the difference spread due to the good diffusion
properties of ChaCha. Indeed, when searching for differential paths with high probability
on ARX ciphers, it is generally a good strategy to minimize as much as possible the number
of active bits. However, although those differential trails with a 2-bit difference at the
beginning do not improve the differential part, their output differences produce useful
3-round and 3.5-round differential distinguishers when connected with the middle part.
Specifically, these distinguishers help to have a better 7-round DL distinguisher than the
previous attacks, and to have for the first time ever a DL distinguisher for ChaCha reduced
to 7.5 rounds.

Thirdly, by using a better choice of masks between the differential and linear parts of
the attack (at round 3.5) and by combining this with our previous improvements, we were
able to find a new distinguisher for ChaCha reduced to 7 rounds (see Subsection 4.2). This
distinguisher requires only 2166.89 computations, an improvement factor of about 247 over
the previously best-known distinguisher on the same primitive, published at ASIACRYPT
2022 [CPV+22]. By extending the same distinguinsher one round forward we found a
distinguisher for ChaCha reduced to 7.5 rounds which requires 2251.54. To the best of our
knowledge it is the first time of a distinguisher reaching 7.5 rounds. The aforementioned
masks were found by observing that two active bits at round 3.5 of ChaCha can generate
only one active bit in round 4 with a probability of 1. This dramatically reduces the
number of active bits for the subsequent rounds and thus gives us a better distinguisher.
This is explained in detail in Subsection 3.3.

Finally, using some constraints in our MILP tool, we found two new 4-round DL
distinguisher. Plugging the first one into the PNB framework [AFK+08], we obtain a
key-recovery attack on ChaCha reduced to 7 rounds with a computational complexity
of 2213.14, improving by a factor 28.76 over the recent key-recovery attack published at
EUROCRYPT 2022 [DGSS22]. See Subsection 4.3. Plugging the second one into the
PNB framework, we obtain a key-recovery attack on ChaCha reduced to 7 rounds with a
computational complexity of 2217.58, improving by a factor 24.31 over the recent key-recovery
attack published at EUROCRYPT 2022 [DGSS22]. By utilizing the PNB framework in
conjunction with the initial 5-round distinguisher from the preceding paragraph, we obtain
a key-recovery attack on ChaCha reduced to 7 rounds. The computational complexity
of this attack is 2206.8, which represents an improvement over the recently published
key-recovery attack at EUROCRYPT 2022 [DGSS22], by a factor of 214.2.

Our results and a comparison with the state-of-the-art are given in Table 1 and in
Table 2.

We used GPUs in order to find and verify the new DL distinguishers. Furthermore,
we implemented our MILP model using MiniZinc. All our code is made public for the
community, and it is available at (Github: Link to Repository). It is important to note
that our GPU experiments were conducted using the cryptDances library [Cou22], which
we optimized to handle a larger number of samples. These optimizations resulted in a
sixfold improvement in the speed of cryptDances to check some of our differential-linear
distinguishers.

https://github.com/Crypto-TII/Boosting_differential-linear_cryptanalysis_of_ChaCha7_with_MILP
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2 Preliminaries
2.1 Notation
In this article, we will use the following notation. The addition modulo 232 (or the addition
in Z) of x and y will be denoted x + y or x ⊞ y, while Θi(x, y) will represent the ith carry
bit of the operation. The bitwise exclusive-OR (XOR) operation of two words x and y of
equal size will be denoted x ⊕ y. Also, we will denote as |x| the number of bits of x.

Xm (respectively X−m) will represent the mth state of ChaCha after m rounds (respec-
tively of the inverse ChaCha after m rounds). When discussing differential attacks, the
XOR-based difference observed on Xm will be denoted ∆m and the differential starting
from ∆in and ending to ∆out is denoted ∆in → ∆out. We will denote as ∆in −−→

DL
Γout

the DL distinguisher starting from ∆in and ending to Γout. Similarly, we will denote as
Γin −→

L
Γout the linear distinguisher starting from Γin and ending to Γout. Xm

a,i (respec-
tively ∆m

a,i) will stand for the ith bit of the word a of the state Xm (respectively the state
difference ∆m). Finally, to improve the readability of long linear approximations such as
xR

i,j0
⊕ xR

i,j1
⊕ · · · ⊕ xR

i,jt
, we use the shorter notation xR

i [j0, j1, ..., jt]. For some short linear
approximations we stick to the explicit notation.

Given a set S ⊂ Fn
2 and a Boolean function f :Fn

2 → F2, we define

Corx∈S [f(x)] := 1
|S|
∑
x∈S

(−1)f(x).

2.2 Description of the ChaCha Stream Cipher
In [Ber08a], Bernstein proposed ChaCha, a stream cipher manipulating a 128-bit or a
256-bit key. It was built to improve the diffusion properties of Salsa [Ber08c] while using
the same amount of components. ChaCha works on 32-bit words, and its 512-bit (or
16-word) initial state is filled with four constants words c1 = 0x61707865, c2 = 0x3320646e,
c3 = 0x79622d32, c4 = 0x6b206574, one counter word t, three nonce words n1, n2, n3, and
eight key words k1, . . . , k8 for the 256-bit key version. The distribution of these words
are depicted in Figure 2. In addition, we depict the output of the mth state of ChaCha in
Figure 3.

ChaCha is an iterative stream cipher composed of 20 rounds. Each round updates the
ith state of ChaCha (see Figure 3), using the following operations, called a quarter round
(QR) and that takes 4 words (xa, xb, xc, xd) as input:

xm−1
a = xm−1

a + xm−1
b ; xm−1

d = xm−1
d ⊕ xm−1

a ; xm−1
d = xm−1

d ≪ 16;
xm−1

c = xm−1
c + xm−1

d ; xm−1
b = xm−1

b ⊕ xm−1
c ; xm−1

b = xm−1
b ≪ 12;

xm
a = xm−1

a + xm−1
b ; xm−1

d = xm−1
d ⊕ xm−1

a ; xm
d = xm−1

d ≪ 8;
xm

c = xm−1
c + xm−1

d ; xm−1
b = xm−1

b ⊕ xm−1
c ; xm

b = xm−1
b ≪ 7;

If the round is an odd round then the QR equations are applied to the columns of the
state. Thus, the first column, the second column, the third column, and the fourth column
of the state xm will be respectively

(xm
0 , xm

4 , xm
8 , xm

12) = QR(xm−1
0 , xm−1

4 , xm−1
8 , xm−1

12 ),
(xm

1 , xm
5 , xm

9 , xm
13) = QR(xm−1

1 , xm−1
5 , xm−1

9 , xm−1
13 ),

(xm
2 , xm

6 , xm
10, xm

14) = QR(xm−1
2 , xm−1

6 , xm−1
10 , xm−1

14 ),
(xm

3 , xm
7 , xm

11, xm
15) = QR(xm−1

3 , xm−1
7 , xm−1

11 , xm−1
15 ).
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If the round is even, the QR equations are applied to the diagonals of the state instead.
Thus, the first diagonal, the second diagonal, the third diagonal, and the fourth diagonal
of the state xm will be respectively

(xm
0 , xm

5 , xm
10, xm

15) = QR(xm−1
0 , xm−1

5 , xm−1
10 , xm−1

15 ),
(xm

1 , xm
6 , xm

11, xm
12) = QR(xm−1

1 , xm−1
6 , xm−1

11 , xm−1
12 ),

(xm
2 , xm

7 , xm
8 , xm

13) = QR(xm−1
2 , xm−1

7 , xm−1
8 , xm−1

13 ),
(xm

3 , xm
4 , xm

9 , xm
14) = QR(xm−1

3 , xm−1
4 , xm−1

9 , xm−1
14 ).

≪ 16

≪ 12

xm−1
a xm−1

b
xm−1
c xm−1

d

Z1

Z2

Z3

Z4

Z5

Z6

Z7Z8

Z9

Z10

Z11

Z12

ta tb tc td

≪ 8

≪ 7

xm
a xm

b xm
c xm

d

Figure 1: ChaCha quarter round di-
agram with intermediate variables
Z1, . . . Z12 and ta, tb, tc, td.

c1 c2 c3 c4

k1 k2 k3 k4

k5 k6 k7 k8

t n1 n2 n3

Figure 2: Initial state of ChaCha.

xm
0 xm

1 xm
2 xm

3

xm
4 xm

5 xm
6 xm

7

xm
8 xm

9 xm
10 xm

11

xm
12 xm

13 xm
14 xm

15

Figure 3: Xm state of ChaCha.

In the literature, one can usually find descriptions of ChaCha by splitting the QR into
two halves. Based on the description presented in [CN21b], we depict in Figure 1 the
half-round of the QR, using (ta, tb, tc, td) as intermediate words. In that figure, we can
directly read the formulas of Equation 1 in the forward direction for the first half of the
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quarter round:

ta = xm−1
a ⊞ xm−1

b then ta,i = xm−1
a,i ⊕ xm−1

b,i ⊕ Θi

(
xm−1

a , xm−1
b

)
tb,i+12 = xm−1

b,i ⊕ tc,i

tc = xm−1
c ⊞ td then tc,i = xm−1

c,i ⊕ td,i ⊕ Θi

(
xm−1

c , td

)
td,i+16 = xm−1

d,i ⊕ ta,i

xm
a,i = ta,i ⊕ tb,i ⊕ Θi (ta, tb)

xm
d,i+8 = td,i ⊕ xm

a,i

xm
c,i = tc,i ⊕ xm

d,i ⊕ Θi (tc, xm
d )

xm
b,i+7 = tb,i ⊕ xm

c,i

(1)

Also, we can deduce the following formulas in backward direction for the second half of
the quarter round:

ta,i = xm
a,i ⊕ xm

b,i+7 ⊕ xm
c,i ⊕ Θi (ta, tb)

tb,i = xm
b,i+7 ⊕ xm

c,i

tc,i = xm
c,i ⊕ xm

d,i ⊕ Θi (tc, xm
d )

td,i = xm
a,i ⊕ xm

d,i+8

xm−1
a,i = Lm

a,i ⊕ Θi (ta, tb) ⊕ Θi (tc, xm
d ) ⊕ Θi

(
xm−1

a , xm−1
b

)
xm−1

b,i = Lm
b,i ⊕ Θi (tc, xm

d )
xm−1

c,i = Lm
c,i ⊕ Θi (tc, xm

d ) ⊕ Θi(xm−1
c , td)

xm−1
d,i = Lm

d,i ⊕ Θi (ta, tb)

(2)

where

Lm
a,i = xm

a,i ⊕ xm
b,i+7 ⊕ xm

b,i+19 ⊕ xm
c,i+12 ⊕ xm

d,i

Lm
b,i = xm

b,i+19 ⊕ xm
c,i ⊕ xm

c,i+12 ⊕ xm
d,i

Lm
c,i = xm

a,i ⊕ xm
c,i ⊕ xm

d,i ⊕ xm
d,i+8

Lm
d,i = xm

a,i ⊕ xm
a,i+16 ⊕ xm

b,i+7 ⊕ xm
c,i ⊕ xm

d,i+24

A common strategy in the literature is to combine Equation 1 and Equation 2 to
minimize the number of terms and thus derive better linear approximations. In particular,
we obtain a good linear approximation by combining equations ta,i = xm

a,i ⊕ xm
b,i+7 ⊕

xm
c,i ⊕ Θi (ta, tb) and tb,i = xm

b,i+7 ⊕ xm
c,i. In fact, combining these equations we get

ta,i ⊕ tb,i = xm
a,i ⊕ Θi (ta, tb). By setting i = 0, we have an expression with only one active

term at round m for each QR. This term is xm
a,0. We will use this and other combinations

in Section 3.

2.3 Differential-Linear Attack
The differential-linear attack was introduced by Langford and Hellman in [LH94] (we will
refer to this version as the classical differential-linear attack, see the left side of Figure 4).
Similarly to the boomerang attack [Wag99], the strategy of this attack consists into dividing
a cipher E into two sub ciphers E1 and E2, such that E = E2 ◦ E1. Then, one looks for a
differential distinguisher and a linear distinguisher for the cipher E1 and E2 respectively.
In particular, assume that the differential ∆in → ∆m holds with probability

Pr
x∈Fn

2

[E1(x) ⊕ E1(x ⊕ ∆in) = ∆m] = p.
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E1 E1

∆in

E2 E2

∆m

p

Γm Γm

Γout Γout

q q

Em

E1

Em

E1

∆m

E2 E2

r

Γm Γm

Γout Γout

q q

∆in

p

Figure 4: On the left-hand side, the structure of a classical DL distinguisher. On the right-
hand side, a DL distinguisher with an improved structure that mitigates the independence
assumption between the top and the bottom parts.

Moreover, let a certain linear trail Γm
E2−−→
L

Γout to be satisfied with correlation

Corx∈Fn
2

[⟨Γm, x⟩ ⊕ ⟨Γout, E2(x)⟩] = q.

By assuming that E1(x) and E2(x) are independent random variables, the DL distinguisher
exploits the property that

Corx∈Fn
2

[⟨Γout, E(x)⟩ ⊕ ⟨Γout, E(x ⊕ ∆in)⟩] = pq2. (3)

Thus, by preparing ϵp−2q−4 pairs of chosen plaintexts (x, x̃) for x̃ = x ⊕ ∆in, where
ϵ ∈ N is a small constant, one can distinguish the cipher from a random permutation.

The aforementioned assumption sometimes overestimates or underestimates the corre-
lation value presented in Equation 3. Therefore, to mitigate this issue, a common strategy
(see right-hand side of Figure 4) is to divide the cipher into three parts instead of two
E(x) = E2 ◦ Em ◦ E1, effectively adding a middle layer Em(x). For more details on
this strategy, see [BDKW19]. This middle part is generally evaluated experimentally. In
particular let

r = CorS [⟨Γm, Em(x)⟩ ⊕ ⟨Γm, Em(x ⊕ ∆m)⟩] ,

where S denotes the set of samples over which the correlation is computed. Then, the total
correlation can be estimated as prq2. We will also denote this improved DL distinguisher
as:

∆in −−→
DL

Γout.

2.4 Probabilistic Neutral Bits Attack
Aumasson et al. proposed the PNB attack in [AFK+08] and applied it to ChaCha and
Salsa. It is a key-recovery attack that consists essentially of two steps. In the first step,
the attacker identifies some key bits to be discarded using a function f that depends on
the key bits and a chosen r-round truncated differential. This truncated differential has a
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correlation εd and a single active bit ∆0
i,j on the input (others input bits differences are

undetermined), and a single active bit ∆r
y,z on the output (others output bits differences

are undetermined). Where i, j, y and z are chosen so that εd is higher as possible. Those
bits are called probabilistic neutral bits as they have no or little impact on the output
of the computation of f . The remaining key bits are called significant bits. In a second
step, the attacker constructs a function g similar to f . The only difference between this
function g concerning f , is that the former depends on the significant bits instead of the
entire key bits. Higher values of the correlation of g mean we can get better distinguishers.
This second step is called backward computation. This attack has been improved several
times, and the most recent one was presented in [DGSS22]. Due to its simplicity, we opted
to use the original version since these last improvements did not alter our results.

2.4.1 Computing the Probabilistic Neutral Bits

Let f be a function with the following input parameters: a key k, a 96-bit nonce v, a
counter t, and two states Z = X + XR and Z ′ = X ′ + (X ′)R where X is an initial state
built using k, v and t, X ′ is computed by flipping the bit Xi,j , and R is the number of
rounds. The output of f is

(
(Z − X)r−R ⊕ (Z ′ − X ′)r−R

)
y,z

. In other words,

f(k, v, t, Z, Z ′) =
(
(Z − X)r−R ⊕ (Z ′ − X ′)r−R

)
y,z

.

The objective of this first step is to statistically estimate which key bits do not influence
the output of the computation of f for a certain number of rounds R. Specifically, for
every key bit position l, we generate an instance of X randomly and we compute the
output of f . After that, we compute the output of f with the same input parameters, but
only flipping the key bit at position l. We repeat that process with N random samples
of X and check how often the outputs are the same for every X. Let h be the number
of times these outputs are the same; then the PNBs are those such that 2(h/N) − 1 < λ
where λ is an input parameter of this first step.

2.4.2 Backward Computation

If we denote a guess of k by k̂, then it is expected that Pr[f(k, v, t, Z, Z ′) = 1] = 1
2

for k ̸= k̂, and Pr[f(k, v, t, Z, Z ′) = 1] = 1
2 + εd for k ̸= k̂ on average for N random

samples. In order to avoid attempting to guess all the key bits (as in a simple brute-force
attack), Aumasson et al. proposed to use the aforementioned PNBs. Let k̄ be a subkey of
m = |k|−n bits extracted from k where n is the number of PNBs. Let f be correlated to
g with correlation εa, that is

Pr[f(k, v, t, Z, Z ′) = g(k̄, v, t, Z, Z ′)] = 1
2(1 + εa).

Denote the correlation of g by ε, then under some reasonable independence assumptions,
the equality ε = εd · εa holds.

Similarly to the previous step, we can compute ε experimentally, and obtaining a
larger ε will naturally give a better distinguisher. One can find the details for calculating
time and data complexity for this attack in [AFK+08]. Moreover, a correction to these
complexities can be found in [DGSS22], so we only work with the corrected formulas in
this paper. The time complexity is 2|k|−nN + 2|k|−α + 2|k|−m , and the data complexity is
given by

N =
(√

α log (4) + 3
√

1 − ε2
aε2

d

εaεd

)2

,
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where α is a parameter that the attacker can choose. Note that for ChaCha with a 256-bit
key size, the time complexity is 2256−nN + 2256−α + 2n.

3 Differential-Linear Attack on ChaCha

In Subsection 3.1, we present useful 1-round differential trails obtained by flipping two
bits on the input difference instead of only one as in previous differential-linear attacks
on ChaCha. In Subsection 3.2, we present useful 2-round and 2.5-round differential-linear
trails obtained by carefully analyzing the ChaCha formulas presented in Subsection 2.2,
and by minimizing the number of active bits of their output mask. In Subsection 3.3, we
present linear distinguishers found manually and also found by using the MILP model
explained in Appendix A. In our search, we minimize the hamming weight of their inputs
and/or outputs, due to the diffusion properties of ChaCha.

3.1 1-round differential distinguishers with 2 active input bits

Symmetric-key ciphers such as ChaCha are designed specially to provide very good and fast
diffusion of the differences that might appear in the internal state. Thus, cryptanalysts
very often try to minimize the number of active bits present in the input and/or output
difference, in a hope to keep the success probability as high as possible. Yet, we explored
what happens for the total DL distinguisher correlation when we use more active bits on
the input difference. Surprisingly, we could find differential paths with 2 input active bits
that improve the situation for distinguishers or key-recovery attack on 7-round ChaCha.
Even better, to the best of our knowledge, we found a 7.5 rounds distinguisher using these
differential path with 2 input active bits.

Table 4 in Appendix B, shows some 1-round differential trails created by flipping two
bits on the input in the same column of the ChaCha state. We obtained these trails using
a MILP model that constrains the number of active bits in the inputs to two. That MILP
model was constructed using the same techniques as in [FWG+16], but used to search
differential trails (we do not give its description here as it did not help to improve the
probability of the differential part).

This gave us many candidate paths with a probability of 2−7. However, due to
the large number of computations we require when connecting with the middle part,
we did not explore all 1-round differential trails with 2-bit differences at the begin-
ning. We took a random sample of 18 of them (see Table 4 in Appendix B). Only
two of these trails, which starts from ∆0

in4
=
(
∆0

14,21, ∆0
14,9
)

and end in ∆1
out4

=(
∆1

2,17, ∆1
2,5, ∆1

6,24, ∆1
6,8, ∆1

10,5, ∆1
10,1, ∆1

14,25, ∆1
14,1
)
, and the one starting from ∆0

in17
=(

∆0
15,29, ∆0

15,9
)

and ending in ∆1
out17

=
(
∆1

3,25, ∆1
3,5, ∆1

7,28, ∆1
7,12, ∆1

11,25, ∆1
11,21, ∆1

15,21, ∆1
15,13

)
were used to improve the time complexity of the previous differential-linear attacks against
ChaCha.

Additionally, we explored differential trails with three active bits on the input in an
effort to improve current DL distinguishers. However, we have not been successful. Again,
we believe this is caused by the diffusion properties of ChaCha. In fact, our MILP model
found that flipping 3 bits on the input results in a minimum of 12 active output bits, with
a probability of 2−7. Although they have the same probability of the differential trails
we got by flipping two bits on the input, their minimum number of active output bits is
larger by 4. We also explored 2-round differential trails on ChaCha, but as they lead to a
much lower probability (≤ 2−37), we could not use them to improve previous attacks.
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3.2 2.5-round and 2-round differential-linear distinguishers
After an exhaustive search to find a good combination between the top part and the
middle part, we found two useful DL distinguishers for the middle part, one with 2.5
rounds and the other one with two rounds. These distinguishers are presented in rows
5 and the final row of Table 5 (see Appendix B). Specifically, they are ∆1

out4
−−→
DL

x3.5
11,0

and ∆1
out17

−−→
DL

x3
2[4, 3, 0] ⊕ x3

7[20, 4, 0] ⊕ x3
8[20, 19] ⊕ x3

13[4], and we later utilized them to
enhance both the 7-round DL distinguishers and the key recovery attack. Additionally, we
used the distinguisher from the final row to achieve a significant milestone: the first-ever
discovery of a DL distinguisher with 7.5 rounds. The 2.5-round and 2-round distinguishers
were found experimentally using CUDA and the Piling-Up Lemma. Specifically, the first
one was entirely found experimentally with CUDA, while for the second one we also used
the Piling-Up Lemma. The use of this lemma was necessary as otherwise we would need
an intractable amount of computational resources. We present in DL Distinguisher 1 and
DL Distinguisher 2 the two DL distinguishers.

Differential-Linear Distinguisher 1. The following 2.5-round DL distinguisher holds
with a correlation of 2−18.75 (verified using 242 random samples):(

∆1
out4

)
=
(
∆1

2,17, ∆1
2,5, ∆1

6,24, ∆1
6,8, ∆1

10,5, ∆1
10,1, ∆1

14,25, ∆1
14,1
)

−−→
DL

(
∆3.5

11,0
)

.

Differential-Linear Distinguisher 2. The following 2-round DL distinguisher holds
with a correlation of 2−30.15:(

∆1
out17

)
=
(
∆1

3,25, ∆1
3,5, ∆1

7,28, ∆1
7,12, ∆1

11,25, ∆1
11,21, ∆1

15,21, ∆1
15,13

)
−−→
DL

A′,

where A′ =
(
x3

2[4, 3, 0] ⊕ x3
7[20, 4, 0] ⊕ x3

8[20, 19] ⊕ x3
13[4]

)
.

Table 3: A comparison of the estimation of the correlations of the groups created by
partitioning the mask of DL Distinguisher 2 into four partitions. The column named
Experimental shows the estimated correlation using only GPUs, while the column named
Piling-Up lemma shows the estimated correlation using GPUs and the Piling-Up lemma.

Group Partitions Experimental Piling-Up
1 Partition 1 and Partition 2 2−9.56 2−10.15

2 Partition 1 and Partition 3 2−10.3 2−12.21

3 Partition 1 and Partition 4 2−22.59 2−24.6

4 Partition 2 and Partition 3 2−7.62 2−8.44

5 Partition 2 and Partition 4 2−20.48 2−20.83

6 Partition 3 and Partition 4 2−21.76 2−22.89

7 Partition 1 and Partition 2 and Partition 3 2−12.75 2−15.4

8 Partition 2 and Partition 3 and Partition 4 2−24.36 2−26.08

9 Partition 1 and Partition 3 and Partition 4 - -
10 Partition 1 and Partition 2 and Partition 4 2−24.9 2−27.79

To come up with DL Distinguisher 2 we realized that the state at round four coming
from the propagation in the forward direction of the mask x3.5

2,0 ⊕ x3.5
7,0 has only one

active bit. So A′ is the linear mask generated from x3.5
2,0 ⊕ x3.5

7,0 when we expand it in
a backward direction. We use Equations (1), to come up with A′. Specifically, we use
x3.5

a,i = x3
a,i ⊕ x3

b,i ⊕ Θi

(
x3

a, x3
b

)
and x3.5

b,i = x3
b,i−12 ⊕ x3.5

c,i−12. Setting i = 0, we have that

x3.5
a,0 ⊕ x3.5

b,0 = x3
a,0 ⊕ x3

b,0 ⊕ x3
b,−12 ⊕ x3.5

c,−12

= x3
a,3 ⊕ x3

c,19 ⊕ x3
a,0 ⊕ x3

d,4 ⊕ x3
a,4 ⊕ x3

b,0 ⊕ x3
b,20 ⊕ x3

c,20 ⊕ x3
b,4

(4)
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holds with probability 6/16 = 0.375.
Before discussing the computation of DL Distinguisher 2 correlation, let us review

some information about the dependencies present in the propagation of an input difference
through two rounds of ChaCha. Each quarter round of ChaCha in round i is dependent on
the outputs of the four quarter rounds from round i − 1. Within a quarter round, the first
and fourth words are influenced by the outcomes of three modular additions, while the
second and third words are influenced by the outcomes of four modular additions. So, we
can say that a word inside a quarter round depends on the output bits of the previous
round plus the influence due to some modular additions of its own quarter round.

The Piling-Up Lemma is a commonly used lemma for computing the correlation of
linear and DL distinguishers. Consider two independent random variables ϵα and ϵβ ,
representing the correlation between an input difference and two output bits α and β,
respectively. The correlation between the input difference and α ⊕ β can be approximated
by multiplying the individual correlations ϵα and ϵβ , resulting in Cor[α ⊕ β] = ϵαϵβ . If
we now want to compute the correlation of α ⊕ β ⊕ γ, where α and β are dependent and
α ⊕ β and γ are independent, one approach is to first compute the correlation of α ⊕ β
without the use of the Piling-Up Lemma, for example through experimentation. After
that, the Piling-Up Lemma can be applied between α ⊕ β and γ.

After two rounds of ChaCha the situation is similar to the one discussed paragraphs
above; specifically, after two rounds of ChaCha, any three terms α, β, and γ are dependent.
Calculating correlations in these situations can be challenging, especially when the correla-
tions are small. To overcome this, we partitioned the mask positions in a way that allows
us to compute the correlations of each partition in a feasible time. What would be the
best way to create the partitions? It is difficult to answer this question, but intuitively it
seems better to create partitions containing stronger dependent terms, to avoid spreading
the dependencies and, at the same time, save time in the correlation computation process.
This approach was applied when computing the correlation of DL Distinguisher 2 and
validated experimentally.

To compute the DL Distinguisher 2 correlation with a = 2, b = 7, c = 8, and d = 13, we
consider the dependencies from two consecutive rounds of ChaCha and the dependencies
from consecutive modular additions inside a ChaCha quarter round. We use CUDA
and the Piling-Up Lemma. Initially, we attempted to determine the correlation of DL
Distinguisher 2 by observing its convergence using 248, 249, and 250 samples, but there
was no stable convergence after these trials. Therefore, as a first approach, we decided to
compute the correlation using the Piling-Up Lemma. Specifically, we divided the output
mask into four partitions: 1) Partition 1: x3

2[4, 3, 0], 2) Partition 2: x3
7[20, 4, 0], 3) Partition

3: x3
8[20, 19], and 4) Partition 4: x3

13[4]. For each partition, we compute its correlation
experimentally, and after that, we use the Piling-Up Lemma to estimate the correlation of
DL Distinguisher 2. As stated in the previous explanation, we divided the output mask
into these partitions to prevent spreading the dependencies existing inside the quarter
rounds at round 3 to different partitions.

The correlations, we found for these four partitions are 2−6.96, 2−3.19, 2−5.25, and
2−17.64, respectively, for each partition. Despite the fact that the Piling-Up Lemma
requires independent terms, it still proves to be useful in estimating the lower bound of
the correlation of DL Distinguisher 2. This can be seen in Table 3, where we can observe
that for all the groups created from the partitions and for which we can calculate the
correlation in a practical amount of time, the correlations we obtained experimentally are
higher than those computed using the Piling-Up Lemma. As a result, to estimate the
correlation of DL Distinguisher 2, we created two groups, one conformed by Partition 1,
Partition 2, and Partition 4, and another one being Partition 3. In this way, the estimation
for the correlation of DL Distinguisher 2 is 2−30.15. The cells marked with a dash symbol
(-) in Table 3 indicate that the number of samples required to compute the correlation
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exceeds two weeks.
In order to compute the correlation of each group listed in Table 3, we used crypt-

Dances [Cou22]. We observe the convergences of these correlations through multiple trials.
For instance, to determine the correlation of Group 8, we used up to 255 samples and
employed 32 GPUs (comprising 8 TITAN RTX, 8 Quadro RTX 6000/8000, and 16 GeForce
RTX 2080). It took us approximately 11 days to compute the correlation of this group using
this number of samples. So, in order to conduct experiments with larger sample sizes, such
as when verifying the correlation of Group 8 or Group 10, we implemented optimizations
to cryptDances code to improve its performance when computing DL Distinguisher 2. The
optimizations we made were as follows:

• Given that DL Distinguisher 2 comprises only 2 rounds, we have created a macro F
that consolidates all the ARX operations for precisely 2 rounds.

• To compute the number of parallel CUDA threads and CUDA blocks, we use the
function cudaOccupancyMaxPotentialBlockSize, which returns the grid and block
size that achieves maximum potential occupancy for a device function 1.

• To verify the DL Distinguisher 2 correlation, the program needs to evaluate a pair
of states (P, P ⊕ ∆P ) and check the parity of the DL Distinguisher 2 mask on
F (P ) ⊕ F (P ⊕ ∆P ). As ∆P only affects a few words of P , some operations in F (P )
can be reused in the computation of F (P ⊕ ∆P ), such as the modular addition
between P0 and P5, i.e. P0 + P5.

• Since the DL Distinguisher 2 mask affects only a few words, some operations of every
quarter round of round 3 (DL Distinguisher 2 starts at round 1) can be avoided. For
instance, as DL Distinguisher 2 only affects word 2 of the first quarter, two XOR
operations, one modular addition, one rotation left by 7, and one rotation left by 8
can be skipped.

• We employ the algorithm outlined in section 5-2 of [War12] to verify the parity of
values within the output mask. By doing so, we are able to reduce the number of
instructions required to verify the parity from 10 to 9.

After implementing these optimizations, we were able to speed up the verifications by a
factor of 6. For instance, when checking the correlation of Group 8 using 255 samples and
the same number of GPUs, the time required was approximately 1.83 days, as opposed to
the previous duration of 11 days.

We applied recommendations from [Tez21] to accelerate cryptographic operations,
specifically rotations by 8 and 16, using the __byte_perm() CUDA instruction. However,
our attempts did not yield any significant improvement. We also followed advice presented
in [WCC21] in an attempt to optimize the timings. Specifically, we use the inline Parallel
Thread Execution (PTX) techniques to consolidate the operations of every half quarter or
every quarter round. Once again, we did not observe any significant improvement.

We tried to interpret DL Distinguisher 1 and DL Distinguisher 2 using the techniques
presented in [NSLL22b], but we found divergences with the correlation we computed
experimentally. For example, using the techniques presented in [NSLL22b], we obtained a
value of 2−8.66 for DL Distinguisher 1 while for DL Distinguisher 2, we obtained a value
of ≈ 2−45. In Table 6 of Appendix B, we summarize both the theoretical and practical
correlation of every distinguisher presented in this section.

When writing this paper, a tool automating the search for differential-linear distin-
guishers appears in [BGG+23]. We have implemented the techniques presented in that
paper and try to find the theoretical correlations of all our DL distinguishers using these

1A device function in CUDA programming is a function executed inside the GPU.



E. Bellini, D. Gerault, J. Grados, R. H. Makarim and T. Peyrin 203

techniques; however, we obtained as output unsatisfiable (so we did not include these results
on Table 6 of Appendix B). We believe this happens because the tool relies on Gurobi,
which has a default precision of 2−32, whereas the correlation values rapidly decrease over
the rounds. As a result, precision violations may occur even after just a few rounds of
ChaCha. You can find our attempts in (Github: Link to Anonymous Repository).

3.3 New Linear Trails for ChaCha
The linear part in the differential-linear attack is one of the most expensive. In fact, if we
look at the complexity formula, presented in Subsection 2.3, we can see it has an exponent
of two while the others factors do not have any exponent. Motivated by this, we look
for useful linear trails starting at round 3, or 3.5, and ending at round 7, or 7.5, for the
DL distinguishers. Also, we look for useful linear trails starting at round 3.5, or 2.5 and
ending at round 4, or 5 for the key-recovery part. So we first study how to get linear trails
manually in Subsubsection 3.3.1. After that, in Subsubsection 3.3.2, we automatize the
search for linear trails using the MILP techniques presented in Appendix A. As in the
search for good differential parts, we search for those linear trails with less terms than
previous works since generally those have better correlation. In Table 6 of Appendix B, we
summarize both the theoretical and practical correlation of every distinguisher presented
in this section.

3.3.1 Linear Trails Found Manually

This section presents linear trails using the Piling-Up Lemma and other lemmas in
[CM16b, CN21b]. The linear trails start at round 3 and at round 3.5, and end at round 7
or round 7.5. To find these linear trails, we tried to minimize the number of active terms
across the rounds so we could have a higher or similar correlation than previous works.
After extensive exploration, we notice that two linear trails obtained from the expressions
A′ (see DL Distinguisher 2) and x3.5

c,i have fewer terms at round 4 and 5. In particular,
the former linear trail, starting from A′, has only one term at round four. That differs
from previous works since, to our knowledge, they have more than one term at round 4.
For example, the 4-round DL distinguisher used in [BLT20] for its 6-round key-recovery
attack has two terms. Specifically, the output mask is x4

0,0 ⊕ x4
5,0. The 7-round DL

distinguisher from [CN21a] has three terms at round four. Specifically, the output mask is
x4

3,0 ⊕x4
4,7 ⊕x4

9,0. The 4-round differential-linear used in [CN21a] to mount its key-recovery
attack has two terms at round four. Specifically, the output mask is x4

2,0 ⊕ x4
13,8. The

4-round DL distinguisher used in [DGSS22] to mount its key-recovery attack has three
terms at round 4. Specifically, the output mask is x4

2,0 ⊕ x4
7,7 ⊕ x4

8,0. Each of these 4-round
distinguisher examples transition to round 5 with a probability lesser than 1, which is
another distinction from our trail that starts from A′: the single term at round four of our
trail generates an expression at round five, with a probability of only one. To summarize,
we obtain a 1.5-round linear trail with a probability of one.

The following lemmas present the steps for obtaining the two aforementioned linear
trails. In particular, Lemma 1 and Lemma 2 outline the transitions from rounds 3.5 to 7,
starting from x3.5

c,i . Lemma 3 and Lemma 4 provide the transitions from rounds 3 to 7,
starting from A′. All proofs are provided in Appendix C.

Lemma 1. The following 2.5-round linear trail holds with probability 1
2 (1 + 2−7):

x3.5
11 [0] = A, where (5)

A = x6
0[8, 24] ⊕ x6

1[0, 8, 24] ⊕ x6
2[0] ⊕ x6

3[0] ⊕ x6
4[7, 19, 26] ⊕ x6

5[2, 3, 14, 15, 19, 22, 23]⊕
x6

6[30, 31] ⊕ x6
8[0] ⊕ x6

9[7, 12, 19] ⊕ x6
10[0, 7, 8, 12, 27, 28] ⊕ x6

11[0, 23, 24]⊕
x6

12[0, 8, 16] ⊕ x6
13[0, 8] ⊕ x6

14[0, 6, 7] ⊕ x6
15[14, 16, 24].

https://anonymous.4open.science/r/boosting_differential_linear_against_chacha_using_milp-68B2/README.md
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Lemma 2. The following 1-round linear trail holds with probability 1
2 (1 + 2−40):

A = B, where (6)

B = x7
0[0] ⊕ x7

4[6, 7, 10, 11, 13, 22, 23, 27, 30, 31] ⊕ x7
8[3, 4, 6, 8, 15, 16, 19, 20, 26, 31]

⊕ x7
12[7, 8, 18, 19, 22, 25, 26] ⊕ x7

1[6, 7, 11, 12, 16, 18, 19]
⊕ x7

5[1, 2, 9, 11, 19, 21, 22, 26, 27, 30, 31] ⊕ x7
9[0, 3, 4, 8, 20, 22, 23, 26, 27]

⊕ x7
13[2, 3, 7, 8, 11, 12, 18, 20, 21, 22, 23, 26, 27] ⊕ x7

2[0, 6, 8, 11, 12, 16, 22, 23, 27, 28]
⊕ x7

6[13, 14, 17, 18, 19] ⊕ x7
10[6, 8, 10, 11, 27, 28, 30, 31]

⊕ x7
14[3, 4, 7, 11, 12, 15, 16, 19, 20, 24, 27, 28] ⊕ x7

3[0, 8, 14, 16, 23, 30]
⊕ x7

7[7, 19, 20, 21, 22, 23, 30, 31] ⊕ x7
11[0, 12, 13, 14, 15, 16] ⊕ x7

15[0, 6, 16, 23, 24, 31].

Thus, to summarize, assuming independence between the sub-cipher starting at round
3.5 and ending at round 6, and the sub-cipher starting at round 6 and ending at round 7,
the linear trail starting from x3.5

11,0 and ending at B theoretically holds with a correlation
of 2−47.

Linear Trail 1. We found manually the following 3.5-round linear trail, with probability
1
2 (1 + 2−47):

x
(3.5)
11 [0] = B.

Lemma 3. The following 3-round linear trail holds with probability 1
2 (1 + 2−6): A′ = C

where A′ =
(
x3

2[4, 3, 0] ⊕ x3
7[20, 4, 0] ⊕ x3

8[20, 19] ⊕ x3
13[4]

)
and

C = x6
0[11, 12] ⊕ x6

2[0] ⊕ x6
3[0, 16] ⊕ x6

4[7] ⊕ x6
6[6, 26] ⊕ x6

7[7, 19] ⊕ x6
8[12] ⊕ x6

9[0]⊕
x6

10[12] ⊕ x6
11[7, 31, 6, 18] ⊕ x6

12[7, 19] ⊕ x6
13[0] ⊕ x6

14[24] ⊕ x6
15[11, 12, 19, 20].

Lemma 4. The following 1-round linear trail holds with probability 1
2 (1 + 2−24):

C = D, where (7)

D = x7
0[3, 7, 19, 23] ⊕ x7

4[13, 14, 18, 19, 25, 30, 31] ⊕ x7
8[6, 12, 18, 23, 24]

⊕ x7
12[6, 7, 10, 19, 20, 31] ⊕ x7

1[16] ⊕ x7
5[7] ⊕ x7

13[0, 8, 24] ⊕ x7
2[0, 8, 11, 12, 24]

⊕ x7
6[7, 13, 19, 25, 30, 31] ⊕ x7

10[18, 23, 24, 26] ⊕ x7
14[0, 5, 6, 11, 12, 16, 19, 20, 25, 26]

⊕ x7
3[0, 3, 4, 6, 7, 11, 12, 16, 17, 18, 19, 20, 27, 28, 30, 31] ⊕ x7

7[2, 3, 6, 7, 18, 22, 23, 27]
⊕ x7

11[6, 11, 18, 19, 20, 27, 28] ⊕ x7
15[0, 3, 4, 5, 7, 11, 12, 14, 16, 18, 19, 25, 26, 30, 31].

Thus, to summarize, assuming independence between the sub-cipher starting at round
3 and ending at round 6, and the sub-cipher starting at round 6 and ending at round 7, the
linear trail starting from A′ and ending at D theoretically holds with a correlation of 2−30.

Linear Trail 2. We found manually the following 4-round linear trail, with probability
1
2 (1 + 2−30): A′ = D.
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3.3.2 Linear Trails using our MILP Implementation

Looking at the proof for the linear trails presented in Subsubsection 3.3.1, we can see
that it is possible to have several ways to group terms across the rounds and thus obtain
different linear trails starting from the terms x3.5

c,i and A′. So, we implemented the MILP
techniques presented in Appendix A to search linear trails with higher correlation than
Linear Trail 1 and Linear Trail 2, while starting from the same input masks. In the Linear
Trail 3 and Linear Trail 4, we present the aforementioned linear trails that start from x3.5

c,i

and A′ respectively. In particular, the correlation for Linear Trail 4 increased dramatically
from Linear Trail 2, so we could verify its correlation experimentally using CUDA, and
we observed a correlation of ϵL = 2−23.11 (verified using 251 random samples). We also
experimentally verified Linear Trail 3 by dividing the trail into two sub-trails. The first
sub-trail starts at round 3.5 and ends at round 6.5, while the second sub-trail start at
round 6.5 and ends at round 7. For the first sub-trail, we get a correlation of 2−15.389,
while for the second one, 2−19.30, assuming independence between these two sub-trails we
obtain the value of as an estimation for the correlation of Linear Trail 3 (Readers can
verify the sub-trails by accessing the repository that accompanies this paper).

Linear Trail 3. We found the following 3.5-round linear trail, with probability 1
2 (1+2−37),

using our MILP model, starting in x
(3.5)
11,0 as in Lemma 1:

x
(3.5)
11 [0] =x7

0[0] ⊕ x7
1[19, 18, 16, 12, 11, 7] ⊕ x7

2[28, 23, 16, 12, 8, 6, 0] ⊕ x7
3[31, 16, 8, 0]⊕

x7
4[31, 30, 27, 26, 23, 22, 13, 11, 10, 7, 6] ⊕ x7

5[31, 30, 27, 26, 22, 19, 11, 6, 2]⊕
x7

6[19, 18, 17, 14] ⊕ x7
7[31, 30, 23, 19, 7] ⊕ x7

8[31, 26, 25, 23, 20, 16, 15, 8, 6, 4, 3]⊕
x7

9[31, 27, 23, 20, 19, 8, 7, 4, 3, 0] ⊕ x7
10[31, 28, 10, 8, 7] ⊕ x7

11[16, 12, 0]⊕
x7

12[26, 19, 18, 8] ⊕ x7
13[27, 26, 23, 20, 19, 14, 12, 11, 8, 3, 2]⊕

x7
14[28, 24, 20, 16, 15, 12, 11, 7, 4] ⊕ x7

15[24, 16, 7, 0].

Linear Trail 4. We found the following 4-round linear trail, with probability 1
2 (1 + 2−26),

using our MILP model, starting in A′ as in Lemma 3:

A′ =B′, where

B′ =x7
0[23, 22, 19, 7, 3, 2] ⊕ x7

1[16] ⊕ x7
2[24, 23, 12, 8, 0]⊕

x7
3[31, 28, 20, 16, 12, 11, 7, 6, 4, 3, 0] ⊕ x7

4[31, 19, 14] ⊕ x7
5[7]⊕

x7
6[31, 25, 19, 13, 7] ⊕ x7

7[27, 26, 23, 22, 7, 6, 3, 2] ⊕ x7
8[24, 12]⊕

x7
10[26, 25, 24, 18] ⊕ x7

11[28, 27, 20] ⊕ x7
12[31, 30, 20, 19, 11, 10, 7, 6]⊕

x7
13[24, 8, 0] ⊕ x

[10]
14 [26, 20, 16, 12, 11, 6, 5, 0] ⊕ x7

15[31, 19, 18, 16, 14, 12, 11, 7, 4, 0].

Studying the key-recovery attack presented in Subsection 2.4, we realized that, in
general, key-recovery attacks with lower complexity could be mounted when the number
of active bits at the output of the DL distinguishers is minimized. So, using our MILP
model, we minimize the number of active bits at the output of the DL distinguishers by
constraining them to one. We chose one since, as we mentioned before, previous works use
2 or 3 active bits at the output.

Something similar happens when we need to connect the middle part and the linear
part. Specifically, if we look for a good correlation for the middle part, we need to minimize
the input mask of the linear part. Again, using our MILP model, we minimize the number
of active bits at input of the linear part of the DL distinguishers. In Linear Trail 5 and
Linear Trail 6, we present two 1.5 linear trails obtained by minimizing their input and
output masks.
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Linear Trail 5. We found the following 1.5-round linear trail, with probability 1
2 (1+2−12),

using our the MILP model:
E = x4

0[0], where

E = x2.5
0 [0, 4] ⊕ x2.5

1 [5, 17, 21] ⊕ x2.5
2 [11, 12] ⊕ x2.5

3 [27, 28] ⊕ x2.5
4 [0, 4]⊕

x2.5
5 [5, 13, 17, 21, 25, 29] ⊕ x2.5

6 [12] ⊕ x2.5
7 [28] ⊕ x2.5

9 [13, 25, 29] ⊕ x2.5
10 [20]⊕

x2.5
13 [4, 5, 16, 17, 20, 21] ⊕ x2.5

14 [12] ⊕ x2.5
15 [28].

We could verify experimentally the correlation of Linear Trail 5 using CUDA and we
observed a correlation of ϵL = 2−11.1 (verified using 248 random samples).

Differential-Linear Distinguisher 3. The following 1.5-round DL distinguisher holds
with a correlation of 2−17.5 (experimentally verified using 242 samples):(

∆1
2,2, ∆1

6,5, ∆1
6,9, ∆1

6,17, ∆1
6,29, ∆1

10,10, ∆1
10,22, ∆1

10,30, ∆1
14,10, ∆1

14,30
)

−−→
DL

(E) .

Finally, combining DL Distinguisher 3 and Linear Trail 5, and assuming independence
between the 1.5-round trail of DL Distinguisher 3 and the 1-round trail of Linear Trail 5,
we can construct the 3-round DL Distinguisher 4 that will be used in the next section to
mount a key-recovery attack on 7-round reduced ChaCha.

Differential-Linear Distinguisher 4. The following 3-round DL distinguisher holds
with a correlation of 2−17.5−22.2 = 2−39.8:(

∆1
2,2, ∆1

6,5, ∆1
6,9, ∆1

6,17, ∆1
6,29, ∆1

10,10, ∆1
10,22, ∆1

10,30, ∆1
14,10, ∆1

14,30
)

−−→
DL

(
x4

0,0
)

.

The input of DL Distinguisher 4 was obtained by iterating overall differentials trails
proposed in the page 25 of [BLT20]. Specifically, that one starting in ∆0

14,6 and ending in(
∆1

2,2, ∆1
6,5, ∆1

6,9, ∆1
6,17, ∆1

6,29, ∆1
10,10, ∆1

10,22, ∆1
10,30, ∆1

14,10, ∆1
14,30

)
.

Linear Trail 6. We found the following 1.5-round linear trail, with probability 1
2 (1+2−12),

using our MILP model:

F = x4
3[0], where

F =x2.5
0 [5, 17, 21] ⊕ x2.5

1 [12] ⊕ x2.5
2 [28] ⊕ x2.5

3 [0, 4] ⊕ x2.5
4 [5, 13, 17, 21, 25, 29] ⊕ x2.5

5 [11, 12]⊕
x2.5

6 [27, 28] ⊕ x2.5
7 [0, 4] ⊕ x2.5

8 [13, 25, 29] ⊕ x2.5
9 [20]⊕

x2.5
12 [4, 5, 16, 17, 20, 21] ⊕ x2.5

13 [12] ⊕ x2.5
14 [28].

We could verify the correlation of Linear Trail 6 experimentally using CUDA, and we
observed a correlation of ϵL = 2−11.19 (verified using 248 random samples).

Linear Trail 7. We found the following 4.5-round linear trail, with probability 1
2 (1+2−48),

using our MILP model:

A′ = C′, where

C′ = x7.5
0 [31, 23, 16, 14, 12, 11, 6, 4, 3, 0] ⊕ x7.5

1 [31, 30, 20, 19, 16, 11, 10, 7, 6] ⊕ x7.5
2 [12]

⊕ x7.5
3 [31, 28, 26, 11, 7, 6, 5, 4]x7.5

4 [28, 27, 26, 24, 19, 16, 12, 10, 8, 7, 0] ⊕ x7.5
5 [31, 15, 3]

⊕ x7.5
6 [31, 28, 27, 25, 19, 11, 5] ⊕ x7.5

7 [24, 23, 20, 18, 15, 14, 12, 7, 6, 4, 3, 2]
⊕ x7.5

8 [27, 26, 23, 22, 8, 6, 3, 2, 0] ⊕ x7.5
9 [30, 28, 27, 20, 16, 15, 14, 12, 7, 4, 0]

⊕ x7.5
10 [26, 24, 23, 19, 18, 3] ⊕ x7.5

11 [31, 28, 25, 20, 19, 16, 15, 13, 7]
⊕ x7.5

12 [28, 27, 26, 23, 22, 20, 19, 15, 14, 4, 3] ⊕ x7.5
13 [23, 16, 12, 8]

⊕ x7.5
14 [28, 27, 22, 21, 16, 10, 4, 0] ⊕ x7.5

15 [30, 28, 27, 26, 24, 20, 18, 17, 16, 15, 3, 2, 0].



E. Bellini, D. Gerault, J. Grados, R. H. Makarim and T. Peyrin 207

We conducted an experimental verification of Linear Trail 7 by dividing the 4.5 rounds
into two segments. The first trail began at round 3 and ended at round 7, while the
second trail began at round 7 and ended at round 7.5. The first trail occurred between
A′ and B′, while the second trail took place between B′ and C′. Our calculations, which
were performed using CUDA, produced a value of 2−23.15 for the first trail and a value of
2−21.16 for the second trail. Assuming that the first and second segments are independent,
the experimental correlation for Linear Trail 7 is 2−44.31.

Differential-Linear Distinguisher 5. The following 1.5-round DL distinguisher holds
with a correlation of 2−15.6 (verified using 240 samples):(

∆1
3[18], ∆1

7[1, 13, 21, 25], ∆1
11[6, 14, 26], ∆1

15[14, 26]
)

−−→
DL

(F) .

Combining DL Distinguisher 5 and Linear Trail 6, we construct the 3-round DL
Distinguisher 6 that we use to mount a key-recovery attack on 7-round reduced ChaCha.

Differential-Linear Distinguisher 6. The following 3-round DL distinguisher holds
with a correlation of 2−15.6−2×(11.19) = 2−37.98:(

∆1
3[18], ∆1

7[1, 13, 21, 25], ∆1
11[6, 14, 26], ∆1

15[14, 26]
)

−−→
DL

(
x4

3,0
)

.

4 New Attacks on Reduced ChaCha

In this section, we will use the 2.5-round DL Distinguisher 1 and the 2-round DL Distin-
guisher 2 to build 7-round and 7.5-round DL distinguishers. In addition, we will use the
2.5-round DL Distinguisher 1, the 2-round DL Distinguisher 2, the 3-round DL Distin-
guisher 4, the 3-round DL Distinguisher 6 to mount key-recovery attacks on 7 and 7.25
rounds of ChaCha using 246 samples to verify εa (see Subsubsection 2.4.2). Before, we will
explain we use a previously-known technique to extend our DL distinguisher by 1 round
for a low computational cost.

4.1 Extending the DL distinguishers by One Round
We apply the technique from [BLT20] that allows to extend an existing DL distinguisher
with differential correlation ϵ = rq2 by prepending a differential path of probability p,
obtaining a longer DL distinguisher for which the time/data complexity is 1/(pr2q4) instead
of the expected 1/(p2r2q4). The idea is to make sure that enough neutral bits exist for
this extra differential part, so as to amortize the computational cost spent to find one valid
pair for this part, thus leading to a saving factor 1/p on the total attack complexity. Note
that this technique can only work if the number e of such bits is 2e > 1/ϵ2. Another way
to look at this technique is to consider that the differential correlation of the extended
DL distinguisher is rq2 instead the expected prq2 (we call this the reduced differential
correlation), but the entire attack would have to be run 1/p times.

In our case, we will prepend the 1-round differential trail (with probability p = 2−5):

∆0
14,6 →

(
∆1

2,2, ∆1
6,5, ∆1

6,9, ∆1
6,17, ∆1

6,29, ∆1
10,10, ∆1

10,22, ∆1
10,30, ∆1

14,10, ∆1
14,30

)
,

to DL Distinguisher 4 to obtain a 4-round DL distinguisher with reduced differential
correlation of 2−39.3. This path allows enough neutral bits to fulfill the 2e > 1/ϵ2

requirement. This aforementioned differential trail was first presented in [BLT20] and
since then it has been widely used for differential-linear attacks on ChaCha.

Regarding DL Distinguisher 1, we prepend the 1-round differential trail starting from
∆0

in4
and ending to ∆1

out4
(see Table 4 in Appendix B) with a probability p = 2−7 to
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obtain a 3.5-round DL distinguisher with reduced differential correlation of 2−18.75. Again,
enough neutral bits exist for this path to fulfill the requirement.

Regarding DL Distinguisher 2, we prepend the 1-round differential trail starting from
∆0

in17
and ending to ∆1

out17
with a probability p = 2−7 to obtain a 3-round DL distinguisher

with a reduced differential correlation of 2−30.15. Again, enough neutral bits exist for this
path to fulfill the requirement.

Regarding DL Distinguisher 6, we prepend the following 1-round differential trail (with
a probability p = 2−5):

∆0
15,22 →

(
∆1

3[18], ∆1
7[1, 13, 21, 25], ∆1

11[6, 14, 26], ∆1
15[14, 26]

)
,

to obtain a 3.5-round DL distinguisher with reduced differential correlation of 2−22.17.
Again, enough neutral bits exist for this path to fulfill the requirement.

4.2 New Differential-Linear Distinguishers on 7/7.5 rounds of ChaCha

Using Linear Trail 3 with experimental correlation εL = 2−34.6 and the reduced differential
correlation εd ≈ −2−18.75 of the 3.5-round extended version of DL Distinguisher 1, we
get εd(εL)2 ≈ 2−18.75−69.2 = 2−87.95 which gives us a distinguisher for 7 rounds of ChaCha
with complexity 22×(87.95+7) = 2189.9 taking into consideration the 1-round differential
trail of the top part.

Using the experimental correlation εL = 2−23.15 of Linear Trail 4, the differential
correlation εd ≈ −2−30.15 of the 3-round extended version of DL Distinguisher 2, we get
εd(εL)2 ≈ 2−7−30.15−46.3 = 2−83.45 which gives us a distinguisher for 7 rounds of ChaCha
with complexity 2166.89 taking into consideration the 1-round differential trail of the top
part.

Using Linear Trail 7 with experimental correlation εL = 2−44.31, the differential
correlation εd ≈ −230.15 of the 3-round extended version of DL Distinguisher 2, we get
εd(εL)2 ≈ 2−7−30.15−44.31×2 = 2−125.77 which gives us a distinguisher for 7.5 rounds of
ChaCha with complexity 2251.54 taking into consideration the 1-round differential trail of
the top part.

4.3 New PNB-based Key-Recovery Attack on 7/7.25 rounds of ChaCha

The 3.5-round extended version of DL Distinguisher 1 can be extended to a 4-round DL
distinguisher appending 0.5 round of linear trail at the end. This extension occurs with
probability one because there is no carry involved in this extension. In fact, looking at
Equation 2, you will observe that this extension starts at the least significant bit (LSB)
of the word ∆3.5

11,0. The reduced differential correlation for this 4-round DL distinguisher
remains εd = 2−18.75. We combined this DL distinguisher with the PNB technique found
in Subsection 2.4 to yield better result than [BLT20]. Specifically, we use the differential
correlation for x4

11,0 ⊕ x4
12,0, and the PNB attack described in Subsection 2.4. Thus,

considering ∆1
out4

−−→
DL

x4
11,0 ⊕ x4

12,0, to attack 7 rounds, we need to go back 3 rounds to
reach x4

11,0 ⊕ x4
12,0. In this case, using γ = 0.24 we found 126 PNBs (see List of PNBs 1)

and we obtained εa = 2−22. From that, we get an attack with data complexity of 288.07

and time complexity 2256−126 × 288.07 + 2256−38 + 2126 = 2219.03 for α = 38. We have to
repeat this attack 27 times on average because of the transition probability from ∆X0

to ∆X(1) when using the extension trick from [BLT20]. Thus, the final attack has data
complexity of 295.07 and time complexity 2226.03.

The 3-round extended version of DL Distinguisher 2 can be extended to a 5-round
DL distinguisher appending a 2-round linear trail at the end. This extension occurs with
a correlation of 2−2. In fact, the transition from round 3 to round 3.5 occurs with that
correlation, while the transition from round 3.5 to round 5 occurs with probability one. The
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reduced differential correlation for this 5-round DL distinguisher is then εd = 2−30.15−2×2.
We combined this DL distinguisher with the PNB technique found in Subsection 2.4 to yield
the best results for key-recovery attacks against ChaCha reduced to 7 rounds. Specifically,
we use the differential correlation for x5

2,0 ⊕x5
6,7 ⊕x5

6,19 ⊕x5
10,12 ⊕x5

14,0, and the PNB attack
described in Subsection 2.4. Thus, considering ∆1

out17
−−→
DL

x5
2,0 ⊕x5

6,7 ⊕x5
6,19 ⊕x5

10,12 ⊕x5
14,0,

to attack 7 rounds, we need to go back 2 rounds to reach x5
2,0 ⊕ x5

6,7 ⊕ x5
6,19 ⊕ x5

10,12 ⊕ x5
14,0.

In this case, using γ = 0.34 we found 160 PNBs (see List of PNBs 2) and we obtained
εa = 2−14.18. From that, we get an attack with data complexity of 2103.8 and time
complexity 2256−160×2103.8+2256−57+296 = 2199.8 for α = 57. We have to repeat this attack
27 times on average because of the transition probability from ∆0

in17
to ∆1

out17
when using

the extension trick from [BLT20]. Thus, the final attack has data complexity of 2110.8 and
time complexity 2206.8. We use the same 5-round differential-linear distintiguisher to mount
an attack against ChaCha reduced to 7.25 rounds. In this attack, instead to go back 2 round,
we need to go back 2.5 to reach x5

2,0⊕x5
6,7⊕x5

6,19⊕x5
10,12⊕x5

14,0. Using γ = 0.28 we found 133
PNBs (see List of PNBs 3) and we obtained εa = 2−16.85. From that, we get an attack with
data complexity of 2115.34 and time complexity 2256−133 × 2115.34 + 2256−25 + 2123 = 2231.34

for α = 25. We have to repeat this attack 27 times on average because of the transition
probability from ∆0

in17
to ∆1

out17
when using the extension trick from [BLT20]. Thus, the

final attack has data complexity of 2122.34 and time complexity 2238.34. In an effort to
achieve 7.5 rounds, we incrementally introduced additional components to the existing
7.25 rounds. The first component we added to every 0.25 quarter round was a modular
operation, which yielded similar data and time complexities as the 7.25 rounds. However,
when we introduced the XOR operation, we could not find any attack more effective than
brute force in the key-recovery setting.

We combined DL Distinguisher 4 (on 4 rounds with correlation εd = 2−39.8) with the
PNB technique found in Subsection 2.4 to yield the best results in the key-recovery attack
setting. Thus, considering

(
∆0

14,6
)

−−→
DL

(
x4

0,0
)
, to attack 7 rounds, we need to go back 3

rounds to reach x4
0,0. In this case, using γ = 0.27 we found 166 PNBs (see List of PNBs 4)

and we obtained εa = 2−17.47. From that, we get an attack with data complexity of 2121.58

and time complexity 290 ×2121.58 +2211 +2166 = 2212.58 for α = 45. As in [BLT20], we have
to repeat this attack 25 times on average because of the transition probability from ∆0

14,6 to(
∆1

2,2, ∆1
6,5, ∆1

6,9, ∆1
6,17, ∆1

6,29, ∆1
10,10, ∆1

10,22, ∆1
10,30, ∆1

14,10, ∆1
14,30

)
. Thus, the final attack

has data complexity of 2126.58 and time complexity 2217.58.
We combined DL Distinguisher 6 (on 4 rounds with correlation εd = 2−37.98) with the

PNB technique found in Subsection 2.4. Thus, considering
(
∆0

15,22
)

−−→
DL

(
x4

3,0
)
, to attack

7 rounds, we need to go back 3 rounds to reach x4
3,0. In this case, using γ = 0.265 we found

170 PNBs (see List of PNBs 5) and we obtained εa = 2−19.4. From that, we get an attack
with data complexity of 2121.15 and time complexity 286 × 2121.15 + 2207.15 + 2170 = 2208.15

for α = 49. As in [6], we have to repeat this attack 25 times on average because of the
transition probability from ∆0

15,22 to
(
∆1

3[18], ∆1
7[1, 13, 21, 25], ∆1

11[6, 14, 26], ∆1
15[14, 26]

)
.

Thus, the final attack has data complexity of 2126.15 and time complexity 2213.15.

5 Conclusions and Future Work
In this work, we studied differential-linear cryptanalysis on ChaCha. We improved the
best 7-round attacks presented in the literature on this primitive (both distinguisher
and key-recovery). Also, to the best of our knowledge, we present the first distinguisher
against ChaCha reduced to 7.5 rounds. These results were possible thanks to several new
strategies: we explored DL distinguishers with 2 bits flipped at the beginning of the
differential part, and we implemented a MILP model to automate the search for more
effective linear masks in the linear part. For the middle part, we studied and optimised
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the CUDA implementation presented in [Cou22] to verify our results. We believe that the
aforementioned ideas can generally help to improve other cryptanalysis of ARX designs.

We expect that our key-recovery attack complexity has the potential to be further
improved. Specifically, in future work, we will explore the decomposition of the key space
of the input difference column in order to reduce the effort of the p−1 iterations discussed
in Subsection 4.2. Also, we can explore the three-stage strategy presented in that paper to
increase the number of PNBs and thus reduce the key-recovery attack complexities even
more.
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A Finding Linear Trails with MILP Solvers
Automated tools for finding differential and linear characteristics have become increasingly
important helps for cryptanalysts and designers, as they allow to save a lot of time
and reduce the possibility of mistakes when the modeling is not too complex. Different
works exist for automatizing the search and among them the use of Mixed Integer Linear
Programming (MILP) was the first to emerge [MWGP11]. Since then, many different
improvements of MILP models for various ciphers have been proposed, often leading to
improved cryptanalysis results. In this section, we describe a MILP model to find linear
trails for ChaCha. The techniques used to build this model is based on the work from
[FWG+16], where the model aimed at searching for linear trails for the SPECK cipher.

We modeled the components of the ChaCha stream cipher using inequalities and we
describe in this section the inequalities used to model the linear behavior of each component.

Constraints of the XOR Operation. For every XOR operation with input masks α ∈ Fn
2

and β ∈ Fn
2 and output mask γ ∈ Fn

2 , the constraints at bit level for j in {0, · · · , n − 1} are

αj = βj = γj .

Constraints of the Three-Forked Branch. For every three-forked branch with input
masks α ∈ Fn

2 and β ∈ Fn
2 and output mask γ ∈ Fn

2 , we used the following inequalities

d λj ≥ αj

d λj ≥ βj

d λj ≥ γj

αj + βj + cj ≥ 2d λj

αj + βj + cj ≤ 2

(8)

where d λj is a dummy variable used to verify that there are at least two active terms in
aj ⊕ bj = cj whenever aj ̸= 0, bj ̸= 0, or cj ̸= 0.

Constraints of the Modular Addition. To model this component, we follow the transition
state approach presented in [FWG+16]. Therefore, for every modular addition with input
masks α ∈ Fn

2 and β ∈ Fn
2 and output mask γ ∈ Fn

2 , the constraints at bit level for i in
{0, · · · , n − 1} are

si − γi − αi + βi + si+1 ≥ 0
si + γi + αi − βi − si+1 ≥ 0
si + γi − αi − βi + si+1 ≥ 0
si − γi + αi − βi + si+1 ≥ 0
si + γi − αi + βi − si+1 ≥ 0
si − γi + αi + βi − si+1 ≥ 0
γi − di + αi + βi + si+1 ≥ 0
si + γi + αi + βi + si+1 ≤ 4

sn−1 = 0.

(9)

where si is the probability weight variable [FWG+16].
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Constraints for the Quarter Round. In the quarter round, auxiliary variables are also
created for the half quarter round’s output. However, because of the three-forked branch,
we need new auxiliary variables Zi for 1 ≤ i ≤ 12. In Figure 1, we illustrate these new
auxiliary variables and we can observe that the inequalities for the modular addition
operations are the inequalities in Equation 9 where

(α, β, γ) ∈ {(xm−1
a , Z6, Z1), (xm−1

c , Z4, Z2), (Z8, Z3, Z9), (Z5, Z11, Z12)}. (10)

and the inequalities for the three-forked branch operations are the inequalities in Equation 8
where

(α, β, γ) ∈ {(xm−1
b , Z6, Z7), (Z1, xm−1

d , Z8), (xm−1
d ≪ 16, Z4, Z10), (Z2, Z7, Z5),

(Z7 ≪ 12, Z3, xm
b ≫ 7), (Z9, Z10, xm

a ), (Z10 ≪ 8, Z11, xm
d ),

(Z12, xm
b ≫ 7, xm

c )}.

Constraints for R Rounds. Considering that in each round the quarter round is applied
four times, then we need to use the inequalities of quarter round (Equation 10) four times.
Thus, for the entire R rounds we need R × 4 quarter rounds. This gives us 16 × n × (R + 1)
variables to model the input and output masks of each quarter round; 36 × n × R variables
for modeling d λof Equation 8; 13 × 4 × n × R variables for modeling the intermediate
outputs of the quarter rounds; 16×n×R variables for modeling the variable d of Equation 9.
Summing up, this gives us a total of 120nR + 16n variables. The number of inequalities
are distributed as follows: 16 × 10 × ((n − 1) × R) + 16 × R inequalities for the modular
addition operations; 16 × 40 × n × R inequalities for the three-forked branch operations.
Summing up this gives us a total 800nR − 144R inequalities.

Objective Function. Let R be the number of rounds that we are modeling. Also, let sr
i,j

be the variable representing the probability weight variable at round r and bit j of the
ith modular addition, then according to [FWG+16], we need to minimize the following
expression

R∑
r=1

16∑
i=0

n−1∑
j=0

sr
i,j

B Some tables

The table below compares the experimental and theoretical correlations of all distinguishers
discussed in this paper. The theoretical values for the DL distinguishers were obtained
using a tool described in [NSLL22a], which uses the techniques presented in [NSLL22b].
However, we could not compute the theoretical values for DL Distinguisher 3 and DL
Distinguisher 5 using this tool as it is limited to masks with only one active bit in the
output mask, whereas DL Distinguisher 3 and DL Distinguisher 5 have more than one
active bit in their output masks. Therefore, we consider the theoretical analysis of these
distinguishers, using the techniques presented for output masks with multiple active bits
in [NSLL22b], as a future task. The tool provided an output of 0 for DL Distinguisher 4
and DL Distinguisher 6.
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Table 4: Differential trails for the first round of ChaCha. All of them have a probability
of 2−7. Candidates starting from ∆0

in4
and from ∆0

in17
are later used to improve 7-round

state-of-the-art DL distinguishers on ChaCha and their 2−7 probabilities have been verified
in practice.

Input difference Output difference

∆0
in0

=
(
∆0

15,21, ∆0
15,9
)

∆1
out0

=
(
∆1

3,17, ∆1
3,5, ∆1

7,24, ∆1
7,8, ∆1

11,5, ∆1
11,1, ∆1

15,25, ∆1
15,1
)

∆0
in1

=
(
∆0

14,14, ∆0
14,2
)

∆1
out1

=
(
∆1

2,30, ∆1
2,10, ∆1

6,17, ∆1
6,1, ∆1

10,30, ∆1
10,26, ∆1

14,26, ∆1
14,18

)
∆0

in2
=
(
∆0

14,18, ∆0
14,6
)

∆1
out2

=
(
∆1

2,14, ∆1
2,2, ∆1

6,21, ∆1
6,5, ∆1

10,30, ∆1
10,2, ∆1

14,30, ∆1
14,22

)
∆0

in3
=
(
∆0

14,21, ∆0
14,1
)

∆1
out3

=
(
∆1

2,29, ∆1
2,17, ∆1

6,20, ∆1
6,4, ∆1

10,17, ∆1
10,13, ∆1

14,13, ∆1
14,5
)

∆0
in4

=
(
∆0

14,21, ∆0
14,9
)

∆1
out4

=
(
∆1

2,17, ∆1
2,5, ∆1

6,24, ∆1
6,8, ∆1

10,5, ∆1
10,1, ∆1

14,25, ∆1
14,1
)

∆0
in5

=
(
∆0

14,26, ∆0
14,14

)
∆1

out5
=
(
∆1

2,22, ∆1
2,10, ∆1

6,29, ∆1
6,13, ∆1

10,10, ∆1
10,6, ∆1

14,30, ∆1
14,6
)

∆0
in6

=
(
∆0

13,18, ∆0
13,6
)

∆1
out6

=
(
∆1

1,14, ∆1
1,2, ∆1

5,21, ∆1
5,5, ∆1

9,30, ∆1
9,2, ∆1

13,30, ∆1
13,22

)
∆0

in7
=
(
∆0

13,21, ∆0
13,1
)

∆1
out7

=
(
∆1

1,29, ∆1
1,17, ∆1

5,20, ∆1
5,4, ∆1

9,17, ∆1
9,13, ∆1

13,13, ∆1
13,5
)

∆0
in8

=
(
∆0

13,21, ∆0
13,9
)

∆1
out8

=
(
∆1

1,17, ∆1
1,5, ∆1

5,24, ∆1
5,8, ∆1

9,5, ∆1
9,1, ∆1

13,25, ∆1
13,1
)

∆0
in9

=
(
∆0

13,26, ∆0
13,14

)
∆1

out9
=
(
∆1

1,22, ∆1
1,10, ∆1

5,29, ∆1
5,13, ∆1

9,10, ∆1
9,6, ∆1

13,30, ∆1
13,6
)

∆0
in10

=
(
∆0

12,14, ∆0
12,2
)

∆1
out10

=
(
∆1

0,30, ∆1
0,10, ∆1

4,17, ∆1
4,1, ∆1

8,30, ∆1
8,26, ∆1

12,26, ∆1
12,18

)
∆0

in11
=
(
∆0

12,18, ∆0
12,6
)

∆1
out11

=
(
∆1

0,14, ∆1
0,2, ∆1

4,21, ∆1
4,5, ∆1

8,30, ∆1
8,2, ∆1

12,30, ∆1
12,22

)
∆0

in12
=
(
∆0

12,21, ∆0
12,1
)

∆1
out12

=
(
∆1

0,29, ∆1
0,17, ∆1

4,20, ∆1
4,4, ∆1

8,17, ∆1
8,13, ∆1

12,13, ∆1
12,5
)

∆0
in13

=
(
∆0

12,21, ∆0
12,9
)

∆1
out13

=
(
∆1

0,17, ∆1
0,5, ∆1

4,24, ∆1
4,8, ∆1

8,5, ∆1
8,1, ∆1

12,25, ∆1
12,1
)

∆0
in14

=
(
∆0

13,29, ∆0
13,9
)

∆1
out14

=
(
∆1

1,25, ∆1
1,5, ∆1

5,28, ∆1
5,12, ∆1

9,25, ∆1
9,21, ∆1

13,21, ∆1
13,13

)
∆0

in15
=
(
∆0

12,29, ∆0
12,9
)

∆1
out15

=
(
∆1

0,25, ∆1
0,5, ∆1

4,28, ∆1
4,12, ∆1

8,25, ∆1
8,21, ∆1

12,21, ∆1
12,13

)
∆0

in16
=
(
∆0

14,29, ∆0
14,9
)

∆1
out16

=
(
∆1

2,25, ∆1
2,5, ∆1

6,28, ∆1
6,12, ∆1

10,25, ∆1
10,21, ∆1

14,21, ∆1
14,13

)
∆0

in17
=
(
∆0

15,29, ∆0
15,9
)

∆1
out17

=
(
∆1

3,25, ∆1
3,5, ∆1

7,28, ∆1
7,12, ∆1

11,25, ∆1
11,21, ∆1

15,21, ∆1
15,13

)
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Table 5: DL distinguishers for ChaCha starting after the first round and ending after
round 3 or 3.5. The symbol (*) in this table means we used partitions to estimate the
correlation of these distinguishers. In this case, we used up to 234 random samples to
verify the correlation of these partitions. Similar to (*), the symbol (†) in this table means
we used up to 258 random samples for every partition to construct the distinguisher.

ID Mask Correlation (εd) # Samples
∆1

out0
x3.5

8,0 2−18.84 246

∆1
out1

x3.5
10,0 2−20.64 246

∆1
out2

x3.5
10,0 2−20.55 246

∆1
out3

x3.5
11,0 2−20.58 246

∆1
out4

x3.5
11,0 2−18.75 246

∆1
out5

x3.5
8,0 2−20.91 246

∆1
out6

x3.5
9,0 2−20.57 246

∆1
out7

x3.5
10,0 2−20.36 246

∆1
out8

x3.5
10,0 2−18.88 246

∆1
out9

x3.5
11,0 2−20.89 246

∆1
out10

x3.5
8,0 2−20.99 246

∆1
out11

x3.5
8,0 2−20.22 246

∆1
out12

x3.5
9,0 2−20.48 246

∆1
out13

x3.5
9,0 2−18.75 246

∆1
out14

x3.5
0,0 ⊕ x3.5

5,0 2−74.58 234∗

∆1
out15

x3.5
3,0 ⊕ x3.5

4,0 2−74.58 234∗

∆1
out16

x3.5
1,0 ⊕ x3.5

6,0 2−74.58 234∗

∆1
out17

x3
2[4, 3, 0] ⊕ x3

7[20, 4, 0] ⊕ x3
8[20, 19] ⊕ x3

13[4] 2−30.15 258†
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Table 6: Comparison of the experimental and theoretical correlations for all the distin-
guishers presented in this paper.
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C Proof of some results

Proof of Lemma 1. The following 2.5-round linear trail holds with probability 1
2

(
1 + 1

27

)
x3.5

11 [0] = x6
0[8, 24] ⊕ x6

1[0, 8, 24] ⊕ x6
2[0] ⊕ x6

3[0] ⊕ x6
4[7, 19, 26] ⊕ x6

5[2, 3, 14, 15, 19, 22, 23]⊕
x6

6[30, 31] ⊕ x6
8[0] ⊕ x6

9[6, 7, 12, 19] ⊕ x6
10[0, 7, 8, 12, 27, 28] ⊕ x6

11[0, 23, 24]⊕
x6

12[0, 8, 16] ⊕ x6
13[0, 8] ⊕ x6

14[0, 7] ⊕ x6
15[14, 16, 24]

Proof. In fact from Equation 1, we have

x3.5
11,0 = x4

11,0 ⊕ x4
12,0

= x5
0,0 ⊕ x5

0,16 ⊕ x5
3,0 ⊕ x5

4,7 ⊕ x5
8,0 ⊕ x5

11,0⊕
x5

12,24 ⊕ x5
15,0 ⊕ x5

15,8

Using [CM16b] expressions, we have

x5
0,0 = x6

0,0 ⊕ x6
5,7 ⊕ x6

5,19 ⊕ x6
10,12 ⊕ x6

15,0

x5
3,0 = x6

3,0 ⊕ x6
4,7 ⊕ x6

4,19 ⊕ x6
9,12 ⊕ x6

14,0

x5
8,0 = x6

2,0 ⊕ x6
8,0 ⊕ x6

13,0 ⊕ x6
13,8

x5
11,0 = x6

1,0 ⊕ x6
11,0 ⊕ x6

12,0 ⊕ x6
12,8

x5
15,0 = x6

0,0 ⊕ x6
0,16 ⊕ x6

5,7 ⊕ x6
10,0 ⊕ x6

15,24.

And using Lemma 3 of [CN21b], we have

x5
0,16 = x6

0,0 ⊕ x6
0,16 ⊕ x6

5,2 ⊕ x6
5,3 ⊕ x6

5,7 ⊕ x6
5,19 ⊕ x6

5,22 ⊕ x6
5,23

⊕ x6
10,12 ⊕ x6

10,27 ⊕ x6
10,28 ⊕ x6

15,0 ⊕ x6
15,14 ⊕ x6

15,16 w.p.
1
2

(
1 + 1

24

)
x5

4,7 = x6
4,26 ⊕ x6

9,7 ⊕ x6
9,19 ⊕ x6

14,6 ⊕ x6
14,7 w.p.

1
2

(
1 + 1

2

)
x5

12,24 = x6
1,8 ⊕ x6

1,24 ⊕ x6
6,30 ⊕ x6

6,31 ⊕ x6
11,23 ⊕ x6

11,24 ⊕ x6
12,16 w.p.

1
2

(
1 + 1

2

)
x5

15,8 = x6
0,8 ⊕ x6

0,24 ⊕ x6
5,14 ⊕ x6

5,15 ⊕ x6
10,7 ⊕ x6

10,8 ⊕ x6
15,0 w.p.

1
2

(
1 + 1

2

)
Finally, using the Piling-Up Lemma, we obtain Equation 5. We verify this trail experimen-
tally with 237 samples, and get a 2−6.58 correlation.

Proof of Lemma 2. The following 1-round linear trail

A = B

where

A = x6
0[8, 24] ⊕ x6

1[0, 8, 24] ⊕ x6
2[0] ⊕ x6

3[0] ⊕ x6
4[7, 19, 26] ⊕ x6

5[2, 3, 14, 15, 19, 22, 23]⊕
x6

6[30, 31] ⊕ x6
8[0] ⊕ x6

9[7, 12, 19] ⊕ x6
10[0, 7, 8, 12, 27, 28] ⊕ x6

11[0, 23, 24]⊕
x6

12[0, 8, 16] ⊕ x6
13[0, 8] ⊕ x6

14[0, 6, 7] ⊕ x6
15[14, 16, 24],
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and

B = x7
0[0] ⊕ x7

4[6, 7, 10, 11, 13, 22, 23, 27, 30, 31] ⊕ x7
8[3, 4, 6, 8, 15, 16, 19, 20, 26, 31]

⊕ x7
12[7, 8, 18, 19, 22, 25, 26] ⊕ x7

1[6, 7, 11, 12, 16, 18, 19]
⊕ x7

5[1, 2, 9, 11, 19, 21, 22, 26, 27, 30, 31] ⊕ x7
9[0, 3, 4, 8, 20, 22, 23, 26, 27]

⊕ x7
13[2, 3, 7, 8, 11, 12, 18, 20, 21, 22, 23, 26, 27] ⊕ x7

2[0, 6, 8, 11, 12, 16, 22, 23, 27, 28]
⊕ x7

6[13, 14, 17, 18, 19] ⊕ x7
10[6, 8, 10, 11, 27, 28, 30, 31]

⊕ x7
14[3, 4, 7, 11, 12, 15, 16, 19, 20, 24, 27, 28] ⊕ x7

3[0, 8, 14, 16, 23, 30]
⊕ x7

7[7, 19, 20, 21, 22, 23, 30, 31] ⊕ x7
11[0, 12, 13, 14, 15, 16] ⊕ x7

15[0, 6, 16, 23, 24, 31]

holds with probability 1
2

(
1 + 1

240

)
.

Proof. Applying Lemma 3 of [CM16b] in x6
14,0, x6

13,0, x6
8,0, x6

11,0, x6
2,0, x6

3,0, x6
12,0, x6

1,0, and
x6

10,0, we obtain an expression A with probability one. Applying Lemma 3 of [CN21b] in

x6
0,8, x6

0,24, x6
1,24, x6

4,26, x6
4,7, x6

9,12, x6
12,16, x6

13,8, x6
5,19, x6

10,12x6
1,8, x6

15,14,

x6
15,16, x6

9,19, x6
9,7,x6

12,8, x6
4,19, and x6

15,24 we obtain an expression B with a correlation of
2−29. Applying Lemma 7 of [CN21b] in

x6
14,6x6

14,7, x6
11,23, x6

11,24, x6
10,7, x6

10,8, x6
10,27,

x6
10,28, x6

5,2, x6
5,3, x6

5,14, x6
5,15, x6

5,22, x6
5,23, x6

6,30, x6
6,31

we can obtain an expression C with correlation 2−11. Finally, using the Piling-Up Lemma
in A, B, and C, we obtain equation Equation 6. We verify this correlation experimentally.
We used 240 samples and divided them into four partitions, each corresponding to a
linear trail associated with its respective quarter round. As these are 1-round trails, the
partitions are independent of each other. By applying the Piling-Up Lemma, we obtained
an experimental correlation of 2−32.1.

Proof of Lemma 3. The following 3-round linear trail

A′ = x6
0[11, 12] ⊕ x6

2[0] ⊕ x6
3[0, 16] ⊕ x6

4[7] ⊕ x6
6[6, 26] ⊕ x6

7[7, 19] ⊕ x6
8[12]⊕

x6
9[0] ⊕ x6

10[12] ⊕ x6
11[6, 7, 18, 31] ⊕ x6

12[7, 19] ⊕ x6
13[0] ⊕ x6

14[24]
⊕ x6

15[11, 12, 19, 20]
(11)

where A′ =
(
x3

2[4, 3, 0] ⊕ x3
7[20, 4, 0] ⊕ x3

8[20, 19] ⊕ x3
13[4]

)
holds with probability 1

2

(
1 + 1

26

)
.

Proof. Using equations (2) we have

x3.5
2,0 ⊕ x3.5

7,0 = x4
2,0.

Using Lemma 3 of [CM16b], we have

x4
2,0 = x5

2,0 ⊕ x5
6,7 ⊕ x5

6,19 ⊕ x5
10,12 ⊕ x5

14,0.

Applying Lemma 3 of [CM16b], we have

x5
2,0 = x6

2,0 ⊕ x6
7,7 ⊕ x6

7,19 ⊕ x6
8,12 ⊕ x6

13,0

x5
14,0 = x6

3,0 ⊕ x6
3,16 ⊕ x6

4,7 ⊕ x6
9,0 ⊕ x6

14,24.
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Applying Lemma 3 [CN21b], we have

x5
6,7 = x6

6,26 ⊕ x6
11,6 ⊕ x6

11,7 ⊕ x6
11,19 ⊕ x6

12,7 w.p.
1
2

(
1 + 1

2

)
x5

6,19 = x6
6,6 ⊕ x6

11,18 ⊕ x6
11,19 ⊕ x6

11,31 ⊕ x6
12,19 w.p.

1
2

(
1 + 1

2

)
x5

10,12 = x6
0,11 ⊕ x6

0,12 ⊕ x6
10,12 ⊕ x6

15,11 ⊕ x6
15,12 ⊕ x6

15,19 ⊕ x6
15,20 w.p.

1
2

(
1 + 1

22

)
.

Finally, using Equation 4 and the Piling-Up Lemma, we finalize the proof.

Proof of Lemma 4. The following 1-round linear trail

C = D (12)

where

C = x6
0[11, 12] ⊕ x6

2[0] ⊕ x6
3[0, 16] ⊕ x6

4[7] ⊕ x6
6[6, 26]⊕

x6
7[7, 19] ⊕ x6

8[12] ⊕ x6
9[0] ⊕ x6

10[12] ⊕ x6
11[7, 31, 6, 18]⊕

x6
12[7, 19] ⊕ x6

13[0] ⊕ x6
14[24] ⊕ x6

15[11, 12, 19, 20]

and
D = x7

0[3, 7, 19, 23] ⊕ x7
4[13, 14, 18, 19, 25, 30, 31] ⊕ x7

8[6, 12, 18, 23, 24]
⊕ x7

12[6, 7, 10, 19, 20, 31] ⊕ x7
1[16] ⊕ x7

5[7] ⊕ x7
13[0, 8, 24] ⊕ x7

2[0, 8, 11, 12, 24]
⊕ x7

6[7, 13, 19, 25, 30, 31] ⊕ x7
10[18, 23, 24, 26] ⊕ x7

14[0, 5, 6, 11, 12, 16, 19, 20, 25, 26]
⊕ x7

3[0, 3, 4, 6, 7, 11, 12, 16, 17, 18, 19, 20, 27, 28, 30, 31] ⊕ x7
7[2, 3, 6, 7, 18, 22, 23, 27]

⊕ x7
11[6, 11, 18, 19, 20, 27, 28] ⊕ x7

15[0, 3, 4, 5, 7, 11, 12, 14, 16, 18, 19, 25, 26, 30, 31]

holds with probability 1
2

(
1 + 1

224

)
.

Proof. Using Lemma 3 of [CM16b] in x6
9,0, x6

13,0, x6
2,0 and x6

3,0 we obtain a expression A
with probability 2−1. Applying Lemma 3 of [CN21b] in x6

11,31, x6
14,24, x6

12,7, x6
11,18, x6

12,19,
x6

3,16, x6
4,7, x6

6,6, x6
7,7, x6

7,19, x6
8,12, and x6

6,26, we obtain a expression B with probability
2−17. Applying Lemma 7 of [CN21b] in x6

11,6 ⊕ x6
11,7 and x6

15,19 ⊕ x6
15,20, we can obtain an

expression C with probability 2−3. And applying the equation 30 of Lemma 9 of [CN21b]
in x6

15,11, x6
15,12, x6

10,12, x6
0,11, and x6

0,12, we can obtain an expression D with probability
of 2−3

Finally, using the Piling-Up Lemma in A, B, C and D we obtain Equation 7. We verify
this correlation experimentally. We used 240 samples and divided them into four partitions,
each corresponding to the linear trail associated with its respective quarter round. As
these are 1-round trails, the partitions are independent of each other. By applying the
Piling-Up Lemma, we obtained an experimental correlation of 2−21.35

D PNBs
List of PNBs 1. 3, 4, 7, 15, 16, 17, 18, 23, 27, 31, 34, 35, 36, 38, 43, 47, 48, 49, 51,
54, 55, 59, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 78, 79, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109,
110, 111, 112, 119, 120, 121, 122, 123, 124, 127, 128, 136, 137, 138, 139, 144, 148, 156,
157, 159, 168, 169, 175, 184, 187, 188, 191, 192, 193, 194, 204, 208, 209, 210, 211, 212,
213, 214, 215, 216, 220, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 240, 241,
242, 243, 248, 249, 250, 251, 252, 253, 254, 255
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List of PNBs 2. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 19, 20, 21, 26, 31, 32, 33, 34, 35, 36,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 77, 78, 79, 80, 83, 84, 85, 86, 89, 90, 91, 95,
99, 100, 103, 104, 105, 106, 107, 108, 109, 110, 115, 123, 124, 125, 126, 127, 128, 129,
130, 140, 141, 142, 147, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182,
183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 198, 199, 200, 204, 205, 206,
207, 210, 211, 212, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 231, 244, 245, 246,
247, 248, 255

List of PNBs 3. 0, 7, 20, 21, 31, 35, 39, 44, 45, 46, 47, 51, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 77, 80, 83, 84, 85, 86, 89, 90, 91, 95, 99, 100,
104, 108, 109, 110, 115, 123, 124, 125, 126, 127, 128, 129, 130, 135, 140, 141, 142, 147,
152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195, 198, 199, 200, 201, 204, 205, 206, 207, 210, 211,
212, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 231, 244, 245, 246, 247, 248, 252,
255

List of PNBs 4. 0, 1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 15, 16, 19, 20, 21, 22, 25, 26, 27, 31,
35, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47, 51, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 78, 79, 83, 84, 85, 90, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,
126, 127, 128, 129, 130, 131, 134, 135, 136, 137, 140, 141, 142, 143, 146, 147, 148, 154,
155, 156, 157, 158, 159, 160, 161, 162, 163, 167, 180, 181, 182, 183, 184, 188, 191, 192,
193, 194, 199, 204, 205, 206, 211, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226,
227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244,
245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255

List of PNBs 5. 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 19, 23, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 46, 47, 51, 52, 53, 58, 59, 63, 64, 65, 66, 67, 68, 71, 72, 73,
74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 103, 104, 105, 106, 109, 110, 111, 112, 115, 116, 117, 118, 119, 121, 122,
123, 127, 128, 129, 130, 131, 135, 148, 149, 150, 151, 152, 156, 159, 160, 161, 162, 167,
172, 173, 174, 179, 180, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214,
215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 230, 231, 232, 233, 236,
237, 238, 239, 240, 242, 243, 244, 250, 251, 252, 253, 254, 255
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