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Abstract. TinyJAMBU is one of the finalists in the NIST lightweight cryptography
competition. It is considered to be one of the more efficient ciphers in the competition
and has undergone extensive analysis in recent years as both the keyed permutation
as well as the mode are new designs. In this paper we present a related-key forgery
attack on the updated TinyJAMBU-v2 scheme with 256- and 192-bit keys. We
introduce a high probability related-key differential attack where the differences are
only introduced into the key state. Therefore, the characteristic is applicable to the
TinyJAMBU mode and can be used to mount a forgery attack. The time and data
complexity of the forgery are 233 using 214 related-keys for the 256-bit key version,
and 243 using 216 related-keys for the 192-bit key version.
For the 128-bit key we construct a related-key differential characteristic on the full
keyed permutation of TinyJAMBU with a probability of 2−16. We extend the related-
key differential characteristics on TinyJAMBU to practical-time key-recovery attacks
that extract the full key from the keyed permutation with a time and data complexity
of 224, 221, and 219 for respectively the 128-, 192-, and 256-bit key variants.
All characteristics are experimentally verified and we provide key nonce pairs that
produce the same tag to show the feasibility of the forgery attack. We note that
the designers do not claim related-key security, however, the attacks proposed in
this paper suggest that the scheme is not key-commiting, which has been recently
identified as a favorable property for AEAD schemes.
Keywords: TinyJAMBU · Differential cryptanalysis · Related-Key · Forgery ·
NIST-LWC

1 Introduction
In recent years it has been understood that, although confidentiality is an important
feature of cryptographic primitives, authenticity of the data is, often overlooked, but equally
valuable. Therefore, when NIST launched the lightweight cryptography competition [Tec17],
they included authenticity as one of the primary design goals.

When looking at authenticated encryption, the scheme is considered to be broken when
either the confidentiality or the authenticity of the ciphertext are diminished. This both
improves and worsens the job of a cryptanalyst, as now, for a full break of the scheme, two
things must happen in parallel: First the cryptographer has to find a favorable property
in the primitive; Second, it must be possible to observe this property through the (often
restrictive) mode.

In this paper we look at the authenticated encryption scheme TinyJAMBU [WH19,
WH21], which is based on the duplex construction [BDPA08, BDPA11] and a lightweight
keyed permutation. The keyed permutation used in TinyJAMBU has a 128-bit state and a
128-, 192-, or 256-bit key. The permutation is constructed from a Non-Linear Feedback
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Shift Register (NLFSR), with a single NAND gate as the only non-linear component. Each
round the feedback bit is XOR-ed with the next key bit using a cyclic key schedule.

In the TinyJAMBU mode two versions of the keyed permutation are used, which only
differ in the number of rounds used in the NLFSR. We denote these as: Pa, and Pb.
Pa is used in phases where no output is observed, and consists of 640 rounds for all the
key sizes. Pb is used in the first initialization step and when part of the state can be
observed. It consists of 1024, 1152, and 1280 rounds for respectively the 128-, 192-, and
256-bit key variants. We note that the designers of TinyJAMBU have recently changed the
number of rounds of Pa from 384 to 640 [WH21] to counter a differential attack by Saha
et al. [SSS+20]. Therefore, most of the results in the literature are on 384 rounds.

We first look at the current results on TinyJAMBU before we turn our attention to our
contributions. In their specification of TinyJAMBU [WH19, WH21] the designers provide
a security analysis of the design against various attacks. Using MILP modelling they show
that there exists a differential characteristic through 384 rounds of the permutation with a
probability of less than 2−78. In [SSS+20], Saha et al. look at the differential characteristics
through the TinyJAMBU permutation using a model that captures (first-order) relations
between multiple NANDs. This improves the probability of the best found characteristics
compared to the previous work. The authors propose a differential characteristic through
338 and 384 rounds of the permutation with a probability of respectively 2−62.68 and
2−70.68.

Most attacks consider the case where the attacker only has access to 32 in- and output
bits as is dictated by the mode. When there are no constraints on the bits that the
attacker can access, Saha et al. report a characteristic through 384 rounds of the keyed
permutation with probability 2−19 [SSS+20]. To mitigate these attacks, the designers of
TinyJAMBU increased the number of rounds from 384 to 640 in the second version [WH21]
of the specification.

In the updated specification the designers of TinyJAMBU improved the differential
characteristics through the keyed permutation in the case that the attacker can only affect
32 of the in- and output bits. They found differential characteristics with probabilities
2−41, 2−64, and 2−88 covering respectively 384, 512, and 640 rounds.

Due to the cyclic nature of the permutation slide attacks are a natural direction of
analysis. Sibleyras et al. [SST+22] discuss full round slide attacks on TinyJAMBU in the
single-key setting. The designers of TinyJAMBU already mention in the specification that
there exists a simple related-key slide attack. But, due to the frame bits used in the mode
these slide attacks cannot be used to attack the full scheme. The complexities of these
attacks are beyond the birthday bound.

1.1 Our Contributions
We propose an iterative related-key differential characteristic that can be applied to the
keyed permutation inside the mode. The attack works for the 256-bit as well as the 192-bit
key variants of the permutation. Combining this characteristic with the proper nonce
differences we can reach a zero difference in the state just before the first message addition
with a probability of 2−32 and 2−42 for respectively the 256- and 192-bit key variants.
For a given initial state and a given 256-bit key-pair the attack succeeds with probability
2−14 and for a 192-bit key it succeeds with probability 2−18. If we allow the attacker to
request 25 related-keys, the success probability increases to 2−9 and 2−13 for the 256- and
192-bit variants. We note that the designers of TinyJAMBU do not claim security in the
related-key model, however the existence of a (high probability) related-key differential
characteritic shows that the scheme is not key-committing [ADG+22].

We extend this attack to a nonce respecting forgery attack which has a data and time
complexity of 232 and 242 for respectively the 256- and 192-bit variants of TinyJAMBU.
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Table 1: A summary of distinguishers on TinyJAMBU. The results only include distin-
guishers where the attacker has access to 32 in-, and output bits.

Key size #Rounds Data/#Weak Keys Setting Type Source
128 1024 217/− RK CP Differential Sec. 3.3
192 1152 213/2179 RK CP Differential Sec. 3.3
256 1280 211/2247 RK CP Differential Sec. 3.3
any 338 262.68 CP Differential [SSS+20]
any 384 270.68 CP Differential [SSS+20]
any 384 241 CP Differential [WH21]
any 512 264 CP Differential [WH21]
any 512 264 KP Linear [WH21]
any 640 288 CP Differential [WH21]
128 ∞ 264 KP Slide [SST+22]
192 ∞ 265 ACP Slide [SST+22]
256 ∞ 267.5 ACP Slide [SST+22]

CP = Chosen Plaintext
ACP = Adaptive Chosen Plaintext
KP = Known Plaintext
RK = Related-key

The results are summarised in Table 1 and we provide inputs that lead to a forgery for
both versions in Table 4.

The 128-bit key variant of TinyJAMBU cannot be attacked using the same characteristic.
But, we show that if we allow for differences to be inserted into state bits, we can get a
similar iterative characteristic for the 128-bit variant with a probability of 2−2 per 128
rounds.

We note that our results are also applicable to the first version of the TinyJAMBU
scheme, but with slightly better complexities.

1.2 Paper Structure
We give a short overview of the mode and the keyed permutation used in TinyJAMBU in
Section 2. Next we describe the related-key differential characteristic and the resulting
forgery on the full mode in Section 3 and Section 4. We conclude the paper in Section 5.

2 The Specification of TinyJAMBU
TinyJAMBU is one of the finalists of the NIST lightweight competition. The design principle
of TinyJAMBU is based on the sponge duplex mode using a keyed permutation. The keyed
permutation is derived from a NLFSR with a 128-bit state using a NAND gate as the
non-linear operation. The key bits are added in a cyclic fashion.

In the upcoming section we give a quick overview of the important parts of TinyJAMBU
with respect to understanding the attack. For a complete specification of TinyJAMBU we
refer the reader to the full specification [WH21].

2.1 The keyed permutation
The TinyJAMBU keyed permutation uses a 128-bit state and is defined for 128-, 192-, or
256-bit keys. Given an n-bit register x ∈ {0, 1}n, xi denotes the i-th bit of the register.
Where x0 is the least significant bit, and xn−1 is the most significant bit of the register.
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Table 2: Parameters for the different variants of TinyJAMBU.

Variant a b State Key Nonce Tag
TinyJAMBU-128 640 1024 128 128 96 64
TinyJAMBU-192 640 1152 128 192 96 64
TinyJAMBU-256 640 1280 128 256 96 64

Using this notation we can denote the n-bit register x as (xn−1, xn−2, . . . , x0). The size of
a register x is denoted as |x| and the concatenation of two registers x, y is denoted as x∥y.

We define the permutation P on the state v ∈ {0, 1}128, given a key k ∈ {0, 1}κ (where
κ ∈ [128, 192, 256]), and round i as:

P(k,i)(v) = (v91 ⊕ v85v70 ⊕ v47 ⊕ v0 ⊕ k(i mod |k|), v127, . . . , v1)

Now we define the r-round permutation P for some key k as:

Pr = P(k,r−1) ◦ P(k,r−2) ◦ . . . ◦ P(k,0)

The round function P of the TinyJAMBU permutation is depicted in Figure 1.
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Figure 1: Round function of the TinyJAMBU permutation.

2.2 The TinyJAMBU mode
The TinyJAMBU mode uses the permutation described in Section 2.1 in a duplex construc-
tion with a 32-bit message injection part, a 32-bit squeezing part. The mode consists of
four separate phases: the key initialization, the associated data, the encryption, and the
finalization part. After every permutation call a constant depending on the current phase
constℓ is added to the state. One thing to note is that unlike most duplex constructions
the squeezing and the injection of data occurs in different parts of the state.

TinyJAMBU uses keyed permutations using the same key k, but a different number of
rounds in different phases of the encryption. We denote them as Pa and Pb where the
values of a and b for the different key sizes are given in Table 2.

2.2.1 Initialization.

In the initialization the key k is mixed into the state s ∈ {0, 1}128 by applying Pb to the
initial state s = (0, 0, ..., 0). After that, in the nonce setup phase, a 96-bits nonce N is
split up into three 32-bit nonce parts N0∥N1∥N2 and for each part of the nonce the state
is updated with Pa after which the nonce is added to the most significant bits of the state.
A depiction of the initialization is given in Figure 2.
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Figure 2: TinyJAMBU initialization and nonce addition.

2.2.2 Associated Data Processing.

During the associated data processing the associated data is added to the state. The
associated data is divided into 32-bit blocks. For each block the state is updated with
Pa, after which the associated data block is XOR-ed into the state. When the associated
data is empty we skip this part of the construction and continue with the encryption. We
depict the associated data processing in Figure 3.
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Figure 3: Processing the associated data.

2.2.3 Encryption.

During the encryption stage a keystream is generated to encrypt a message into a ciphertext.
The plaintext is divided into 32-bit blocks. For each block, the state is updated with
Pb, after which the plaintext block is XORed into the most significant part of the state.
Finally, we obtain the 32-bit ciphertext block by XORing bits 95 . . . 64 of the state with the
plaintext block. Note that, the plaintext and nonce are added to the 32 most significant
bits of the state which are 127 . . . 96. The keystream used for encryption is obtained from
bits 95 . . . 64.

2.2.4 Finalization.

After encrypting the plaintext the 64-bit authentication tag T0∥T1 is generated in two
steps. First, to generate T0, we apply Pb and extract bits 95 . . . 64. Then we apply Pa

after which we extract the same 32 bits of the state to get T1. We depict the finalization
and encryption process in Figure 4.
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Figure 4: TinyJAMBU encryption and finalization.

3 Related Key Differential Characteristics on P
We describe a high probability related-key differential characteristic on the full-round
permutation P with 256- and 192-bit keys. This characteristic uses the simplicity of
the key schedule of the keyed permutation to introduce and cancel differences in the
state. Moreover, at all times there is at most one active bit in the state, which gives
us a characteristic through the full permutation P1280 with a probability of 2−10 for the
256-bit key variant. For the 192-bit key variant the characteristic has a probability of 2−12

through P1152. The probability for the characteristic through P640 is only 2−4 for the
256-bit variant and 2−6 for the 192-bit variant. These characteristics allow an attacker to
reach a zero difference state just before the message addition with a probability of 2−32

for the 256-bit key case and 2−42 for the 192-bit key case. In the following sections we
explain how the characteristic is constructed.

3.1 The 256-bit key variant
We start with a difference in key bit k0 which is inserted into the state in the first round.
The propagation of the difference through the linear taps is cancelled by the following
key differences: k37, k81, k128. After 128 rounds the difference is cancelled and the state
difference is 0 for the next 127 rounds with probability ( 1

2 )2. This is because when
the introduced state difference reaches a NAND gate it produces a zero difference with
probability 1

2 and the difference enters the NAND gate twice before getting cancelled. At
round 256 we return to the original configuration of state and key differences.

The above key difference gives a zero state difference after P1280 with probability 2−10.
However, if we use the same key differences for P640 there is a difference in the least
significant bit of the state. The problem here is that we cannot cancel this difference using
the nonce, since the nonce is added to the most significant bits of the state. The solution
to this problem is to shift the key difference by 127 bits. This shifts the difference to the
most significant bit of the state after P640, and keeps the 0 difference in the state after
P1280. Since we can cancel the 32 most significant bits using the Nonce we actually have
32 possible characteristics. The above gives us the following set of possible useable input
differences in the key bits:

(k164−t, k208−t, k255−t, k127−t) for 0 ≤ t < 32

and a difference in the following nonce bits (where the nonce is denoted by N):

(N95−t, N63−t, N31−t) for 0 ≤ t < 32.
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Figure 5: The iterative differential characteristic for the 256-bit key case. The rounds are
modulo 256.

This produces a one bit difference in the output in the t-th most significant bit after P640,
while still keeping the zero difference after P1280. One added benefit is that for P640 the
characteristic passes through two less non-linear taps, reducing the probability of the
characteristic from 2−6 to 2−4. The characteristic for t = 0 is given in Figure 5.

Due to this characteristic, we get, with probability 2−10−3·4−10 = 2−32, a zero difference
before the message addition. This is the first point in which we can observe (part of) the
state difference through the ciphertext.

An important note to make with regards to this characteristic is that, because of the
mode, in the key-initialization the state is only affected by the key and the initial state.
We can only add randomness to the state after one Pa and one Pb. Due to this, the
characteristic holds for a certain related key pair with a probability of 2−14. There are 32
characteristics that can lead to a forgery, thus the probability that we can mount a forgery
against a specific key is 2−9.

We investigated the possibility of allowing for state differences with a Hamming weight
greater than one (i.e., two). However, this does not allow us to improve the distinguisher.
The probability of such a characteristic is (roughly) squared when compared to the
probabilities of the characteristics described in this section.

3.2 The 192-bit key variant

The characteristic for the 192-bit variant is nearly the same as the characteristic for the
256-bit variant. Between the two, the only difference is that instead of offsetting the
characteristic by 127 positions to get the 1 difference in the most significant bit after P640,
we offset the difference by 63. This gives us the following set of possible input differences
in the key bits:

(k100−t, k144−t, k191−t, k63−t) for 0 ≤ t < 32
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Figure 6: The iterative differential characteristic for TinyJAMBU with a 192-bit key. The
rounds are modulo 192.

and the following input differences in the nonce bits (where the nonce is denoted by N):

(N95−t, N63−t, N31−t) for 0 ≤ t < 32

We note that, compared to the 256-bit variant, the probability is slightly lower. This
is due to the fact that instead of 2 non-linear taps per 256 rounds of the cipher we get
2 non-linear taps per 192 rounds of the cipher. This leads to a characteristic that has a
probability of 2−6 and 2−12 for respectively P640, and P1152 and produces a 1 bit difference
in the (t-th) most significant bit of the state after P640 and a zero difference after P1152.
In Figure 6 we depict the characteristic for t = 0.

Similarly to the 256-bit key case the probability that the characteristic can be used in
a forgery attack with a specific key is 2−13.

3.3 Other Related Key Characteristics on P1024

The characteristics in Section 3 do not work for the 128-bit key variant as it requires
cancelling the state difference with the key difference after 129 rounds. However, if we
allow the attacker to insert a difference into the state as well as the key we can attack the
128-bit key variant. Or in other words, if we analyse the permutation as a stand alone
primitive, we can use the same idea to construct a differential characteristic for the 128-bit
key variant. This idea could be used to construct a fault-attack on the scheme.

We insert a difference in the state on bit v127, and a difference in the key state in k36
and k80. This difference is chosen such that the difference does not diffuse through the
linear taps of the NLSFR. Since there is one active bit the bit reaches a NAND gate twice
every 128 rounds. This leads to a probability of 2−2 per 128 rounds and a probability of
2−16 for P1024.

We can improve the probability of the distinguisher by a factor of 2−2 by moving the
difference bit in the state to behind the second non-linear tap, i.e., v69.
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3.4 Key recovery attack
In the case that we allow for the attacker to observe the full input and output states we
can do a key recovery attack on the keyed permutation using the characteristics discussed
in Section 3.3. Such an attack is not applicable to the TinyJAMBU construction, but is
given as a warning against using the permutation as a stand alone primitive. To construct
the attack we use the observation that, if the output difference of the NAND is zero while
one of the input differences is one, the values of the non-difference bits of the NAND are 0.
Thus, observing the output difference immediately leaks the value of one bit of the state
in 16 rounds of the cipher. By looking at the first two state bits that are leaked we can
recover two of the key bits. We know that the value of these bits need to be zero and since
the input of the first NAND only depends linearly on the key bits, we can compute the
value of the key bits involved. The two first state bits that are leaked give us the following
equation:

vi+91 ⊕ vi+85vi+70 ⊕ vi+47 ⊕ vi ⊕ ki ⊕ 1 = 0

Thus, we can recover key bits k0 and k15 in the chosen plaintext model.
By using multiple characteristics we can recover k0 . . . k37. The rest of the key bits

can be recovered by first recovering k0 . . . k37 and using the recovered key bits to simplify
the expressions for the subsequent bits. Thus, to recover the full key we need to run
the distinguisher at most 28 times. This allows us to recover the full key in 216+7 = 223,
212+8 = 220, and 210+8 = 218 time and data for respectively the 128-, 192-, and 256-bit
primitives. For the 128-bit variant we use the characteristic described in Section 3.3, while
for the 192-, and 256-bit variants we use the characteristic described in Section 3.1 and
Section 3.2

3.5 Experimental Verification
To verify the existence and theoretical probability of the differential described in the paper
we ran experiments. For TinyJAMBU-192 we conducted 50 experiments with 232 nonce-key
pairs and checked for the difference after the key-setup and nonce initialization. The
probability of the distinguisher for the key and nonce initialization is: 2−30.0 ± 2−30.0.1
Due to the nature of the characteristic, where only a part of the keys leads to a forgery, we
also tested the probability that the required difference exists after the key initialization as
well as between the key initialization and nonce addition. For these we did 50 experiments,
each with respectively 214 and 220 keys. The experimental probability that a key difference
produces the correct output difference after the key initialization is: 2−12.0 ±2−13.1 and the
experimental probability that after the characteristic passed through the key initialization
it also passes through the nonce addition is 218 ± 219.3.

For TinyJAMBU-256 we conducted 50 experiments with 224 nonce-key pairs to check the
existence and estimate the probability of the distinguisher after the key-setup and nonce
initialization. The probability of the distinguisher for the key and nonce initialization is:
2−22.0 ± 2−23.2. We also tested the probability that the required difference exists after
the key initialization. For this we did 50 experiments each with 220 keys. The probability
that a key difference produces the correct output difference after the key initialization is:
2−10.0 ± 2−15.0. See Table 3 for an overview of the experiments.

We also verified the probabilities for the differential distinguisher we described on the
permutation with a 128-bit key. The probability that the described differential occurs is:
2−15.9 ± 2−18.0 (with 50 experiments each testing 220 keys.

The source code for the experiments can be found in https://github.com/ShibamCrS/
TinyAtttacksOnTinyJambu.git.

1We use µ ± σ, where µ is the (sample) mean and σ is the standard deviation.

https://github.com/ShibamCrS/TinyAtttacksOnTinyJambu.git
https://github.com/ShibamCrS/TinyAtttacksOnTinyJambu.git
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Table 3: The results of the experiments to show the existence and probability of the
differential after the key initialization, the nonce intialization with a random state, and
the combined key and nonce initialization.

Key Size Stage Theoretical Prob. Experimental Prob. # Keys/Nonces tested
192 Key 2−12 2−12.0 ± 2−13.1 50 · 214

Nonce 2−18 2−18.0 ± 2−19.3 50 · 220

Key + Nonce 2−30 2−30.0 ± 2−30.0 50 · 232

256 Key 2−10 2−10.0 ± 2−15.2 50 · 220

Nonce 2−12 2−11.9 ± 2−13.2 50 · 214

Key + Nonce 2−22 2−22.0 ± 2−23.2 50 · 224

128 Key 2−16 2−15.9 ± 2−18.0 50 · 220

4 Forgery Attack on TinyJAMBU
Using the related-key differential characteristic from Section 3 we can create a forgery
attack on TinyJAMBU. We generate a key, nonce, message pair that produces the same
tag for different nonces and keys. We first discuss the attack on the 256-bit key version
of TinyJAMBU, but is also applicable to the 192-bit key version, although with a slightly
higher complexity.

The main hurdle in creating a forgery is to find a related-key pair that can be used
for the attack. This is mainly because during the key initialization the only input we
have access to is the key, and the fixed initial state. It is only after the key initialization,
in the nonce setup, that we can insert more data to randomize the state. To reach the
first non-key input we need to go through one Pb and one Pa, so the probability that a
256-bit key pair is susceptible to a forgery attack is 2−14. Since we can use 32 different
characteristics we can ask for data encrypted under 32 related keys, i.e., the key pairs
(k, k ⊕ ∆0), (k, k ⊕ ∆1), . . . , (k, k ⊕ ∆31). The probability that any pair in this group is
susceptible to a forgery is 2−9. We note that this does not increase the success probability
in the related-key model, but it does increase the weak-key class, as for any key there are
32 keys that can be used to mount the attack.

To find a forgery we start with 214 key pairs. For each pair we encrypt the same
message block with 218 nonce pairs. The difference for the nonce is such that it cancels the
difference after P640. We can observe the output difference through the first ciphertext.
We expect to see one ‘golden’ key pair that survives this initial filtering step, which with
high probability, follows the characteristic through the key initialization and the nonce
addition.

Using this key and nonce pair we search for a forgery by changing the last nonce. Since
we have to pass once through P640 and twice through P1280 to produce both tags, the
probability of finding a colliding tag is 2−24 after we found a golden key and nonce pair.
One thing to consider is that the last finalization step is using P640 as the permutation,
which as discussed in Section 3 produces a difference in the most significant bit of the
state. Nevertheless, since we extract bits 64 to 95 to use as the tag, the tag difference
remains zero.

The total cost of this attack is 233 + 225 data and time, where we ask for encryptions
under 214 related key pairs in the nonce respecting setting. If we move to the nonce misuse
setting we get a forgery in 233 + 215 time since we can add the randomness in the message
instead of the last nonce part. We note that finding more forgeries after finding a ‘golden’
key nonce pair has a complexity of 225 data and time in the nonce respecting setting
and 214 data and time for the nonce misuse setting. The advantage of the attacker in
the single-key model after 233 queries is 2−30 according to the proof given in the design
document of TinyJAMBU.
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Table 4: Key and nonce pairs that produce the same tag (and ciphertext). Nibbles that
have a difference are marked. The leftmost byte is the least significant byte.

Key size Key Nonce Message Ciphertext Tag

192

9AE19248 8B102E07 19A2492E
AB0F2C02 9EDB377D DF81AB70 11129DA1 C9211BA2 1734A489
090EF19C 66F4AAEB 923635DC 1229B9F6

9AE19248 8B102E87 19A249AE
AB0F2C02 8EDB377D DF81ABF0 11129DA1 C9211BA2 1734A489
090EF09C 66F4AA6B 9236355C 1229B9F6

256

B429DBD1 14F8B269 BF8A51BD
7D83ABD0 3893F974 B71DC3C6
79626DF1 B3A3D867 8443C018 29594AD7 E015A04A 1E8CA308
A415E2BB D5A2A68A 95CBD1F7

B429DBD1 14F8B269 BF8A513D
7D83ABD0 3893F9F4 B71DC346
79626DF1 A3A3D867 8443C098 29594AD7 E015A04A 1E8CA308
A415E3BB D5A2A60A 95CBD1F7

The complexities for the forgery are low enough that we could compute a forgery on our
own desktop. In Table 4 we provide key and nonce inputs that produce the same tag for
both the 256- and 192-bit key cases. The code to generate these forgeries can be found in the
following repository: https://github.com/ShibamCrS/TinyAtttacksOnTinyJambu.git.

4.1 TinyJAMBU-192
The forgery attack on TinyJAMBU-192 is the same as the forgery attack on TinyJAMBU-256,
although the probabilities (as is discussed in Section 3) are slightly higher. The probability
for the characteristic to pass through P640 and P1152 is respectively 2−6 and 2−12. This
leads to a forgery with a data and time complexity of 243 + 231 in the nonce respecting
setting and a data and time complexity of 243 + 219 in the nonce misuse setting. The
advantage of the attacker in the single-key model after 243 queries is 2−20 according to the
proof given in the design document of TinyJAMBU.

4.2 Weak-Related-Key Model
Due to the fact that we can only influence the state bits after some applications of the
internal permutation, not every key-pair with the correct input difference follows the
characteristic. Due to this, the forgery only works on a (large) subset of weak keys. A key
is in this weak key class, if there is at least one related key for which the characteristic is
followed through the key initialization.

As we have shown in the previous sections, the fraction of keys that is susceptible to
the distinguisher is rather high. This results in the probability of hitting such a key by
chance quite high, especially if we re-key frequently.

5 Conclusion
We discussed a full round related-key differential characteristic that can be applied to the
mode. Using this characteristic we show how to create a tag forgery for TinyJAMBU-192
and TinyJAMBU-256 with a complexity of respectively 232 and 242 time and data using

https://github.com/ShibamCrS/TinyAtttacksOnTinyJambu.git
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respectively 210 and 212 related keys. We looked at the keyed permutation as a primitive
and showed how to create a related-key distinguisher for the permutation with a data and
time complexity of 2−17 for the 128-bit key variant. We also show how to recover the key
using this distinguisher in 224 data and time for the 128-bit variant.

One important note to make is that TinyJAMBU-128 is the main contribution of the
TinyJAMBU submission to the NIST lightweight competition. The forgery discussed in the
paper does not apply to this variant. Nevertheless, as we have shown, the keyed permutation
used in TinyJAMBU-128 is easily distinguished and can therefore be considered weak in
the related-key model. We also note that there exist full-round slide attack [SST+22]
on the permutation in the single-key model. The designers have also proposed a trivial
related-key slide attack against the permutation. Combining these weaknesses with the
fact that (as we have shown) the other variants of the authenticated encryption scheme
are broken, the 128-bit version should be used with care.

These attacks were mainly possible due to the fact that the key schedule of the primitives
are cyclic. The protection offered against related key attacks by doing the key initialization
with a constant state were not enough to protect against these attacks. To circumvent
this attack the number of rounds in Pa and Pb should almost be doubled. Another easy
fix for the problem would be to employ some sort of a key schedule to the permutation or
to add a few additional NAND gates. We notified the designers of TinyJAMBU about the
attacks which they verified. The designers do not intend to update the design to protect
against related-key attacks. If related-key security is needed (which is outside the security
model for TinyJAMBU), the designers suggested to use Pa to process the key after the
initialization in the same fashion as the associated data is processed. Thus, for the 256-bit
version, eight extra calls to Pa are made, and, in the 192-bit version, six extra calls to the
permutation are made, where each of the calls processes 32 bits of the key.
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