Towards the Links of Cryptanalytic Methods on MPC/FHE/ZK-Friendly Symmetric-Key Primitives

Shiyao Chen, Chun Guo, Jian Guo, Li Liu, Meiqin Wang, Puwen Wei, Zeyu Xu

> Nanyang Technological University Shandong University

Mar, 2024 @ Leuven, Belgium

Applications to GMiMC

Conclusion

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ Q ○ 2/24</p>

Motivation

Establishing Links over \mathbb{F}_p

Applications to GMiMC

Conclusion

Establishing Links over \mathbb{F}_p

Applications to GMiMC

Conclusion

Motivation

Establishing Links over \mathbb{F}_p

Applications to GMiMC

Conclusion

<□ > < @ > < E > < E > E の Q @ 3/24

New Types of Finite Field Friendly Designs

Many MPC/FHE/ZK-friendly ciphers are designed with novel operations and constructions, e.g., LowMC, MiMC, GMiMC, HADES, Ciminion, Rescue...

SPN

Feistel

P-SPN

Challenges of Cryptanalysis for Newly Symmetric-Key Primitives

Novel design ideas and constructions naturally lead to some potential threats.

- Algebraic attacks:
 - Gröbner-basis attack on Jarvis and Friday [ACG⁺19].
 - High-order attack on full-round MiMC [EGL⁺20].
 - Coefficient Grouping breaks Chaghri [LAW⁺23].
 - etc.
- Statistical attacks:
 - Truncated differential attack on full-round GMiMC [BCD⁺20].
 - etc.

Cryptanalysis and design of newly symmetric-key ciphers are becoming interesting but challenging tasks.

- Cryptanalysis needs to be investigated further.
- Design could be aided by more in-depth cryptanalysis.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 圖 の��6/24

Algebraic Cryptanalysis over Finite Field

These novel symmetric-key designs are usually more vulnerable to algebraic attacks.

How to accurately evaluate algebraic properties of these new ciphers is still difficult.

There are usually two methods: degree-based and structural-based.

Links among Different Cryptanalytic Methods over \mathbb{F}_2^n

Links among different symmetric cryptanalytic methods over \mathbb{F}_2^n have been well studied.

For example, links among impossible differential, zero-correlation linear and integral cryptanalysis over \mathbb{F}_2^n [SLR+15].

Why We Focus on Links over \mathbb{F}_p (p > 2)?

- Integral (INT) cryptanalysis over \mathbb{F}_p is still difficult to evaluate accurately.
- Impossible differential (IDC) and/or Zero-correlation linear hull (ZC) over F_p may be easier to construct.
- It will be convienient to derive structural-based integral distinguisher if with the links among IDC, ZC and INT over \mathbb{F}_p .

Establishing Links over \mathbb{F}_p

Applications to GMiMC

Conclusion

Motivation

Establishing Links over \mathbb{F}_p

Applications to GMiMC

Conclusion

Main Obstacle of Generalizing Links to \mathbb{F}_p Definition (Correlation over \mathbb{F}_p [BSV07])

Given a function $F : \mathbb{F}_p^t \to \mathbb{F}_p^s$, for a linear mask pair (u, v), where $u \in \mathbb{F}_p^t$ and $v \in \mathbb{F}_p^s$, then the correlation of linear approximation (u, v) of F is defined as

$$cor_F(u,v) = cor(u^T \cdot x - v^T \cdot F(x)) = \frac{1}{p^t} \sum_{x \in \mathbb{F}_p^t} \chi_u(x) \overline{\chi_v(F(x))} = \frac{1}{p^t} \sum_{x \in \mathbb{F}_p^t} e^{\frac{2\pi i}{p}(u^T \cdot x - v^T \cdot F(x))}.$$

- Considering the linear correlation over \mathbb{F}_2^n , parity-check is extensively used for its fast calculation.
- However, the correlation over \mathbb{F}_p , defined over a complex plane by Baignères *et al.* [BSV07], thus more complicated.
- Until the recent design Ciminion [DGGK21], trying to evaluate the security against this kind of linear attacks over \mathbb{F}_p .

Links of ZC and INT over \mathbb{F}_p

For the balance property and zero correlation, ZC and INT are the connections between the links over \mathbb{F}_p .

From ZC to INT over \mathbb{F}_p

Theorem (ZC to INT over \mathbb{F}_p)

If there exists a subspace A of \mathbb{F}_p^t and a mask $b \in \mathbb{F}_p^t \setminus \{0\}$, such that for any $a \in A$, $cor(a^T \cdot x - b^T \cdot F(x)) = 0$ where $x \in \mathbb{F}_p^t$. For any $\lambda \in \mathbb{F}_p^t$, function $G_{\lambda} : A^{\perp} \mapsto \mathbb{F}_p^t$ is defined as $G_{\lambda}(x) = E(x + \lambda)$. Then for any $\lambda \in \mathbb{F}_p^t$, $b^T \cdot G_{\lambda}(x)$ is balanced on the subspace A^{\perp} , that is $cor(-b^T \cdot G_{\lambda}(x)) = 0$.

- For the condition over \mathbb{F}_2^n
 - "input and output linear masks in zero-correlation approximations are independent", as claimed in [BLNW12].
 - Later, this condition was relaxed in [SLR⁺15].
- However, it requires a subspace for the input mask when transforming ZC to INT over $\mathbb{F}_p.^1$

¹Beyne [Bey21] has already provided new insights into linear cryptanalysis over abelian groups and generalized the link between zero-correlation and integral attacks, which are obtained by introducing a geometric approach.

Applications to GMiMC

Conclusion

From INT to ZC over \mathbb{F}_p

Theorem (INT to ZC over \mathbb{F}_p)

Let $E(x) : \mathbb{F}_p^t \to \mathbb{F}_p^t$ be a function over \mathbb{F}_p^t , A be a nontrivial subspace of \mathbb{F}_p^t and its orthogonal space $A^{\perp} = \{x \in \mathbb{F}_p^t | a^T \cdot x = 0, a \in A\}$. For any $\lambda \in \mathbb{F}_p^t$, function $G_{\lambda} : A^{\perp} \mapsto \mathbb{F}_p^t$ is defined as $G_{\lambda}(x) = E(x + \lambda)$. Then an integral distinguisher of E can lead to a zero-correlation linear hull with input masks A and nonzero output mask b, if and only if it is a balanced integral distinguisher with $b^T \cdot G_{\lambda}(x)$ balanced on the subspace A^{\perp} .

• Similar to that over \mathbb{F}_2^n , only INT with balanced property can be converted into ZC over \mathbb{F}_p .

More Refined Links among IDC, ZC and INT over \mathbb{F}_p

By covering more constructions $(\mathcal{F}_{SP}, \mathcal{GF}_{SP}, \mathcal{E}_{FP}, \mathcal{E}_{erf}, \mathcal{E}_{crf})$ and underlying structures $(\mathcal{E}, \mathcal{E}^{\perp}, \mathcal{E}^{-1})$, more refined links between IDC, ZC and INT over \mathbb{F}_p are established.

Establishing Links over \mathbb{F}_p

Applications to GMiMC

Conclusion

Motivation

Establishing Links over \mathbb{F}_p

Applications to GMiMC

Conclusion

<□▶ <圖▶ < ≧▶ < ≧▶ Ξ の< ℃15/24

Applications to GMiMC with Unbalanced Feistel Networks

The round function of GMiMC_{erf}.

The round function of GMiMC_{crf}.

- Algebraic equation-based method for finding IDC/ZC.
- INT can be directly converted from IDC/ZC.
- Improvements up to 3-round for most cases, arbitrary number of rounds for special and limited cases.

Establishing Links over \mathbb{F}_p

Applications to GMiMC

Conclusion

Ciphers	Туре	Rounds	Remarks	Source
		2t - 2	$\alpha_1, \beta_1 \neq 0^{\dagger}$	[AGP ⁺ 19]
		3t - 4	$\alpha_1, \beta_1 \neq 0$ and $\alpha_1 \neq \beta_1$	[BCD+20]
	IDC	3t-3	$\alpha_1, \beta_1 \neq 0$	This work
		3t-1	$\alpha_1 \equiv \beta_1 \text{ and } t \not\equiv 1 \mod p$	This work
7	*	Arbitrary	$\alpha_1 = -\beta_1$ and $t \equiv 1 \mod p$	This work
		3t - 4	Transformed from IDC in [AGP ⁺ 19]	
	70	3t-3	$a_1, b_1 \neq 0^{\dagger \dagger}$	This work
/IiMCorf	ZC	3t-1	$a_1 = b_1$	This work
	7 ↑	Arbitrary	$t \equiv 1 \mod p$	This work
	/	$t + \left\lceil \log_2(t) \right\rceil^*$	Higher-order	[AGP ⁺ 19]
	↓	$2t - 2 + \lfloor \log_2(p - 2) \rfloor$	Algebraic control method (Block cipher)	[BCD ⁺ 20]
	INT	3t-3	· ··B···· -··························	This work
		$3t - 4 + \lfloor \log_2(p-2) \rfloor$	Algebraic control method (Hash function)	[BCD ⁺ 20]
		Arbitrary	$t \equiv 1 \mod p$	This work
		t-1	•	[BCD ⁺ 20]
	LC	Arbitrary	$t \equiv 1 \mod p$	This work
		3t - 4		[AGP ⁺ 19]
		3t-3	$\alpha_1, \beta_1 \neq 0$	This work
$\langle \rangle$	IDC	3t-1	$\alpha_1 = \beta_1$	This work
$\langle \rangle$		Arbitrary	$t \equiv 1 \mod p$	This work
2	¥ (3t-3	$a_1, b_1 \neq 0$	This work
$MiMC_{crf}$	ZC	3t-1	$a_1 = b_1$ and $t \not\equiv 1 \mod p$	This work
	1	Arbitrary	$a_1 = -b_1$ and $t \equiv 1 \mod p$	This work
	INIT	$2t + \left\lceil \log_3(t) \right\rceil^*$	Higher-order	[AGP ⁺ 19]
	INT	3t-3		This work
	DC	t-1		
		Arbitrary	$t \equiv 1 \mod p$	This work

Improvements of (3t-1)-round IDC of GMiMC_{erf}

Special Arbitrary Number of Rounds IDC of GMiMC_{erf}

For $\mathsf{GMiMC}_{\mathtt{erf}}$, special arbitrary number of rounds IDC can be constructed

- Input difference $(0,\cdots,0,lpha_1)$ and output difference $(eta_1,0,\cdots,0)$
- $\alpha_1 = -\beta_1 \neq 0$
- $t \equiv 1 \mod p$ (this condition may be possible for some ZK use cases also with full-data security)

However, this cannot be adapted to \mathbb{F}_2^n , due to the following equation

$$\alpha_1 + (t-1) \cdot \alpha_2 + \cdots + (t-1) \cdot \alpha_{r_1+1} \equiv \beta_1 - (t-1) \cdot \beta_2 - \cdots + (t-1) \cdot \beta_{r_2+1} \mod p,$$

then combined with $\alpha_1 = -\beta_1$, we have $\alpha_1 = \beta_1 = 0$.

Applications to GMiMC

Conclusion

Motivation

Establishing Links over \mathbb{F}_p

Applications to GMiMC

Conclusion

<□ ▶ < 圖 ▶ < E ▶ < E ▶ E の Q @ 20/24

Conclusion

- Links over \mathbb{F}_p could be useful tools for design and cryptanalysis of these newly MPC/FHE/ZK-friendly ciphers.
- More algebraic properties of symmetric ciphers over \mathbb{F}_p are expected to be investigated.
- Novel non-linear operations, for example, the recent comprehensive analysis of Quadratic Functions [GOPS22, GGOP23, Gra23].

Thanks for your attention

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへ@22/24

<□▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ り Q @_{23/24}

[ACG ⁺ 19]	 Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger, and Markus Schöfnegger. Algebraic cryptanalysis of STARK-friendly designs: Application to MARVELIous and MiMC. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, volume 11923 of LNCS, pages 371–397. Springer, 2019.
[AGP ⁺ 19	 M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C.n Rechberger, D. Rotaru, A. Roy, and M. Schofnegger. Feistel structures for mpc, and more. In ESORICS 2019, volume 11736 of Lecture Notes in Computer Science, pages 151–171. Springer, 2019.
[BCD ⁺ 20	 T. Beyne, A. Canteaut, I. Dinur, M. Eichlseder, G. Leander, G. Leurent, M. Naya-Plasencia, L. Perrin, Y. Sasaki, Y. Todo, and F. Wiemer. Out of oddity - new cryptanalytic techniques against symmetric primitives optimized for integrity proof systems. In CRYPTO 2020, volume 12172 of Lecture Notes in Computer Science, pages 299–328. Springer, 2020.
[Bey21]	Tim Beyne. A geometric approach to linear cryptanalysis. In <i>Advances in Cryptology - ASIACRYPT 2021, Part I</i> , pages 36–66, 2021.
[BLNW12	Andrey Bogdanov, Gregor Leander, Kaisa Nyberg, and Meiqin Wang. Integral and multidimensional linear distinguishers with correlation zero. In Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings, pages 244–261, 2012.
[BSV07]	Thomas Baignères, Jacques Stern, and Serge Vaudenay. Linear cryptanalysis of non binary ciphers. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, <i>SAC 2007</i> , volume 4876 of <i>LNCS</i> , pages 184–211. Springer, 2007.
[DGGK21]	Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniël Kuijsters. Ciminion: Symmetric encryption based on toffoli-gates over large finite fields. In Anne Canteaut and François-Xavier Standaert, editors, <i>Advances in Cryptology - EUROCRYPT 2021, Part II</i> , volume 12697 of <i>LNCS</i> , pages 3–34. Springer, 2021.

[EGL ⁺ 20]	Maria Eichlseder, Lorenzo Grassi, Reinhard Lüftenegger, Morten Øygarden, Christian Rechberger, Markus Schofnegger, and Qingju Wang. An algebraic attack on ciphers with low-degree round functions: Application to full mimc. In Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I, pages 477–506, 2020.
[GGOP23]	Ginevra Giordani, Lorenzo Grassi, Silvia Onofri, and Marco Pedicini. Invertible quadratic non-linear functions over $\Lambda = 10^{10} \text{s}^2$ via multiple local maps. In Progress in Cryptology - AFRICACRYPT 2023 - 14th International Conference on Cryptology in Africa, Sousse, Tunisia, July 19-21, 2023, Proceedings, pages 151–176, 2023.
[GOPS22]	Lorenzo Grassi, Silvia Onofri, Marco Pedicini, and Luca Sozzi. Invertible quadratic non-linear layers for mpc-/fhe-/zk-friendly schemes over fnp application to poseidon. IACR Trans. Symmetric Cryptol., 2022(3):20–72, 2022.
[Gra23]	Lorenzo Grassi. Bounded surjective quadratic functions over fnp for mpc-/zk-/fhe-friendly symmetric primitives. IACR Trans. Symmetric Cryptol., 2023(2):94–131, 2023.
[LAW ⁺ 23]	Fukang Liu, Ravi Anand, Libo Wang, Willi Meier, and Takanori Isobe. Coefficient grouping: Breaking chaghri and more. In Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part IV, pages 287–317, 2023.
[SLR ⁺ 15]	Bing Sun, Zhiqiang Liu, Vincent Rijmen, Ruilin Li, Lei Cheng, Qingju Wang, Hoda AlKhzaimi, and Chao Li. Links among impossible differential, integral and zero correlation linear cryptanalysis. In <i>Advances in Cryptology - CRYPTO 2015, Part I</i> , pages 95–115, 2015.