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Abstract. Symmetric-key primitives designed over the prime field Fp with odd
characteristics, rather than the traditional Fn

2 , are becoming the most popular choice
for MPC/FHE/ZK-protocols for better efficiencies. However, the security of Fp is
less understood as there are highly nontrivial gaps when extending the cryptanalysis
tools and experiences built on Fn

2 in the past few decades to Fp.
At CRYPTO 2015, Sun et al. established the links among impossible differential,
zero-correlation linear, and integral cryptanalysis over Fn

2 from the perspective of
distinguishers. In this paper, following the definition of linear correlations over Fp by
Baignères, Stern and Vaudenay at SAC 2007, we successfully establish comprehensive
links over Fp, by reproducing the proofs and offering alternatives when necessary.
Interesting and important differences between Fp and Fn

2 are observed.

- Zero-correlation linear hulls can not lead to integral distinguishers for some
cases over Fp, while this is always possible over Fn

2 proven by Sun et al..

- When the newly established links are applied to GMiMC, its impossible differen-
tial, zero-correlation linear hull and integral distinguishers can be increased by
up to 3 rounds for most of the cases, and even to an arbitrary number of rounds
for some special and limited cases, which only appeared in Fp. It should be
noted that all these distinguishers do not invalidate GMiMC’s security claims.

The development of the theories over Fp behind these links, and properties identified
(be it similar or different) will bring clearer and easier understanding of security of
primitives in this emerging Fp field, which we believe will provide useful guides for
future cryptanalysis and design.
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1 Introduction
With recent developments of practical cryptographic applications for advanced proto-
cols, such as Multiparty Computation (MPC), Fully Homomorphic Encryption (FHE)
and Zero-Knowledge proof (ZK), new criteria for symmetric-key primitives has been
proposed. When choosing traditional standards like AES and SHA-3 as underlying prim-
itives, it becomes the bottleneck of cryptographic computations. Naturally, a line of
research of MPC/FHE/ZK-friendly symmetric-key primitives has been developed, includ-
ing some MPC-friendly designs [AGR+16, AGP+19a, GLR+20, DGGK21], FHE-friendly
designs [ARS+15, MJSC16, CCF+18, DEG+18, DGH+21, CIR22] and ZK-friendly de-
signs [AD18, AAB+20, GKR+21, GKL+22, GHR+22, BBC+22].

Motivations. MPC/FHE/ZK have been one of the most popular lines of research in
recent years, which brings researchers in different subareas of cryptography together.
With many innovative and efficient symmetric-key primitives having been proposed, all
these explorations may pose some potential threats to the security of these novel de-
signs. Naturally, developing new collections of symmetric cryptanalytic tools over the
prime field Fp is in urgent need, which could facilitate the design and cryptanalysis for
researchers with a variety of backgrounds. The links of these symmetric cryptanalytic
techniques have been important tools and well studied over Fn

2 with many dedicated
works [CV94, BN13, Lea11, BLNW12, SLR+15, BN14], among which linear cryptanalysis
and its variants are the connections between these cryptanalytic methods to some extent.
When considering the linear correlation over Fn

2 , parity-check is extensively used for its fast
calculation, however, this is different for the correlation over Fp, which is introduced and
defined over a complex plane by Baignères et al. [BSV07] for better estimates but also more
complicated. Therefore, full links among some popular symmetric cryptanalytic techniques
over Fp are still missing. Beyne [Bey21] has recently provided new insights into linear crypt-
analysis over abelian groups and generalized the link between zero-correlation and integral
attacks, which are obtained by introducing a geometric approach. So, we wonder whether
comprehensive links among these symmetric cryptanalytic methods over Fp can be built in
a more popular way such as Bogdanov et al.’s work [BLNW12], and whether different or
similar properties between Fp and Fn

2 can be identified from the establishment of these links.

Contributions. In this paper, from the aspect of distinguishers, we establish the compre-
hensive links among impossible differential, zero-correlation linear and integral cryptanalysis
over Fp, for the very first time. From developments of the theories over Fp behind these
links, similar and different properties are both identified, which will bring clearer and
easier understanding of security of these MPC/FHE/ZK-friendly primitives. Then, as
bonus and also applications, by using the proposed links, improved different types of
distinguishers for GMiMC, a family of symmetric-key primitives proposed at ESORICS
2019 by Albrecht et al. [AGP+19b], are obtained. For the sake of simplicity, we will
use DC, LC, IDC, ZC and INT to denote corresponding distinguishers or cryptanalytic
methods for differential, linear, impossible differential, zero-correlation linear and integral
cryptanalysis respectively in the rest of the paper. Our contributions are detailed as follows.

Comprehensive links among IDC, ZC and INT over Fp. In Section 3, the links between IDC
and ZC over Fp are established first. Then from the basic definition of linear correlation
over Fp, an alternative proof of the links between ZC and INT is presented, and we find
that a ZC not always implies the existence of an INT over Fp, however this is always
possible over Fn

2 proved in [SLR+15], which exhibits a difference between Fp and Fn
2 .

Meanwhile, for another direction, we prove that an INT can lead to a ZC, if and only if
it is a balanced integral distinguisher. Besides, to the best of our knowledge, there is no
related works about the statistical complexity model of ZC over Fp, and our proposed
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Figure 1: The IDC/ZC/INT transformations between the structure, its dual and inverse.
(This figure abstracts the established comprehensive links, which could be intuitively
explained by results on GMiMCNyb in Section 4.3 later. To put it simply, with IDC of the
structure ENyb, it can be transformed into ZC/INT of the dual structure E⊥

Nyb, as E⊥
Nyb is

equivalent to the inverse structure E−1
Nyb, it finally will lead to ZC/INT back for ENyb.)

links just provide a temporary solution when one wants to make use of ZC over Fp for
further attack. With these formal treatments on the conditions and properties over Fp,
IDC and INT can be naturally linked, also including the difference between Fp and Fn

2 .
When establishing these links, not only do we cover as many cipher constructions as
possible, but also utilize the inverse structure E−1, together with the structure E and its
dual E⊥ introduced in [BBW14, SLR+15], to explore more refined links with the potential
equivalent relations of these structures. Finally, the comprehensive links among these
symmetric cryptanalytic methods over Fp are established (abstracted in Figure 1), which
facilitates to investigate more constructions but with less cryptanalysis efforts, and could
be fundamental tools at hand for future design and cryptanalysis over Fp.

Improvements of IDC, ZC and INT for all GMiMC constructions. To showcase the estab-
lished links, we then apply to GMiMC and obtain improved distinguishers of IDC, ZC
and INT for all GMiMC constructions in Section 4, summarized in Table 1 and Table 2.
For unbalanced Feistel constructions GMiMCerf and GMiMCcrf, improved IDC, ZC and
INT are obtained by using the equation-based method and the established links. With
the condition t ≡ 1 mod p, any number of rounds of DC, LC, IDC, ZC and INT can be
even constructed, from which a gap between Fp and Fn

2 is also identified. Although this
case is limited due to the large branches t and small field Fp, it still fits some potential
instantiations (e.g., two instances GMiMCerf-(p = 5, t = 86, r = 261)1 and GMiMCerf-
(p = 17, t = 52, r = 160) provided in [AGP+19b, Table 6 and 7]) intended to compete
with LowMC in post-quantum signatures, especially for the use-cases requiring full-data
security where GMiMC will be used as a block cipher with 256-bit block/key size in
Davies-Meyer construction to obtain a collision-resistant hash function. It should be noted
that for low-data setting2 in [CDG+17], except the LC with probability 1 that can be
used to reduce 1-bit information of the preimage, these statistical distinguisher cannot be
applied due to the limited data access where the chosen plaintext model is not suitable.
As for two balanced Feistel GMiMC constructions, we reveal some underlying equivalent
relations for both GMiMCNyb and GMiMCmrf, then by using our refined links, one-to-one
correspondences between IDC, ZC and INT can be obtained. Finally combined with the
equation-based methods, improved IDC, ZC and INT are also achieved for these two
constructions.

1Here, compared to the most often used block size n for ciphers over Fn
2 , the block size of GMiMC over

Fp is denoted by t · log2(p).
2GMiMC will be used as a one-way function f , where for the secret key x, its image y = f(x) is

published as the public key.
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Table 1: Comparisons of different distinguishers of GMiMCerf and GMiMCcrf.

Ciphers Type Rounds Remark Time/Data Compl.* Source

GMiMCerf

IDC

2t − 2 α1, β1 ̸= 0† O(pt−2)/O(pt−2) [AGP+19b]

3t − 4 α1, β1 ̸= 0 and α1 ̸= β1 O(pt−2)/O(pt−2) [BCD+20]

3t − 3 α1, β1 ̸= 0 O(pt−2)/O(pt−2) Sec 4.1.1

3t − 1 α1 = β1 and t ̸≡ 1 mod p O(pt−1)/O(pt−1) Sec 4.1.2

Arbitrary α1 = −β1 and t ≡ 1 mod p O(pt−1)/O(pt−1) Sec 4.1.3

ZC

3t − 3 a1, b1 ̸= 0††

NA**

Sec 4.2.2

3t − 1 a1 = b1 Sec 4.2.3

Arbitrary t ≡ 1 mod p Sec 4.2.1

INT

t + ⌈logd(t)⌉‡ Higher-order [AGP+19b]

2t − 3 + ⌊logd(p − 2)⌋ Block cipher usage O(p)/O(p) [BCD+20]

3t − 3 O(pt−1)/O(pt−1) Sec 4.2.4

3t − 4 + ⌊logd(p − 2)⌋ Hash function usage O(p)/O(p) [BCD+20]

Arbitrary t ≡ 1 mod p O(p)/O(p) Sec 4.2.4

LC
t − 1 O(1)/O(1) [BCD+20]

Arbitrary t ≡ 1 mod p O(1)/O(1) Sec 4.2

DC
t · (t + 1) · ⌈ n

2(n−1) ⌉‡‡ Truncated differential [AGP+19b]

t2 − t − 2 Truncated differential O(pt−2)/O(pt−2) [BCD+20]

GMiMCcrf

IDC

3t − 3 α1, β1 ̸= 0 O(pt−2)/O(pt−2) Sec 4.2.4

3t − 1 α1 = β1 O(pt−1)/O(pt−1) Sec 4.2.4

Arbitrary t ≡ 1 mod p O(pt−1)/O(pt−1) Sec 4.2.4

ZC

3t − 3 a1, b1 ̸= 0

NA

Sec 4.1.4

3t − 1 a1 = b1 and t ̸≡ 1 mod p Sec 4.1.4

Arbitrary a1 = −b1 and t ≡ 1 mod p Sec 4.1.4

INT
2t + ⌈logd(t)⌉‡ Higher-order [AGP+19b]

3t − 3 O(pt−1)/O(pt−1) Sec 4.1.4

DC

t · (t + 1) · ⌈ n
2(n−1) ⌉‡‡ Truncated differential [AGP+19b]

t2 + t − 2 Truncated differential O(pt−1)/O(pt−1) [BL22]

Arbitrary t ≡ 1 mod p O(1)/O(1) Sec 4.2

∗ Considering that previous IDC, INT of GMiMC are not provided with the success probability, for
better comparisons, the corresponding time and data complexity are given here.

† α1 and β1 are related to the input and output differences respectively.
†† a1 and b1 are related to the input and output masks respectively.
∗∗ Not applicable since the corresponding statistical complexity theory of ZC over Fp is still missing.
‡ The bounds are roughly evaluated by algebraic degree and dimension of input (full codebook) by

designers, where d is the degree of power map S(x) := xd used in GMiMC constructions.
‡‡ The bounds are roughly evaluated for the iterative truncated differential (full codebook) by designers.
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Table 2: Comparisons of different distinguishers of GMiMCNyb and GMiMCmrf.

Ciphers Type Rounds Remark
Time/Data

Source
Complexity

GMiMCNyb
⋆

IDC

2t − 2 O(pt−2)/O(pt−2) [AGP+19b]

2t − 1 O(pt−2)/O(pt−2) Sec 4.3.1

2t + 1 α1 = β1 O(pt−1)/O(pt−1) Sec 4.3.2

ZC

2t − 2 Derived from IDC

NA

[AGP+19b]

2t − 1 Sec 4.3.3

2t + 1 a1 = b1 Sec 4.3.3

INT

1 + ⌈logd(t)⌉ Higher-order [AGP+19b]

2t − 2 Derived from IDC O(pt−1)/O(pt−1) [AGP+19b]

2t − 1 O(pt−1)/O(pt−1) Sec 4.3.3

DC 3t Truncated differential [AGP+19b]

GMiMCmrf
⋆

IDC

2Λ(t) − 2⋆⋆ O(pt−2)/O(pt−2) [AGP+19b]

2Λ(t) − 1 t is power-of-two O(pt−2)/O(pt−2) Sec 4.4.2

2Λ(t) + 1 t is power-of-two and α1 = β1 O(pt−1)/O(pt−1) Sec 4.4.1

ZC

2Λ(t) − 2 Derived from IDC

NA

[AGP+19b]

2Λ(t) − 1 t is power-of-two Sec 4.4.4

2Λ(t) + 1 t is power-of-two and a1 = b1 Sec 4.4.4

INT

Λ(t) + ⌈logd(t)⌉ Higher-order [AGP+19b]

2Λ(t) − 2 Derived from IDC O(pt−1)/O(pt−1) [AGP+19b]

2Λ(t) − 1 t is power-of-two O(pt−1)/O(pt−1) Sec 4.4.4

DC 3Λ(t) Truncated differential [AGP+19b]

⋆ For GMiMCNyb and GMiMCmrf, the number of branch t is even and t ≥ 4.
⋆⋆ Λ(t) = 2⌈log2(t)⌉, the minimum number of rounds to reach full diffusion.

Comparisons to previous works on GMiMC. There are some prior dedicated
cryptanalysis results [Bon19, BCD+20, BL22] on GMiMC. In [Bon19], Bonnetain observed
that there exists special slide attacks on GMiMC with key size log2 p, that is the univariate
case which will be introduced later in Section 2.2. Thus, due to the weaknesses found for
GMiMC univariate case, we only consider GMiMC permutations or block ciphers with full
key size (multivariate case) in this paper. Later, Beyne et al. [BCD+20] focused on GMiMC
permutations adopted in sponge-based construction where no key materials are involved,
and they finally proposed improved INT, IDC and DC for GMiMCerf. Recently, Beyne
et al. [BL22] also provided elaborate truncated differential cryptanalysis on GMiMCcrf.
Some of these results are listed in Table 1, and below we detail some comparisons.

• INT. As said in [AGP+19b], “...attacks that do not depend on the round function,
become competitive. Still, for practical use cases we show that a high number of
branches can be meaningful...”, compared to the dedicated degree-based method,
our link-based method covers both keyed and unkeyed settings and is independent
of the round function (i.e. the power map xd and the field Fp), which could reveal
underlying structural properties. While in [BCD+20], an INT with 3t−4+ logd(p−2)
rounds (d is the degree of the power map) is constructed with the dedicated degree-
based method and only works for the permutation used in hash function, which will
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reduce to 2t− 3 + logd(p− 2) rounds for block cipher usage due to subkeys added for
the first 2t− 2 rounds. Thus, our method provides a convenient way to derive the
structural distinguishers that can capture the underlying structural properties for
the target construction, which will be basic and convenient tools for both designers
and cryptanalysts.

• DC. We note that truncated differential cryptanalysis seems more powerful than
other statistical attacks on GMiMC to date. However, on the one hand, we would like
to emphasize that the comprehensive links established in this paper are among IDC,
ZC and INT over Fp, to apply our links, it is mainly expected to improve these three
kinds of distinguishers first, which could show the convenience and effectiveness of
our method. On the other hand, from the view of designers, all attack vectors should
be taken into consideration, thus it is still necessary to explore bounds of different
kinds of distinguishers, such as IDC, INT improvements provided in [BCD+20].
Besides, to establish these refined links over Fp, we focus more on different kinds of
constructions and structural distinguishers (i.e. IDC, ZC and INT). Hence, mounting
preimage/collision3 or key-recovery attacks on some concrete ciphers are not our
goals, which could be left for future works.

2 Preliminaries
In this section, we give some preliminaries, including the differential, linear and integral
properties, and structure, dual structure and inverse structure of symmetric-key primitives,
which will be used in the proofs of the links over Fp in Section 3, and we mainly consider
the prime field Fp with odd characteristic in this paper. For the later applications in
Section 4, GMiMC ciphers are also briefly introduced.

2.1 Differential, Linear and Integral Cryptanalysis over Fp

Differential cryptanalysis over Fp: The differential probability of the function F over
Ft

p can be easily generalized as below

probF (α, β) = |x : F (x)− F (x− α) = β|
pt

,

where α, β, x ∈ Ft
p. Considering the commonly used key addition in symmetric-key primi-

tives over Fp, the modular subtraction difference is adopted here.

Linear cryptanalysis over Fp: Baignères et al. [BSV07] have developed the correlation
analysis of primitives that operate on the prime field, which has been recently used to
evaluate the security of Ciminion [DGGK21] against linear attacks. The core idea is that
a character is an additive homomorphism from Ft

p into Sp = {z ∈ C : zp = 1} and any
character is of the form

χu(x) = e
2πi

p uT ·x,

where x, u ∈ Ft
p. The following definition of the correlation over Fp is introduced.

Definition 1 (Correlation over Fp [BSV07]). Given a function F : Ft
p → Fs

p, for a linear
mask pair (u, v), where u ∈ Ft

p and v ∈ Fs
p, then the correlation of the linear approximation

(u, v) of F is defined as

corF (u, v) = cor(uT · x− vT · F (x)) = 1
pt

∑
x∈Ft

p

χu(x)χv(F (x)) = 1
pt

∑
x∈Ft

p

e
2πi

p (uT ·x−vT ·F (x)).

3IDC, ZC and INT are not suitable for preimage/collision attacks.
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According to this definition, the correlation over Fp can be evaluated by a complex
number with its norm located in [0, 1], and the general linear probability can be defined as
follows.

Definition 2 (Linear probability over Fp [BSV07]). lprobF (u, v) = |corF (u, v)|2.

Zero-correlation linear hull has been introduced by Bogdanov and Rijmen [BR14],
based on the linear correlation defined over Fp, it can be naturally generalized to Fp.

Definition 3 (Zero-correlation linear hull over Fp). Given a function F : Ft
p → Fs

p, for the
mask pair (u, v) where u ∈ Ft

p and v ∈ Fs
p, then (u, v) is called a zero-correlation linear

hull of F , if and only if corF (u, v) = 0.

Given the definitions above, the propagations of linear mask over Fp of some basic
operations can be obtained. Similarly to Fn

2 , for the branching operation x→ (x, x) where
x ∈ Fp, for the linear masks a→ (b, c), it must have a = b + c; For the addition operation,
x + y = z where x, y, z ∈ Fp, for the linear masks (a, b)→ c, it must have a = b = c. For
more detailed proofs and other operations, we refer the reader to [DGGK21, Appendix C.2].
Furthermore, the following properties over Fp can be deduced.

Proposition 1. For any fixed non-zero a ∈ Fp, cor(a · x) = 0.

Proof. As a is non-zero, for the complex number e
2πi

p a = cos( 2π
p a) + sin( 2π

p a)i, we have
e

2πi
p a ̸= 1. Considering the complex multiplication,

eθ0i × eθ1i = (cos θ0 + i sin θ0)× (cos θ1 + i sin θ1) = cos(θ0 + θ1) + sin(θ0 + θ1) = e(θ0+θ1)i.

Then according to the property of the geometric sequence, it has the following

cor(a · x) = 1
p

∑
x∈Fp

e
2πi

p ax = 1
p

(e
2πi

p 0 + e
2πi

p a + · · · e
2πi

p (p−1)a) = 1− e2πai

p(1− e
2πi

p a)
.

As e2πai = 1, then cor(a · x) = 0.

Proposition 1 can be directly generalized to dimension t as follows.

Corollary 1. For any fixed non-zero a ∈ Ft
p, cor(aT · x) = 0.

Proof. Let a = (a1, · · · , at) ∈ Ft
p and x = (x1, · · · , xt) ∈ Ft

p, then we have

cor(aT · x) = 1
pt

∑
x∈Ft

p

e
2πi

p aT ·x = 1
pt

∑
x∈Ft

p

e
2πi

p (a1x1+···+atxt)

=
∏

1≤i≤t

(1
p

∑
xi∈Fp

e
2πi

p aixi) =
∏

1≤i≤t

cor(aT
i · xi).

Due to non-zero a, there must be at least one ai ̸= 0. According to Proposition 1, it will
lead to cor(aT

i · xi) = 0, which ends our proof.

Integral cryptanalysis over Fp: The notion of integral attacks has been introduced
by Knudsen and Wagner [KW02], which captures several variants including high-order
differential attack [Lai94] and saturation attack [Luc01]. Higher-order differentials over Fp

can also make use of a generalized notion of differentiation as analyzed by Lai in [Lai94]
(also refer to [AP11]). Recently, Beyne et al. show that the same technique can be used over
Fp, which further can be extended to multiplicative subgroups (see [Bey21, Proposition 1,
Corollary 1, Proposition 2]), and this kind of degree-based integral distinguisher may not
have the balanced property defined as below.
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Definition 4 (Balanced property over Fp). Given a function F : Ft
p → Fs

p, let A be a
subspace of Ft

p, if the size of the set FA(y) ≜ {x ∈ A|F (x) = y} is independent of y ∈ Fs
p,

we say F is balanced on A.

It can be observed that if F is balanced on A, then it has the balanced integral (zero-
sum) property, i.e.

∑
x∈A F (x) = 0. It should be noted that in this paper we will focus

more on this kind of balanced integral distinguisher, which could reveal more underlying
structure properties of the ciphers.

2.2 Specifications of GMiMC
GMiMC is a family of symmetric-key primitives designed by Albrecht et al. [AGP+19b]
based on several generalized (unbalanced and balanced) Feistel networks using power
maps S(x) := xd as the non-linear component of the round function, e.g., GMiMCerf with
expanding round function, GMiMCcrf with contracting round function, GMiMCNyb with
Nyberg’s GFN structure and GMiMCmrf with a new structure named Multi-Rotating by
the designers, where different rotation parameters sr are chosen for different rounds to
change the positions of these S-boxes (please see Figure 2(d)). As these permutations of
GMiMC can be used to construct both hash functions and block ciphers, we just depict
the round functions of the corresponding permutations in Figure 2. For block cipher usage,
GMiMC block cipher supports two key sizes: univariate case log2(p) and multivariate case
t · log2(p). The rounds are numbered starting from 1, and the branches are numbered from
1 to t where Branch 1 is the leftmost branch. For example, the state of Branch 1 and round
r of GMiMCerf is represented by x1

r in Figure 2(a) and x1
r ∈ Fp for the chosen prime p.

Thus, we denote the concrete instance of GMiMC permutation by GMiMC-(p, t, R) where
R is the total number of rounds. For more details of GMiMC, we refer the reader to the
design paper [AGP+19b].
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Figure 2: Four generalized Feistel networks adopted in GMiMC.
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2.3 Structure, Dual Structure and Inverse Structure of Symmetric-Key
Primitives over Fp

The structure and dual structure of block ciphers over Fn
2 have been introduced in [BBW14]

to obtain the equivalence between different structures, which are also used in [SLR+15].
Together with the inverse structure utilized in this paper, we adapt these definitions to
symmetric-key primitives over Fp.

Definition 5. Let E : Ft
p → Ft

p be a permutation, which can be decomposed into S-boxes
(the non-linear part) and linear transformations (the linear part). The internal state of E
is represented by t elements of Fp.

(1) A structure EE over Ft
p is defined as a set of primitives, which is exactly same as E

except that S-boxes can take all possible transformations on corresponding domains.

(2) Let a, b ∈ Ft
p. If for all E′ ∈ EE , a→ b is an impossible differential (zero correlation

linear hull) of E′, then a → b is called an impossible differential (zero correlation
linear hull) of EE .

(3) Let a, b ∈ Ft
p. If for all E′ ∈ EE , a → b is a differential (linear) trail of E′ with

differential (linear) probability 1, then a→ b is called a Prob-one differential (linear)
trail of EE .

If E using bijective S-boxes, then S-boxes adopted in EE should also be bijective.
However, if S-boxes used in E are not limited to bijective, then EE is defined as a set of
the permutation E′ which is exactly same as E except that S-boxes can take all possible
transformations. Now, we adapt the definition of dual structure in [SLR+15] to Fp and
cover the generalized Feistel structure in [BMT13].

Definition 6. We give the dual structure of classical balanced Feistel structure, generalized
Feistel structure, SPN structure and two unbalanced Feistel structures as below.

• Let FSP be a Feistel structure with SP-type round function, the state of which first
passes the non-linear layer S then the linear transformation P . By abuse of notation,
we also use P as the matrix representation for the linear layer in the rest of the paper,
whose transpose and inverse are P T and P −1 respectively. Let σ be the operation
that exchanges the left and right halves of a state. Then the dual structure F⊥

SP

of FSP is defined as σ ◦ FP T S ◦ σ, the state of which passes σ operation, the linear
transformation P T , the non-linear S and σ operation.

• Let GFF P be a Generalized Feistel structure (including the Extended Generalized
Feistel structure) defined in [BMT13], where F is the non-linear part of the round
function and adopts the matrix representation used in [BMT13], P is the linear
transformation. Then the dual structure GF⊥

F P of GFF P is defined as GFF T (P −1)T .

• Let ESP be an SPN structure with the non-linear S first and followed by the linear
transformation P . Then the dual structure E⊥

SP is defined as ES(P −1)T .

• Let Eerf be a structure EGMiMCerf and Ecrf be a structure EGMiMCcrf . Then structures
Eerf and Ecrf are dual with each other.

Since we do not consider the details of the S-box, by abuse of notation, S in structures
is just to signify the order of the S-box layer and it is not a concrete S-Box layer. A
demonstration of the structure (see Figure 3(a)) and its dual structure (see Figure 3(b)) are
given for the classical Feistel structure. It should be noted that GMiMCNyb and GMiMCmrf
are covered by GFF P and FSP respectively, for the sake of simplicity, notations ENyb,
Emrf and their dual structures will also be used in the rest of the paper. The inverse
structure is introduced as follows.
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Figure 3: Different and linear trails of FSP and F⊥
SP .

Definition 7. We give the inverse structure of classical balanced Feistel structure, gener-
alized Feistel structure, SPN structure and two unbalanced Feistel structures as below.

• Let FSP be a Feistel structure with SP-type round function, and let the primitive
representation of the linear transformation be P . Let σ be the operation that
exchanges the left and right halves of a state. Then the inverse structure F−1

SP of
FSP is defined as σ ◦ FSP ◦ σ.

• Let GFF P be a Generalized Feistel structure (including the Extended Generalized
Feistel structure) defined in [BMT13], where F is the non-linear part of the round
function and followed by the linear transformation P . Then the inverse structure
GF−1

F P of GFF P is defined as GFP −1F −1 .

• Let ESP be an SPN structure with the non-linear S first and followed by the linear
transformation P . Then the inverse structure E−1

SP is defined as EP −1S .

• Let Eerf be a structure EGMiMCerf and Ecrf be a structure EGMiMCcrf . Then the
corresponding inverse structures are E−1

erf and E−1
crf respectively.

3 Links among Impossible differential, Zero-correlation lin-
ear and Integral Cryptanalysis over Fp

We start by giving the links between IDC and ZC over Fp, and more refined links are
obtained by covering more constructions and some equivalent relations. Then, we build
the links between ZC and INT over Fp, from which differences between Fp and Fn

2 are
observed. Finally, with the bridge between previous links (from IDC to ZC and ZC to
INT), we provide the links between IDC and INT over Fp. It should be noted that some
basic properties of differential and linear over Fp are employed in a nontrivial way, and
unlike the analogue on Fn

2 , addition on Fp is not involutional and the only nontrivial linear
subspace over Fp is itself. Due to these, ZC/IDC does not always imply INT, and we need
to characterize the sufficient conditions, which exhibits the essential difference of the links
between Fp and Fn

2 .
As we consider the structure, dual structure and inverse structure, if not specified, the

S-box adopted in these structures will be regarded as the ideal S-box, that is, any active
input difference (mask) will lead to any active output difference (mask) and inactive input
difference (mask) only produces inactive output difference (mask).



142 Towards the Links of Cryptanalytic Methods on MPC/FHE/ZK-Friendly Primitives

3.1 Links between IDC and ZC over Fp

Similar to the proofs by Sun et al. [SLR+15], the transformations over Fp between IDC
and ZC are proved in following two lemmas from two directions, which are also extended
to more constructions and structures.

Lemma 1. For a linear hull (δ0, δ1)→ (δr, δr+1), if there exists E ∈ F⊥
SP such that

cor((δ0, δ1) · x− (δr, δr+1) · E(x)) ̸= 0,

then there exists E′ ∈ FSP such that

probE′((δ1, δ0), (δr+1, δr)) > 0.

Proof. As (δ0, δ1)→ (δr, δr+1) is a linear hull of some E ∈ F⊥
SP with non-zero correlation,

also see Figure 3(b). Then, according to definitions of linear probability of linear charac-
teristic and linear hull over Fp [BSV07, Section 3.2], there must be a linear characteristic
with non-zero correlation

(δ0, δ1)→ · · · → (δi, δi+1) · · · → (δr, δr+1),

where the input of the round function can be divided into t pieces of Fp elements, that
is δi ∈ Ft

p. Considering this linear characteristic, the output mask of the non-linear
layer Si = (S1

i , · · · , St
i ) is δi = (δ1

i , · · · , δt
i) ∈ Ft

p. The input mask of Si is denoted by
βi = (β1

i , · · · , βt
i ) ∈ Ft

p. While for the linear layer P T , denoting its input mask is γi ∈ Ft
p

and input value is xi ∈ Ft
p, then we have

cor(γT
i · xi − βT

i · (P T · xi)) = cor((γT
i − βT

i P T ) · xi) = cor((γi − Pβi)T · xi).

If γi ̸= Pβi, according to Corollary 1, cor((γi−Pβi)T · xi) = 0, which is contradicted with
the non-zero correlation of this linear characteristic. Thus, δi−1 = δi+1 + γi = δi+1 + Pβi

must hold. Now focusing on the dual structure, for any plaintext (xL, xR), we can construct
an r-round cipher Er ∈ FSP , such that Er(xL, xR)− Er(xL − δ1, xR − δ0) = (δr+1, δr).

When r = 1, for j ∈ {1, ..., t}: if δj
1 = 0, we can define S′j

1 as any possible transformation
over Fp, and if δj

1 ̸= 0, we can define the following

S′j
1(xj

L) = xj
L and S′j

1(xj
L − δj

1) = xj
L + βj

1.

Then for E1 ∈ FSP which adopts such S-boxes, there will be

E1(xL, xR)− E1(xL − δ1, xR − δ0) = (δ0 + (−Pβ1), δ1) = (δ2, δ1).4

Suppose that we have constructed Er−1 such that

Er−1(xL, xR)− Er−1(xL − δ1, xR − δ0) = (δr, δr−1),

and let (yL, yR) = (y1
L, · · · , yt

L, y1
R, · · · , yt

R) denote the output of Er−1(xL, xR). Then
in the r-th round, if δj

r = 0, we can define S′j
r as any possible transformation over Fp,

otherwise, define S′j
r as follows

S′j
r(yj

L) = yj
L and S′j

r(yj
L − δj

r) = yj
L + βj

r .

Therefore, Er(xL, xR)− Er(xL − δ1, xR − δ0) = (δr−1 − Pβr, δr) = (δr+1, δr).
4We should be careful about the sign (i.e. addition and subtraction), which is different over Fp.
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Lemma 2. For a differential (δ1, δ0)→ (δr+1, δr), if there exists E ∈ FSP such that

probE((δ1, δ0), (δr+1, δr)) > 0,

then there exists E′ ∈ F⊥
SP such that

cor((δ0, δ1) · x− (δr, δr+1) · E′(x)) ̸= 0.

Proof. As (δ1, δ0)→ (δr+1, δr) is a differential of some E ∈ FSP with non-zero differential
probability, also see Figure 3(a), then there must exist a differential characteristic with
non-zero probability, denoted as

(δ1, δ0)→ · · · → (δi+1, δi) · · · → (δr+1, δr),

where δi ∈ Ft
p. For this differential characteristic, the input difference of the non-linear

layer S′
i = (S′1

i , · · · , S′t
i) is δi = (δ1

i , · · · , δt
i) ∈ Ft

p. The output difference of S′
i is denoted

by −βi = (−β1
i , · · · ,−βt

i ) ∈ Ft
p, then δi−1 − Pβi = δi+1.

Considering the following fact: for mask pair (βj
i , δj

i ), where δj
i ̸= 0, there always exists

an element aj
i ∈ Fp such that βj

i = aj
i δj

i , then for Sj
i (x) = aj

i x, we have cor((βj
i )T · x −

(δj
i )T · Sj

i (x)) = cor((βj
i − aj

i δj
i )T · x) = 1.

Now for the dual structure, we construct an r-round cipher Er ∈ F⊥
SP such that

cor((δ0, δ1) · x − (δr, δr+1) · Er(x)) ̸= 0. If r = 1, let Sj
1(x) = aj

1x for δj
1 ̸= 0 and any

linear transformation over Fp otherwise. Then all operations in E1 ∈ F⊥
SP are linear over

Fp, which implies that there exists an affine transformation L1(x) = A1x + B1, where
x ∈ F2t

p , A1 is a 2t × 2t matrix over Fp and B1 is a 2t-dimensional vector over Fp, such
that E1(x) = L1x and with

cor((δ0, δ1) · x− (δ1, δ2) · E1(x)) = 1.

Assume that we have Er−1(x) = Lr−1x = Ar−1x + Br−1 where Ar−1 is a 2t× 2t matrix
over Fp and Br−1 is a 2t-dimensional vector over Fp such that

cor((δ0, δ1) · x− (δr−1, δr) · Er−1(x)) = 1.

We then define Sr,j(x) in the r-th and have Er(x) = Lrx = Arx + Br where Ar is a 2t× 2t
matrix over Fp and Br is a 2t-dimensional vector over Fp such that

cor((δ0, δ1) · x− (δr, δr+1) · Er(x)) = 1.

Thus, we have cor((δ0, δ1) · x− (δr, δr+1) · Er(x)) ̸= 0.

Theorem 1. Over Fp, a → b is an impossible differential of FSP if and only if it is a
zero-correlation linear hull of F⊥

SP .

Proof. We consider the following two parts.

(1) Assume a → b is an impossible differential of FSP , if it is not a zero-correlation
linear hull of F⊥

SP . Then, according to Lemma 1, there must be some E′ ∈ FSP such
that probE′((δ1, δ0)→ (δr+1, δr)) > 0, which contradicts that a→ b is an impossible
differential of FSP .

(2) Similarly, assume a → b is a zero-correlation linear hull of F⊥
SP , if it is not an

impossible differential of FSP . Then, according to Lemma 2, then must be E′ ∈ F⊥
SP

such that cor((δ0, δ1) · x− (δr, δr+1) · E′(x)) ̸= 0, which contradicts that a→ b is a
zero-correlation linear hull of F⊥

SP .

As claimed.
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Note that to focus more on the proofs of the structures in Lemma 1 and Lemma 2,
we do not limit the constructed S-box to be a bijective one. If the adopted S-box is
bijective, these two lemmas still hold. In Lemma 1, for a bijective S-box, if the correlation
is non-zero, then the output mask δj

i ̸= 0 implies the input mask βj
i ̸= 0. We have the

following S-box S′j
r to satisfy the bijective condition and difference transitions.

S′j
r(x) =


xj

r − δj
r , x = xj

r + βj
r ,

xj
r + βj

r , x = xj
r − δj

r ,

x, others.

While in Lemma 2, for a bijective S-box, if the differential probability is non-zero, then
the input difference δj

i ̸= 0 implies the output difference −βj
i ̸= 0. Thus, we can define the

S-box Sj
r(x) = aj

rx (aj
r ̸= 0 and −βj

i = aj
rδj

r), which satisfies the bijective condition and
linear mask propagations.

For the above proofs of the classical Feistel network with the SP-type round function,
an abstract of the S-box layer S and the matrix representation of linear layer P are used.
When considering the proofs of this kind of SP-type round function for other constructions,
similar theorems can be obtained as follows for the SPN construction and Generalized
Feistel Networks introduced in [BMT13], where generic matrix representations for both
non-linear and linear layers have been proposed.

Theorem 2. Over Fp, a → b is an impossible differential of ESP if and only if it is a
zero-correlation linear hull of E⊥

SP .

Theorem 3. Over Fp, a→ b is an impossible differential of GFF P if and only if it is a
zero-correlation linear hull of GF⊥

F P .

δ1r δ2r δjr · · ·· · · δtr

··
·

··
·

δ1r+1 δt−1
r+1δj−1

r+1
δtr+1· · · · · ·

S ′
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(a) Differential trail of Eerf .

δ1r δ2r δjr· · · · · · δtr

··
·

··
·

δ1r+1 δ2r+1δjr+1
δtr+1· · · · · ·

Sr
δ1r βr

(b) Linear trail of Ecrf .

Figure 4: Differential and linear trails of Eerf and Ecrf .

Still similar to the proofs of Lemma 1 and Lemma 2, we can prove the following theorem
for the structure Eerf and its dual Ecrf for GMiMC, see Figure 4(a) and Figure 4(b). These
two unbalanced Feistel structures are not covered by the definitions in [BMT13], and the
detailed proof of Theorem 4 is provided in Appendix A.

Theorem 4. a→ b is an impossible differential (zero-correlation linear hull) of Eerf if
and only if it is a zero-correlation linear hull (impossible differential) of Ecrf .

Corollary 2. Let FSP be a Feistel structure with SP-type round function, and the linear
transformation be P . If P is invertible, an impossible differential of FSP is equivalent to a
zero-correlation linear hull of FSP T .
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S PT

π π

π−1 π−1

(c) FSP with P = π−1P T π.

Figure 5: Structures of FP T S , FSP T and FSP .

Proof. As P is invertible, according to the definition of equivalent structures given
in [LLF05], which are depicted in Figure 5(a) and Figure 5(b), we have

FP T S = ((P T )−1, (P T )−1) ◦ FSP T ◦ (P T , P T ).

Thus, combining with Theorem 1, we can end the proof.

Corollary 3. For a Feistel structure FSP with SP-type round function, if P is invertible
and there exists a permutation π operating on t elements such that

P (x0, . . . , xt−1) = π−1 ◦ P T ◦ π(x0, . . . , xt−1),

where (x0, . . . , xt−1) ∈ Ft
p, then there is a one-to-one correspondence between impossible

differentials and zero-correlation linear hulls for the structure FSP .

Proof. As the permutation π makes P and P T equivalent, we can transform the structure
FSP by using P T and permutation π, which is depicted in Figure 5(c). According
Corollary 2, FP T S is equivalent to FSP T with invertible P . Naturally, FSP is equivalent
to F⊥

SP . By using Theorem 1, we can end the proof.

Corollary 4. For an SPN structure ESP , if P T P = diag(Q1, ..., Qt) = Q, where Qi ∈
Fp\{0}, then there is a one-to-one correspondence between impossible differentials and
zero-correlation linear hulls for the structure ESP .

Proof. As P = Q(P −1)T , for structure ESP , if substituting S by applying Q−1
i before the

i-th S-box of S′, we have the following equivalent relation

ESP = P ◦ S = (Q ◦ (P −1)T ) ◦ S = Q ◦ ((P −1)T ◦ S′) ◦Q−1 = Q ◦ ES(P −1)T ◦Q−1.

Based on Definition 6, we have ESP equivalent to its dual structure ES(P −1)T .

Corollary 5. For a structure GFF P , if there exits a permutation π on t elements such
that F T = π−1 ◦F ◦π and (P −1)T = π−1 ◦P ◦π, then there is a one-to-one correspondence
between impossible differentials and zero-correlation linear hulls for the structure GFF P .

Proof. According to the definition of equivalence relations in [BMT13, Definition 2, Theo-
rem 3] and Theorem 3, we can end the proof.

When taking Corollary 3, 4, 5 and the inverse structure into consideration, we propose
more refined links as follows, also depicted in Figure 6. We note that Theorem 5 works for
both Fn

2 and Fp, it explains why some constructions have the same number of rounds in
terms of the longest IDC and ZC.
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Figure 6: IDC and ZC transformations between the structure, its dual and inverse. (This
figure covers the IDC and ZC part of Figure 1.)

Theorem 5. Let E ∈ {FSP ,GFF P , ESP , Eerf , Ecrf}, if its dual structure E⊥ is equivalent
to the structure E or its inverse structure E−1, then there is a one-to-one correspondence
between impossible differentials and zero-correlation linear hulls for the structure E.

Inspired by the link between IDC and ZC, the similar link for Prob-one DC and LC
can be obtained as below.

Theorem 6. Let E ∈ {FSP ,GFF P , ESP , Eerf , Ecrf}, a→ b is a Prob-one differential trail
of E if and only if it is a Prob-one linear trail of E⊥.

Proof. For a given structure E , Prob-one DC (LC) means no differential (linear) active S-box
in the trail for all E ∈ E . Then for a given Prob-one DC of E , it always leads to a Prob-one
LC of its dual E⊥, because the input differences for all S-boxes in the cipher structure E
are all zero and a Prob-one LC can be derived from this trail for E⊥. Vice versa.

3.2 An Alternative Proof of Links between ZC and INT over Fp

Recently, from a geometrical point of view of linear cryptanalysis, Beyne [Bey21] generalizes
the links between zero-correlation and integral attacks, which is discovered by Bogdanov
et al. [BLNW12] and also discussed by Sun et al. [SLR+15]. In this section, we explore
the detailed conditions and properties of the transformation, and present alternative
proofs of links between ZC and INT over Fp. Before presenting the links, we explain the
independency of input and output masks (differences) by the following definition.

Definition 8. We say that the input mask (difference) set A and output mask (difference)
set B are independent, if and only if, for any a ∈ A and any b ∈ B, a → b is a zero-
correlation linear hull (impossible differential).

Lemma 3. Let A be a subspace of Ft
p, its orthogonal space A⊥ = {x ∈ Ft

p|aT ·x = 0, a ∈ A}.
Let F (x) : Ft

p → Ft
p be a function over Ft

p. For any λ ∈ Ft
p, function Gλ : A⊥ 7→ Ft

p is
defined as Gλ(x) = F (x + λ), then for any mask b ∈ Ft

p,

cor(−bT ·Gλ(x)) =
∑
a∈A

e
−2πi

p (aT ·λ)cor(aT · x− bT · F (x)).

Proof. For the subspace A of Ft
p, the equation below can be firstly deduced

∑
a∈A

e
2πi

p (aT ·x) =
{
|A|, if x ∈ A⊥,

0, if x /∈ A⊥.
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Then according to the Definition 1, it has the following

cor(−bT ·Gλ(x)) = 1
|A⊥|

∑
x∈A⊥

e
2πi

p (−bT ·Gλ(x)) = 1
pt

∑
x∈A⊥

(e
2πi

p (−bT ·Gλ(x))|A|)

= 1
pt

∑
x∈A⊥

(e
2πi

p (−bT ·Gλ(x))
∑
a∈A

e
2πi

p (aT ·x))

= 1
pt

∑
x∈Ft

p

(e
2πi

p (−bT ·F (x+λ))
∑
a∈A

e
2πi

p (aT ·x))

Now, let x + λ = z

cor(−bT ·Gλ(x)) =
∑
a∈A

( 1
pt

∑
z−λ∈Ft

p

e
2πi

p (aT ·z−bT ·F (z)−aT ·λ))

=
∑
a∈A

e
−2πi

p (aT ·λ)cor(aT · z − bT · F (z)).

Thus, we have cor(−bT ·Gλ(x)) =
∑

a∈A e
−2πi

p (aT ·λ)cor(aT · x− bT · F (x)).

With the input mask space A for ZC, the input space A⊥ for INT and the defined
function Gλ to cancel the effect of constants, the transformation from ZC to INT over Fp

can be naturally obtained.

Theorem 7. If there exists a subspace A of Ft
p and a mask b ∈ Ft

p\{0}, such that for
any a ∈ A, cor(aT · x− bT · F (x)) = 0 where x ∈ Ft

p, then for any λ ∈ Ft
p, bT ·Gλ(x) is

balanced on the subspace A⊥, that is cor(−bT ·Gλ(x)) = 0.

Proof. As cor(aT · x − bT · F (x)) = 0 where x ∈ Ft
p for any a ∈ A, then according to

Lemma 3, we can end the proof.

Theorem 7 reveals the relation from ZC to INT and the exact form of the transformed
INT. Furthermore, as required in [BLNW12], “input and output linear masks in zero-
correlation approximations are independent”, this condition over Fn

2 later can be relaxed
in [SLR+15]. However, from Lemma 3 and Theorem 7 presented above, it requires a
subspace A for the input mask, that means for any a ∈ A, a→ b is a zero-correlation linear
hull. It can be observed that this independent condition over Ft

p for the input and output
masks of zero-correlation linear hull cannot be removed, because the smallest nontrivial
subspace of Ft

p has the size of p, and it has (p− 1) nontrivial zero-correlation linear hulls.
While over Fn

2 , it only needs any one nontrivial zero-correlation linear hull a → b then
{a, 0} forms a nontrivial subspace of Fn

2 , which exhibits the gap between Fp and Fn
2 . In

the following, we focus on the specific conditions and properties of INT that can lead
to ZC. The detailed proof of Lemma 4 is provided in Appendix B, then combined with
Theorem 7, Theorem 8 is obtained.

Lemma 4. Let A be a subspace of Ft
p, its orthogonal space is A⊥ = {x ∈ Ft

p|aT · x =
0, a ∈ A}. Let F (x) : Ft

p → Ft
p be a function over Ft

p. For λ ∈ Ft
p, function Gλ : A⊥ 7→ Ft

p

is defined as Gλ(x) = F (x + λ), then for any b ∈ Ft
p,

1
pt

∑
λ∈Ft

p

e
2πi

p (bT ·F (λ))cor(bT ·Gλ(x)) =
∑
a∈A

|cor(aT · x− bT · F (x))|2.

Theorem 8. Let E(x) : Ft
p → Ft

p be a function over Ft
p, A be a nontrivial subspace of

Ft
p and its orthogonal space A⊥ = {x ∈ Ft

p|aT · x = 0, a ∈ A}. For any λ ∈ Ft
p, function
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Gλ : A⊥ 7→ Ft
p is defined as Gλ(x) = E(x + λ). Then an integral distinguisher of E can

lead to a zero-correlation linear hull with input masks A and nonzero output mask b, if and
only if it is a balanced integral distinguisher with bT ·Gλ(x) balanced on the subspace A⊥.

Proof. We consider following two parts.

• If an integral distinguisher can be transformed into a zero-correlation linear hull with
input masks A, then for non-zero output mask b, we obtain∑

a∈A

|cor(aT · x− bT · E(x))|2 = 0.

According to Theorem 7, for any λ ∈ Ft
p, it has cor(−bT ·Gλ(x)) = 0, which means

that bT ·Gλ(x) is balanced on A⊥ for this integral distinguisher.

• For an integral distinguisher that bT ·Gλ(x) is balanced on the subspace A⊥, then
according to Lemma 4, we have the following

1
pt

∑
λ∈Ft

p

e
2πi

p (bT ·F (λ))cor(bT ·Gλ(x)) = 0,

which leads to a zero-corelation linear hull A→ b.

As claimed.

3.3 Links between IDC and INT over Fp

According to the links presented above, now the links between IDC and INT over Fp can
be easily established, which also has the independent conditions brought from the links
of ZC and INT over Fp. As indicated in Theorem 7, the input space A⊥ for INT is the
orthogonal space of the input mask space A for ZC, we do not specify the distinguishers
in this subsection.

Theorem 9. Let E ∈ {FSP ,GFF P , ESP , Eerf , Ecrf}, then an impossible differential of E
always implies the existence of an integral of E⊥, if its input and output differences are
independent as defined in Definition 8.

Proof. The transformation from IDC to INT can be divided into two parts: 1) from IDC
to ZC (Theorem 1-4); 2) from ZC to INT (Theorem 7).

In case E⊥ = π ◦ E ◦ π′ where π and π′ are linear transformations, some more refined
links are presented as follows.

Corollary 6. Let FSP be a Feistel structure with SP-type round function, and let the
linear transformation be P . If P is invertible and there exists a permutation π operating on
t elements such that P (x0, . . . , xt−1) = π−1 ◦ P T ◦ π(x0, . . . , xt−1), where (x0, . . . , xt−1) ∈
Ft

p. Then for FSP , an impossible differential always implies the existence of an integral
distinguisher, if its input and output differences are independent.

Proof. Based on Corallary 3 from IDC to ZC, it has from ZC to INT by Theorem 9.

Corollary 7. Let ESP be an SPN structure with the linear transformation being P . If
P T P = diag(Q1, ..., Qt), where Qi ∈ Fp\{0}, then for ESP , an impossible differential
always implies the existence of an integral distinguisher, if its input and output differences
are independent.

Proof. Based on Corallary 4 from IDC to ZC, it has from ZC to INT by Theorem 9.
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Corollary 8. Let GFF P be a Generalized Feistel structure, if there exits a permutation π
on t elements such that F T = π−1 ◦ F ◦ π and (P −1)T = π−1 ◦ P ◦ π, then an impossible
differential always implies the existence of an integral distinguisher, if its input and output
differences are independent.

Proof. Based on Corallary 5 from IDC to ZC, it has from ZC to INT by Theorem 9.

E

E⊥E−1
D
ual

Structure
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IN
TIn
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ct
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T

IN
T

If Equivalent

INT INT

Figure 7: IDC and INT transformation between the structure, its dual and inverse. (This
figure covers the IDC and INT part of Figure 1.)

Similarly, when considering all the structure, its dual and inverse structures, we have
the following refined links, also as shown in Figure 7.

Theorem 10. For a structure E ∈ {FSP ,GFF P , ESP , Eerf , Ecrf}, if its dual structure E⊥

is equivalent to the structure E or its inverse E−1, then for E, an impossible differential
always implies the existence of an integral distinguisher, if its input and output differences
are independent.

4 Equation-based Method of Finding IDC/ZC and Appli-
cations of Links for GMiMC

In this section, as applications of the comprehensive links presented in previous section,
we first utilize the equation-based method to find impossible differential and/or zero-
correlation linear hull for GMiMC, then different types of improved distinguishers that are
derived from the links can be achieved for all GMiMC constructions.

4.1 Impossible differential of GMiMCerf over Fp

For GMiMCerf with number of branches t, intuitively, to have more deterministic rounds,
its IDC can be divided into three parts,

• Forward: the first (t− 1) rounds with probability one;

• Middle: the middle r1 + r2 (1 ≤ r1, r2 ≤ t) rounds with contradictions;

• Backward: the last (t− 1) rounds with probability one.

Considering the first part (an example of t = 4 is depicted in Figure 8(a)), we denote
the input difference by ∆forward

1 = (0, · · · , 0, α1), then it passes (t − 1) rounds to the
output difference ∆forward

t = (α1, 0, · · · , 0), that is,

∆forward
1 = (0, · · · , 0, α1) (t−1)−round−−−−−−−−→ ∆forward

t = (α1, 0, · · · , 0).
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Similarly, for the last part (an example of t = 4 is depicted in Figure 8(b)), it has (t− 1)
free rounds backwards,

∇backward
t = (0, · · · , 0, β1) (t−1)−round←−−−−−−−− ∇backward

1 = (β1, 0, · · · , 0).

x11 x21 x31 x410 0 0 α1

0

RC1(K1)

S

x12 x22 x32 x420 0 α1 0

0

RC2(K2)

S

x13 x23 x33 x430 α1 0 0

0

x14 x24 x34 x44

RC3(K3)

S

α1 0 0 0

0

(a) Forward (t − 1) rounds.

x17 x27 x37 x470 0 0 β1

0

RC7(K7)

S

x18 x28 x38 x480 0 β1 0

0

RC8(K8)

S

x19 x29 x39 x490 β1 0 0

0

x110 x210 x310 x410

RC9(K9)

S

β1 0 0 0

0

(b) Backward (t − 1) rounds.

Figure 8: First and last parts of IDC of GMiMCerf with t = 4.

For the middle part (an example of t = 4 is depicted in Figure 9), after r1 (1 ≤ r1 ≤ t)
rounds forwards, the input difference ∆middle

1 = (α1, 0, · · · , 0) will lead to the output
difference ∆middle

1+r1

(
∑

2≤i≤r1+1
αi, · · · ,

∑
2≤i≤r1+1

αi︸ ︷︷ ︸
t−r1

, α1 +
i ̸=2∑

2≤i≤r1+1
αi,

i ̸=3∑
2≤i≤r1+1

αi, · · · ,

i ̸=r1+1∑
2≤i≤r1+1

αi︸ ︷︷ ︸
r1

).

After r2 (1 ≤ r2 ≤ t) rounds backwards, the output difference ∇middle
1 = (0, 0, · · · , β1) will

lead to the input difference ∇middle
1+r2

(
i ̸=r2+1∑

2≤i≤r2+1
−βi, · · · ,

i ̸=3∑
2≤i≤r2+1

−βi, β1 +
i ̸=2∑

2≤i≤r2+1
−βi︸ ︷︷ ︸

r2

,
∑

2≤i≤r2+1
−βi, · · · ,

∑
2≤i≤r2+1

−βi︸ ︷︷ ︸
t−r2

).

Naturally, for a valid differential trail, the output difference ∆middle
1+r1

and the input difference
∇middle

1+r2
meeting in the middle part should be equal,

∆middle
1+r1

= ∇middle
1+r2

. (1)

Conversely, if we find some contradictions in the equation system (1), it will lead to an
IDC with (2t− 2 + r1 + r2) rounds for GMiMCerf.
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x14 x24 x34 x44α1 0 0 0

α2

RC4(K4)

S

x15 x25 x35 x45α2 α2 α2 α1

α3

x16 x26 x36 x46

RC5(K5)

S

α2,3 α2,3 α1,3 α2

Over Fp, (3t− 3)-round IDC.

• Forward: t− 1

•Middle: t− 1

• Backward: t− 1

α2 + α3 = β1
α2 + α3 = −β2
α1 + α3 = −β2

α2 = −β2




⇒ α3 = 0

x16 x26 x36 x46β1 −β2 −β2 −β2

β2

x17 x27 x37 x47

RC6(K6)

S

0 0 0 β1

Figure 9: Middle part of IDC of GMiMCerf with t = 4.

4.1.1 IDC of GMiMCerf with (3t − 3) Rounds

According to Lemma 5, we can obtain a nontrivial r-round (2t + 1 ≤ r ≤ 3t− 3) IDC of
GMiMCerf with input difference (0, · · · , 0, α1) and output difference (β1, 0, · · · , 0), where
α1 ≠ 0 and β1 ̸= 0. To be more specific, due to α1

S−→ α2
S−→ α3, β1

S−→ β2
S−→ β3 and S

takes the power map x 7→ x3 as a non-linear permutation. Thus, α3 = 0 or β3 = 0 will
result in contradictions of α1 ̸= 0 or β1 ̸= 0.

Lemma 5. When 3 ≤ r1 + r2 ≤ t − 1, the equation system (1) will lead to α3 = 0 or
β3 = 0.

Proof. If we have α3 appearing in the equation system (1), that is 2 ≤ r1 and 3 ≤ r1 + r2.
Considering the rightmost (r1 + 1) consecutive blocks in the output difference ∆middle

1+r1

(· · · ,
∑

2≤i≤r1+1
αi, α1 +

i ̸=2∑
2≤i≤r1+1

αi,

i ̸=3∑
2≤i≤r1+1

αi, · · · ,

i ̸=r1+1∑
2≤i≤r1+1

αi︸ ︷︷ ︸
r1

),

and the rightmost (t− r2) consecutive blocks in the input difference ∇middle
1+r2

(· · · ,
∑

2≤i≤r2+1
−βi, · · · ,

∑
2≤i≤r2+1

−βi︸ ︷︷ ︸
t−r2

).

If r1 + 1 ≤ t− r2, the last (r1 + 1) equations in the system (1) will be

∑
2≤i≤r1+1

αi =
∑

2≤i≤r2+1
−βi,

α1 +
i ̸=2∑

2≤i≤r1+1
αi =

∑
2≤i≤r2+1

−βi,

i ̸=3∑
2≤i≤r1+1

αi =
∑

2≤i≤r2+1
−βi,

· · ·
i ̸=r1+1∑

2≤i≤r1+1
αi =

∑
2≤i≤r2+1

−βi.

(2)
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Then, we can easily deduce α3 = 0 from the first and third equations of (2),∑
2≤i≤r1+1

αi =
∑

2≤i≤r2+1
−βi =

i ̸=3∑
2≤i≤r1+1

αi.

Similarly, if we have β3 in the system (1), we can also deduce β3 = 0.

4.1.2 IDC of GMiMCerf with (3t − 1) Rounds

Similarly, according to Lemma 6, we can extend two more rounds for IDC of GMiMCerf.
Lemma 6. When 3 ≤ r1 + r2 ≤ t + 1, α1 = β1 and t ̸≡ 1 mod p, the equation system (1)
will lead to α3 = 0 or β3 = 0.
Proof. We consider the following three cases, where the conditions that α1 = β1 and
t ̸≡ 1 mod p are used in the last two cases.

• Case 1. When 3 ≤ r1 + r2 ≤ t− 1, it has α3 = 0 or β3 = 0 by using Lemma 5.

• Case 2. When r1 + r2 = t, it has the following equations,

∑
2≤i≤r1+1

αi =
i ̸=r2+1∑

2≤i≤r2+1
−βi,

· · · ,∑
2≤i≤r1+1

αi =
i ̸=3∑

2≤i≤r2+1
−βi,

∑
2≤i≤r1+1

αi = β1 +
i ̸=2∑

2≤i≤r2+1
−βi,

α1 +
i ̸=2∑

2≤i≤r1+1
αi =

∑
2≤i≤r2+1

−βi,

i ̸=3∑
2≤i≤r1+1

αi =
∑

2≤i≤r2+1
−βi,

· · · ,

i ̸=r1+1∑
2≤i≤r1+1

αi =
∑

2≤i≤r2+1
−βi.

(3)

If r2 = 1, then r1 = t− 1, based on α1 = β1 and equation system (3),
(t− 1)

∑
2≤i≤r1+1

αi = −(t− 1)β2,

α2 = −β2,

α3 = · · · = αr1+1.

If t ̸≡ 1 mod p, then there is α3 = 0. In the same way, if r1 = 1, then r2 = t− 1, it
will lead to β3 = 0. Now for 2 ≤ r1, r2, it has the following,

(t− 1)
∑

2≤i≤r1+1
αi + (t− 1)

∑
2≤i≤r2+1

βi = 0,

α3 = · · · = αr1+1,

β3 = · · · = βr2+1,

α3 = β3.
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Still, if t ̸≡ 1 mod p, α3 = β3 = 0 can be easily deduced.

• Case 3. When r1 + r2 = t + 1, the blocks in the output difference ∆middle
1+r1

can be
divided into three parts as below,

(
∑

2≤i≤r1+1
αi, · · · ,

∑
2≤i≤r1+1

αi︸ ︷︷ ︸
t−r1

, α1 +
i ̸=2∑

2≤i≤r1+1
αi,

i ̸=3∑
2≤i≤r1+1

αi, · · · ,

i̸=r1+1∑
2≤i≤r1+1

αi︸ ︷︷ ︸
r1−1

),

and also for the input difference ∇middle
1+r2

,

(
i ̸=r2+1∑

2≤i≤r2+1
−βi, · · · ,

i ̸=3∑
2≤i≤r2+1

−βi︸ ︷︷ ︸
r2−1

, β1 +
i ̸=2∑

2≤i≤r2+1
−βi,

∑
2≤i≤r2+1

−βi, · · · ,
∑

2≤i≤r2+1
−βi︸ ︷︷ ︸

t−r2

).

As r1 − 1 = t− r2 and r2 − 1 = t− r1, we can obtain the following equations,

α1 +
i ̸=2∑

2≤i≤r1+1
αi = β1 +

i ̸=2∑
2≤i≤r2+1

−βi,

i ̸=r2+1∑
2≤i≤r2+1

−βi =
∑

2≤i≤r1+1
αi,

· · · ,

i ̸=3∑
2≤i≤r2+1

−βi =
∑

2≤i≤r1+1
αi,

i ̸=3∑
2≤i≤r1+1

αi =
∑

2≤i≤r2+1
−βi,

· · · ,

i ̸=r1+1∑
2≤i≤r1+1

αi =
∑

2≤i≤r2+1
−βi.

(4)

If r2 = 1 and r1 = t, then based on α1 = β1 and equations (4), we have,
∑

3≤i≤r1+1
αi = 0,

α3 = · · · = αr1+1.

(5)

If t ̸≡ 1 mod p, α3 = 0 can be deduced. In the same way, if r1 = 1, then r2 = t, it
can be deduced that β3 = 0. Now for 2 ≤ r1, r2, we have the following equations,

∑
3≤i≤r1+1

αi +
∑

3≤i≤r2+1
βi = 0,

α3 = · · · = αr1+1,

β3 = · · · = βr2+1,

α3 = β3.

Still, if t ̸≡ 1 mod p, α3 = β3 = 0 can be easily deduced.
Considering all three cases above, it has α3 = 0 or β3 = 0.

An example of this difference propagation and equation system is depicted in Figure 10.
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x11 x21 x31 x410 0 0 α1

0

RC1(K1)

S

x12 x22 x32 x420 0 α1 0

0

RC2(K2)

S

x13 x23 x33 x430 α1 0 0

0

x14 x24 x34 x44

RC3(K3)

S

α1 0 0 0

0

x14 x24 x34 x44α1 0 0 0

α2

RC4(K4)

S

x15 x25 x35 x45α2 α2 α2 α1

α3

RC5(K5)

S

x16 x26 x36 x46α2,3 α2,3 α1,3 α2

α4

x17 x27 x37 x47

RC6(K6)

S

α2,3,4 α1,3,4 α2,4 α2,3

Over Fp, with α1 = β1, (3t− 1)-round IDC.

• Forward: t− 1

• Middle: t+ 1

• Backward: t− 1

α2 + α3 + α4 = −β2
α1 + α3 + α4 = β1 − β3

α2 + α4 = −β2 − β3
α2 + α3 = −β2 − β3




⇒ β3 = 0

x17 x27 x37 x47−β2 β1,−3 −β2,3 −β2,3

β3

RC7(K7)

S

x18 x28 x38 x48β1 −β2 −β2 −β2

β2

x19 x29 x39 x49

RC8(K8)

S

0 0 0 β1

x19 x29 x39 x490 0 0 β1

0

RC9(K9)

S

x110 x210 x310 x4100 0 β1 0

0

RC10(K10)

S

x111 x211 x311 x4110 β1 0 0

0

x112 x212 x312 x412

RC11(K11)

S

β1 0 0 0

0

Figure 10: (3t− 1) rounds IDC example of GMiMCerf with number of branch t = 4.

4.1.3 IDC of GMiMCerf with an arbitrary number of rounds

Different from (3t− 1) and (3t− 3) rounds IDC of GMiMCerf presented above, we now
present a special case over Fp provided in Lemma 7, which can lead to an arbitrary number
of rounds IDC of GMiMCerf and only works over Fp. Although it has the limited condition
that t ≡ 1 mod p, it shows the difference between Fn

2 and Fp. To be specific, this can
be attributed to that α1 = −β1 is equivalent to α1 = β1 over Fn

2 . However, this will be
different over Fp, α1 = −β1 combined with α1 = β1 will lead to α1 = β1 = 0, which can be
used to construct an arbitrary number of rounds IDC of GMiMCerf with input difference
(0, · · · , 0, α1) and output difference (β1, 0, · · · , 0), where α1 = −β1 ̸= 0.

Lemma 7. When α1 = −β1 and t ≡ 1 mod p, for any r1, r2 (1 ≤ r1, r2), the equation
system (1) will lead to α1 = β1 = 0.

Proof. For any r1, r2 (1 ≤ r1, r2) of the middle part mentioned above, with the input
difference ∆middle

1 = (α1, 0, · · · , 0) and the output difference ∇middle
1 = (0, 0, · · · , β1), we

then generalize the representations of the difference ∆middle
1+r1

(
i ̸≡r1+2 mod t∑

2≤i≤r1+1
αi, · · · ,

i̸≡t+1 mod t∑
2≤i≤r1+1

αi︸ ︷︷ ︸
(t−r1) mod t

, α1 +
i ̸≡2 mod t∑
2≤i≤r1+1

αi,

i ̸≡3 mod t∑
2≤i≤r1+1

αi, · · · ,

i ̸≡r1+1 mod t∑
2≤i≤r1+1

αi︸ ︷︷ ︸
(r1−1) mod t

),

and the difference ∇middle
1+r2

(
i̸=r2+1 mod t∑

2≤i≤r2+1
−βi, · · · ,

i ̸=3 mod t∑
2≤i≤r2+1

−βi︸ ︷︷ ︸
(r2−1) mod t

, β1 +
i ̸=2 mod t∑
2≤i≤r2+1

−βi,

i̸=t+1 mod t∑
2≤i≤r2+1

−βi, · · · ,

i ̸=r2+2 mod t∑
2≤i≤r2+1

−βi︸ ︷︷ ︸
(t−r2) mod t

).

Then for a valid differential trail, the differences ∆middle
1+r1

and ∇middle
1+r2

should meet in the
middle, that is ∆middle

1+r1
= ∇middle

1+r2
. When sum all terms in each block of ∆middle

1+r1
, it has

sum(∆middle
1+r1

) = α1 + (t− 1) · α2 + (t− 1) · α3 + · · · (t− 1) · αr1+1. (6)

Similarly, we have the sum for ∇middle
1+r2

,

sum(∇middle
1+r2

) = β1 − (t− 1) · β2 − (t− 1) · β3 − · · · (t− 1) · βr2+1. (7)
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Naturally, we obtain an equation over Fp from equations (6) and (7) as below

α1 + (t− 1) · α2 + · · · (t− 1) · αr1+1 ≡ β1 − (t− 1) · β2 − · · · (t− 1) · βr2+1 mod p.

As t ≡ 1 mod p, it has α1 = β1, and combined with α1 = −β1, we obtain α1 = β1 = 0.

4.1.4 Transformation from IDC to ZC and INT of GMiMCcrf

With these three IDCs of GMiMCerf presented above, now by using the link proposed in
Theorem 4, we can directy obtain the corresponding ZCs of GMiMCcrf over Fp as below

• (3t− 3)-round: (0, · · · , 0, a1) ↛ (b1, 0, · · · , 0), where a1 ̸= 0 and b1 ̸= 0.

• (3t− 1)-round: (0, · · · , 0, a1) ↛ (b1, 0, · · · , 0), where a1 = b1 ̸= 0 and t ̸≡ 1 mod p.

• Arbitrary number of rounds: (0, · · · , 0, a1) ↛ (b1, 0, · · · , 0), where a1 = −b1 ̸= 0 and
t ≡ 1 mod p.

Then, by using the link given in Theorem 9, a (3t− 3)-round INT of GMiMCcrf over
Fp can be obtained. Let V = {(0, · · · , 0, x)|x ∈ Fp}, if the input space is V ⊥, then the
output is balanced on (b1, 0, · · · , 0)·GMiMCcrf where b1 ̸= 0.

4.2 Zero-correlation Linear Hull of GMiMCerf over Fp

Linear Trail with Probability One. Before presenting the ZC of GMiMCerf over Fp,
we first discuss the possible free rounds of its linear trail. As shown in Figure 11, the input
masks are denoted by the same element a1 ∈ Fp\{0}. Then, for one free round passing,
the input and output masks of a non-linear permutation S will be both zero. Based on the
propagation rules of linear mask introduced in Section 2.1, a free (t− 1)-round linear trail
of GMiMCerf can be obtained with input mask (a1, · · · , a1, (2− t)a1) and output mask
((2− t)a1, a1, · · · , a1). In fact, this is same as the linear relation proposed in [BCD+20],
which can be also interpreted from the view of linear mask propagation. Now, similar
to the IDC of GMiMCerf, if having the limited condition on the number of branch, that
is t ≡ 1 mod p, then the input and output mask of (t − 1)-round linear trail are both
(a1, · · · , a1), which is iterative and will lead to a linear trail with an arbitrary number
of rounds. By using Theorem 6, these two linear trails with probability one can be also
transformed into Prob-one differential trails of GMiMCcrf.

x1
r x2

r · · · xt
r

a1 a1 (2− t)a1

0 0

··
·

x1
r+1 xt−1

r+1· · · xt
r+1

· · ·

RCr(Kr)

S

a1 (2− t)a1 a1

Figure 11: One free round of linear trail of GMiMCerf with t branches.

Now we briefly explain three parts of ZC of GMiMCerf as below, which is similar to
that of IDC.

• Forward: the first (t− 1) rounds with linear probability one;
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• Middle: the middle r1 + r2 (1 ≤ r1, r2 ≤ t) rounds with contradictions on some
variables;

• Backward: the last (t− 1) rounds with linear probability one.

The input mask Γforward
1 = (a1, a1, · · · , a1, (2− t)a1) can pass (t− 1) free rounds to

the output mask Γforward
t = ((2− t)a1, a1, a1, · · · , a1), that is

Γforward
1

(t−1)−round−−−−−−−−→ Γforward
t .

Similarly, we have free (t− 1) free rounds backwards

Λbackward
t

(t−1)−round←−−−−−−−− Λbackward
1 ,

where the input mask Λbackward
1 = ((2− t) · b1, b1, · · · , b1) can pass (t− 1) free rounds to

the output mask Λbackward
t = (b1, · · · , b1, (2− t) · b1).

For the middle part, after r1 (1 ≤ r1 ≤ t) rounds forwards, the input mask Γmiddle
1 =

((2− t) · a1, a1, a1, · · · , a1) will lead to the output mask

Γmiddle
1+r1

= (a1, · · · , a1︸ ︷︷ ︸
t−r1

, (2− t) · a1 − a2, a1 − a3, · · · , a1 − ar1+1︸ ︷︷ ︸
r1

).

After r2 (1 ≤ r2 ≤ t) rounds backwards, the output mask Λmiddle
1 = (b1, · · · , b1, (2− t) · b1)

will lead to the input mask

Λmiddle
1+r2

= (b1 + br2+1, · · · , b1 + b3, (2− t) · b1 + b2︸ ︷︷ ︸
r2

, b1, · · · , b1︸ ︷︷ ︸
t−r2

).

Naturally, for a valid linear trail, the output mask Γmiddle
1+r1

and the input mask Λmiddle
1+r2

meeting in the middle part should be equal

Γmiddle
1+r1

= Λmiddle
1+r2

. (8)

Conversely, if we find some contradictions in the equation system (8), it will lead to a ZC
with (2t− 2 + r1 + r2) rounds for GMiMCerf.

4.2.1 ZC of GMiMCerf with an arbitrary number of rounds

With the probability one linear trail given above, whose input mask Γin and output mask
Γout are both (a1, · · · , a1), we can obtain two kinds of ZC of GMiMCerf with an arbitrary
number of rounds, nevertheless only for the very limited case t ≡ 1 mod p. One with input
mask Γin and output mask Γ′

out where Γ′
out ̸= {Γout, 0}, another one with output mask

Γout and input mask Γ′
in where Γ′

in ̸= {Γin, 0}.

4.2.2 ZC of GMiMCerf with (3t − 3) Rounds

According to Lemma 8, we can obtain a ZC with r (2t+1 ≤ r ≤ 3t−3) rounds for GMiMCerf,
its input mask is (a1, a1, · · · , a1, (2 − t)a1) and output mask is ((2 − t)b1, b1, b1, · · · , b1),
where a1 ̸= 0 and b1 ̸= 0. The proof of this ZC for GMiMCerf is similar to that of IDC.

Lemma 8. When 3 ≤ r1 + r2 ≤ t − 1, the equation system (8) will lead to a3 = 0 or
b3 = 0.
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Proof. If it has a3 appearing in the equation system (8), that is 2 ≤ r1 and 3 ≤ r1 + r2.
Considering the rightmost (r1 + 1) consecutive blocks in the output mask Γmiddle

1+r1
,

(· · · , a1, (t− 2) · a1 − a2, a1 − a3, · · · , a1 − ar1+1︸ ︷︷ ︸
r1−1

),

and the rightmost (t− r2) consecutive blocks in the input mask Λmiddle
1+r2

,

(· · · , b1, · · · , b1︸ ︷︷ ︸
t−r2

).

If r1 + 1 ≤ t− r2, that is r1 + r2 ≤ t− 1, last (r1 + 1) equations in the system (8) will be

a1 = b1,

(t− 2) · a1 − a2 = b1,

a1 − a3 = b1,

· · ·
a1 − ar1+1 = b1.

(9)

Then, it has a3 = 0 deduced from the first and third equations of (9),

a1 − b1 = a3 = 0.

Similarly, if it has b3 in the system (8), we can also deduce that b3 = 0.

An example of this linear mask propagation and equation system is depicted in Figure 12.

x11 x21 x31 x41a1 a1 a1 −2a1

0

RC1(K1)

S

x12 x22 x32 x42a1 a1 −2a1 a1

0

RC2(K2)

S

x13 x23 x33 x43a1 −2a1 a1 a1

0

x14 x24 x34 x44

RC3(K3)

S

−2a1 a1 a1 a1

0

x14 x2
4 x34 x44−2a1 a1 a1 a1

a2

RC4(K4)

S

x15 x25 x35 x45a1 a1 a1 −a2 − 2a1

a3 −a2

x16 x26 x36 x46

RC5(K5)

S

a1 a1 −a2 − 2a1 a1,−3

Over Fp, (3t− 3)-round ZC.

• Forward: t− 1

•Middle: t− 1

• Backward: t− 1

a1 = b2 − 2b1
a1 = b1

−a2 − 2a1 = b1
a1 − a3 = b1




⇒ a3 = 0

x16 x26 x36 x46b2 − 2b1 b1 b1 b1

b2

x17 x27 x37 x47

RC8(K8)

S

b1 b1 b1 −2b1

x17 x2
7 x37 x47b1 b1 b1 −2b1

0

RC9(K9)

S

x18 x2
8 x38 x48b1 b1 −2b1 b1

0

RC10(K10)

S

x19 x29 x39 x49b1 −2b1 b1 b1

0

x110 x210 x310 x410

RC11(K11)

S

−2b1 b1 b1 b1

0

Figure 12: (3t− 3) rounds ZC example of GMiMCerf with branch t = 4.

4.2.3 ZC of GMiMCerf with (3t − 1) Rounds

Similarly, according to Lemma 9, we can extend two more rounds for ZC of GMiMCerf.

Lemma 9. When 3 ≤ r1 + r2 ≤ t + 1, a1 = b1, the equation system (8) will lead to a3 = 0
or b3 = 0.

Proof. We consider the following three cases, where the condition a1 = b1 is used in the
last two cases.

• Case 1. When 3 ≤ r1 + r2 ≤ t− 1, we can easily obtain a3 = 0 or b3 = 0 by using
Lemma 8.
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• Case 2. When r1 + r2 = t + 1, the blocks in the output mask Γmiddle
1+r1

can be divided
into three parts as below

(a1, · · · , a1︸ ︷︷ ︸
t−r1

, (2− t) · a1 − a2, a1 − a3, · · · , a1 − ar1+1︸ ︷︷ ︸
r1−1

),

and similar for the input mask Λmiddle
1+r2

,
(b1 + br2+1, · · · , b1 + b3︸ ︷︷ ︸

r2−1

, (2− t) · b1 + b2, b1, · · · , b1︸ ︷︷ ︸
t−r2

).

As r1 − 1 = t− r2 and r2 − 1 = t− r1, it has the following equations,

a1 = b1 + br2+1,

· · · ,

a1 = b1 + b3,

(2− t) · a1 − a2 = (2− t) · b1 + b2,

b1 = a1 − a3,

· · · ,

b1 = a1 − ar1+1.

(10)

If r2 = 1, then r1 = t, based on a1 = b1 and equation system (10), it has
a3 = · · · = ar1+1 = a1 − b1 = 0.

Reversely, if r1 = 1 and r2 = t, it has b3 = 0.
Now for 2 ≤ r1, r2, we have the following equations,{

a3 = · · · = ar1+1 = a1 − b1 = 0,

b3 = · · · = br2+1 = a1 − b1 = 0.

Still, a3 = b3 = 0 can be easily deduced.

• Case 3. When r1 + r2 = t, that is r1 = t− r2 and r2 = t− r1, we have the following
equations, 

a1 = b1 + br2+1,

· · · ,

a1 = b1 + b3,

a1 = (2− t) · b1 + b2,

(2− t) · a1 − a2 = b1,

a1 − a3 = b1,

· · · ,

a1 − ar1+1 = b1.

(11)

If r2 = 1, then r1 = t− 1, based on a1 = b1 and equation system (11),{
a2 + b2 = 0,

a3 = · · · = ar1+1 = a1 − b1 = 0.

Thus, a3 = 0 can be deduced. In the same way, if r1 = 1 and r2 = t − 1, it has
b3 = 0. Now for 2 ≤ r1, r2, we have the following equations,

a2 + b2 = 0,

a3 = · · · = ar1+1 = a1 − b1 = 0,

b3 = · · · = br2+1 = a1 − b1 = 0.

Still, a3 = b3 = 0 can be easily deduced.
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Considering three cases above, it has a3 = 0 or b3 = 0.

An example of this linear mask propagation and equation system is depicted in Figure 13.

x11 x21 x31 x41a1 a1 a1 −2a1

0

RC1(K1)

S

x12 x22 x32 x42a1 a1 −2a1 a1

0

RC2(K2)

S

x13 x23 x33 x43a1 −2a1 a1 a1

0

x14 x24 x34 x44

RC3(K3)

S

−2a1 a1 a1 a1

0

x14 x24 x34 x44−2a1 a1 a1 a1

a2

RC4(K4)

S

x15 x25 x35 x45a1 a1 a1 −a2 − 2a1

a3 −a2
RC5(K5)

S

x16 x26 x36 x46a1 a1 −a2 − 2a1 a1,−3

a4 −a2,3

x17 x27 x37 x47

RC6(K6)

S

a1 −a2 − 2a1 a1,−3 a1,−4

Over Fp, with a1 = b1, (3t− 1)-round ZC.

• Forward: t - 1

• Middle: t - 1

• Backward: t - 1

a1 = b1 + b3

−a2 − 2a1 = b2 − 2b1

a1 − a3 = b1

a1 − a4 = b1

a1 = b1





⇒ a3 = b3 = 0

x17 x27 x37 x47b1,3 b2 − 2b1 b1 b1

b3 b2

RC7(K7)

S

x18 x28 x38 x48b2 − 2b1 b1 b1 b1

b2

x19 x29 x39 x49

RC8(K8)

S

b1 b1 b1 −2b1

x19 x29 x39 x49b1 b1 b1 −2b1

0

RC9(K9)

S

x110 x210 x310 x410b1 b1 −2b1 b1

0

RC10(K10)

S

x111 x2
11 x311 x411b1 −2b1 b1 b1

0

x112 x212 x312 x412

RC11(K11)

S

−2b1 b1 b1 b1

0

Figure 13: (3t− 1) rounds ZC example of GMiMCerf with branch t = 4.

4.2.4 Transformation from ZC to IDC of GMiMCcrf

With all these three kinds of ZC of GMiMCerf presented above, by using the link proposed
in Theorem 4, we can obtain the corresponding IDCs of GMiMCcrf as below.

• (3t− 3)-round: with input difference (α1, · · · , α1, (2− t)α1) and output difference
((2− t)β1, β1, · · · , β1), where α1 ̸= 0 and β1 ̸= 0.

• (3t− 1)-round: with input difference (α1, · · · , α1, (2− t)α1) and output difference
((2− t)β1, β1, · · · , β1), where α1 = β1 ̸= 0.

• Arbitrary number of rounds: the input (output) difference is (α1, · · · , α1), and the
non-zero output (input) difference is not equal to the input (output) difference, where
α1 ̸= 0 and t ≡ 1 mod p.

4.2.5 Transformation from ZC to INT of GMiMCerf

Similarly, by using the link given in Theorem 7, we have the corresponding INTs of
GMiMCerf as below.

• (3t − 3)-round: Let V = {(x, x, · · · , x, (2 − t)x)|x ∈ Fp}, if the input space is V ⊥,
then the output is balanced on ((2− t)b1, b1, b1, · · · , b1)· GMiMCerf where b1 ̸= 0.

• Arbitrary number of rounds: Let V = {(0, · · · , 0, x, 0, · · · , 0)|x ∈ Fp}, if the input
space is V , then the output is balanced on (b1, · · · , b1)·GMiMCerf where b1 ̸= 0.

• Arbitrary number of rounds: Let V = {(x, · · · , x)|x ∈ Fp}, if the input space is V ⊥,
any output block of GMiMCerf is balanced.

Remark: It should be noted that these probability one differential or linear trails with an
arbitrary number of rounds presented above are trivial5 for unbalanced Feistel networks, if
the branch t is chosen improperly. However, in this paper, by using the equation-based
methods and our proposed links, we show that bad choices of t will also lead to nontrivial
IDC/ZC/INT with an arbitrary number of rounds for GMiMC. There are also some

5The summation of differences/masks for part of these branches can be cancelled to zero, which is
similar to that over Fn

2 .
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potential instantiations, for example the concrete instances with 256-bit block size and
key size, GMiMCerf-(p = 5, t = 86, r = 261) and GMiMCerf-(p = 17, t = 52, r = 160))
of GMiMCerf provided in [AGP+19b, Table 6 and 7], which aim to achieve smaller
signature size when intended to be deployed in post-quantum signatures with low-data
scenario [CDG+17] or even full-data scenario [BEF19], and the odd number of branch has
been avoided for instances over Fn

2 . We stress that considering the limited access to data,
these statistical distinguishers are more suitable for the full-data setting, e.g., collision-
resistant hash function [BEF19]. Nevertheless we hope these presented distinguishers could
provide a guidance for future designs when considering related constructions.

4.3 Equation-based Method for GMiMCNyb

δ1r δ2r δt−1
r

· · · δtr

δ1r+1 δ2r+1

· · ·

δt−1
r+1 δtr+1

· · ·

S1
r S

t
2
r

δ1r τ 1r δt−1
r τ

t
2
r

Figure 14: Differential of GMiMCNyb’s r-th round function with t branches.

For the balanced Feistel construction GMiMCNyb, we mainly focus on the underlying
equivalent relations of its different structures. Specifically, we are dedicated to obtaining
the one-to-one correspondence of IDC/ZC/INT for GMiMCNyb in the following, which has
already been mentioned as an example when explaining Figure 1.

One round differential propagation of GMiMCNyb is depicted in Figure 14. The IDC of
GMiMCNyb consists of forward r1(1 ≤ r1 ≤ t + 2) rounds and backward r2(1 ≤ r2 ≤ t + 2)
rounds. The input difference ∆forward

1 = (0, · · · , 0, α1) passes r1 rounds to the output
difference ∆forward

1+r1

(∗, · · · , ∗, α1 +
1≤r≤r1∑
r+=2

τ
( t

2 − r−1
2 ) mod t

2
r , ∗, · · · , ∗︸ ︷︷ ︸

(r1+1) mod t

),

where τ j
r denotes the output difference of the j-th S-box of the r-th round. Similarly, it

has the output difference ∇backward
1 = (0, · · · , 0, β1, 0) passing r2 rounds backwards to

∇backward
r2+1 as below

(∗, · · · , ∗, β1 −
1≤r≤r2∑
r+=2

τ
′( r−1

2 ) mod t
2

r , ∗, · · · , ∗︸ ︷︷ ︸
(t−r2+2) mod t

),

where τ
′j
r denotes the output difference of the j-th S-box of the r-th round.

Besides, if r2 < t, another choice for the output difference ∇′backward
1 = (β1, 0, · · · , 0)
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will lead to ∇′backward
r2+1 as below

(∗, · · · , ∗, 0, β1 −
1≤r≤r2∑
r+=2

τ
′( r+1

2 ) mod t
2

r , ∗, · · · , ∗︸ ︷︷ ︸
(t−r2) mod t

).

For a valid differential trail, the output difference and the input difference meeting in
the middle should be equal, thus it has the following

∆forward
1+r1

= ∇
′backward
r2+1 , (12)

∆forward
1+r1

= ∇backward
r2+1 . (13)

Naturally, if we find some contradictions in the above equation systems, it will lead to an
IDC with (r1 + r2) rounds for GMiMCNyb.

4.3.1 IDC of GMiMCNyb with (2t − 1) Rounds

For any nontrivial differential trail with input difference (0, 0, · · · , 0, α1) and output
difference (β1, 0, · · · , 0), where α1 ̸= 0 and β1 ≠ 0, from Lemma 10, we can obtain an
IDC with (2t− 1) rounds for GMiMCNyb, because all S-boxes adopted in GMiMCNyb are
permutations, and τ

t
2

t = 0 or τ
′ t

2
t = 0 will result in contradictions of α1 ̸= 0 or β1 ̸= 0.

Lemma 10. When r1 + r2 = 2t− 1 with 1 ≤ r1, r2 ≤ t + 1, the equation system (12) will
lead to τ

t
2

t = 0 or τ
′ t

2
t = 0.

Proof. We may as well let r1 > r2. With the input difference ∆forward
1 = (0, · · · , 0, α1), it

will activate the S-box sequentially as below

α1
S

t
2

2−−→ τ
t
2

2
S

t
2

3−−→ · · ·
S

t
2

t−−→ τ
t
2

t .

Then after t rounds, we have ∆forward
1+t = (∗, · · · , ∗, τ

t
2

t , α1). For the following one round,
it has

∆forward
1+t+1 = (∗, · · · , ∗, τ

t
2

t , α1 + τ
t
2

t+1, ∗).

As for the output difference ∇′backward
1 = (β1, 0, · · · , 0, 0), thus if r1 + 1 ≡ t− r2 mod t,

that is r1 + r2 ≡ −1 mod t, then the block difference τ
t
2

t and 0 will coincide, which means
τ

t
2

t = 0. Similarly, if r1 < r2, it will lead to τ
′ t

2
t = 0.

4.3.2 IDC of GMiMCNyb with (2t + 1) Rounds

For any nontrivial differential trail with input difference (0, 0, · · · , 0, α1) and output
difference (0, 0, · · · , β1, 0), where α1 ̸= 0, β1 ̸= 0 and α1 = β1, similarly from Lemma 11,
an IDC with (2t + 1) rounds for GMiMCNyb can be obtained.

Lemma 11. When r1 + r2 = 2t + 1 and α1 = β1 with 1 ≤ r1, r2 ≤ t + 2, the equation
system (13) will lead to τ

t
2

t+1 = 0 or τ
′ t

2
t+1 = 0.

Proof. We may as well let r1 > r2. With the input difference ∆forward
1 = (0, · · · , 0, α1), it

will activate the S-box sequentially as below

α1
S

t
2

2−−→ τ
t
2

2
S

t
2

3−−→ · · ·
S

t
2

t+1−−−→ τ
t
2

t+1.
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Then after t rounds, it has ∆forward
1+t = (∗, · · · , ∗, α1). For the following two rounds, it has

∆forward
1+t+1 = (∗, · · · , ∗, α1 + τ

t
2

t+1, ∗),

∆forward
1+t+2 = (∗, · · · , ∗, α1 + τ

t
2

t+1, ∗, ∗).

As for the output difference∇backward
1 = (0, · · · , 0, β1, 0), thus if r1+1 ≡ t−r2+2 mod t,

that is r1 + r2 ≡ 1 mod t, the block difference α1 + τ
t
2

t+1 and β1 will coincide. Considering
α1 = β1, it must have τ

t
2

t+1 = 0. Similarly, if r1 < r2, it will lead to τ
′ t

2
t+1 = 0.

4.3.3 Transformation from IDC to ZC and INT of GMiMCNyb

We first reveal an equivalent relation between dual structure and inverse structure of ENyb,
which is given in Lemma 12.

Lemma 12. The inverse structure E−1
Nyb and dual structure E⊥

Nyb are equivalent.

Proof. For the Nyber’s generalized Feistel structure ENyb, following the similar representa-
tion in [BMT13], its i-th round function can be represented by using t× t matrix P ◦ Fi

as below

Fi =



1 0
S1

i 1

1 0
S2

i 1
. . .

1 0
S

t
2

i
1


, P =

 1
1

. . .
1

1

 .

where F −1
i = Fi and P T = P −1. For the dual structure of ENyb, we have

F T
i =



1 S1
i

0 1

1 S2
i

0 1
. . .

1 S
t
2

i
0 1


, (P −1)T = P =

 1
1

. . .
1

1

 .

Now, consider two permutation π1 and π2 as below

π1 =



0 1
1 0

0 1
1 0

. . .

0 1
1 0


, π2 =


1 0
0 1

1 0
0 1

...
1 0
0 1

 ,

where π1 = π−1
1 = πT

1 and π2 = π−1
2 = πT

2 . As it has that F T
i = π−1

1 Fiπ1 and (P −1)T =
π−1

2 Pπ2, we let

Π = π1π2 =
( 1

...
1

1

)
,

where Π = Π−1 and ΠPΠ = P T = P −1.
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Now, for n rounds E⊥
Nyb, it can be expanded as

(P −1)T ◦ F T
n−1 · · · (P −1)T ◦ F T

0 = π−1
2 Pπ2 ◦ π−1

1 Fn−1π1 · · ·π−1
2 Pπ2 ◦ π−1

1 F0π1

= π−1
2 P ◦Π ◦ Fn−1 ◦Π · · · ◦Π ◦ P ◦Π ◦ F0π1

= π−1
2 P ◦Π ◦ Fn−1 ◦ P −1 · · ·F1 ◦ P −1 ◦ F0π1

= π−1
2 P ◦Π ◦ (F −1

n−1 ◦ P −1 · · ·F −1
0 ◦ P −1) ◦ Pπ1

= A ◦ (F −1
n−1 ◦ P −1 · · ·F −1

0 ◦ P −1) ◦B.

where A = π−1
2 PΠ and B = Pπ1. Thus, it has that E−1

Nyb is equivalent to E⊥
Nyb.

With this underlying equivalent relation of these structures for ENyb, according to
Theorem 5, we know there is a one-to-one correspondence between IDC and ZC for ENyb.
Then, we can transform two IDCs presented above to its corresponding ZCs of GMiMCNyb.

For (2t − 1)-round IDC, its input difference is α = (0, · · · , 0, α1) and the output
difference is β = (β1, 0, · · · , 0, 0), where α1, β1 are non-zero. So, α → β is a ZC for the
dual structure E⊥

Nyb. As proved in Lemma 12, the dual structure E⊥
Nyb is equivalent to the

inverse structure E−1
Nyb, that is E⊥

Nyb = A ◦ E−1
Nyb ◦B, where the matrix representation for A

and B are given as below

A = B =
( 1

1
...

1

)
.

Thus, α→ β is a ZC for the equivalent inverse structure A ◦ E−1
Nyb ◦B. After passing the

linear transformation A−1 and B, α′ → β′ is a ZC for the inverse structure E−1
Nyb

α′ = B ◦ α = (0, α1, 0, · · · , 0) and β′ = A−1 ◦ β = (β1, 0, · · · , 0).

Naturally, β′ → α′ is a ZC for GMiMCNyb. That is, (b1, 0, · · · , 0) → (0, a1, 0, · · · , 0) is a
(2t − 1)-round ZC for GMiMCNyb, where a1, b1 ̸= 0. Similarly, based on (2t + 1)-round
IDC for GMiMCNyb, we know that (0, 0, b1, 0, · · · , 0)→ (0, a1, 0, · · · , 0) is a (2t + 1)-round
ZC for GMiMCNyb, where a1, b1 ̸= 0 and a1 = b1.

As for integral, we can obtain the transformed (2t− 1)-round INT for GMiMCNyb by
using Theorem 10, let V = {(x, 0, · · · , 0)|x ∈ Fp}, if the input space is V ⊥, then the output
is balanced on (0, a1, 0, · · · , 0)·GMiMCNyb.

4.4 Equation-based Method for GMiMCmrf

For another balanced Feistel construction GMiMCmrf with t branches, its full diffusion
rounds is Λ(t) = 2⌈log2(t)⌉, which is achieved by its Multi-Rotating round function. In
this section, we only focus on the case where t is exactly power of two, and the round
index of the distinguisher starts from 1 (due to the different rotation constant sr for each
round). Similarly, its IDC consists of the forward r1(Λ(t)− 2 ≤ r1 ≤ Λ(t) + 2) rounds and
backward r2(Λ(t)− 2 ≤ r2 ≤ Λ(t) + 2) rounds.

For the round function of GMiMCmrf, the input difference ∆forward
1 = (0, · · · , 0, α1)

can pass r1 rounds forwards to the output difference ∆forward
1+r1

as below

(∗, · · · , ∗, α1 +
1≤r≤r1∑

r+=2
τ

t
2

r , ∗, · · · , ∗︸ ︷︷ ︸
(r1 mod 2) t

2 +1

).
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Figure 15: Differential of GMiMCmrf’s r-th round function with t branches.

Similarly, the output difference ∇backward
1 = (0, · · · , 0, β1, 0, · · · , 0︸ ︷︷ ︸

t
2

) passes r2 rounds back-

wards to ∇backward
r2+1 as below

(∗, · · · , ∗, β1 −
1≤r≤r2∑
r+=2

τ
′ t

2
r , ∗, · · · , ∗︸ ︷︷ ︸

((r2+1) mod 2) t
2 +1

).

Then for a valid differential trail, the output difference and the input difference meeting
in the middle should be equal, and it has the following

∆forward
1+r1

= ∇backward
r2+1 . (14)

Naturally, if we find some contradictions in the above equation systems, it will lead to an
IDC with (r1 + r2) rounds for GMiMCmrf. Before presenting the IDC of GMiMCmrf, some
properties are first prepared for constructing its IDC.

Property 1. For the rotations of GMiMCmrf, we have the sum of rotations of consecutive
Λ(t)− 2 or Λ(t)− 1 rounds (starting from round 1)

RotSum(Λ(t)− 2) =
∑

1≤i≤Λ(t)−2

si = 2
Λ(t)

2 −1 − 1 = t

2 − 1,

RotSum(Λ(t)− 1) =
∑

1≤i≤Λ(t)−1

si = 2
Λ(t)

2 −1 − 1 = t

2 − 1.

Similarly, the sum of rotations of consecutive Λ(t) or Λ(t) + 1 rounds (starting from round
1)

RotSum(Λ(t)) = RotSum(Λ(t) + 1) = 2
Λ(t)

2 −1 = t

2 .

Property 2. For GMiMCmrf with input difference ∆forward
1 = (0, · · · , 0, α1), within Λ(t)

rounds forwards, the block with difference α1 will not be involved with any other non-zero
differences.
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Property 3. For GMiMCmrf with output difference ∇backward
1 = (0, · · · , β1, 0, · · · , 0︸ ︷︷ ︸

t
2

),

within Λ(t) rounds backwards, the block with difference β1 will not be involved with any
other non-zero differences.

Property 4. For GMiMCmrf with input difference ∆forward
1 = (0, · · · , 0, α1), after Λ(t)−2

rounds forwards, the t
2 -th block from left is with zero difference.

Property 5. For GMiMCmrf with output difference ∇backward
1 = (0, · · · , β1, 0, · · · , 0︸ ︷︷ ︸

t
2

),

after Λ(t)− 2 rounds backwards, the rightmost block is with zero difference (starting from
rotation constant with 0)

Property 6. For GMiMCmrf with input difference ∆forward
1 = (0, · · · , 0, α1), after Λ(t)−1

rounds forwards, the rightmost block is with zero difference.

Property 7. For GMiMCmrf with output difference ∇backward
1 = (0, · · · , β1, 0, · · · , 0︸ ︷︷ ︸

t
2

),

after Λ(t)− 1 rounds backwards, the t
2 -th block from left is with zero difference (starting

from rotation constant with 0).

Property 8. For GMiMCmrf with input difference ∆forward
1 = (0, · · · , 0, α1), the following

Λ(t) + 1 rounds, it will activate the S-box as below

α1
S

t
2 +s1

2−−−−→ τ
t
2 +s1

2 · · ·
S

t
2 +RotSum(Λ(t)−1)

Λ(t)−−−−−−−−−−−−→ τ
t
2 −1

Λ(t)

S
t
2 +RotSum(Λ(t))

Λ(t)+1−−−−−−−−−−−→ τ
t
2

Λ(t)+1.

Property 9. For GMiMCmrf with output difference ∇backward
1 = (0, · · · , β1, 0, · · · , 0︸ ︷︷ ︸

t
2

), the

following Λ(t) + 1 rounds, it will activate the S-box as below

β1
S

t
2 +s′

1
2−−−−→ τ

′ t
2 +s′

1
2 · · · −→ τ

′ t
2 +RotSum(Λ(t))−s′

Λ(t)
Λ(t)

S
t
2 +RotSum(Λ(t))

Λ(t)+1−−−−−−−−−−−→ τ
′ t

2
Λ(t)+1.

From Property 2 to Property 9, all these properties can be deduced from the special
diffusion properties of Multi-Rotating round function of GMiMCmrf, its fast diffusion is
contributed by a sequence of the selected rotations for each round, which leads to full
diffusion after Λ(t) rounds. For more details of this Multi-Rotating round function, we refer
the reader to the design paper [AGP+19b, Section 2.1.4]. Now based on these properties,
IDC of GMiMCmrf will be constructed as follws.

4.4.1 IDC of GMiMCmrf with 2Λ(t) + 1 Rounds

Lemma 13. For the power-of-two branch t, if r1 + r2 = 2Λ(t) + 1 and α1 = β1 where
Λ(t)−2 ≤ r1, r2 ≤ Λ(t)+2, the equation system (14) will lead to τ

t
2

Λ(t)+1 = 0 or τ
′ t

2
Λ(t)+1 = 0.

Proof. We may as well let r1 > r2. Due to the condition on the number of rounds
Λ(t)− 2 ≤ r1, r2 ≤ Λ(t) + 2, then r1 = Λ(t) + 1 or Λ(t) + 2. According to Property 2, after
Λ(t) rounds, we have ∆forward

1+Λ(t) = (∗, · · · , ∗, α1). Then according to Property 8, for the
following two rounds, it has

∆forward
1+Λ(t)+1 = (∗, · · · , ∗, α1 + τ

t
2

Λ(t)+1),

∆forward
1+Λ(t)+2 = (∗, · · · , ∗, α1 + τ

t
2

Λ(t)+1, ∗, · · · , ∗︸ ︷︷ ︸
t
2

).
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For the output difference ∇backward
1 = (0, · · · , 0, β1, 0, · · · , 0︸ ︷︷ ︸

t
2

), according to Property 3,

it has ∇backward
r2+1

(∗, · · · , ∗, β1, ∗, · · · , ∗︸ ︷︷ ︸
((r2+1) mod 2) t

2 +1

).

As r1 + r2 = 2Λ(t) + 1 is odd, the block differences α1 + τ
t
2

Λ(t)+1 and β1 will coincide.

Considering α1 = β1, it will lead to τ
t
2

Λ(t)+1 = 0. Similarly, if r1 < r2, according to

Property 9, it will lead to τ
′ t

2
Λ(t)+1 = 0.

For any nontrivial differential trail with input difference (0, · · · , 0, α1) and output
difference (0, · · · , 0, β1, 0, · · · , 0︸ ︷︷ ︸

t
2

), where α1 = β1 ≠ 0. An IDC with (2Λ(t) + 1) rounds of

GMiMCmrf is obtained.

4.4.2 IDC of GMiMCmrf with 2Λ(t) − 1 Rounds

Lemma 14. For the power-of-two branch t, if r1 + r2 = 2Λ(t) − 1 where Λ(t) − 2 ≤
r1, r2 ≤ Λ(t) + 1, the equation system (14) will lead to τ

t
2 −1

Λ(t) = 0 or τ
′ t

2 −1
Λ(t) = 0.

Proof. We may as well let r1 > r2. Due to the condition on the number of rounds
Λ(t)− 2 ≤ r1, r2 ≤ Λ(t) + 1, then r1 = Λ(t) or Λ(t) + 1. With input difference ∆forward

1 =
(0, · · · , 0, α1), it will activate the S-box sequentially as below

α1
S

t
2

2−−→ τ
t
2

2
S

t
2 +s2

3−−−−→ τ
t
2 +s2

3
S

t
2 +s2+s3

4−−−−−−→ · · ·
S

t
2 +s2+s3+···sΛ(t)−1

Λ(t)−−−−−−−−−−−−−→ τ
t
2 +s2+s3+···sΛ(t)−1

Λ(t) ,

still according to Property 1, it has τ
t
2 +s2+···+sΛ(t)−1

Λ(t) = τ
t
2 −1

Λ(t) . Similarly, we have ∆forward
1+r1

(∗, · · · , τ
t
2 −1

Λ(t) , ∗, · · · , α1︸ ︷︷ ︸
t
2

) or (∗, · · · , ∗, ∗, · · · , τ
t
2 −1

Λ(t)︸ ︷︷ ︸
t
2

).

Then according to Property 5 and 7, for the output difference ∇backward
1 with r1 + r2 =

2Λ(t)− 1, it has ∇backward
r2+1

(∗, · · · , β1, ∗, · · · , 0︸ ︷︷ ︸
t
2

) or (∗, · · · , 0, ∗, · · · , β1︸ ︷︷ ︸
t
2

).

Then the block differences τ
t
2 −1

Λ(t) and 0 will coincide, which means τ
t
2 −1

Λ(t) = 0. Similarly, if

r1 < r2, according to Property 4 and 6, it will lead to τ
′ t

2 −1
Λ(t) = 0.

Naturally, for any nontrivial differential trail with input difference (0, 0, · · · , 0, α1) and
output difference (0, · · · , 0, β1, 0, · · · , 0︸ ︷︷ ︸

t
2

), where α1, β1 ̸= 0, from Lemma 14, an IDC with

(2Λ(t)− 1) rounds of GMiMCmrf is obtained.
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≪ sr Sr

(a) The round function of E⊥
mrf .

Sr ≪ sr

(b) Equivalent structure of E⊥
mrf .

Figure 16: Structure of E⊥
mrf and its equivalent.

4.4.3 IDC of the Dual Structure E⊥
mrf

Now, we consider the IDC of the dual structure E⊥
mrf , which is depicted in Figure 16(a),

and its equivalent structure is depicted in Figure 16(b). As can be observed in E⊥
mrf , the

rotation in each round is reversed, that is −sr.

Lemma 15. For E⊥
mrf with the power-of-two branch t, if r1 + r2 = 2Λ(t) + 1 and α1 = β1

where Λ(t) − 2 ≤ r1, r2 ≤ Λ(t) + 2, the equation system (14) will lead to τ
t
2

Λ(t)+1 = 0 or

τ
′ t

2
Λ(t)+1 = 0.

Proof. As Property 2, 3, 8 and 9 still hold when having the reversed rotation −sr, the
same result can be deduced like in Lemma 13.

Lemma 16. For E⊥
mrf with the power-of-two branch t, if r1 + r2 = 2Λ(t) − 1 where

Λ(t)− 2 ≤ r1, r2 ≤ Λ(t) + 1, the equation system (14) will lead to τ1
Λ(t) = 0 or τ

′1
Λ(t) = 0.

Proof. Property 4, 5, 6 and 7 still hold when having the reversed rotation −sr. While
Property 1 will be slightly different, for inverse rotation −sr, it has RotSum(Λ(t)− 1) =
RotSum(Λ(t) − 2) = 1 − t

2 and just changes the index. So, the similar result can be
deduced like in Lemma 14.

4.4.4 Transformation from IDC of E⊥
mrf to ZC and INT of Emrf

For two IDCs of E⊥
mrf presented above, by the transformations depicted in Figure 17, we

obtain two ZCs of GMiMCmrf as below

• (2Λ(t)−1) rounds: with input mask (0, · · · , 0, a1, 0, · · · , 0︸ ︷︷ ︸
t
2

) and output mask (0, · · · , 0, b1),

where a1, b1 ̸= 0.

• (2Λ(t)+1) rounds: with input mask (0, · · · , 0, a1, 0, · · · , 0︸ ︷︷ ︸
t
2

) and output mask (0, · · · , 0, b1),

where a1 = b1 ̸= 0.

Then based on Theorem 9, an INT of Emrf with (2Λ(t)− 1) rounds is obtained. The
the input space is V ⊥ and the output is balanced on (0, · · · , 0, b1)·GMiMCmrf, where
V = {(0, · · · , 0, x, 0, · · · , 0︸ ︷︷ ︸

t
2

)|x ∈ Fp}.
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E⊥
mrf

Emrf
Dual Structure

ZC/INT IDC

Inverse Rotation
IDCIDC

Figure 17: Transformation from IDC of E⊥
mrf to ZC/INT of Emrf .

Experiments: All these constructed or transformed INTs and ZCs for all GMiMC
constructions presented above are verified by experiments on small instances. The details
of the experiments are given in Appendix C and our codes are provided at https://
github.com/csy1234/Links_IDC_ZC_INT.

5 Conclusion
In this paper, we have established the comprehesive links between impossible differential,
zero-correlation linear and integral cryptanalysis over the prime field Fp, for the very first
time. The links between zero-correlation linear and integral cryptanalysis are also proved
in an alternative way, through which we find that the independent conditions of the input
and output masks (differences) cannot be removed when deriving an integral distinguisher
from a zero-correlation linear hull (impossible differential) over Fp, this exhibits a difference
of these cryptanalytic methods between Fp and Fn

2 .
To showcase our refined links, we apply to GMiMC and obtain different type of im-

proved distinguishers for all GMiMC constructions, from which the gaps of symmetric
cryptanalytic methods between Fp and Fn

2 are also demonstrated in terms of attacked
rounds, even distinguishers with an arbitrary number of rounds for some special and
limited cases. The establishment of the theories over Fp behind these links, and properties
identified (be it similar or different) will bring clearer and easier understanding of security
of MPC/FHE/ZK-friendly symmetric-key primitives, which could facilitate the future
design and cryptanalysis.

Further discussions. Considering only the characteristic p is relevant and the isomor-
phism from Fpt to Ft

p, for the proposed works in this paper, there is possible generalization
to Fq where q = pt, which could be used for the potential MPC/FHE/ZK-friendly designs
over Fq in the future. Secondly, the statistical cryptanalytic method is still missing for
zero-correlation linear cryptanalysis over Fp, thus more dedicated statistical model should
be developed to evaluate the detailed complexity of the attack. Thirdly, according to
our proposed links over Fp, an integral distinguisher arising from low-degree S-box (i.e.
zero-sum property) does not imply any impossible differential or zero-correlation linear
hull, this also has been observed in [SLR+15] for the links over Fn

2 , which still needs to be
investigated further.
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A Proof of Theorem 4
Proof. We consider the following two parts.

• We first prove that for a linear hull (δ1
1 , · · · , δt

1) → (δ1
r+1, · · · , δt

r+1), if ∃E ∈ Ecrf

such that cor((δ1
1 , · · · , δt

1) · x − (δ1
r+1, · · · , δt

r+1) · E(x)) ̸= 0, then ∃E′ ∈ Eerf such
that probE′((δ1

1 , · · · , δt
1), (δ1

r+1, · · · , δt
r+1)) > 0.

As (δ1
1 , · · · , δt

1) → (δ1
r+1, · · · , δt

r+1) is a linear hull of some E ∈ Ecrf with non-zero
correlation, see Figure 4(b), then there must exist a linear characteristic with non-zero
correlation, denoted by

(δ1
1 , · · · , δt

1)→ · · · → (δ1
i , · · · , δt

i)→ · · · → (δ1
r+1, · · · , δt

r+1),
where the input of i-th round can be divided into t branches of Fp elements, that is
δi = (δ1

i , · · · , δt
i) ∈ Ft

p. Considering this linear characteristic and only one S-box in
the round function, the output mask of the non-linear layer is denoted by δ1

i ∈ Fp

and the input mask of i-th round S-box is denoted by βi ∈ Fp. Then, based on the
propagation rules of linear mask over Fp, it has δj

i = βi + δj−1
i+1 where 1 ≤ i ≤ r

and 2 ≤ j ≤ t. As for the dual structure of Ecrf , for any plaintext (x1
1, · · · , xt

1), we
construct an r-round cipher Er ∈ Eerf , such that

Er(x1
1, · · · , xt

1)− Er(x1
1 − δ1

1 , · · · , xj
1 − δj

1, · · · , xt
1 − δt

1) = (δ1
r+1, · · · , δt

r+1).

When r = 1, if δ1
1 = 0, we can define S′

1 as any possible transformation over Fp, and
if δ1

1 ̸= 0, we can define S′
1(x1

1) = x1
1 and S′

1(x1
1− δ1

1) = x1
1 + β1. Then for E1 ∈ Eerf

which adopts such S-box, there will be

E1(x1
1, · · · , xt

1)− E1(x1
1 − δ1

1 , · · · , xj
1 − δj

1, · · · , xt
1 − δt

1) = (δ2
1 − β1, · · · , δt

1 − β1, δ1
1)

= (δ1
2 , · · · , δt

2).
Suppose that we have constructed Er−1 such that

Er−1(x1
1, · · · , xt

1)− Er−1(x1
1 − δ1

1 , · · · , xj
1 − δj

1, · · · , xt
1 − δt

1) = (δ1
r , · · · , δt

r),
and let y = (y1, · · · , yt) denote the output of Er−1(x1

1, · · · , xt
1). Then in the r-th

round, if δ1
r = 0, we can define S′

r as any possible transformation over Fp, otherwise,
define S′

r as S′
r(y1) = y1 and S′

r(y1 − δ1
r) = y1 + βr. Therefore, we have

Er(x1
1, · · · , xt

1)− Er(x1
1 − δ1

1 , · · · , xj
1 − δj

1, · · · , xt
1 − δt

1) = (δ2
r − βr, · · · , δt

r − βr, δ1
r)

= (δ1
r+1, · · · , δt

r+1).
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• We secondly prove that for a differential (δ1
1 , · · · , δt

1)→ (δ1
r+1, · · · , δt

r+1), if ∃E ∈ Eerf

such that probE((δ1
1 , · · · , δt

1), (δ1
r+1, · · · , δt

r+1)) > 0, then ∃E′ ∈ Ecrf such that
cor((δ1

1 , · · · , δt
1) · x− (δ1

r+1, · · · , δt
r+1) · E′(x)) ̸= 0.

As (δ1
1 , · · · , δt

1)→ (δ1
r+1, · · · , δt

r+1) is a differential of some E ∈ Eerf with non-zero
differential probability, also see Figure 4(a), then there must exist a differential
characteristic with non-zero probability, denoted as

(δ1
1 , · · · , δt

1)→ · · · → (δ1
i , · · · , δt

i) · · · → (δ1
r+1, · · · , δt

r+1),

where δj
i ∈ Fp(1 ≤ i ≤ r, 1 ≤ j ≤ t). For this differential characteristic, the input

difference of the non-linear layer S′
i is denoted by δ1

i ∈ Fp. The output difference of
S′

i is denoted by −βi ∈ Fp, then we can connect differences of the expanding part in
the round function of E ∈ Eerf , that is δj

i = βi + δj−1
i+1 where 1 ≤ i ≤ r and 2 ≤ j ≤ t.

Considering the following fact: for mask pair (βi, δ1
i ), where δ1

i ̸= 0, there always
exists an element ai ∈ Fp such that βi = aiδ

1
i , then for Si(x) = aix, we have

cor((βi)T ·x−(δ1
i )T ·Si(x)) = cor((βi−aiδ

1
i )T ·x) = 1. For the dual structure of Ecrf ,

we construct an r-round cipher Er ∈ Ecrf such that cor((δ0, δ1)·x−(δr, δr+1)·Er(x)) ̸=
0. If r = 1, let S1(x) = a1x for δ1

1 ̸= 0 and any linear transformation over Fp otherwise.
Then all operations in E1 ∈ Ecrf are linear over Fp, which implies that there exists
an affine transformation L1(x) = A1x + B1, where x ∈ Ft

p, A1 is a t× t matrix over
Fp and B1 is a t-dimensional vector over Fp, such that E1(x) = L1x and with

cor((δ1
1 , · · · , δt

1) · x− (δ1
2 , · · · , δt

2) · E1(x)) = 1.

Assume that we have Er−1(x) = Lr−1x = Ar−1x + Br−1 where with Ar−1 is a t× t
matrix over Fp and Br−1 is a t-dimensional vector over Fp such that cor((δ1

1 , · · · , δt
1) ·

x− (δ1
r , · · · , δt

r) · Er−1(x)) = 1.

We then define Sr(x) in the r-th and get Er(x) = Lrx = Arx + Br where with
Ar is a t × t matrix over Fp and Br is a t-dimensional vector over Fp such that
cor((δ1

1 , · · · , δt
1) · x− (δ1

r+1, · · · , δt
r+1) · Er(x)) = 1. Thus, we have cor((δ1

1 , · · · , δt
1) ·

x− (δ1
r+1, · · · , δt

r+1) · Er(x)) ̸= 0.

Considering these two parts, the proof can be finished by a similar way in Theorem 1.

B Proof of Lemma 4

Proof. Let C2 =
∑

a∈A |cor(aT · x− bT · F (x))|2, then we have

C2 =
∑
a∈A

1
pt

∑
x∈Ft

p

e
2πi

p (aT ·x−bT ·F (x)) × 1
pt

∑
λ∈Ft

p

e
2πi

p (aT ·λ−bT ·F (λ))

=
∑
a∈A

1
pt

∑
x∈Ft

p

e
2πi

p (aT ·x−bT ·F (x)) × 1
pt

∑
λ∈Ft

p

e
−2πi

p (aT ·λ−bT ·F (λ))

= 1
p2t

∑
x∈Ft

p

∑
λ∈Ft

p

e
2πi

p bT ·F (λ)−bT ·F (x)
∑
a∈A

e
2πi

p aT ·(x−λ)
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Now, let θ = x− λ

C2 = 1
p2t

∑
λ+θ∈Ft

p

∑
λ∈Ft

p

e
2πi

p bT ·F (λ)−bT ·F (λ+θ)
∑
a∈A

e
2πi

p aT ·θ

= 1
p2t

∑
θ∈A⊥

∑
λ∈Ft

p

e
2πi

p bT ·F (λ)−bT ·F (λ+θ)|A|

= 1
pt

∑
λ∈Ft

p

e
2πi

p (bT ·F (λ)) 1
|A⊥|

∑
θ∈A⊥

e
2πi

p (−bT ·F (λ+θ))

= 1
pt

∑
λ∈Ft

p

e
2πi

p (bT ·F (λ))cor(−bT ·Gλ(θ)).

As claimed.

C Experiments of ZC, INT of GMiMC
We now present the details of the experiments on GMiMC’s ZC and INT over Fp as below.

For GMiMCerf:

• ZC for 9-round GMiMCerf-(p = 11, t = 4): We check the following ZC

(1, 1, 1,−2) 9R-ZC↛ (−4, 2, 2, 2),

where its correlation over Fp is zero.

• ZC for 11-round GMiMCerf-(p = 11, t = 4): We check the following ZC

(1, 1, 1,−2) 11R-ZC↛ (−2, 1, 1, 1),

where its correlation over Fp is zero.

• LC for any number of rounds GMiMCerf-(p = 5, t = 6): We check the following LC

(1, 1, 1, 1, 1, 1) Any Round LC↛ (1, 1, 1, 1, 1, 1),

where its linear probability is 1. This trail also leads to any number of rounds ZCs.

• INT for 9-round GMiMCerf-(p = 11, t = 4): We check the 9 rounds INT with input
{(x0, x1, 2x3 − x0 − x1, x3)|(x0, x1, x3) ∈ F3

p}, then the sum −2y0 + y1 + y2 + y3 of
the output (y0, y1, y2, y3) is balanced.

• INT for any number of rounds GMiMCerf-(p = 5, t = 6): We check the any number of
rounds INT with input {(x0, x1, x2, x3, x4, x0 +x1 +x2 +x3 +x4)|(x0, x1, x2, x3, x4) ∈
F5

p}, then the sum y0 of the output (y0, y1, y2, y3, y4, y5) is balanced.
For another any number of rounds INT with input {(0, x1, 1, 2, 3, 4)|x1 ∈ Fp}, the
sum y0 + y1 + y2 + y3 + y4 + y5 of the output (y0, y1, y2, y3, y4, y5) is balanced.

For GMiMCcrf:

• ZC for 9-round GMiMCcrf-(p = 11, t = 4): We check the following ZC

(0, 0, 0, 2) 9R-ZC↛ (1, 0, 0, 0),

where its correlation over Fp is zero.
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• ZC for 11-round GMiMCcrf-(p = 11, t = 4): We check the following ZC

(0, 0, 0, 2) 11R-ZC↛ (2, 0, 0, 0),

where its correlation over Fp is zero.

• ZC for any number of rounds GMiMCcrf-(p = 5, t = 6): We check the following ZC

(0, 0, 0, 0, 0,−1) Any Round ZC↛ (1, 0, 0, 0, 0, 0),

where its correlation over Fp is zero.

• INT for 9-round GMiMCcrf-(p = 11, t = 4): We check 9 rounds INT with input
{(x0, x1, x2, 1)|(x0, x1, x2) ∈ F3

p}, the sum y0 of the output (y0, y1, y2, y3) is balanced.

For GMiMCNyb:

• ZC for 7-round GMiMCNyb-(p = 11, t = 4): We check the following ZC

(2, 0, 0, 0) 7R-ZC↛ (0, 1, 0, 0),

where its correlation over Fp is zero.

• ZC for 9-round GMiMCNyb-(p = 11, t = 4): We check the following ZC

(0, 0, 1, 0) 9R-ZC↛ (0, 1, 0, 0),

where its correlation over Fp is zero.

• INT for 7-round GMiMCNyb-(p = 11, t = 4): We check 7 rounds INT with input
{(1, x1, x2, x3)|(x1, x2, x3) ∈ F3

p}, the sum y1 of the output (y0, y1, y2, y3) is balanced.

For GMiMCmrf:

• ZC for 7-round GMiMCmrf-(p = 11, t = 4): We check the following ZC

(0, 2, 0, 0) 7R-ZC↛ (0, 0, 0, 1),

where its correlation over Fp is zero.

• ZC for 9-round GMiMCmrf-(p = 11, t = 4): We check the following ZC

(0, 1, 0, 0) 9R-ZC↛ (0, 0, 0, 1),

where its correlation over Fp is zero.

• INT for 7-round GMiMCmrf-(p = 11, t = 4): We check 7 rounds INT with input
{(x0, 1, x2, x3)|(x0, x2, x3) ∈ F3

p}, the sum y3 of the output (y0, y1, y2, y3) is balanced.
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