

Bounded Surjective Quadratic Functions over \mathbb{F}_p^n for MPC-/ZK-/FHE-Friendly Symmetric Primitives ToSC 2024, March 2024

Lorenzo Grassi Ruhr-Universität Bochum, Germany RUR

RUHR UNIVERSITÄT

- Motivated by new applications such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), many MPC-/FHE-/ZK-friendly symmetric-key primitives that minimize the number of multiplications over F_p have been proposed;
- For security reasons, almost all of them are instantiated via invertible components, and permutations;
- However, invertibility is not required in many of the applications just mentioned! (E.g., hash functions for ZK, and PRF for MPC and FHE.)

Question: *can we reduce the multiplicative complexity of existing schemes by making use of* **non-invertible** *functions, without affecting the security?*

- Motivated by new applications such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), many MPC-/FHE-/ZK-friendly symmetric-key primitives that minimize the number of multiplications over F_p have been proposed;
- For security reasons, almost all of them are instantiated via invertible components, and permutations;
- However, invertibility is not required in many of the applications just mentioned! (E.g., hash functions for ZK, and PRF for MPC and FHE.)

Question: can we reduce the multiplicative complexity of existing schemes by making use of **non-invertible** functions, without affecting the security?

- Motivated by new applications such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), many MPC-/FHE-/ZK-friendly symmetric-key primitives that minimize the number of multiplications over F_p have been proposed;
- For security reasons, almost all of them are instantiated via invertible components, and permutations;
- However, invertibility is not required in many of the applications just mentioned! (E.g., hash functions for ZK, and PRF for MPC and FHE.)

Question: *can we reduce the multiplicative complexity of existing schemes by making use of* **non-invertible** *functions, without affecting the security?*

- Motivated by new applications such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), many MPC-/FHE-/ZK-friendly symmetric-key primitives that minimize the number of multiplications over F_p have been proposed;
- For security reasons, almost all of them are instantiated via invertible components, and permutations;
- However, invertibility is not required in many of the applications just mentioned! (E.g., hash functions for ZK, and PRF for MPC and FHE.)

Question: *can we reduce the multiplicative complexity of existing schemes by making use of* **non-invertible** *functions, without affecting the security?*

- Preliminary: Bounded Surjective Functions
- 2 From MiMC to MiMC++
- 3 Bounded-Surjective Functions over \mathbb{F}_p^n
- **4** From HadesMiMC to PLUTO
- 5 Summary and Open Problems

- Prom MiMC to MiMC++
- \bigcirc Bounded-Surjective Functions over \mathbb{F}^n_p
- Interpretation Provide Amplitude Amplitude
- 5 Summary and Open Problems

A function $\mathcal{F} : X \to Y$ is surjective if $\forall y \in Y$, there exists $x \in X$ such that $\mathcal{F}(x) = y$.

Definition 1

Let $l \ge 1$ be an integer. The function \mathcal{F} is *l*-bounded surjective if for any element $y \in Y$, there exist at most *l* distinct elements $\mathfrak{X} = \{x_0, x_1, \dots, x_{l-1}\} \subseteq X$ such that

$$\mathcal{F}(x_0) = \mathcal{F}(x_1) = \dots \mathcal{F}(x_{l-1}) = y$$
, and $\forall z \notin \mathfrak{X} : \mathcal{F}(z) \neq y$.

▶ Let $\mathcal{F} : X \to Y$ be $l_{\mathcal{F}}$ -bounded surjective, and let $\mathcal{G} : Y \to Z$ be $\lambda_{\mathcal{G}}$ -bounded surjective. Then $\mathcal{G} \circ \mathcal{F} : X \to Z$ is (at most) $(l_{\mathcal{F}} \cdot \lambda_{\mathcal{G}})$ -bounded surjective.

Let F : X → X be a *l*-bounded surjective function. The probability that a collision occurs at the output of F is upper bounded by (*l* − 1)/(|X| − 1).

A function $\mathcal{F} : X \to Y$ is surjective if $\forall y \in Y$, there exists $x \in X$ such that $\mathcal{F}(x) = y$.

Definition 1

Let $l \ge 1$ be an integer. The function \mathcal{F} is *l*-bounded surjective if for any element $y \in Y$, there exist at most *l* distinct elements $\mathfrak{X} = \{x_0, x_1, \dots, x_{l-1}\} \subseteq X$ such that

$$\mathcal{F}(x_0) = \mathcal{F}(x_1) = \dots \mathcal{F}(x_{l-1}) = y$$
, and $\forall z \notin \mathfrak{X} : \mathcal{F}(z) \neq y$.

► Let $\mathcal{F} : X \to Y$ be $I_{\mathcal{F}}$ -bounded surjective, and let $\mathcal{G} : Y \to Z$ be $\lambda_{\mathcal{G}}$ -bounded surjective. Then $\mathcal{G} \circ \mathcal{F} : X \to Z$ is (at most) $(I_{\mathcal{F}} \cdot \lambda_{\mathcal{G}})$ -bounded surjective.

Let F : X → X be a *l*-bounded surjective function. The probability that a collision occurs at the output of F is upper bounded by (*l* − 1)/(|X| − 1).

A function $\mathcal{F} : X \to Y$ is surjective if $\forall y \in Y$, there exists $x \in X$ such that $\mathcal{F}(x) = y$.

Definition 1

Let $l \ge 1$ be an integer. The function \mathcal{F} is *l*-bounded surjective if for any element $y \in Y$, there exist at most *l* distinct elements $\mathfrak{X} = \{x_0, x_1, \dots, x_{l-1}\} \subseteq X$ such that

$$\mathcal{F}(x_0) = \mathcal{F}(x_1) = \dots \mathcal{F}(x_{l-1}) = y$$
, and $\forall z \notin \mathfrak{X} : \mathcal{F}(z) \neq y$.

- ► Let $\mathcal{F} : X \to Y$ be $I_{\mathcal{F}}$ -bounded surjective, and let $\mathcal{G} : Y \to Z$ be $\lambda_{\mathcal{G}}$ -bounded surjective. Then $\mathcal{G} \circ \mathcal{F} : X \to Z$ is (at most) $(I_{\mathcal{F}} \cdot \lambda_{\mathcal{G}})$ -bounded surjective.
- Let F : X → X be a *l*-bounded surjective function. The probability that a collision occurs at the output of F is upper bounded by (*l* − 1)/(|X| − 1).

2 From MiMC to MiMC++

 \fbox{I} Bounded-Surjective Functions over \mathbb{F}^n_p

- Interpretation Interpretatio Interpretation Interpretation Interpretation Inte
- 5 Summary and Open Problems

MiMC [AGR+16] (Asiacrypt'16)

▶ Instantiated via $x \mapsto x^d$, where $d \ge 3$ is the smallest integer s.t. gcd(d, p - 1) = 1;

• Security level $\kappa \approx \log_2(p)$ and data complexity $\leq 2^{\kappa/2} \approx \sqrt{p} \Longrightarrow$ number of rounds $\approx \log_d(2^{\kappa}) = \kappa \cdot \log_d(2)$. E.g., 73 rounds for d = 3, $p \approx 2^{128}$ and $\kappa = 128$;

Usually used in CTR-mode (due to very expensive decryption!):

 $(x, \mathbb{N}) \mapsto (x + \operatorname{MiMC}_k(\mathbb{N}), \mathbb{N})$.

MiMC [AGR+16] (Asiacrypt'16)

▶ Instantiated via $x \mapsto x^d$, where $d \ge 3$ is the smallest integer s.t. gcd(d, p - 1) = 1;

• Security level $\kappa \approx \log_2(p)$ and data complexity $\leq 2^{\kappa/2} \approx \sqrt{p} \Longrightarrow$ number of rounds $\approx \log_d(2^{\kappa}) = \kappa \cdot \log_d(2)$. E.g., 73 rounds for d = 3, $p \approx 2^{128}$ and $\kappa = 128$;

► Usually used in CTR-mode (due to very expensive decryption!):

 $(x, \mathbb{N}) \mapsto (x + \operatorname{MiMC}_k(\mathbb{N}), \mathbb{N}).$

From MiMC to MiMC++

- Independently of *p*, the function $x \mapsto x^2$ is 2-bounded surjective;
- ▶ The PRF MiMC++ over \mathbb{F}_p corresponds to MiMC instantiated with $x \mapsto x^2$ (instead of $x \mapsto x^d$);
- Let κ be the security level (in bits). Assuming

 $p > 2^{3 \cdot \kappa}$.

and data complexity $\leq 2^{\kappa/2}$, then number of rounds given by

 $3 + \left\lceil \kappa - 2 \cdot \log_2(\kappa) \right\rceil$.

E.g., 117 rounds for $hopprox 2^{384}$ and $\kappa=128$.

From MiMC to MiMC++

- Independently of *p*, the function $x \mapsto x^2$ is 2-bounded surjective;
- ▶ The PRF MiMC++ over \mathbb{F}_p corresponds to MiMC instantiated with $x \mapsto x^2$ (instead of $x \mapsto x^d$);
- Let κ be the security level (in bits). Assuming

 $p>2^{3\cdot\kappa}.$

and data complexity $\leq 2^{\kappa/2}$, then number of rounds given by

 $3 + \left\lceil \kappa - 2 \cdot \log_2(\kappa) \right\rceil$.

E.g., 117 rounds for $p \approx 2^{384}$ and $\kappa = 128$.

Security Analysis of MiMC++ (1/2)

Security analysis analogous to the one of MiMC: GCD is the most powerful attack;

Main Differences due to the non-invertibility:

 About collisions: since R-round MiMC++ is ≤ 2^R-bounded surjective, the probability that a collision occurs is

$$\leq \frac{2^R - 1}{p - 1} \approx \frac{2^{3 + \lceil \kappa - 2 \cdot \log_2(\kappa) \rceil}}{2^{3\kappa}} \approx 2^{-2 \cdot \kappa}$$

Since $\leq 2^{\kappa/2}$ texts are available for the attack, observing a collision is unrealistic.

Security Analysis of MiMC++ (1/2)

Security analysis analogous to the one of MiMC: GCD is the most powerful attack;

Main Differences due to the non-invertibility:

1. About *collisions*: since *R*-round MiMC++ is $\leq 2^{R}$ -bounded surjective, the probability that a collision occurs is

$$\leq rac{2^R-1}{p-1}pprox rac{2^{3+\lceil\kappa-2\cdot\log_2(\kappa)
ceil}}{2^{3\kappa}}pprox 2^{-2\cdot\kappa}\,.$$

Since $\leq 2^{\kappa/2}$ texts are available for the attack, observing a collision is unrealistic.

Security Analysis of MiMC++ (2/2)

- 2. Polynomial representation of MiMC++:
- ▶ forward direction: over R rounds, it is dense (as in MiMC) and has degree $\leq 2^{R}$;
- ▶ backward direction: $x \mapsto x^2$ is not invertible, but local inverses exist. E.g., if $p = 3 \mod 4$, the inverses of $x \mapsto x^2$ are $x \mapsto \pm x^{\frac{p+1}{4}}$. Still:
 - 1. such local inverses have usually high degree (as in the case of MiMC);
 - 2. it is difficult to *efficiently* combine/set up local inverses over multiple rounds (*open problem for future work*).

We conjecture that few rounds are sufficient to prevent algebraic attacks in the backward direction.

Security Analysis of MiMC++ (2/2)

- 2. Polynomial representation of MiMC++:
- ▶ forward direction: over R rounds, it is dense (as in MiMC) and has degree $\leq 2^{R}$;
- ▶ backward direction: $x \mapsto x^2$ is not invertible, but local inverses exist. E.g., if $p = 3 \mod 4$, the inverses of $x \mapsto x^2$ are $x \mapsto \pm x^{\frac{p+1}{4}}$. Still:
 - 1. such local inverses have usually high degree (as in the case of MiMC);
 - 2. it is difficult to *efficiently* combine/set up local inverses over multiple rounds (*open problem for future work*).

We conjecture that few rounds are sufficient to prevent algebraic attacks in the backward direction.

Security Analysis of MiMC++ (2/2)

- 2. Polynomial representation of MiMC++:
- ▶ forward direction: over R rounds, it is dense (as in MiMC) and has degree $\leq 2^{R}$;
- ▶ backward direction: $x \mapsto x^2$ is not invertible, but local inverses exist. E.g., if $p = 3 \mod 4$, the inverses of $x \mapsto x^2$ are $x \mapsto \pm x^{\frac{p+1}{4}}$. Still:
 - 1. such local inverses have usually high degree (as in the case of MiMC);
 - 2. it is difficult to *efficiently* combine/set up local inverses over multiple rounds (*open problem for future work*).

We conjecture that few rounds are sufficient to prevent algebraic attacks in the backward direction.

Multiplicative Complexity of MiMC and MiMC++ in the case of MPC applications:

PRF	$(\log_2 p, \kappa)$	# Rounds	# Multiplications		
MiMC++	(384 , 128)	117	117		
MiMC $(d = 3)$	(128, 128)	73	146 (+ 24 . 8 %)		
MiMC $(d = 5)$	(128, 128)	51	153 (+ 30.8 %)		
MiMC $(d = 7)$	(128, 128)	42	168 (+ 43.6 %)		
(See the paper for a more detailed comparison!)					

(**Remark:** The size of p does **not** impact the performance of the MPC application)

From MiMC to MiMC++

3 Bounded-Surjective Functions over \mathbb{F}_p^n

- Interpretation Provide Amplitude Amplitude
- 5 Summary and Open Problems

First Observation

Working over \mathbb{F}_{p}^{n} , the non-linear layer

$$[x_0, x_1, \dots, x_{n-1}] \mapsto [x_0^2, x_1^2, \dots, x_{n-1}^2]$$

is **not** a good choice in general:

number of collisions given by

$$rac{(2 \cdot p - 1)^n - p^n}{p^n \cdot (p^n - 1)} pprox rac{2^n - 1}{p^n - 1}$$
 ;

key-recovery attacks can be potentially set up by exploiting the fact that collisions are of the form

$$[x_0^2, x_1^2, \dots, x_{n-1}^2] = [y_0^2, y_1^2, \dots, y_{n-1}^2] \qquad \Longleftrightarrow \qquad x_i = \pm y_i \,.$$

Starting Point: SI-Lifting Functions S_F

The Shift Invariant (SI) lifting function $\mathcal{S}_F : \mathbb{F}_p^n \to \mathbb{F}_p^n$ induced by $F : \mathbb{F}_p^m \to \mathbb{F}_p$ is defined as

$$\mathcal{S}_F(x_0, x_1, \dots, x_{n-1}) = y_0 \|y_1\| \dots \|y_{n-1}$$
 where
 $\forall i \in \{0, 1, \dots, n-1\}: \qquad y_i := F(x_i, x_{i+1}, \dots, x_{i+m-1}).$

Theorem 2 ([GOPS22])

Let $p \geq 3$ be a prime, and let $n \geq m$. Let $F : \mathbb{F}_p^m \to \mathbb{F}_p$ be a quadratic function. Given \mathcal{S}_F over \mathbb{F}_p^n :

- if m = 2, then S_F is never invertible for each $n \ge 3$;
- ▶ if m = 3, then S_F is never invertible for each $n \ge 5$.

Starting Point: SI-Lifting Functions S_F

The Shift Invariant (SI) lifting function $\mathcal{S}_F : \mathbb{F}_p^n \to \mathbb{F}_p^n$ induced by $F : \mathbb{F}_p^m \to \mathbb{F}_p$ is defined as

$$\mathcal{S}_{F}(x_{0}, x_{1}, \dots, x_{n-1}) = y_{0} \|y_{1}\| \dots \|y_{n-1} \quad \text{where} \\ \forall i \in \{0, 1, \dots, n-1\}: \qquad y_{i} := F(x_{i}, x_{i+1}, \dots, x_{i+m-1}).$$

Theorem 2 ([GOPS22])

Let $p \ge 3$ be a prime, and let $n \ge m$. Let $F : \mathbb{F}_p^m \to \mathbb{F}_p$ be a quadratic function. Given \mathcal{S}_F over \mathbb{F}_p^n :

- ▶ if m = 2, then S_F is **never** invertible for each $n \ge 3$;
- if m = 3, then S_F is never invertible for each $n \ge 5$.

Goal and Main Result

Goal: Find the quadratic function $F: \mathbb{F}_p^2 \to \mathbb{F}_p$ such that

- 1. the number of collisions in \mathcal{S}_F over \mathbb{F}_p^n is minimized;
- 2. minimize the *multiplicative cost* of computing S_F .

Such function is $F(x_0, x_1) = x_1^2 + x_0$ (or similar) for which

• the probability that a collision occurs at the output of \mathcal{S}_F over \mathbb{F}_p^n is

$$rac{(p-1)^n}{p^n\cdot(p^n-1)/2}\leq rac{2}{p^n}\qquad (\ll 1 ext{ for huge } p);$$

▶ a (non-trivial) collision $S_F(x_0, x_1, ..., x_{n-1}) = S_F(y_0, y_1, ..., y_{n-1})$ implies $x_i \neq y_i$ for all $i \in \{0, 1, 2, ..., n-1\}$;

▶ the corresponding function S_F is 2^n -bounded surjective.

Goal and Main Result

Goal: Find the quadratic function $F : \mathbb{F}_p^2 \to \mathbb{F}_p$ such that

1. the number of collisions in \mathcal{S}_F over \mathbb{F}_p^n is minimized;

2. minimize the *multiplicative cost* of computing S_F .

Such function is $F(x_0, x_1) = x_1^2 + x_0$ (or similar) for which

▶ the probability that a collision occurs at the output of S_F over \mathbb{F}_p^n is

$$rac{(p-1)^n}{p^n\cdot(p^n-1)/2}\leq rac{2}{p^n}\qquad (\ll 1 ext{ for huge } p);$$

• a (non-trivial) collision $\mathcal{S}_F(x_0, x_1, \dots, x_{n-1}) = \mathcal{S}_F(y_0, y_1, \dots, y_{n-1})$ implies $x_i \neq y_i$ for all $i \in \{0, 1, 2, \dots, n-1\}$;

• the corresponding function S_F is 2^n -bounded surjective.

- Preliminary: Bounded Surjective Functions
- From MiMC to MiMC++
- \bigcirc Bounded-Surjective Functions over \mathbb{F}^n_p
- **4** From HadesMiMC to PLUTO
- 5 Summary and Open Problems

HadesMiMC [GLR+20] (Eurocrypt'20)

- $S(x) = x^d$ where gcd(d, p 1) = 1;
- ► Linear layer: multiplication with MDS matrix ∈ ℝ^{n×n}_p (for which no arbitrary long subspace trail in internal rounds exists);
- Number of rounds ($\kappa \approx \log_2(p)$):

 $R_F = 2 \cdot R_f = 6$, $R_P pprox \log_d(p)$;

Used in CTR mode.

From HadesMiMC to PLUTO(1/2)

Multiplicative cost of each external/full round:

$$(\lfloor \log_2(d)
floor + \mathsf{hw}(d) - 1) \cdot n \geq \mathbf{2} \cdot \mathbf{n}$$
 ;

- ► External/Full Rounds crucial for
 - "masking" the internal rounds;
 - simple security argument against statistical attacks (e.g., via wide-trail design strategy);

Idea: replace

$$(x_0, x_1, \ldots, x_{n-1}) \mapsto (x_0^d, x_1^d, \ldots, x_{n-1}^d)$$

with

$$(x_0, x_1, \ldots, x_{n-1}) \mapsto (x_1^2 + x_0, x_2^2 + x_1, \ldots, x_0^2 + x_{n-1})$$

which costs **n** multiplications independently of p.

From HadesMiMC to PLUTO(1/2)

Multiplicative cost of each external/full round:

$$(\lfloor \log_2(d)
floor + \mathsf{hw}(d) - 1) \cdot n \geq \mathbf{2} \cdot \mathbf{n}$$
 ;

- External/Full Rounds crucial for
 - "masking" the internal rounds;
 - simple security argument against statistical attacks (e.g., via wide-trail design strategy);
- ► Idea: replace

$$(x_0, x_1, \ldots, x_{n-1}) \mapsto (x_0^d, x_1^d, \ldots, x_{n-1}^d)$$

with

$$(x_0, x_1, \ldots, x_{n-1}) \mapsto (x_1^2 + x_0, x_2^2 + x_1, \ldots, x_0^2 + x_{n-1})$$

which costs **n** multiplications independently of p.

From HadesMiMC to PLUTO(2/2)

- Internal rounds instantiated with the degree-4 Lai-Massey scheme proposed for HY-DRA [GØS+22] (besides linear layer for destroying invariant subspace trails);
- Security analogous to the one proposed for HadesMiMC. Main differences:
 Collision probability at the output of PLUTO (assuming invertible internal rounds):

$$\leq \frac{2^{8\cdot n}-1}{p^n-1} \approx \left(\frac{2^8}{p}\right)^n \leq 2^{-2\cdot\kappa} \qquad (\text{assuming } \kappa \leq \frac{n}{2} \cdot (\log_2(p)-8));$$

▶ The external rounds are not invertible, and only local inverses can be set up (similarly to MiMC++): we conjecture that 4 + 4 = 8 external rounds are sufficient to frustrate algebraic attacks in the backward direction.

From HadesMiMC to PLUTO(2/2)

- Internal rounds instantiated with the degree-4 Lai-Massey scheme proposed for HY-DRA [GØS+22] (besides linear layer for destroying invariant subspace trails);
- Security analogous to the one proposed for HadesMiMC. Main differences:
 - ► Collision probability at the output of PLUTO (assuming invertible internal rounds):

$$\leq \frac{2^{8\cdot n}-1}{p^n-1} \approx \left(\frac{2^8}{p}\right)^n \leq 2^{-2\cdot\kappa} \qquad (\text{assuming } \kappa \leq \frac{n}{2} \cdot (\log_2(p)-8));$$

▶ The external rounds are not invertible, and only local inverses can be set up (similarly to MiMC++): we conjecture that 4 + 4 = 8 external rounds are sufficient to frustrate algebraic attacks in the backward direction.

Comparison between HADESMiMC (instantiated with $x \mapsto x^3$) and PLUTO for the case $p \approx 2^{128}$, $\kappa = 128$, and several values of $n \in \{4, 8, 12, 16\}$:

	n	R_F	R_P	Multiplicative Complexity
HADESMIMC $(d = 3)$	4	6	47	142 (+ 22.4 %)
Pluto	4	8	42	116
HADESMIMC $(d = 3)$	8	6	48	192 (+ 24.7 %)
Pluto	8	8	45	154
HADESMIMC $(d = 3)$	12	6	49	242 (+ 24.7 %)
Pluto	12	8	49	194
HADESMIMC $(d = 3)$	16	6	49	290 (+ 26.1 %)
Pluto	16	8	51	230

- Preliminary: Bounded Surjective Functions
- From MiMC to MiMC++
- \bigcirc Bounded-Surjective Functions over \mathbb{F}^n_p
- In the second second
- 5 Summary and Open Problems

Summary and Open Problems

- We showed that the multiplicative complexity of several MPC-/FHE-/ZK-friendly schemes can be improved by making use of non-invertible non-linear layers;
- Several open problems: understand in a better way how to exploit the *local inverses* to set up MitM algebraic attacks!

Remark:

we discourage the use of low-degree non-bijective components for designing symmetric primitives in which the internal state is not obfuscated by a secret (e.g., a secret key)!

Summary and Open Problems

- We showed that the multiplicative complexity of several MPC-/FHE-/ZK-friendly schemes can be improved by making use of non-invertible non-linear layers;
- Several open problems: understand in a better way how to exploit the *local inverses* to set up MitM algebraic attacks!

Remark:

we discourage the use of low-degree non-bijective components for designing symmetric primitives in which the internal state is not obfuscated by a secret (e.g., a secret key)!

Thanks for your attention!

Questions?

Comments?

About Number of Collisions of S_F via $F(x_0, x_1) = x_1^2 + x_0$

The collision
$$\mathcal{S}_F(x_0, x_1, \dots, x_{n-1}) = \mathcal{S}_F(x'_0, x'_1, \dots, x'_{n-1})$$
 corresponds to

$$\begin{bmatrix} 0 & d_1 & 0 & \dots & 0 \\ 0 & 0 & d_2 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & d_{n-1} \\ d_0 & 0 & 0 & \dots & 0 \end{bmatrix} \times \begin{bmatrix} s_0 \\ s_1 \\ \dots \\ s_{n-2} \\ s_{n-1} \end{bmatrix} = - \begin{bmatrix} d_0 \\ d_1 \\ \dots \\ d_{n-2} \\ d_{n-1} \end{bmatrix}$$

where $d_i := x_i - x'_i$ and $s_i := x_i + x'_i$ for each *i*.

Hence, a collision exists *only* for $(d_0, d_1, \ldots, d_{n-1}) \in \mathbb{F}_p^n$ such that

that is, $(p-1)^n$ values.

About Number of Collisions of S_F via $F(x_0, x_1) = x_1^2 + x_0$

The collision
$$\mathcal{S}_F(x_0, x_1, \dots, x_{n-1}) = \mathcal{S}_F(x'_0, x'_1, \dots, x'_{n-1})$$
 corresponds to

$$\begin{bmatrix} 0 & d_1 & 0 & \dots & 0 \\ 0 & 0 & d_2 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & d_{n-1} \\ d_0 & 0 & 0 & \dots & 0 \end{bmatrix} \times \begin{bmatrix} s_0 \\ s_1 \\ \dots \\ s_{n-2} \\ s_{n-1} \end{bmatrix} = - \begin{bmatrix} d_0 \\ d_1 \\ \dots \\ d_{n-2} \\ d_{n-1} \end{bmatrix}$$

where $d_i := x_i - x'_i$ and $s_i := x_i + x'_i$ for each *i*.

Hence, a collision exists only for $(d_0, d_1, \dots, d_{n-1}) \in \mathbb{F}_p^n$ such that $\forall i \in \{0, 1, \dots, n-1\}: \quad d_i \neq 0,$

that is, $(p-1)^n$ values.

Goal: each output y of \mathcal{S}_F over \mathbb{F}_p^n admits at most 2^n pre-images.

▶ Given y_i = x²_{i+1} + x_i, then x_i = G_{yi}(x_{i+1}) := y_i - x²_{i+1}, where G_y quadratic;
 ▶ Working iteratively:

$$\begin{array}{l} x_0 = G_{y_0}(x_1) = G_{y_0} \circ G_{y_1}(x_2) = \ldots = G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0) \\ \Longrightarrow \qquad G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0) - x_0 = 0 \end{array}$$

where deg $(G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}) = 2^n$;

▶ The previous equation admits at most 2^n solutions in x_0 . For each x_0 , it is possible to find the other variables via $x_i = G_{y_i}(x_{i+1})$.

Goal: each output y of \mathcal{S}_F over \mathbb{F}_p^n admits at most 2^n pre-images.

$$\begin{aligned} x_0 &= G_{y_0}(x_1) = G_{y_0} \circ G_{y_1}(x_2) = \ldots = G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0) \\ \implies \qquad G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0) - x_0 = 0 \end{aligned}$$

where deg $(G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}) = 2^n$;

▶ The previous equation admits at most 2^n solutions in x_0 . For each x_0 , it is possible to find the other variables via $x_i = G_{v_i}(x_{i+1})$.

Goal: each output y of \mathcal{S}_F over \mathbb{F}_p^n admits at most 2^n pre-images.

where deg $(G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}) = 2^n$;

▶ The previous equation admits at most 2^n solutions in x_0 . For each x_0 , it is possible to find the other variables via $x_i = G_{y_i}(x_{i+1})$.

Goal: each output y of \mathcal{S}_F over \mathbb{F}_p^n admits at most 2^n pre-images.

▶ Given y_i = x²_{i+1} + x_i, then x_i = G_{yi}(x_{i+1}) := y_i - x²_{i+1}, where G_y quadratic;
 ▶ Working iteratively:

where deg $(G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}) = 2^n$;

► The previous equation admits at most 2ⁿ solutions in x₀. For each x₀, it is possible to find the other variables via x_i = G_{yi}(x_{i+1}).

From HadesMiMC to PLUTO: Internal Rounds

Internal rounds instantiated with the same degree-4 Lai-Massey scheme used in HY-DRA [GØS+22] (besides linear layer for destroying invariant subspace trails):

$$(x_0, x_1, \ldots, x_{n-1}) \mapsto (x_0 + z, x_1 + z, \ldots, x_{n-1} + z)$$

where

$$z := \left(\left(\sum_{i} \gamma_i^{(0)} \cdot x_i \right)^2 + \sum_{i} \gamma_i^{(1)} \cdot x_i \right)^2$$

such that $[\gamma_0^{(0)}, \gamma_1^{(0)}, \dots, \gamma_{n-1}^{(0)}]$ and $[\gamma_0^{(1)}, \gamma_1^{(1)}, \dots, \gamma_{n-1}^{(1)}]$ are linearly independent;

• Cost of each internal round: 2 multiplications *independently of p*.

References I

- M.R. Albrecht, L. Grassi, C. Rechberger, A. Roy and T. Tiessen MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity. ASIACRYPT 2016
- L. Grassi, D. Khovratovich, A. Roy, C. Rechberger and M. Schofnegger Poseidon: A New Hash Function for Zero-Knowledge Proof Systems. USENIX 2021
- L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru and M. Schofnegger On a Generalization of Substitution-Permutation Networks: The HADES Design Strategy. EUROCRYPT 2020

📚 L. Grassi, S. Onofri, M. Pedicini, L. Sozzi

Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over $(\mathbb{F}_p)^n$. FSE/ToSC 2022

L. Grassi, M. Øygarden, M. Schofnegger and R. Walch From Farfalle to Megafono via Ciminion: The PRF Hydra for MPC Applications. EUROCRYPT 2022