

Bounded Surjective Quadratic Functions over \mathbb{F}_p^n $\frac{n}{p}$ for MPC-/ZK-/FHE-Friendly Symmetric Primitives

ToSC 2024, March 2024

Lorenzo Grassi Ruhr-Universität Bochum, Germany

RUR

**RUHR
UNIVERSITÄT**

- ▶ Motivated by new applications such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), many MPC- /FHE-/ZK-friendly symmetric-key primitives that minimize the number of multiplications over \mathbb{F}_p have been proposed;
- \triangleright For security reasons, almost all of them are instantiated via invertible components,
- \triangleright However, invertibility is **not** required in many of the applications just mentioned!

Question: can we reduce the multiplicative complexity of existing schemes by making use of non-invertible functions, without affecting the security?

- ▶ Motivated by new applications such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), many MPC- /FHE-/ZK-friendly symmetric-key primitives that minimize the number of multiplications over \mathbb{F}_p have been proposed;
- \triangleright For security reasons, almost all of them are instantiated via invertible components, and permutations;
- ▶ However, *invertibility is* **not** required in many of the applications just mentioned!

Question: can we reduce the multiplicative complexity of existing schemes by making use of non-invertible functions, without affecting the security?

- ▶ Motivated by new applications such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), many MPC- /FHE-/ZK-friendly symmetric-key primitives that minimize the number of multiplications over \mathbb{F}_p have been proposed;
- \triangleright For security reasons, almost all of them are instantiated via invertible components, and permutations;
- \triangleright However, invertibility is **not** required in many of the applications just mentioned! (E.g., hash functions for ZK, and PRF for MPC and FHE.)

Question: can we reduce the multiplicative complexity of existing schemes by making use of non-invertible functions, without affecting the security?

- ▶ Motivated by new applications such as secure Multi-Party Computation (MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), many MPC- /FHE-/ZK-friendly symmetric-key primitives that minimize the number of multiplications over \mathbb{F}_p have been proposed;
- \triangleright For security reasons, almost all of them are instantiated via invertible components, and permutations;
- \triangleright However, invertibility is **not** required in many of the applications just mentioned! (E.g., hash functions for ZK, and PRF for MPC and FHE.)

Question: can we reduce the multiplicative complexity of existing schemes by making use of non-invertible functions, without affecting the security?

- [Preliminary: Bounded Surjective Functions](#page-6-0)
- [From MiMC to](#page-10-0) MiMC++
- 3 [Bounded-Surjective Functions over](#page-21-0) \mathbb{F}_p^n
- [From HadesMiMC to](#page-27-0) PLUTO
- **5** [Summary and Open Problems](#page-34-0)

- [From MiMC to](#page-10-0) MiMC++
- 3 [Bounded-Surjective Functions over](#page-21-0) \mathbb{F}_p^n
- 4 [From HadesMiMC to](#page-27-0) PLUTO
- **5** [Summary and Open Problems](#page-34-0)

A function $\mathcal{F}: X \to Y$ is surjective if $\forall y \in Y$, there exists $x \in X$ such that $\mathcal{F}(x) = y$.

Definition 1

Let $l > 1$ be an integer. The function F is l-**bounded surjective** if for any element $y \in Y$, there exist at most *l* distinct elements $\mathfrak{X} = \{x_0, x_1, \ldots, x_{l-1}\} \subseteq X$ such that

$$
\mathcal{F}(x_0)=\mathcal{F}(x_1)=\ldots \mathcal{F}(x_{l-1})=y\,,\quad \text{ and}\quad \forall z\notin \mathfrak{X}:\quad \mathcal{F}(z)\neq y\,.
$$

- ▶ Let $\mathcal{F}: X \to Y$ be $\iota_{\mathcal{F}}$ -bounded surjective, and let $\mathcal{G}: Y \to Z$ be $\lambda_{\mathcal{G}}$ -bounded surjective. Then $\mathcal{G} \circ \mathcal{F} : X \to Z$ is (at most) $(I_{\mathcal{F}} \cdot \lambda_{\mathcal{G}})$ -bounded surjective.
- ▶ Let $\mathcal{F}: X \to X$ be a *l*-bounded surjective function. The probability that a collision

A function $\mathcal{F}: X \to Y$ is surjective if $\forall y \in Y$, there exists $x \in X$ such that $\mathcal{F}(x) = y$.

Definition 1

Let $l > 1$ be an integer. The function F is l-**bounded surjective** if for any element $y \in Y$, there exist at most *l* distinct elements $\mathfrak{X} = \{x_0, x_1, \ldots, x_{l-1}\} \subseteq X$ such that

$$
\mathcal{F}(x_0)=\mathcal{F}(x_1)=\ldots \mathcal{F}(x_{l-1})=y\,,\quad \text{ and}\quad \forall z\notin \mathfrak{X}:\quad \mathcal{F}(z)\neq y\,.
$$

► Let $\mathcal{F}: X \to Y$ be $\iota_{\mathcal{F}}$ -bounded surjective, and let $\mathcal{G}: Y \to Z$ be $\lambda_{\mathcal{G}}$ -bounded surjective. Then $G \circ F : X \to Z$ is (at most) $(I_F \cdot \lambda_G)$ -bounded surjective.

▶ Let $\mathcal{F}: X \rightarrow X$ be a *l*-bounded surjective function. The probability that a collision

A function $\mathcal{F}: X \to Y$ is surjective if $\forall y \in Y$, there exists $x \in X$ such that $\mathcal{F}(x) = y$.

Definition 1

Let $l > 1$ be an integer. The function F is l-**bounded surjective** if for any element $y \in Y$, there exist at most *l* distinct elements $\mathfrak{X} = \{x_0, x_1, \ldots, x_{l-1}\} \subseteq X$ such that

$$
\mathcal{F}(x_0)=\mathcal{F}(x_1)=\ldots \mathcal{F}(x_{l-1})=y\,,\quad \text{ and}\quad \forall z\notin \mathfrak{X}:\quad \mathcal{F}(z)\neq y\,.
$$

- ► Let $\mathcal{F}: X \to Y$ be $\iota_{\mathcal{F}}$ -bounded surjective, and let $\mathcal{G}: Y \to Z$ be $\lambda_{\mathcal{G}}$ -bounded surjective. Then $G \circ F : X \to Z$ is (at most) $(I_F \cdot \lambda_G)$ -bounded surjective.
- ▶ Let $\mathcal{F}: X \to X$ be a *l*-bounded surjective function. The probability that a collision occurs at the output of F is upper bounded by $(l-1)/(|X|-1)$.

[From MiMC to](#page-10-0) MiMC++

3 [Bounded-Surjective Functions over](#page-21-0) \mathbb{F}_p^n

- 4 [From HadesMiMC to](#page-27-0) PLUTO
- **5** [Summary and Open Problems](#page-34-0)

MiMC [\[AGR+16\]](#page-45-0) (Asiacrypt'16)

▶ Instantiated via $x \mapsto x^d$, where $d \geq 3$ is the smallest integer s.t. $gcd(d, p - 1) = 1$;

► Security level $\kappa \approx \log_2(p)$ and data complexity $\leq 2^{\kappa/2} \approx \sqrt{p} \implies$ number of rounds $\approx \log_d(2^\kappa) = \kappa \cdot \log_d(2)$. E.g., 73 rounds for $d=$ 3, $\rho \approx 2^{128}$ and $\kappa = 128;$

▶ Usually used in CTR-mode (due to very expensive decryption!):

MiMC [\[AGR+16\]](#page-45-0) (Asiacrypt'16)

▶ Instantiated via $x \mapsto x^d$, where $d \geq 3$ is the smallest integer s.t. $gcd(d, p - 1) = 1$;

► Security level $\kappa \approx \log_2(p)$ and data complexity $\leq 2^{\kappa/2} \approx \sqrt{p} \implies$ number of rounds $\approx \log_d(2^\kappa) = \kappa \cdot \log_d(2)$. E.g., 73 rounds for $d=$ 3, $\rho \approx 2^{128}$ and $\kappa = 128;$

▶ Usually used in CTR-mode (due to very expensive decryption!):

 $(x, N) \mapsto (x + \text{MiMC}_k(N), N)$.

From MiMC to MiMC++

- ▶ Independently of p, the function $x \mapsto x^2$ is 2-bounded surjective;
- ▶ The PRF MiMC++ over \mathbb{F}_p corresponds to MiMC instantiated with $x \mapsto x^2$ (instead of $x \mapsto x^d$);
- \blacktriangleright Let κ be the security level (in bits). Assuming

From MiMC to MiMC++

- ▶ Independently of p, the function $x \mapsto x^2$ is 2-bounded surjective;
- ▶ The PRF MiMC++ over \mathbb{F}_p corresponds to MiMC instantiated with $x \mapsto x^2$ (instead of $x \mapsto x^d$);
- \blacktriangleright Let κ be the security level (in bits). Assuming

 $p > 2^{3 \cdot \kappa}$.

and data complexity $\leq 2^{\kappa/2}$, then number of rounds given by

 $3 + \lceil \kappa - 2 \cdot \log_2(\kappa) \rceil$.

E.g., 117 rounds for $p \approx 2^{384}$ and $\kappa = 128$.

Security Analysis of MiMC++ (1/2)

Security analysis analogous to the one of MMC : GCD is the most powerful attack;

Main Differences due to the non-invertibility:

1. About *collisions*: since R-round MiMC++ is $\leq 2^R$ -bounded surjective, the probability

$$
\leq \frac{2^R-1}{\rho-1} \approx \frac{2^{3+\lceil \kappa -2\cdot \log_2(\kappa) \rceil}}{2^{3\kappa}} \approx 2^{-2\cdot \kappa}\,.
$$

Security Analysis of MiMC++ (1/2)

 \triangleright Security analysis analogous to the one of MiMC: GCD is the most powerful attack;

Main Differences due to the non-invertibility:

1. About *collisions*: since R-round MiMC++ is $\leq 2^R$ -bounded surjective, the probability that a collision occurs is

$$
\leq \frac{2^R-1}{p-1} \approx \frac{2^{3+\lceil \kappa - 2\cdot \log_2(\kappa) \rceil}}{2^{3\kappa}} \approx 2^{-2\cdot \kappa}\,.
$$

Since $\leq 2^{\kappa/2}$ texts are available for the attack, observing a collision is unrealistic.

Security Analysis of MiMC++ (2/2)

- 2. Polynomial representation of MiMC++:
- ▶ forward direction: over R rounds, it is dense (as in MiMC) and has degree $\leq 2^R$;
- ▶ backward direction: $x \mapsto x^2$ is not invertible, but local inverses exist. E.g., if $p = 3$
	-
	-

Security Analysis of MiMC++ (2/2)

- 2. Polynomial representation of MiMC++:
- ▶ forward direction: over R rounds, it is dense (as in MiMC) and has degree $\leq 2^R$;
- **▶** backward direction: $x \mapsto x^2$ is not invertible, but local inverses exist. E.g., if $p = 3$ mod 4, the inverses of $x \mapsto x^2$ are $x \mapsto \pm x^{\frac{p+1}{4}}$. Still:
	- 1. such local inverses have usually high degree (as in the case of MiMC);
	- 2. it is difficult to *efficiently* combine/set up local inverses over multiple rounds (*open prob*lem for future work).

Security Analysis of MiMC++ (2/2)

- 2. Polynomial representation of MiMC++:
- ▶ forward direction: over R rounds, it is dense (as in MiMC) and has degree $\leq 2^R$;
- **▶** backward direction: $x \mapsto x^2$ is not invertible, but local inverses exist. E.g., if $p = 3$ mod 4, the inverses of $x \mapsto x^2$ are $x \mapsto \pm x^{\frac{p+1}{4}}$. Still:
	- 1. such local inverses have usually high degree (as in the case of MiMC);
	- 2. it is difficult to *efficiently* combine/set up local inverses over multiple rounds (*open prob*lem for future work).

We conjecture that few rounds are sufficient to prevent algebraic attacks in the backward direction.

Multiplicative Complexity of MiMC and MiMC++ in the case of MPC applications:

(Remark: The size of p does not impact the performance of the MPC application)

Table of Contents

- 1 [Preliminary: Bounded Surjective Functions](#page-6-0)
- [From MiMC to](#page-10-0) MiMC++
- 3 [Bounded-Surjective Functions over](#page-21-0) \mathbb{F}_p^n
- 4 [From HadesMiMC to](#page-27-0) PLUTO
- **5** [Summary and Open Problems](#page-34-0)

First Observation

Working over \mathbb{F}_p^n , the non-linear layer

$$
[x_0, x_1, \ldots, x_{n-1}] \mapsto [x_0^2, x_1^2, \ldots, x_{n-1}^2]
$$

is not a good choice in general:

 \triangleright number of collisions given by

$$
\frac{(2 \cdot p - 1)^n - p^n}{p^n \cdot (p^n - 1)} \approx \frac{2^n - 1}{p^n - 1};
$$

 \triangleright key-recovery attacks can be potentially set up by exploiting the fact that collisions are of the form

$$
[x_0^2, x_1^2, \ldots, x_{n-1}^2] = [y_0^2, y_1^2, \ldots, y_{n-1}^2] \qquad \Longleftrightarrow \qquad x_i = \pm y_i \, .
$$

Starting Point: SI-Lifting Functions S_F

The Shift Invariant (SI) lifting function $\mathcal{S}_F:\mathbb{F}_p^n\to\mathbb{F}_p^n$ induced by $F:\mathbb{F}_p^m\to\mathbb{F}_p$ is defined as

$$
S_F(x_0, x_1, \ldots, x_{n-1}) = y_0 ||y_1|| \ldots ||y_{n-1} \quad \text{where}
$$

$$
\forall i \in \{0, 1, \ldots, n-1\} : \qquad y_i := F(x_i, x_{i+1}, \ldots, x_{i+m-1}).
$$

- ▶ if $m = 2$, then S_F is **never** invertible for each $n > 3$;
- ▶ if $m = 3$, then S_F is never invertible for each $n > 5$.

Starting Point: SI-Lifting Functions S_F

The Shift Invariant (SI) lifting function $\mathcal{S}_F:\mathbb{F}_p^n\to\mathbb{F}_p^n$ induced by $F:\mathbb{F}_p^m\to\mathbb{F}_p$ is defined as

$$
S_F(x_0, x_1, \ldots, x_{n-1}) = y_0 ||y_1|| \ldots ||y_{n-1} \quad \text{where}
$$

$$
\forall i \in \{0, 1, \ldots, n-1\} : \qquad y_i := F(x_i, x_{i+1}, \ldots, x_{i+m-1}).
$$

Theorem 2 ([GOPS22])

Let $p \geq 3$ be a prime, and let $n \geq m$. Let $F: \mathbb{F}_{p}^{m} \to \mathbb{F}_{p}$ be a **quadratic** function. Given S_F over \mathbb{F}_p^n :

- ▶ if $m = 2$, then S_F is never invertible for each $n > 3$;
- ▶ if $m = 3$, then S_F is never invertible for each $n > 5$.

Goal and Main Result

Goal: Find the quadratic function $F: \mathbb{F}_p^2 \to \mathbb{F}_p$ such that

- 1. the number of collisions in \mathcal{S}_F over \mathbb{F}_p^n is minimized;
- 2. minimize the *multiplicative cost* of computing S_F .

 \blacktriangleright the probability that a collision occurs at the output of \mathcal{S}_F over \mathbb{F}_p^n is

$$
\frac{(p-1)^n}{p^n\cdot (p^n-1)/2}\leq \frac{2}{p^n}\qquad \ (\ll 1\,\,\text{for huge}\,\,p)\,;
$$

▶ a (non-trivial) collision $S_F(x_0, x_1, ..., x_{n-1}) = S_F(y_0, y_1, ..., y_{n-1})$ implies $x_i \neq y_i$ for

 \blacktriangleright the corresponding function S_F is 2ⁿ-bounded surjective.

Goal and Main Result

Goal: Find the quadratic function $F: \mathbb{F}_p^2 \to \mathbb{F}_p$ such that

- 1. the number of collisions in \mathcal{S}_F over \mathbb{F}_p^n is minimized;
- 2. minimize the *multiplicative cost* of computing S_F .

Such function is $F(x_0, x_1) = x_1^2 + x_0$ (or similar) for which

If the probability that a collision occurs at the output of \mathcal{S}_F over \mathbb{F}_p^n is

$$
\frac{(p-1)^n}{p^n\cdot (p^n-1)/2} \leq \frac{2}{p^n} \qquad (\ll 1 \text{ for huge } p);
$$

▶ a (non-trivial) collision $S_F(x_0, x_1, ..., x_{n-1}) = S_F(y_0, y_1, ..., y_{n-1})$ implies $x_i \neq y_i$ for all $i \in \{0, 1, 2, \ldots, n-1\}$:

 \blacktriangleright the corresponding function S_F is 2ⁿ-bounded surjective.

Table of Contents

- 1 [Preliminary: Bounded Surjective Functions](#page-6-0)
- [From MiMC to](#page-10-0) MiMC++
- 3 [Bounded-Surjective Functions over](#page-21-0) \mathbb{F}_p^n
- [From HadesMiMC to](#page-27-0) PLUTO
- **5** [Summary and Open Problems](#page-34-0)

HadesMiMC [\[GLR+20\]](#page-45-1) (Eurocrypt'20)

. .

- ▶ $S(x) = x^d$ where $gcd(d, p 1) = 1$;
- ▶ Linear layer: multiplication with MDS matrix $\in \mathbb{F}_p^{n \times n}$ (for which no arbitrary long subspace trail in internal rounds exists);
- ▶ Number of rounds $(\kappa \approx \log_2(p))$:

 $R_F = 2 \cdot R_f = 6$, $R_P \approx \log_d(p)$;

▶ Used in CTR mode.

From HadesMiMC to $PLUTO$ $(1/2)$

 \triangleright Multiplicative cost of each external/full round:

$$
(\lfloor \log_2(d) \rfloor + \mathsf{hw}(d) - 1) \cdot n \geq 2 \cdot n;
$$

- \triangleright External/Full Rounds crucial for
	- \blacktriangleright "masking" the internal rounds;
	- \triangleright simple security argument against statistical attacks (e.g., via wide-trail design strategy);

▶ Idea: replace

$$
(x_0, x_1, \ldots, x_{n-1}) \mapsto (x_0^d, x_1^d, \ldots, x_{n-1}^d)
$$

$$
(x_0,x_1,\ldots,x_{n-1})\mapsto (x_1^2+x_0,x_2^2+x_1,\ldots,x_0^2+x_{n-1}),
$$

which costs **n** multiplications independently of p.

From HadesMiMC to $PLUTO$ $(1/2)$

 \triangleright Multiplicative cost of each external/full round:

$$
(\lfloor \log_2(d) \rfloor + \mathsf{hw}(d) - 1) \cdot n \geq 2 \cdot n;
$$

- \triangleright External/Full Rounds crucial for
	- \triangleright "masking" the internal rounds;
	- \triangleright simple security argument against statistical attacks (e.g., via wide-trail design strategy);
- Idea: replace

$$
(x_0, x_1, \ldots, x_{n-1}) \mapsto (x_0^d, x_1^d, \ldots, x_{n-1}^d)
$$

with

$$
(x_0,x_1,\ldots,x_{n-1})\mapsto (x_1^2+x_0,x_2^2+x_1,\ldots,x_0^2+x_{n-1}),
$$

which costs **n** multiplications independently of p.

From HadesMiMC to $PLUTO$ $(2/2)$

- \triangleright Internal rounds instantiated with the degree-4 Lai-Massey scheme proposed for $\rm Hy$ -DRA $[GØS+22]$ (besides linear layer for destroying invariant subspace trails);
- ▶ Security analogous to the one proposed for HadesMiMC. Main differences:
	- \triangleright Collision probability at the output of PLUTO (assuming invertible internal rounds):

$$
\leq \frac{2^{8\cdot n}-1}{\rho^n-1} \approx \left(\frac{2^8}{\rho}\right)^n \leq 2^{-2\cdot \kappa} \qquad \text{(assuming } \kappa \leq \frac{n}{2} \cdot (\log_2(\rho)-8));
$$

▶ The external rounds are not invertible, and only local inverses can be set up (similarly

From HadesMiMC to $PLUTO$ $(2/2)$

- \triangleright Internal rounds instantiated with the degree-4 Lai-Massey scheme proposed for $\rm Hy$ -DRA $[GØS+22]$ (besides linear layer for destroying invariant subspace trails);
- \triangleright Security analogous to the one proposed for HadesMiMC. Main differences:
	- \triangleright Collision probability at the output of PLUTO (assuming invertible internal rounds):

$$
\leq \frac{2^{8\cdot n}-1}{\rho^n-1} \approx \left(\frac{2^8}{\rho}\right)^n \leq 2^{-2\cdot\kappa} \qquad \text{(assuming } \kappa \leq \frac{n}{2} \cdot (\log_2(\rho)-8));
$$

▶ The external rounds are not invertible, and only local inverses can be set up (similarly to MiMC++): we conjecture that $4 + 4 = 8$ external rounds are sufficient to frustrate algebraic attacks in the backward direction.

Comparison between HADESMIMC (instantiated with $x \mapsto x^3$) and PLUTO for the case $\rho \approx 2^{128},~\kappa=128,$ and several values of $n \in \{4,8,12,16\}$:

Table of Contents

- 1 [Preliminary: Bounded Surjective Functions](#page-6-0)
- [From MiMC to](#page-10-0) MiMC++
- 3 [Bounded-Surjective Functions over](#page-21-0) \mathbb{F}_p^n
- 4 [From HadesMiMC to](#page-27-0) PLUTO
- **5** [Summary and Open Problems](#page-34-0)

Summary and Open Problems

- \triangleright We showed that the multiplicative complexity of several MPC-/FHE-/ZK-friendly schemes can be improved by making use of non-invertible non-linear layers;
- \triangleright Several open problems: understand in a better way how to exploit the *local inverses* to set up MitM algebraic attacks!

▶ Remark:

Summary and Open Problems

- \triangleright We showed that the multiplicative complexity of several MPC-/FHE-/ZK-friendly schemes can be improved by making use of non-invertible non-linear layers;
- \triangleright Several open problems: understand in a better way how to exploit the *local inverses* to set up MitM algebraic attacks!

▶ Remark:

we discourage the use of low-degree non-bijective components for designing symmetric primitives in which the internal state is not obfuscated by a secret (e.g., a secret key)!

Thanks for your attention!

Questions?

Comments?

About Number of Collisions of S_F via $F(x_0, x_1) = x_1^2 + x_0$

The collision
$$
S_F(x_0, x_1, \ldots, x_{n-1}) = S_F(x'_0, x'_1, \ldots, x'_{n-1})
$$
 corresponds to

$$
\begin{bmatrix} 0 & d_1 & 0 & \dots & 0 \\ 0 & 0 & d_2 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & d_{n-1} \\ d_0 & 0 & 0 & \dots & 0 \end{bmatrix} \times \begin{bmatrix} s_0 \\ s_1 \\ \dots \\ s_{n-2} \\ s_{n-1} \end{bmatrix} = - \begin{bmatrix} d_0 \\ d_1 \\ \dots \\ d_{n-2} \\ d_{n-1} \end{bmatrix}
$$

where $d_i := x_i - x'_i$ and $s_i := x_i + x'_i$ for each *i*.

About Number of Collisions of S_F via $F(x_0, x_1) = x_1^2 + x_0$

The collision
$$
S_F(x_0, x_1, \ldots, x_{n-1}) = S_F(x'_0, x'_1, \ldots, x'_{n-1})
$$
 corresponds to

$$
\begin{bmatrix} 0 & d_1 & 0 & \dots & 0 \\ 0 & 0 & d_2 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & d_{n-1} \\ d_0 & 0 & 0 & \dots & 0 \end{bmatrix} \times \begin{bmatrix} s_0 \\ s_1 \\ \dots \\ s_{n-2} \\ s_{n-1} \end{bmatrix} = - \begin{bmatrix} d_0 \\ d_1 \\ \dots \\ d_{n-2} \\ d_{n-1} \end{bmatrix}
$$

where $d_i := x_i - x'_i$ and $s_i := x_i + x'_i$ for each *i*.

Hence, a collision exists *only* for $(d_0, d_1, \ldots, d_{n-1}) \in \mathbb{F}_p^n$ such that $\forall i \in \{0, 1, \ldots, n-1\} : d_i \neq 0$,

that is, $(p-1)^n$ values.

Goal: each output y of S_F over \mathbb{F}_p^n admits at most 2^n pre-images.

▶ Given $y_i = x_{i+1}^2 + x_i$, then $x_i = G_{y_i}(x_{i+1}) := y_i - x_{i+1}^2$, where G_y quadratic; ▶ Working iteratively:

$$
x_0 = G_{y_0}(x_1) = G_{y_0} \circ G_{y_1}(x_2) = \ldots = G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0)
$$

\n
$$
\implies G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0) - x_0 = 0
$$

The previous equation admits at most 2^n solutions in x_0 . For each x_0 , it is possible

Goal: each output y of S_F over \mathbb{F}_p^n admits at most 2^n pre-images.

► Given
$$
y_i = x_{i+1}^2 + x_i
$$
, then $x_i = G_{y_i}(x_{i+1}) := y_i - x_{i+1}^2$, where G_y quadratic;
► Working iteratively:

$$
x_0 = G_{y_0}(x_1) = G_{y_0} \circ G_{y_1}(x_2) = \ldots = G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0)
$$

\n
$$
\implies G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0) - x_0 = 0
$$

The previous equation admits at most 2^n solutions in x_0 . For each x_0 , it is possible

Goal: each output y of S_F over \mathbb{F}_p^n admits at most 2^n pre-images.

▶ Given $y_i = x_{i+1}^2 + x_i$, then $x_i = G_{y_i}(x_{i+1}) := y_i - x_{i+1}^2$, where G_y quadratic; ▶ Working iteratively:

$$
x_0 = G_{y_0}(x_1) = G_{y_0} \circ G_{y_1}(x_2) = \ldots = G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0)
$$

\n
$$
\implies G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0) - x_0 = 0
$$

where $\deg(G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}) = 2^n;$

The previous equation admits at most 2^n solutions in x_0 . For each x_0 , it is possible

Goal: each output y of S_F over \mathbb{F}_p^n admits at most 2^n pre-images.

▶ Given $y_i = x_{i+1}^2 + x_i$, then $x_i = G_{y_i}(x_{i+1}) := y_i - x_{i+1}^2$, where G_y quadratic; \blacktriangleright Working iteratively:

$$
x_0 = G_{y_0}(x_1) = G_{y_0} \circ G_{y_1}(x_2) = \ldots = G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0)
$$

\n
$$
\implies G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}(x_0) - x_0 = 0
$$

where $\deg(G_{y_0} \circ G_{y_1} \circ \ldots \circ G_{y_{n-1}}) = 2^n;$

The previous equation admits at most 2^n solutions in x_0 . For each x_0 , it is possible to find the other variables via $x_i = \mathsf{G}_{\mathsf{y}_i}(\mathsf{x}_{i+1})$.

From HadesMiMC to PLUTO: Internal Rounds

 \triangleright Internal rounds instantiated with the same degree-4 Lai-Massey scheme used in $\rm Hy$ -DRA $[GØS+22]$ (besides linear layer for destroying invariant subspace trails):

$$
(x_0, x_1, \ldots, x_{n-1}) \mapsto (x_0 + z, x_1 + z, \ldots, x_{n-1} + z)
$$

where

$$
z := \big(\big(\sum_i \gamma_i^{(0)} \cdot x_i \big)^2 + \sum_i \gamma_i^{(1)} \cdot x_i \big)^2
$$

such that $[\gamma_0^{(0)}]$ $\overset{(0)}{_{0}},\overset{(0)}{_{1}}$ $\gamma_1^{(0)},\ldots,\gamma_{n-1}^{(0)}$ $\binom{(0)}{n-1}$ and $\binom{\gamma(1)}{0}$ $\gamma^{(1)}_0,\gamma^{(1)}_1$ $\gamma_1^{(1)},\ldots,\gamma_{n-}^{(1)}$ $\binom{1}{n-1}$ are linearly independent;

 \triangleright Cost of each internal round: 2 multiplications *independently of p.*

References I

- M.R. Albrecht, L. Grassi, C. Rechberger, A. Roy and T. Tiessen MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity. ASIACRYPT 2016
- L. Grassi, D. Khovratovich, A. Roy, C. Rechberger and M. Schofnegger Poseidon: A New Hash Function for Zero-Knowledge Proof Systems. USENIX 2021
- L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru and M. Schofnegger On a Generalization of Substitution-Permutation Networks: The HADES Design Strategy. EUROCRYPT 2020

L. Grassi, S. Onofri, M. Pedicini, L. Sozzi

Invertible Quadratic Non-Linear Layers for MPC-/FHE-/ZK-Friendly Schemes over $(\mathbb{F}_p)^n$. FSE/ToSC 2022

L. Grassi, M. Øygarden, M. Schofnegger and R. Walch From Farfalle to Megafono via Ciminion: The PRF Hydra for MPC Applications. EUROCRYPT 2022