
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2023, No. 2, pp. 69–93. DOI:10.46586/tosc.v2023.i2.69-93

EliMAC: Speeding Up LightMAC by around 20%

Christoph Dobraunig1, Bart Mennink2 and Samuel Neves3

1 Lamarr Security Research, Graz, Austria
christoph@dobraunig.com

2 Digital Security Group, Radboud University, Nijmegen, The Netherlands
b.mennink@cs.ru.nl

3 CISUC, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
sneves@dei.uc.pt

Abstract. Universal hash functions play a prominent role in the design of message
authentication codes and the like. Whereas it is known how to build highly efficient
sequential universal hash functions, parallel non-algebraic universal hash function
designs are always built on top of a PRP. In such case, one employs a relatively
strong primitive to obtain a function with a relatively weak security model. In this
work, we present EliHash, a construction of a parallel universal hash function from
non-compressing universal hash functions, and we back it up with supporting security
analysis. We use this construction to design EliMAC, a message authentication code
similar to LightMAC. We consider a heuristic instantiation of EliMAC with round-
reduced AES, and argue that this instantiation of EliMAC is much more efficient than
LightMAC, it is around 21% faster, and additionally allows for precomputation of
the keys, albeit with a stronger assumption on the AES primitive than in LightMAC.
These observations are backed up with an implementation of our scheme.

Keywords: universal hashing · MAC · EliHash · EliMAC · length independence

1 Introduction
Message authentication codes (MACs) are symmetric cryptographic functions that assure
authenticity of data. Given the importance of data authenticity in our daily communication,
MACs have undergone extensive research in the last decades. As they are employed a lot,
they need to be lightning fast, and as data is often of variable length, much research has
been performed on how to process variable-length data as fast as possible.

A good example of this is the hash-then-PRF construction. Let n be a natural number,
FK be a pseudorandom function from n to n bits, and HL be a universal hash function
that compresses arbitrarily long data into short fingerprints of n bits. The hash-then-PRF
construction authenticates an arbitrarily long message M as

T = FK(HL(M)) .

Here, the function that processes the bulk of the data, HL, need not be cryptographically
strong but simply needs to satisfy lighter probabilistic properties. The cryptographically
strong function, FK , is only applied to a small input block. This way, the efficiency of the
function is not significantly affected if longer data is input. A comparable phenomenon
appears in nonce-based MAC functions like Wegman-Carter [WC81,Bra82] and Wegman-
Carter-Shoup [Sho96,Ber05].

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-03-01 Accepted: 2023-05-01 Published: 2023-06-16

https://doi.org/10.46586/tosc.v2023.i2.69-93
mailto:christoph@dobraunig.com
mailto:b.mennink@cs.ru.nl
mailto:sneves@dei.uc.pt
http://creativecommons.org/licenses/by/4.0/

70 EliMAC: Speeding Up LightMAC by around 20%

⟨1⟩s∥M1

EK1

⟨2⟩s∥M2

EK1

⟨ℓ− 1⟩s∥Mℓ−1

EK1
. . .

Mℓ

0

EK2

⌊·⌋t

T

Figure 1: LightMAC message authentication [LPTY16]. Here, E : {0, 1}k × {0, 1}n →
{0, 1}n is a block cipher. Not depicted is the injective padding of an arbitrarily length
message M into ℓ ≤ 2s (n− s)-bit blocks M1, . . . , Mℓ.

1.1 Parallel Universal Hashing
A popular approach to variable-length universal hashing is chaining or cascading well-
analyzed cryptographic operations together with data absorption. A notable example is
the universal hashing part of CBC-MAC [BKR94]. Even with round-reduced versions of
cryptographic operations, good heuristic designs are known, e.g., Pelican 2.0 [DR05b]. For
parallel variable-length universal hashing, the situation is less explored.

The typical approach in constructing a non-algebraic parallel universal hash function
is by building it from a pseudorandom permutation (PRP) or a pseudorandom function
(PRF). A well-known example of this is PMAC [BR02]. PMAC internally uses an n-bit
block cipher E , parses its input to n-bit blocks and masks these with 2i ·EK(0), where i is
the block counter. The masked blocks apart from the last one are then fed to the block
cipher in parallel, the outcomes of which are added to the last block, and the resulting
checksum is transformed with a final call to the block cipher. PMAC is a direct variant of
the, older, protected counter sum of Bernstein [Ber99]. This construction takes a function
f with input size n + s bits and output size n bits, and parses its inputs to n-bit blocks.
The blocks are evaluated as f(⟨i⟩s, Mi), the outcomes are added and the final checksum
is transformed with a final call to f(⟨0⟩s, ·). A final scheme worth mentioning in the
context of this paper is LightMAC of Luykx et al. [LPTY16]. LightMAC is a variant of
protected counter sum that parses the messages into (n− s)-bit blocks and concatenates
these blocks with an s-bit counter. This way, the authors managed to prove a security
bound for LightMAC that is independent of the message length [LPTY16], a property not
met by the earlier MAC functions [LPSY16]. LightMAC is depicted in Figure 1. Recently,
Chattopadhyay et al. [CJN21] proved security of two single-key variants of LightMAC,
namely 1k-LightMAC and LightMAC-ds, and Shen et al. [SWG21] described a double-key
and a single-key variant of LightMAC that use domain separation to distinguish between
integral and fractional data, namely LedMAC1 and LedMAC2.

Ultimately, despite their efficiency, parallelism, strong security, and conceptual elegance,
all these MAC functions use a parallel variable-length universal hash function built on top
of a PRP. This seems to be an unnecessarily strong assumption: intuitively, one should be
able to get away with fixed-length universal hash functions, or at least with round-reduced
versions of these PRPs. We stress that this is a very practical matter. The typical choice
for the PRP is the 10-round AES block cipher [DR02] and this choice is for instance also

Christoph Dobraunig, Bart Mennink and Samuel Neves 71

adopted in the standardization of LightMAC in ISO/IEC 29192-6:2019 [ISO19]. However,
it is known that 4 rounds of AES with independent round keys already yield an 1.881·2−114-
almost XOR universal hash function [KS07]. In an Utopian setting, this might give a
requirement of 4(ℓ− 1) + 10 rounds of AES for the authentication of an ℓ-block message,
noting that the finalization still must be performed with a full-round AES. Unfortunately,
it is not that easy: simply replacing the block cipher calls before the checksum by universal
hashes is not necessarily secure, and for the particular case of 4-round AES, the resulting
scheme can be easily broken: if the message is encoded in a certain way, it is possible to
take 232 evaluations of 4-round AES that sum to 0 [DR02, §10.2.5].

A truly parallelizable MAC function based on a universal hash function like 4-round
AES is MARVIN of Simplício Jr. et al. [SBB+09]. The mode is very elegant: it is a fully
parallelizable evaluation of a “square-complete transform”, a function that is required
to satisfy certain XOR-universality property. If instantiated with 4-round AES, this
function seems to solve the problem. However, the formal security analysis of MARVIN,
given by Simplício Jr. and Barreto [SB12], misses a crucial aspect in the reasoning: in a
nutshell, it relies on XOR-universality to also reason about 4-sums or even larger sums.
This makes the proof invalid. We elaborate on this oversight in Appendix A, and even
stronger: we give an attack on MARVIN for a specific instantiation of the square-complete
transform that works fine for 2-sums but not for larger sums. The fact that MARVIN
achieves a length-independent bound despite using a PMAC-style masking (as opposed
to a LightMAC style concatenation) should have given away already that the bound is
flawed for variable-length data. We refer to Luykx et al. [LPSY16] for a discussion of the
influence of the length in the security bound of PMAC.

Overall, we lack a provable parallelizable variable-length universal hash function built
from fixed-length universal hash functions. A construction that comes close is APA-then-
MTH of Minematsu and Tsunoo [MT06]. This construction takes a universal hash function
with the same domain and range, doubles that range with a so-called Add-Permute-Add
construction, and then evaluates this function for independent keys in a tree fashion.
One can then, indeed, take 4-round AES for this construction, but in order to obtain
independent keys, one must generate them using full 10-round AES, for example. This
gives significant overhead to the universal hash function, and makes it worse than the
universal hash function currently used in LightMAC. In addition, this proposal is ultimately
tree-based and not parallelizable. A similar remark applies to MACH of Jakimoski and
Subbalakshmi [JS07].

1.2 EliHash: Parallel Universal Hashing from Universal Hash Functions

The first contribution of this work is a fully parallelizable variable-length universal hash
function from non-compressing keyed hash functions. The hash function proposal is simple
and more efficient than the earlier universal hash functions. It is parametrized by the
block size n, and the maximum number of blocks µ, and it is built from two universal hash
functions H : {0, 1}k′ × [1, . . . , µ]→ {0, 1}k and I : {0, 1}k × {0, 1}n → {0, 1}n. The main
ingredient is a nested universal hash function evaluation I (H (K, i), Mi) that is put in a
checksum mode:

EliHash(K, (M1, . . . , Mℓ)) =
ℓ⊕

i=1
I (H (K, i), Mi) ,

where ℓ ≤ µ. For data not of size a multiple of n bits, any injective padding on the message
completes the picture. The function is described in more detail in Section 3. Note that

72 EliMAC: Speeding Up LightMAC by around 20%

M11

IHK1

M22

IHK1

Mℓ−1ℓ− 1

IHK1
. . .

Mℓ

0

EK2

⌊·⌋t

T

Figure 2: EliMAC message authentication. Here, H : {0, 1}k′ × [1, . . . , µ]→ {0, 1}k and
I : {0, 1}k×{0, 1}n → {0, 1}n are two universal hash functions and E : {0, 1}n×{0, 1}n →
{0, 1}n is a block cipher. Not depicted is the injective padding of an arbitrarily length
message M into ℓ ≤ µ n-bit blocks M1, . . . , Mℓ.

EliHash can be seen as a generalization of the multilinear hash construction [GMS74],

MH ((K1, . . . , Kℓ), (M1, . . . , Mℓ)) =
ℓ⊕

i=1
Ki ·Mi ,

with an arbitrary universal hash function I instead of finite field multiplication, and with
a configurable distribution on the key.

In Section 3, we also derive a bound on the XOR-universality of EliHash, under the
assumption that H is µ-independent and I is XOR-universal. The former condition,
µ-independence, is the strongest assumption of the two and is comparable to the maximum
interpolation probability as employed, e.g., by the Wegman-Carter-Shoup proof of Bern-
stein [Ber05]. It appears like the strongest condition of the two. However, the condition
works in our use case, as H has a very small domain [1, . . . , µ]. See also Section 1.4.

1.3 EliMAC: Improving LightMAC Using Parallelizable Universal Hash-
ing

We use EliHash to define the EliMAC (Extremely Light MAC) message authentication code
in Section 4. EliMAC is like LightMAC, but with the universal hashing part replaced by
EliHash. In other words, to authenticate a padded message (M1, . . . , Mℓ), with ℓ ≤ µ, one
first evaluates EliHash(K, ·) on these message blocks bar the last one that is added in plain.
This yields an n-bit value which is subsequently fed to a block cipher E with an independent
key. EliMAC is depicted in Figure 2. We prove PRF security and unforgeability of EliMAC
in Section 4.1 and Section 4.2, respectively. As the scheme is, basically, a universal hash
followed by a (truncated) permutation, the analysis is simple and easy to verify. The
PRF security proof is inspired by the analysis of LightMAC. For MAC security, we obtain
a tighter analysis. This analysis centers around a generic reduction from truncated to
untruncated hash-then-encrypt constructions, that is broadly applicable. Most importantly,
it immediately allows for a tighter MAC security bound of LightMAC. The bounds are
tight, as discussed in Section 4.3.

Christoph Dobraunig, Bart Mennink and Samuel Neves 73

1.4 Instantiation
The, disputably, most logical instantiation of EliHash and of EliMAC is to take 4-round
AES-128 as universal hash function H and I , and full 10-round AES-128 as finalization
function E in the message authentication. (In the remainder, we simply write “AES” and
drop the “-128” for brevity.) For 4-round AES (with independent round keys), we know a
bound on its XOR-universality and thus on its 2-independence [KS07], however, for larger
values of µ, the situation gets increasingly worse as the µ-independence of H is not always
easy to estimate. Clearly, if we instantiate H by full 10-round AES, we can rely on the
assumption that AES is a secure PRP, which would subsequently imply µ-independence
for sufficiently large µ. However, this approach would give an inefficient construction while
at the same time general PRP security is for arbitrary inputs and is a too strong condition
for our purpose. For EliMAC, a reduced-round variant of AES might do the job: we can
use the fact that µ-independence is only required to hold for a restricted number and
choice of inputs that the adversary can feed to the function, and by proper encoding of
[1, . . . , µ] 7→ {0, 1}n, it appears [DFJ13] that 7 rounds of AES suffice if µ ≤ 232.

This way, in summary, we obtain a MAC function where H is instantiated with 7-round
AES, I with 4-round AES, and E with 10-round AES. The choice for the number of rounds
in this instantiation is based on the best attacks against round-reduced versions of AES
to date. (Details about this instantiation are given in Section 5.) A quick computation
shows that, this way, EliMAC makes slightly more AES round evaluations as LightMAC
instantiated with 10-round AES. However, as a bonus, it can process more message bits.
In detail, if we stick to µ = 232, LightMAC operates with s = 32 and thus processes 96
bits of message per 10 rounds of AES (an exception applies to the last block that may be
n bits), whereas EliMAC processes 128 bits of message per 11 rounds of AES. A more
detailed comparison is given in Table 1. We can observe that EliMAC is, at a similar
number of AES rounds, more efficient than LightMAC, with a significant improvement
of around 21%. In addition, in EliMAC, the subkeys can be precomputed and stored in
memory. This reduces the number of AES rounds per block even to 4 (except for the last
block). Of course, this only works if sufficient storage for the subkeys is available.

The efficiency gain in EliMAC also comes at a few differences in security. First off,
focusing on the instantiation with AES, LightMAC generically achieves around 64-bit
security, whereas EliMAC achieves around 56-bit security. Additionally, the analyses differ
in the assumption on the underlying primitive. To be precise, LightMAC is proven secure
under the assumption that 10-round AES is PRP-secure against an attacker querying q
blocks, i.e., that Advprp

AES10
(q, τ) small, where τ denotes the adversarial time complexity.

EliMAC, in addition, requires that also Advprp
AES7

(µ, τ) is small, and that 4-round AES is
XOR-universal. We believe that these assumptions are reasonable [KS07,DFJ13].

We implemented EliMAC and compared it with LightMAC [LPTY16], PMAC2 [CCJN21],
and ZMAC [IMPS17]. A discussion of this comparison is given in Section 6. The imple-
mentation results, outlined in Table 2, confirm above-made efficiency claims. In particular,
EliMAC achieves higher efficiency than LightMAC and PMAC2 on different microarchi-
tectures, and in particular, EliMAC turns out to stay closest to the theoretical asymptotic
performance, mostly due to its implementation simplicity. A similar comparison applies to
the recently introduced variants of LightMAC by Chattopadhyay et al. [CJN21] and Shen
et al. [SWG21].

2 Preliminaries
For non-empty finite sets X ,Y, we denote by func(X ,Y) the set of all functions X → Y.
We let func(X) = func(X ,X) denote the set of all functions on X , and write perm(X) for
the set of all permutations on X . We denote by X

$←− X the uniform random sampling of an

74 EliMAC: Speeding Up LightMAC by around 20%

Table 1: Comparison of EliMAC with LightMAC, in case the PRPs are instantiated
with 10-round AES and the universal hash evaluations with padded 7-round and 4-round
AES, where padded refers to the fact that the inputs are integer encodings padded with
sufficiently many zeros. Comparison is performed for authentication of ℓ message blocks,
where ℓ ≤ µ = 232. Furthermore, n = 128 denotes the state size, and s = log2 µ = 32
denotes the counter size.

bit length of
ℓ-block message

AES rounds for ℓ blocks
scheme pre online total reference

LightMAC 96ℓ + 95 0 10ℓ 10ℓ [LPTY16]
EliMAC 128ℓ 7(ℓ− 1) 4(ℓ− 1) + 10 11ℓ− 1 Section 5

element X from X . For m, n ∈ N with m ≤ n, we denote by Xn the set of all X -sequences
of length n, by X [m...n] the set of all X -sequences of length between m and n, by X<n

the set of all X -sequences of length less than n, and by X ∗ the set of all X -sequences of
arbitrary length. For m, n ∈ N with m ≤ n, we denote by [n]m = n(n− 1) · · · (n−m + 1)
the falling factorial.

We let padn : {0, 1}∗ → ({0, 1}n)∗ be any injective padding function that transforms
arbitrarily long strings to strings of length a positive multiple of n. A minimal working
example is the 10-padding, that appends its input with a 1 and a minimal number of 0s to
reach a string of length a multiple of n. For X ∈ {1, . . . , 2n} we write ⟨X⟩n as an encoding
of X as an n-bit string.

Adversaries are algorithms that have the objective to win a certain security game or
produce a certain output. For an adversary A, we denote by AO that A has query access
to a randomized oracle (or list of oracles) O.

2.1 Universal Hash Functions
For three non-empty finite sets K,X ,Y , consider a family of hash functions H : K×X → Y .
Let µ ∈ N. Following Wegman and Carter [WC81], H is said to be δ-almost µ-wise
independent, or more concisely δ-µ-independent, if for any distinct X1, . . . , Xµ ∈ X and
(not necessarily distinct) Y1, . . . , Yµ ∈ Y,

Pr
K

$←−K
(∀µ

i=1 HK(Xi) = Yi) ≤ δµ .

We remark that, in general, δ ≥ |Y|−1. In addition, as the probability is taken over the
randomness of the key, δ is also lower bounded by a value depending on the key size.
Indeed, for an arbitrary function H and fixed X1, . . . , Xµ ∈ X and Y1, . . . , Yµ ∈ Y, we
necessarily have

δ ≥
(
|{K ∈ K | ∀µ

i=1 HK(Xi) = Yi}|
|K|

)1/µ

.

We can reach this bound in the random setting. For example, if H is the family of
permutations on X = Y = {0, 1}n and K is the set of permutation indices (i.e., |K| = 2n!),
then H is δ-µ-independent with δ = ([2n]µ)−1/µ. Subsequently, if HK is a PRP-secure
function with X = Y = {0, 1}n, we can replace it by a random permutation at the cost of
its PRP-advantage and subsequently rely on this bounding. We will use this observation
in Section 5.

The hash function family H is said to be ε-XOR-universal if for any distinct X, X ′ ∈ X
and Y ∈ Y,

Pr
K

$←−K
(HK(X)⊕HK(X ′) = Y) ≤ ε .

Christoph Dobraunig, Bart Mennink and Samuel Neves 75

2.2 Pseudorandom Permutations and Pseudorandom Functions
For two non-empty finite sets K,M, a block cipher E : K ×M → M is a family of
permutations on M indexed by keys from K. We write EK(·) = E(K, ·). Security of a
block cipher is defined by its pseudorandom permutation (PRP) security: we consider an
adversary A that has access to either EK for K

$←− K or p $←− perm(M), and its goal is to
guess with which oracle it is communicating. Formally:

Advprp
E (A) = Pr

(
AEK = 1

)
−Pr (Ap = 1) , (1)

where the probabilities are drawn over the random selection of K
$←− K, p $←− perm(M),

and the adversarial choices of A (recall that A may be probabilistic). We denote by
Advprp

E (q, τ) the supremal advantage over any adversary with query complexity q and
time complexity τ .

For three non-empty sets K,M, T , a pseudorandom function F : K ×M → T is a
family of functions from M to T indexed by keys from K. We write FK(·) = F(K, ·).
Security of a pseudorandom function is defined by its pseudorandom function (PRF)
security. Now, the adversary has access to either FK for K

$←− K or f $←− func(M, T):

Advprf
F (A) = Pr

(
AFK = 1

)
−Pr

(
Af = 1

)
, (2)

where the probabilities are drawn over the random selection of K
$←− K, f $←− func(M, T),

and the adversarial choices of A. We denote by Advprf
E (q, σ, τ) the supremal advantage

over any adversary with query complexity q, total block complexity σ, and time complexity
τ . The total block complexity is scheme-dependent; it may be omitted if irrelevant or less
trivial.

2.3 Message Authentication Codes
For three non-empty finite sets K,M, T , a message authentication code MAC : K×M→ T
is a family of one-way functions fromM to T indexed by keys from K. One way to measure
the security of message authentication codes is by its PRF security. Alternatively, one can
consider unforgeability, that quantifies the success probability of an adversary to deliver a
correct message-tag pair that was not generated by MAC K . Formally:

Advmac
MAC (A) = Pr

(
AMACK forges

)
, (3)

where “forges” means that A outputs a tuple (M, T) that is not the result of an oracle
query but that nevertheless satisfies MAC K(M) = T . As before, the probability is drawn
over the random selection of K

$←− K and the adversarial choices of A. We denote by
Advmac

MAC (q, qf , τ) the supremal advantage over any adversary with query complexity q,
forgery attempt complexity qf , and time complexity τ .

2.4 Bound Falling Factorial
We will use the following elementary bound related to the falling factorial [a]b. The result
is comparable to a derivation of Bernstein [Ber05, Theorem 4.2], be it with a different
proof approach.

Lemma 1. Let m, n ∈ N with m2 ≤ n. Then,

nm

[n]m
≤ 2 . (4)

76 EliMAC: Speeding Up LightMAC by around 20%

Proof. Note that

nm

[n]m
=

m−1∏
i=0

n

n− i

=
m−1∏
i=0

(
1 + i

n− i

)

≤
m−1∏
i=0

e
i

n−i

= e
∑m−1

i=0
i

n−i

≤ e
m(m−1)
2(n−m)

≤ e1/2 ,

where the last step holds under the condition that m2 ≤ n. The proof is completed by
observing that e1/2 ≤ 2.

3 EliHash
Let µ ∈ N, and let K′,K,X ,Y be four non-empty finite sets. Consider two – not necessarily
distinct – families of hash functions H : K′ × [1, . . . , µ]→ K and I : K × X → Y. Define
EliHash : K′ ×X [1...µ] → Y as

EliHash(K, (X1, . . . , Xµ)) =
µ⊕

i=1
I (H (K, i), Xi) . (5)

Our goal is to prove that EliHash is XOR-universal as long as H and I satisfy certain con-
ditions. This way, it could be used as hash function within a hash-then-PRF construction,
similar to LightMAC [LPTY16] or any other universal hash function based MAC function
(such as [CS16,MN17,DDNY18,DNT19]). Unfortunately, it is not possible to easily prove
XOR-universality of EliHash from XOR-universality of H and I , the main reason being
that in EliHash typically more than two evaluations of I are added. Thus, we will prove
XOR-universality of EliHash based on slightly stronger properties of H and I . This will
be done in Section 3.1.
Remark 1. It is possible to extend the domain of EliHash to K′ ×X [1...µ] ×X [1...µ] and to
let it be a checksum of I (H (K, Xi), X ′

i), i.e., with a simple encoding of i replaced with
an arbitrary value from X . However, this change would make the proof in Section 3.1
significantly more complex, and the instantiation of the universal hash functions H and I
with round-reduced AES-128 in Section 5 meaningless.

3.1 XOR-Universality of EliHash
We prove XOR-universality of EliHash. This is the main result that will be used in the
EliMAC construction of Section 4.

Proposition 1. Let µ ∈ N, and let K′,K,X ,Y be four non-empty finite sets. Let
H : K′ × [1, . . . , µ] → K be a δ-µ-independent hash function family and I : K × X → Y
an ε-XOR-universal hash function family. Then, EliHash : K′ × X [1...µ] → Y of (5) is
ε′-XOR-universal for

ε′ = (|K|δ)µε .

Christoph Dobraunig, Bart Mennink and Samuel Neves 77

Proof. Consider any ℓ, ℓ′ ≤ µ, any distinct (X1, . . . , Xℓ) ∈ X ℓ and (X ′
1, . . . , X ′

ℓ′) ∈ X ℓ′ ,
and any Y ∈ Y. Our goal is to bound

Pr
K

$←−K′


ℓ⊕

i=1
I (H (K, i), Xi)⊕

ℓ′⊕
i=1

I (H (K, i), X ′
i) = Y︸ ︷︷ ︸

Θ

 . (6)

Without loss of generality, ℓ ≤ ℓ′, and for all i ≤ ℓ we have Xi ̸= X ′
i. The reason that

the latter argument is fair, is that one can discard the indices for which Xi = X ′
i from

the checksums and apply below reasoning for two subsets of indices of {1, . . . , ℓ} and
{1, . . . , ℓ′}. Then, below reasoning holds with a smaller value of ℓ′.

Define

L :=

(L1, . . . , Lℓ′)
∣∣∣∣ ℓ⊕

i=1
I (Li, Xi)⊕

ℓ′⊕
i=1

I (Li, X ′
i) = Y

 .

This set describes all possible subkeys (L1, . . . , Lℓ′) for which Θ would hold. Using this,
we can condition the event in the probability of (6) depending on whether the key K

$←− K′

results in ℓ′ subkeys that are in L or not:

(6) = Pr
K

$←−K′

(
Θ

∣∣ (H (K, 1), . . . , H (K, ℓ′)) ∈ L
)
·Pr

K
$←−K′

((H (K, 1), . . . , H (K, ℓ′)) ∈ L)

+ Pr
K

$←−K′

(
Θ

∣∣ (H (K, 1), . . . , H (K, ℓ′)) /∈ L
)
·Pr

K
$←−K′

((H (K, 1), . . . , H (K, ℓ′)) /∈ L)

= 1 ·Pr
K

$←−K′
((H (K, 1), . . . , H (K, ℓ′)) ∈ L) + 0

=
∑

(L1,...,Lℓ′)∈L

Pr
K

$←−K′

(
∀ℓ′

i=1 H (K, i) = Li

)
≤ |L| · δℓ′

. (7)

What remains is to bound |L|. Clearly, we have |K| possible choices for each of L2, . . . , Lℓ′ ,
and thus:

|L| ≤ |K|ℓ
′−1 · max

X ̸=X′∈X ,
Y ∈Y

|{L1 ∈ K | I (L1, X)⊕ I (L1, X ′) = Y }| .

As I is ε-XOR-universal, the size of the right hand side set is at most |K| · ε. The proof is
completed by maximizing over ℓ′ and noticing that δ ≥ |K|−1.

4 EliMAC

We use the universal hash function design EliHash of (5) to build the EliMAC hash function.
EliMAC is parametrized by µ, k′, k, n, t ∈ N, and we set K′ = {0, 1}k′ , K = {0, 1}k, and
X = Y = {0, 1}n. It thus operates on top of two – not necessarily distinct – universal
hash functions H : {0, 1}k′ × [1, . . . , µ] → {0, 1}k and I : {0, 1}k × {0, 1}n → {0, 1}n. In
addition, it employs a block cipher E : {0, 1}k × {0, 1}n → {0, 1}n. EliMAC is specified in
Algorithm 1, and it is depicted in Figure 2. Note that it processes a message M of length
at most 2(µ+1)n − 1 bits, i.e., which might get padded into µ + 1 blocks.

78 EliMAC: Speeding Up LightMAC by around 20%

Algorithm 1 EliMAC message authentication

Input: K1 ∈ {0, 1}k′
, K2 ∈ {0, 1}k, M ∈ {0, 1}<(µ+1)n

Output: T ∈ {0, 1}t

1: M1 . . . Mℓ ← padn(M)
2: S ← 0n

3: for i = 1, . . . , ℓ− 1 do
4: S ← S ⊕ I (H (K1, i), Mi)
5: T ← ⌊EK2

(
S ⊕Mℓ

)
⌋t

6: return T

A PRF security bound is given in Section 4.1 and a MAC security bound in Section 4.2.
Tightness of these bounds is discussed in Section 4.3.

4.1 PRF Security of EliMAC
We derive a formal PRF security bound for EliMAC. The proof is inspired by the PRF
security analysis of LightMAC [LPTY16, Theorem 1], with a small difference that we rely
on the PRF security of truncation [Sta78,BN18,Men19] for the last primitive call. We note
that the bound includes a term involving µ, seemingly making the bound length-dependent.
This, however, is rather caused by the general definition of µ-independence in Section 2.1.
As we will see in Section 5, and in particular in Corollary 1, for good universal hash
functions H , i.e., where µ is very small relative to 2n, the value δ is very small (even up to
([2n]µ)−1/µ) and the dependence on µ vanishes.

Theorem 1. Let µ, k′, k, n, t ∈ N. Let H : {0, 1}k′ × [1, . . . , µ] → {0, 1}k be a δ-µ-
independent hash function family and I : {0, 1}k × {0, 1}n → {0, 1}n an ε-XOR-universal
hash function family. Then,

Advprf
EliMAC(q, τ) ≤

(
q

2

)
(2kδ)µε +

((
q

2

)
/22n−t

)1/2
+ Advprp

E (q, τ ′) , (8)

where τ ′ = τ +O(q).

Proof. Consider any adversary A making q construction queries and operating in time τ .
Let p $←− perm({0, 1}n) be a random permutation. As a first step, we replace EK2 by p.
This comes at the cost of

Advprp
E (A′) (9)

for some adversary A′ with complexity q and time τ ′ = τ +O(q).
We next replace ⌊p(·)⌋t by a random function f $←− func({0, 1}n, {0, 1}t). By the PRF

security of truncation [Sta78,BN18,Men19], this step comes at the cost of((
q

2

)
/22n−t

)1/2
. (10)

Denote the resulting scheme by EliMACK1,f . For clarity, this function is defined as

EliMACK1,f (M) = f (EliHash(K1, M1, . . . , Mℓ−1)⊕Mℓ) ,

where M is first injectively padded to M1 . . . Mℓ.
The function EliMACK1,f is perfectly indistinguishable from random as long as the

adversary never makes two different queries M, M ′ such that

EliHash(K1, M1, . . . , Mℓ−1)⊕Mℓ = EliHash(K1, M ′
1, . . . , M ′

ℓ′−1)⊕M ′
ℓ′ ,

Christoph Dobraunig, Bart Mennink and Samuel Neves 79

where ℓ, ℓ′ ≤ µ are the block lengths of padded M, M ′, respectively, because in this case the
inputs to the final f are all distinct. By Proposition 1, that would happen with probability
at most (

q

2

)
(2kδ)µε . (11)

The proof is completed by combining the individual terms (9), (10), and (11).

4.2 MAC Security of EliMAC
We derive a formal MAC security bound for EliMAC. For LightMAC, Luykx et al. [LPTY16,
Theorem 2] relied on an unforgeability result of Dodis and Pietrzak [DP07]. However,
some subtleties arise: Dodis and Pietrzak considered a hash-then-permute construction
whereas LightMAC, and also EliMAC, is a hash-then-permute-then-truncate construction,
i.e., a hash-then-permute construction followed by truncation. Therefore, we perform
the analysis in greater detail and derive a tighter bound. The core of this analysis is a
reduction from truncated to untruncated EliMAC, equation (15), that in fact applies to any
hash-then-permute-then-truncate construction, and in particular immediately allows for a
slight improvement of the MAC security bound of LightMAC of [LPTY16, Theorem 2].1

Theorem 2. Let µ, k′, k, n, t ∈ N. Let H : {0, 1}k′ × [1, . . . , µ] → {0, 1}k be a δ-µ-
independent hash function family and I : {0, 1}k × {0, 1}n → {0, 1}n an ε-XOR-universal
hash function family. Then,

Advmac
EliMAC(q, qf , τ) ≤(

q

2

)
(2kδ)µε + qf 2n

2t
·max

{
(2kδ)µε, (2n − q)−1}

+ Advprp
E (q + qf , τ ′) . (12)

where τ ′ = τ +O(q + qf).

Proof. Consider any adversary A making q construction queries and operating in time τ .
Let p $←− perm({0, 1}n) be a random permutation. As a first step, we replace EK2 by p.
This comes at the cost of

Advprp
E (A′) (13)

for some adversary A′ with complexity q and time τ ′ = τ +O(q + qf).
Now, unlike in the proof of Theorem 1, we do not replace ⌊p(·)⌋t by a random function

f $←− func({0, 1}n, {0, 1}t): it turns out to be conceptually simpler to reason about hash-
then-permute-then-truncate. Therefore, we denote the resulting scheme by EliMACK1,p,t.
For clarity, this function is defined as

EliMACK1,p,t(M) = ⌊p (EliHash(K1, M1, . . . , Mℓ−1)⊕Mℓ)⌋t ,

where M is first injectively padded to M1 . . . Mℓ. Our goal is to bound

Advmac
EliMACK1,p,t

(q, qf) ,

where we remark that we consider idealized functions, based on K1 and p, and hence we
have dropped the time complexity τ .

If t = n, the function EliMACK1,p,n is a hash-then-permute construction with

EliHash(K1, M1, . . . , Mℓ−1)⊕Mℓ

1This improvement can be obtained by replacing (2kδ)µε in the bound and proof of Theorem 2 by
LightMAC’s ε = 1/(2n/2 − 1)2.

80 EliMAC: Speeding Up LightMAC by around 20%

as universal hash. By Proposition 1, this function is (2kδ)µε-universal. Therefore, we
immediately obtain from Dodis and Pietrzak [DP07, Proposition 1] that EliMACK1,p,n is
unforgeable up to bound

Advmac
EliMACK1,p,n

(q, qf) ≤
(

q

2

)
(2kδ)µε + qf ·max

{
(2kδ)µε, (2n − q)−1}

. (14)

For arbitrary t ≤ n, we claim that

Advmac
EliMACK1,p,t

(q, qf) ≤ Advmac
EliMACK1,p,n

(q, 2n−tqf) , (15)

Obviously, under the hypothesis that this claim holds, the proof is completed, by combining
the individual terms (13), (14), and (15).

Reduction (15), finally, has already been demonstrated by Cogliati et al. [CLS17, Lemma
8], but we repeat it in our terminology for completeness. Let At be any forger against
EliMACK1,p,t making q MAC queries and qf forgery attempts. We construct a forger An

against EliMACK1,p,n making q MAC queries and 2n−tqf forgery attempts with at least
the same success probabilities. Forger An operates as follows:

• If At makes a MAC query M , An queries its own MAC oracle on input M , truncates
the result to t bits, and forwards the resulting value to At.

• If At makes a forgery attempt (M, T), An makes 2n−t forgery attempts (M, T∥Zi)
for all Zi ∈ {0, 1}n−t. If any of these 2n−t forgery attempts succeeds, it informs that
At has mounted a successful forgery. Otherwise, it informs that At’s forgery attempt
failed.

Clearly, An perfectly simulates the oracles of At, and An mounts a successful forgery if At

mounts a successful forgery. This proves (15), and completes the proof of this theorem.

4.3 Tightness of the Security Bounds
In both reductions, the hybrid step that replaces EK2 by a random permutation serves to
capture any undesired properties of the block cipher E . We will argue tightness of the
resulting, idealized, construction.

The PRF security bound of Theorem 1 has two terms, namely
(

q
2
)
(2kδ)µε+

((
q
2
)
/22n−t

)1/2.

• Term
((

q
2
)
/22n−t

)1/2. If the adversary restricts itself to 1-block padded messages, it
has direct access to the truncated permutation ⌊p(·)⌋t. The second term of the bound
corresponds to the distance of this function from random, and Gilboa and Gueron
proved that this term is tight [GG16]. In other words, there exists a distinguisher
that can distinguish the truncated permutation from random in around q = 2n−t/2

queries.

• Term
(

q
2
)
(2kδ)µε. This term is harder to parse, but we argue based on the separate

cryptographic building blocks H and I , and that way indirectly on the separate
terms δ and ε.

– Assume that H : {0, 1}k′ × [1, . . . , µ] → {0, 1}k is a random function. This
means that δ = 2−k and the bound simplifies to

(
q
2
)
ε. If the adversary focuses on

2-block padded messages M1∥M2, any two queries collide at the input to p with
probability at most ε. Under the assumption that the function is reasonably
regular (i.e., each image has an approximately equal amount of preimages), and
this term ε is met for many query tuples, this allows the adversary to distinguish
the scheme from random in around ε−1/2 queries.

Christoph Dobraunig, Bart Mennink and Samuel Neves 81

– Assume that I : {0, 1}k × {0, 1}n → {0, 1}n is a finite field multiplication with
k = n. This means that ε = 2−n. If the adversary focuses on 2-block padded
messages M1∥M2, the bound is of the form

(
q
2
)
δ. Any two queries collide at the

input to p if

HK1(1)⊗ (M1 ⊕M ′
1) = (M2 ⊕M ′

2) .

This happens with probability at most δ. Under the assumption that the
function is reasonably regular, and this term δ is met for many query tuples,
this allows the adversary to distinguish the scheme from random in around
δ−1/2 queries.
For larger messages, the term in the bound increases. For example, for 3-block
padded message M1∥M2∥M3, the bound is of the form

(
q
2
)
2kδ2. Any two queries

collide at the input to p if

HK1(1)⊗ (M1 ⊕M ′
1) = R⊗ (M2 ⊕M ′

2)⊕ (M3 ⊕M ′
3) , HK1(2) = R ,

for some R ∈ {0, 1}k. This happens with probability at most 2kδ2. Under the
assumption that the function is reasonably regular, and this term δ2 is met for
many query tuples, this allows the adversary to distinguish the scheme from
random in around δ−12−k/2 queries.

The attacks have an addendum that they hold under the assumption that H and I
are reasonably regular. For example, for the presence of

(
q
2
)
ε, an attacker can closely

match this bound if the probability for a collision is close to ε for many pairs of
queries. If H has few outliers and is secure otherwise, the attacker might not meet
this term.

For the bound of MAC security of Theorem 2, the analysis is slightly different. The bound
of this theorem has two terms, namely

(
q
2
)
(2kδ)µε and qf 2n

2t ·max
{

(2kδ)µε, (2n − q)−1}
.

• Term
(

q
2
)
(2kδ)µε. The first term already appeared for PRF-security, and corresponds

to input collisions to p. Clearly, if such an input collision between two messages M
and M ′ occurs, the adversary might add a constant to Mℓ and M ′

ℓ′ , query one of the
adjusted messages and use the outcome to forge for the other message.

• Term qf 2n

2t ·max
{

(2kδ)µε, (2n − q)−1}
. First consider t = n. Any forgery attempt

with fresh tag succeeds with probability at most 1/(2n− q), and any forgery attempt
with repeated tag succeeds only if the input to p of the forgery collides with the
input to p of the earlier query for that tag. This attack matches the term. Now, for
t ≤ n, one may note that any forgery attempt has a success probability amplified by
2n−t, as it only needs to be correct on t bits of the output; the remaining n− t bits
can be any value.

5 Instantiation and Application
A logical choice for the block cipher E is AES-128 [DR02] (or, simply, AES, recalling that
we would drop “-128” for brevity). It is defined for keys and message blocks of size n = 128.
For the universal hash function families, one can take round-reduced versions of AES. The
4-round AES is a popular choice for universal hashing. Keliher and Sui [KS07] derived
an upper bound of ε = 1.881 · 2−114 on the MEDP, the average differential probability
taken over all round keys, of 4-round AES. This bound, however, is not tight; Daemen
and Rijmen estimate that it is closer to 2−126, and that the differential probability (DP)
for the keyless 4-round AES is at most 2−119 [DR10]. Furthermore, the current state of

82 EliMAC: Speeding Up LightMAC by around 20%

cryptanalysis of Alred [DR05a] constructions based on 4-round AES has not been able
to exploit higher differential probabilities than those that would be expected from the
independently keyed version [DKS15]. As such, here we make the added assumption
that replacing AES4(K, X) by AES4(0, K ⊕X) does not result in a significant differential
probability gain.

We can thus use this 4-round AES function to instantiate I : {0, 1}n×{0, 1}n → {0, 1}n

as

I (K, M) = AES4(0, K ⊕M) . (16)

With respect to H , we require µ-independence, and this property does not directly follow
from XOR-universality. Fortunately, we only need µ-independence for a restricted use of
the hash function, namely where the input is an integer from [1, . . . , µ] that is first encoded
into an n-bit string. We can still be hopeful about instantiating H using round-reduced
a-round AES, for a ∈ [0, 10]. Formally, we instantiate H : {0, 1}n × [1, . . . , µ]→ {0, 1}n as

H (K, i) = AESa(K, ⟨i⟩n) , (17)

where ⟨i⟩n is any injective encoding of i ∈ [1, . . . , µ] as an n-bit string. One suitable
encoding is the naive one that transforms i into an n-bit string and prepends it with zeros,
e.g., ⟨5⟩n = 0n−3101. Depending on the value µ, better options for the encoding might
exist, as we will see in the next section.

Clearly, µ-independence is implied by PRP-security of HK . Stated differently, if HK is
PRP-secure, at the cost of its PRP-advantage we can replace it by a random permutation,
which is δ-µ-independent for δ = ([2n]µ)−1/µ ≥ 2−n (see also Section 2.1). Note that, in
this case, Theorem 1 indeed leads to a length-independent bound. Formally seen, one
replaces H by a random function family R which is indexed by key space perm({0, 1}n).
Full 10-round AES is commonly considered to be PRP-secure. In our setting, however,
the adversary is significantly restricted: it has a limited data complexity µ≪ q and also
the input values are fixed to ⟨i⟩n for i ∈ [1, . . . , µ].

For µ = 2, we can nevertheless rely on the XOR-universality and take a = 4. Apart
from this case, to judge the number of rounds a needed considering a certain µ, we consider
the best attacks on round-reduced AES. To the best of our knowledge, the best attack
on 7-round AES requires 297 chosen plaintexts and has a time complexity of 299 [DFJ13].
Hence, we conjecture that for µ ≤ 232, a = 7 rounds are sufficient. In the case of 6
rounds of AES, to the best of our knowledge, the best attack in terms of data complexity
needs 28 chosen plaintexts and has a time complexity of 2106 [DF13]. Therefore, we
conjecture that µ ≤ 24, a = 6 rounds are sufficient. Here, we recall that in our case, we
do not require the round-reduced versions of AES to be PRP-secure: it is sufficient that
they are µ-independent. The recent research in secret-key distinguishers shows that the
best distinguishers on 6 rounds of AES require more than 280 chosen plaintexts [BR19].
Hence, distinguishing or even guessing output distributions of round-reduced AES without
guessing the key seems to be a more challenging problem than recovering the key given
input and output data. We finally remark that, following Jha et al. [JMNS19], it may
suffice to only take a = 2 rounds of AES, but only in a very restricted setting on the size
of the counter i and at the cost of a larger key.

5.1 Concrete Instantiation
Based on above reasoning, we define the following concrete instantiation EliMAC-AES.
Let k = n = 128 and t ∈ N satisfying t ≤ n. Let K1, K2 be two k-bit keys. Let
s = 32, so µ = 232. Instantiate I using 4-round AES as prescribed in (16) and H
using (a = 7)-round AES as prescribed in (17). Define the encoding function ⟨i⟩128 by

Christoph Dobraunig, Bart Mennink and Samuel Neves 83

encoding i as a 32-bit string naively and concatenating this string four times. For example,
⟨5⟩128 = 029101∥029101∥029101∥029101. Finalize EliMAC with AES10(K2, ·).

We can prove security of EliMAC-AES under the assumption that AES10 is PRP-secure
against an adversary making q queries, that AES7 is PRP-secure against an adversary
making µ ≪ q predetermined queries (namely ⟨i⟩n for i ∈ [1, . . . , µ]), and that AES4 is
XOR-universal. The proof is, in fact, a direct corollary of Theorem 1.
Corollary 1. Let µ = 232, k = n = 128, and t ∈ N with t ≤ n. Assume that AES4 :
{0, 1}k × {0, 1}n → {0, 1}n is a ε-XOR-universal hash function family. Then,

Advprf
EliMAC-AES(q, τ) ≤

(
q

2

)
2ε +

((
q

2

)
/22n−t

)1/2

+ Advprp
AES10

(q, τ ′) + Advprp
AES7

(µ, τ ′′) , (18)

where τ ′ = τ +O(q) and τ ′′ = τ +O(µ).
Proof. Consider any adversary A making q construction queries and operating in time τ .
Let p′ $←− perm({0, 1}n) be a random permutation. As a first step, we replace HK1 by p′.
This comes at the cost of

Advprp
AES7

(A′′) (19)

for some adversary A′′ with complexity µ and time τ ′′ = τ +O(µ). Formally seen, this
transition moves EliMAC-AES to a scheme where the hash function family H is replaced
by a random function family R which is indexed by key space perm({0, 1}n) and defined
as R(p′, i) = p′(⟨i⟩n). This function family is δ-µ-independent with δ = ([2n]µ)−1/µ.

The remainder of the proof is identical to the proof of Theorem 1, and we obtain the
exact same bound, plus (19) maximized over any adversary with complexity µ and time
τ ′′. The bound still contains a term

(2kδ)µ = 2nµ

[2n]µ
,

where we use that k = n. Using Lemma 1, we can bound this term by 2, and this completes
the proof.

Given that AES4 can be considered ε-XOR-universal with ε ≈ 1.881 · 2−114 [KS07],
Corollary 1 guarantees security of EliMAC-AES up to q ≲ 256.

5.2 Comparison with LightMAC
In total, EliMAC-AES performs 11 AES rounds per message block, making it slightly
more expensive than LightMAC instantiated with AES in terms of the number of AES
rounds. However, EliMAC has significant advantages:

• LightMAC glues together the counter and the message block, meaning that all
message blocks in LightMAC are of size 96 bits (except for the last block). In
EliMAC, all message blocks are of size 128 bits. This gives – considering the number
of AES rounds processed – an asymptotic efficiency gain of 21%.

• In EliMAC, the subkeys H (K, 1), . . . , H (K, µ) can be precomputed and stored in
memory. This reduces the number of AES rounds per block to 4 (except for the last
block). Of course, this only works if sufficient storage for the subkeys is available.

In conclusion, we remark that the security models are different. Security of LightMAC
is proven up to the PRP-security of 10-round AES against adversaries that can make up
to q + qf queries. For EliMAC, we additionally require that 7-round AES is PRP-secure
against restricted adversaries that can only make µ evaluations for fixed inputs, and we
require that 4-round AES is XOR-universal.

84 EliMAC: Speeding Up LightMAC by around 20%

Table 2: Measured cycles per byte when authenticating messages of 64, 1536, and 4096
bytes on the Ivy Bridge, Broadwell, Skylake, and Zen 2 microarchitectures with Turbo
Boost disabled. “EliMAC p.c.” indicates the EliMAC variant with precomputed keys.

64 1536 4096

Ivy Bridge

LightMAC 3.43 1.13 1.11
EliMAC 2.18 1.02 0.98
EliMAC p.c. 2.00 0.46 0.43
PMAC2 4.50 1.28 1.22
ZMAC 5.70 1.49 1.26

Broadwell

LightMAC 8.75 0.98 1.08
EliMAC 1.94 0.76 0.74
EliMAC p.c. 1.75 0.30 0.27
PMAC2 3.25 1.13 1.09
ZMAC 6.97 1.34 1.23

Skylake

LightMAC 2.53 0.86 0.85
EliMAC 1.56 0.70 0.69
EliMAC p.c. 1.31 0.27 0.26
PMAC2 1.71 0.67 0.64
ZMAC 4.64 0.91 0.84

Zen 2

LightMAC 2.18 0.58 0.58
EliMAC 1.31 0.45 0.42
EliMAC p.c. 0.87 0.14 0.13
PMAC2 1.31 0.58 0.56
ZMAC 4.34 0.88 0.81

6 Implementation
We implemented and compared EliMAC-AES with some related schemes, namely Light-
MAC [LPTY16], PMAC2 [CCJN21], and ZMAC [IMPS17] instantiated with Deoxys-TBC-
256 [JNPS21]. We chose these modes because they, like EliMAC, are parallel hash-then-
PRF modes that also have length independent bounds.2 To compare them, we measured
the cycle counts of authenticating messages for various message lengths, and computed the
median of 216 such runs. Where necessary, Turbo Boost was disabled to prevent dynamic
frequency scaling to distort the timings. Table 2 presents the results for several CPUs
featuring hardware-accelerated AES instructions: Intel Core i7-3770 (Ivy Bridge), Intel
Xeon E5-2686 v4 (Broadwell), Intel Core i7-6770HQ (Skylake), and AMD EPYC 7402P
(Zen 2).

Because in AES-based modes the most costly operation is often the evaluation of
AES, the performance of such modes is often approximated by how many AES rounds are
executed, divided by how many bytes are processed. In parallel modes the latency of the
aesenc instruction is mostly irrelevant, and the important metric becomes how many new
AES instructions can be started per cycle. In most cases, one new AES instruction can be
issued at every cycle (cf., Table 3); this results in parallel AES modes such as ECB, CTR,
or OCB to have asymptotic performance of 10 cycles (rounds) divided by 16 bytes per
block, i.e., 0.625 cycles per byte. In some architectures, like Intel’s Ice Lake or AMD’s Zen
3, two AES rounds can be started per cycle, and furthermore on two parallel blocks using
ymm registers, making the asymptotic parallel throughput 10/64 = 0.15625 [AR19]. Here,
however, we will stick to the 1-round per cycle for simplicity, though it is straightforward

2In the case of PMAC2, the length-independence only applies if lengths stay below 232, which is the
case considered here. In the case of ZMAC, length-independence only applies to the ZMAC variant.

Christoph Dobraunig, Bart Mennink and Samuel Neves 85

to adapt to these other cases.
Implementation of EliMAC-AES is quite straightforward on processors with pipelined

AES instructions, such as Intel and AMD chips featuring AES-NI, ARMv8 chips, and
others. As such, the expectation was that the implementation matched the asymptotic
performance given by 11/16 = 0.6875. This is indeed the case on Skylake, while on
previous Intel microarchitectures there is some noticeable overhead from other instructions
competing with the AES instructions for execution units, cf., Table 3 for details.

LightMAC is almost as simple to implement as EliMAC, with one caveat – the 96-bit
blocks are not quite natural to the 128-bit xmm registers, and thus the message loads
become more elaborate, involving either overlapping loads, blends, or multiple small loads
to load the message plus counter into a 128-bit register. Which option is better depends
on the target architecture. Table 2 shows that this caveat is not without overhead. The
asymptotic performance of LightMAC with 96-bit blocks is expected to be 10

16 ·
128
96 ≈ 0.83

cycles per byte on the 1 aesenc per cycle model, but on the Broadwell and Ivy Bridge
microarchitectures we see that the overhead can be quite noticeable.

PMAC2 is not fully specified in [CCJN21], thus where unspecified we chose the
option that was most convenient for the implementer. We use the primitive polynomial
x128 + x7 + x2 + x + 1 to instantiate F2128 . The polynomial evaluation of the processed
message blocks at x, i.e.,

⊕l−1
i=0 xl−1−iπ(mi⊕xiL) presents some implementation challenges

comparable to the authentication part of AES-GCM [GK10]; we used parallel polynomial
evaluation and the carryless multiplication instruction PCLMULQDQ where it presented
an advantage relatively to using several shift and xor instructions. The asymptotic
performance of PMAC2 is expected to be 10/16 = 0.625. However, since the overhead of
non-AES instructions is much larger on PMAC2 than the other modes, only the Skylake
microarchitecture achieves this theoretical figure.

ZMAC [IMPS17] presented similar implementation challenges as PMAC2, but height-
ened. Like PMAC2, ZMAC is also not fully specified; we chose the same primitive
polynomial as above for the relevant finite field operations. Furthermore, one can imple-
ment ZMAC in several forms:

• Using 1 byte of tweak to signal the tweakable blockcipher instance and finite field
multiplications for the message offset;

• Using 5 bytes of tweak to signal both instance and message offset; no finite field
operations for masking;

• Using finite field operations but no separate tweakable blockcipher instantiations, as
suggested by Naito [Nai18].

We implemented all 3 variants. Ultimately we chose ZMAC1, Naito’s variant, as it seemed
to perform marginally better.

On paper, ZMAC1 implemented with Deoxys-TBC-256 has an asymptotic lower bound
of 14/(16 + 16) = 0.4375 cycles per byte. The ZMAC authors [IMPS17, §6.2] estimated an
overhead factor of 1.4 to the asymptotic 14/16 = 0.875 when processing random tweaks,
and divided it by 2 to obtain an estimated 0.875 · 1.4/2 = 0.61 cycles per byte. However,
the overhead incurred here is twofold. Firstly, the Deoxys tweak schedule involves a shuffle
and xor at every round, which keeps all the available execution ports busy in most cases (cf.
Table 3). Secondly, the ZMAC mode adds more overhead of its own in the form of multiple
finite field multiplications both before and after the tweakable blockcipher evaluation. As
such, we have not been able to come close to the asymptotic or estimated performance in
any of the tested architectures.

While we do not cover the various ARMv8 microarchitectures that contain AES
instructions, similar considerations apply there as well. In conclusion, we can argue that
in this class of length-independent hash-then-PRF modes of operation, EliMAC stays

86 EliMAC: Speeding Up LightMAC by around 20%

Table 3: Instruction port breakdown for several relevant instructions operating on xmm
registers. Obtained from [AR19]. The notation p015 means that the instruction can be
dispatched via ports 0, 1, or 5 in a given cycle; p0+p015 means that the instruction involves
2 µops, one of which dispatched to port 0, and the other dispatched to one of ports 0, 1,
or 5.

Instruction Ivy Bridge Broadwell Skylake Zen 2
aesenc,aesenclast p0+p015 p5 p0 p01

paddd p15 p15 p015 p013
pxor,pand,por p015 p015 p015 p0123
psrld,pslld p0 p0 p01 p2

psrldq,pslldq p15 p5 p5 p12
pclmulqdq complex p0 p5 4*p12

blendps,blendd p05 p015 p015 p013
pshufb p15 p5 p5 p12

closest to asymptotic performance due to its implementation simplicity. From Table 3
one can heuristically estimate that, all else being equal, modes which mainly consist of
AES rounds plus bitwise logical operations and integer additions are generally expected to
have less overhead than modes that are heavier on shifts, permutations, or polynomial
multiplications, will generally perform worse.

The implementation of EliMAC using precomputation is vastly faster than any of the
other modes, costing only ≈ 4 AES rounds per block after initialization; however this
comes with added memory requirements, which might involve more overall cache misses
when employed as part of a larger application.

7 Conclusion

It seems that the reduction of the XOR-universality of EliHash to the µ-independence of H
and the XOR-universality of I (Proposition 1) leaves little room for improvement. Whereas
the XOR-universality assumption is well-established, the µ-independence assumption is a
bit stronger. It is satisfied by a random permutation, and thus also by functions that are
hard to distinguish from a random permutation (up to their PRP-security). In EliMAC-
AES, we even instantiate it using a round-reduced version of AES, noting that the function
H is only evaluated a limited number of times on restricted inputs. Nonetheless, the
instantiation is not tight, meaning that PRP-security guarantees much more than what we
need and a weaker primitive might be employed. It is an interesting question to investigate
how many rounds of AES are required to guarantee µ-independence.

For EliHash, we proved XOR-universality. We could have gotten away with blinded
keyed hashing (BKH) [GDM19]. However, for the specific setting, proving BKH security
of EliHash is equivalent to proving PRF-security of EliMAC, and thus resorting to XOR-
universality of EliHash was the most logical option.

Acknowledgments

We would like to thank the reviewers for their valuable feedback and comments. Bart
Mennink is supported by the Netherlands Organisation for Scientific Research (NWO)
under grant VI.Vidi.203.099.

Christoph Dobraunig, Bart Mennink and Samuel Neves 87

References
[AR19] Andreas Abel and Jan Reineke. uops.info: Characterizing Latency, Throughput,

and Port Usage of Instructions on Intel Microarchitectures. In Iris Bahar,
Maurice Herlihy, Emmett Witchel, and Alvin R. Lebeck, editors, Proceedings
of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2019, Providence,
RI, USA, April 13-17, 2019, pages 673–686. ACM, 2019.

[BCC10] Céline Blondeau, Anne Canteaut, and Pascale Charpin. Differential properties
of power functions. In IEEE International Symposium on Information Theory,
ISIT 2010, June 13-18, 2010, Austin, Texas, USA, Proceedings, pages 2478–
2482. IEEE, 2010.

[Ber99] Daniel J. Bernstein. How to Stretch Random Functions: The Security of
Protected Counter Sums. J. Cryptology, 12(3):185–192, 1999.

[Ber05] Daniel J. Bernstein. Stronger Security Bounds for Wegman-Carter-Shoup
Authenticators. In Ronald Cramer, editor, Advances in Cryptology - EU-
ROCRYPT 2005, 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings, volume 3494 of Lecture Notes in Computer Science, pages 164–180.
Springer, 2005.

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of Cipher Block
Chaining. In Yvo Desmedt, editor, Advances in Cryptology - CRYPTO ’94, 14th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 21-25, 1994, Proceedings, volume 839 of Lecture Notes in Computer
Science, pages 341–358. Springer, 1994.

[BN18] Srimanta Bhattacharya and Mridul Nandi. A note on the chi-square method:
A tool for proving cryptographic security. Cryptography and Communications,
10(5):935–957, 2018.

[BR02] John Black and Phillip Rogaway. A Block-Cipher Mode of Operation for
Parallelizable Message Authentication. In Lars R. Knudsen, editor, Advances
in Cryptology - EUROCRYPT 2002, International Conference on the Theory
and Applications of Cryptographic Techniques, Amsterdam, The Netherlands,
April 28 - May 2, 2002, Proceedings, volume 2332 of Lecture Notes in Computer
Science, pages 384–397. Springer, 2002.

[BR19] Navid Ghaedi Bardeh and Sondre Rønjom. The Exchange Attack: How to
Distinguish Six Rounds of AES with 288.2 Chosen Plaintexts. In Steven D.
Galbraith and Shiho Moriai, editors, Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part III, volume 11923 of Lecture Notes in Computer Science, pages 347–370.
Springer, 2019.

[Bra82] Gilles Brassard. On Computationally Secure Authentication Tags Requiring
Short Secret Shared Keys. In David Chaum, Ronald L. Rivest, and Alan T.
Sherman, editors, Advances in Cryptology: Proceedings of CRYPTO ’82, Santa
Barbara, California, USA, August 23-25, 1982, pages 79–86. Plenum Press,
New York, 1982.

88 EliMAC: Speeding Up LightMAC by around 20%

[CCJN21] Bishwajit Chakraborty, Soumya Chattopadhyay, Ashwin Jha, and Mridul
Nandi. On Length Independent Security Bounds for the PMAC Family. IACR
Trans. Symmetric Cryptol., 2021(2):423–445, 2021.

[CJN21] Soumya Chattopadhyay, Ashwin Jha, and Mridul Nandi. Fine-Tuning the
ISO/IEC Standard LightMAC. In Mehdi Tibouchi and Huaxiong Wang, editors,
Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore,
December 6-10, 2021, Proceedings, Part III, volume 13092 of Lecture Notes in
Computer Science, pages 490–519. Springer, 2021.

[CLS17] Benoît Cogliati, Jooyoung Lee, and Yannick Seurin. New Constructions of
MACs from (Tweakable) Block Ciphers. IACR Trans. Symmetric Cryptol.,
2017(2):27–58, 2017.

[CS16] Benoît Cogliati and Yannick Seurin. EWCDM: An Efficient, Beyond-Birthday
Secure, Nonce-Misuse Resistant MAC. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part I, volume 9814 of Lecture Notes in Computer Science, pages
121–149. Springer, 2016.

[DDNY18] Nilanjan Datta, Avijit Dutta, Mridul Nandi, and Kan Yasuda. Encrypt or
Decrypt? To Make a Single-Key Beyond Birthday Secure Nonce-Based MAC.
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
- CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of
Lecture Notes in Computer Science, pages 631–661. Springer, 2018.

[DF13] Patrick Derbez and Pierre-Alain Fouque. Exhausting Demirci-Selçuk Meet-
in-the-Middle Attacks Against Reduced-Round AES. In Shiho Moriai, editor,
Fast Software Encryption - 20th International Workshop, FSE 2013, Singapore,
March 11-13, 2013. Revised Selected Papers, volume 8424 of Lecture Notes in
Computer Science, pages 541–560. Springer, 2013.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recovery
Attacks on Reduced-Round AES in the Single-Key Setting. In Thomas Johans-
son and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 371–387. Springer,
2013.

[DKS15] Orr Dunkelman, Nathan Keller, and Adi Shamir. Almost universal forgery
attacks on AES-based MAC’s. Des. Codes Cryptogr., 76(3):431–449, 2015.

[DNT19] Avijit Dutta, Mridul Nandi, and Suprita Talnikar. Beyond Birthday Bound
Secure MAC in Faulty Nonce Model. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, volume 11476 of
Lecture Notes in Computer Science, pages 437–466. Springer, 2019.

[DP07] Yevgeniy Dodis and Krzysztof Pietrzak. Improving the Security of MACs Via
Randomized Message Preprocessing. In Alex Biryukov, editor, Fast Software
Encryption, 14th International Workshop, FSE 2007, Luxembourg, Luxembourg,

Christoph Dobraunig, Bart Mennink and Samuel Neves 89

March 26-28, 2007, Revised Selected Papers, volume 4593 of Lecture Notes in
Computer Science, pages 414–433. Springer, 2007.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

[DR05a] Joan Daemen and Vincent Rijmen. A New MAC Construction ALRED and
a Specific Instance ALPHA-MAC. In Henri Gilbert and Helena Handschuh,
editors, Fast Software Encryption: 12th International Workshop, FSE 2005,
Paris, France, February 21-23, 2005, Revised Selected Papers, volume 3557 of
Lecture Notes in Computer Science, pages 1–17. Springer, 2005.

[DR05b] Joan Daemen and Vincent Rijmen. The MAC function Pelican 2.0. Cryptology
ePrint Archive, Report 2005/088, 2005. https://eprint.iacr.org/2005/
088.

[DR10] Joan Daemen and Vincent Rijmen. Refinements of the ALRED construction
and MAC security claims. IET Information Security, 4(3):149–157, 2010.

[GDM19] Aldo Gunsing, Joan Daemen, and Bart Mennink. Deck-Based Wide Block
Cipher Modes and an Exposition of the Blinded Keyed Hashing Model. IACR
Trans. Symmetric Cryptol., 2019(4):1–22, 2019.

[GG16] Shoni Gilboa and Shay Gueron. The Advantage of Truncated Permutations.
CoRR, abs/1610.02518, 2016.

[GK10] Shay Gueron and Michael E. Kounavis. Efficient implementation of the Galois
Counter Mode using a carry-less multiplier and a fast reduction algorithm. Inf.
Process. Lett., 110(14-15):549–553, 2010.

[GMS74] Edgar N. Gilbert, F. Jessie MacWilliams, and Neil J. A. Sloane. Codes which
detect deception. Bell System Technical Journal, 53:405–424, 1974.

[IMPS17] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin.
ZMAC: A Fast Tweakable Block Cipher Mode for Highly Secure Message
Authentication. In Katz and Shacham [KS17], pages 34–65.

[ISO19] ISO/IEC 29192-6:2019. Information technology – Lightweight cryptography –
Part 6: Message authentication codes (MACs), 2019.

[JMNS19] Ashwin Jha, Cuauhtemoc Mancillas-López, Mridul Nandi, and Sourav Sen
Gupta. On Random Read Access in OCB. IEEE Trans. Inf. Theory,
65(12):8325–8344, 2019.

[JNPS21] Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. The Deoxys
AEAD Family. J. Cryptol., 34(3):31, 2021.

[JS07] Goce Jakimoski and K. P. Subbalakshmi. On Efficient Message Authentication
Via Block Cipher Design Techniques. In Kaoru Kurosawa, editor, Advances in
Cryptology - ASIACRYPT 2007, 13th International Conference on the Theory
and Application of Cryptology and Information Security, Kuching, Malaysia,
December 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer
Science, pages 232–248. Springer, 2007.

[KS07] Liam Keliher and Jiayuan Sui. Exact maximum expected differential and linear
probability for two-round Advanced Encryption Standard. IET Information
Security, 1(2):53–57, 2007.

https://eprint.iacr.org/2005/088
https://eprint.iacr.org/2005/088

90 EliMAC: Speeding Up LightMAC by around 20%

[KS17] Jonathan Katz and Hovav Shacham, editors. Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III, volume 10403
of Lecture Notes in Computer Science. Springer, 2017.

[LPSY16] Atul Luykx, Bart Preneel, Alan Szepieniec, and Kan Yasuda. On the Influence
of Message Length in PMAC’s Security Bounds. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016 -
35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
I, volume 9665 of Lecture Notes in Computer Science, pages 596–621. Springer,
2016.

[LPTY16] Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC
Mode for Lightweight Block Ciphers. In Thomas Peyrin, editor, Fast Software
Encryption - 23rd International Conference, FSE 2016, Bochum, Germany,
March 20-23, 2016, Revised Selected Papers, volume 9783 of Lecture Notes in
Computer Science, pages 43–59. Springer, 2016.

[Men19] Bart Mennink. Linking Stam’s Bounds with Generalized Truncation. In Mitsuru
Matsui, editor, Topics in Cryptology - CT-RSA 2019 - The Cryptographers’
Track at the RSA Conference 2019, San Francisco, CA, USA, March 4-8,
2019, Proceedings, volume 11405 of Lecture Notes in Computer Science, pages
313–329. Springer, 2019.

[MN17] Bart Mennink and Samuel Neves. Encrypted Davies-Meyer and Its Dual:
Towards Optimal Security Using Mirror Theory. In Katz and Shacham [KS17],
pages 556–583.

[MT06] Kazuhiko Minematsu and Yukiyasu Tsunoo. Provably Secure MACs from
Differentially-Uniform Permutations and AES-Based Implementations. In
Matthew J. B. Robshaw, editor, Fast Software Encryption, 13th International
Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected
Papers, volume 4047 of Lecture Notes in Computer Science, pages 226–241.
Springer, 2006.

[Nai18] Yusuke Naito. On the Efficiency of ZMAC-Type Modes. In Jan Camenisch
and Panos Papadimitratos, editors, Cryptology and Network Security - 17th
International Conference, CANS 2018, Naples, Italy, September 30 - October 3,
2018, Proceedings, volume 11124 of Lecture Notes in Computer Science, pages
190–210. Springer, 2018.

[SB12] Marcos A. Simplício Jr. and Paulo S. L. M. Barreto. Revisiting the Security of
the ALRED Design and Two of Its Variants: Marvin and LetterSoup. IEEE
Trans. Inf. Theory, 58(9):6223–6238, 2012.

[SBB+09] Marcos A. Simplício Jr., Pedro d’Aquino F. F. S. Barbuda, Paulo S. L. M.
Barreto, Tereza Cristina M. B. Carvalho, and Cintia B. Margi. The MARVIN
message authentication code and the LETTERSOUP authenticated encryption
scheme. Security and Communication Networks, 2(2):165–180, 2009.

[Sho96] Victor Shoup. On Fast and Provably Secure Message Authentication Based on
Universal Hashing. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in
Computer Science, pages 313–328. Springer, 1996.

Christoph Dobraunig, Bart Mennink and Samuel Neves 91

[Sta78] A. J. Stam. Distance between sampling with and without replacement. Statistica
Neerlandica, 32(2):81–91, 1978.

[SWG21] Yaobin Shen, Lei Wang, and Dawu Gu. LedMAC: More Efficient Variants
of LightMAC. Cryptology ePrint Archive, Report 2021/1210, 2021. https:
//eprint.iacr.org/2021/1210.

[WC81] Mark N. Wegman and Larry Carter. New Hash Functions and Their Use in
Authentication and Set Equality. J. Comput. Syst. Sci., 22(3):265–279, 1981.

A Note on Security Analysis of MARVIN
A simplified depiction of MARVIN is given in Figure 3. In this figure, R is a subkey derived
as EK(c)⊕ c for some constant c. Data is transformed by first adding R · (xw)i for some
finite field generator xw and message index i and then feeding the value through a square
complete transform Θ. This, in turn, is a primitive on n bits such that any differential over
Θ has at least n/w active S-boxes. The outcomes are then added, the value is blinded with
R and the length of the message and tag, and the resulting checksum is fed through EK .

In the security proof of MARVIN [SB12], the property that Θ is a square complete
transform is merely interpreted as the fact that the function H : Mi 7→ Θ(Mi ⊕R · (xw)i)
has differential property at most p:

∀i , ∀Mi ̸= M ′
i , ∀C : Pr

(
Θ(Mi ⊕R · (xw)i)⊕Θ(M ′

i ⊕R · (xw)i) = C
)
≤ p . (20)

I.e., the authors basically argue based on the XOR-universality of H . This does not become
clear from the definition of a square complete transform, but rather from the proof itself
and from the statement of Theorem 1 of [SB12].3 A specific part of the security analysis
of MARVIN, i.e., Section V.D of [SB12], considers zero-sums. First, it considers the case
that two evaluations of MARVIN differ in exactly two positions. In this case, one might
indeed argue from the XOR-universality of H . However, then, the authors consider the
case where two blocks are modified. In other words, one looks at collisions of the form

H (Mi)⊕H (M ′
i)⊕H (Mj)⊕H (M ′

j) = 0 ,

where i ̸= j and (Mi, Mj) ̸= (M ′
i , M ′

j). Inspired by (20), the authors [SB12] maximize over
the choices of Mi, Mj and consider the plain differential probability

H (M ′
i)⊕H (M ′

j) = H (Mi)⊕H (Mj) . (21)

However, this requires one to maximize over the choice of Mi, Mj and to multiply the
bound by a factor 22n.

A.1 Attack with Keyed Θ
We can use this observation in a constructive way to design a function Θ for which H
is XOR-universal as requested by Theorem 1 and its proof of [SB12], but for which the
security of MARVIN breaks badly. As a first attempt, we select a keyed Θ. We admit that
this is unfair, as the authors of MARVIN clearly state that Θ is unkeyed.

For our attack, we instantiate Θ as multiplication with secret key L:

Θ(X) = L ·X .

3To detail: the theorem statement only states that Θ must be XOR-universal, the the proof considers
XOR-universality of H .

https://eprint.iacr.org/2021/1210
https://eprint.iacr.org/2021/1210

92 EliMAC: Speeding Up LightMAC by around 20%

⟨|M |⟩n/2∥⟨τ⟩n/2

0

EK0

c c

R

M1

Θ

M2

Θ

Mℓ

Θ. . .

⊗xw ⊗xw . . .

. . .

EK

⌊·⌋t

T

Figure 3: MARVIN message authentication [SBB+09]. Here, Θ : {0, 1}n → {0, 1}n is
a square complete transform and E : {0, 1}n × {0, 1}n → {0, 1}n is a block cipher. Not
depicted is the injective padding of an arbitrarily length message M into ℓ n-bit blocks
M1, . . . , Mℓ.

Clearly, above-defined function H fulfills the XOR-universality of (20) for p = 1/2n .
However, an adversary can make (21) happen with probability 1 by taking Mi = M ′

j and
Mj = M ′

i :

H (Mi)⊕H (M ′
i)⊕H (Mj)⊕H (M ′

j)
= L · (Mi ⊕R · (xw)i)⊕ L · (M ′

i ⊕R · (xw)i)⊕ L · (Mj ⊕R · (xw)j)⊕ L · (M ′
j ⊕R · (xw)j)

= L ·
(

Mi ⊕R · (xw)i ⊕M ′
i ⊕R · (xw)i ⊕Mj ⊕R · (xw)j ⊕M ′

j ⊕R · (xw)j
)

= 0 .

A.2 Attack with Unkeyed Θ
One may argue that the above attack is cheating by using a keyed linear hash for Θ.
Clearly, the design states that Θ is unkeyed, and presumably based on some non-linear
block cipher building block. It is, nevertheless, possible to create a variant of MARVIN
that respects its spirit and nevertheless is hopelessly broken. Let Θ be

Θ(X) = X7 ,

over F2128 . This Θ is both a permutation since gcd(7, 2128 − 1) = 1, is 6-differentially
uniform [BCC10, Theorem 6], and it is non-linear; its algebraic degree is, in fact, 3.
Therefore, by the security proof of MARVIN [SB12], this seems to be a perfectly acceptable
Θ to employ.

Now let the masking be defined as in PMAC: γi ·R, where γi is the i-th Gray codeword.
Although this is not the MARVIN masking, it again does not seem to contradict any
requirement of the proof. As pointed out by Luykx et al. [LPSY16], a sequence of 2k − 1
sequential Gray codewords contains a subgroup of size 2k−1. This property, combined with

Christoph Dobraunig, Bart Mennink and Samuel Neves 93

the low algebraic degree of Θ, can be used to force a short sequence blocks to sum to zero
and forge messages.

In particular, the 10-block message pair

M = (α, α, α, α, α, α, α, α, α, α)
M ′ = (α, α, α⊕∆, α⊕∆, α⊕∆, α⊕∆, α⊕∆, α⊕∆, α⊕∆, α⊕∆) ,

where α is an arbitrary constant and ∆ ̸= 0, collides with probability 1. If the non-bijective
but 2-differentially uniform Θ(X) = X3 would be used,

M = (α, α, α, α)
M ′ = (α⊕∆, α⊕∆, α⊕∆, α⊕∆)

suffices.

	Introduction
	Parallel Universal Hashing
	EliHash: Parallel Universal Hashing from Universal Hash Functions
	EliMAC: Improving LightMAC Using Parallelizable Universal Hashing
	Instantiation

	Preliminaries
	Universal Hash Functions
	Pseudorandom Permutations and Pseudorandom Functions
	Message Authentication Codes
	Bound Falling Factorial

	EliHash
	XOR-Universality of EliHash

	EliMAC
	PRF Security of EliMAC
	MAC Security of EliMAC
	Tightness of the Security Bounds

	Instantiation and Application
	Concrete Instantiation
	Comparison with LightMAC

	Implementation
	Conclusion
	Note on Security Analysis of MARVIN
	Attack with Keyed
	Attack with Unkeyed

