
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2023, No. 1, pp. 244–287. DOI:10.46586/tosc.v2023.i1.244-287

Chosen-Key Secure Even-Mansour Cipher from a
Single Permutation

Shanjie Xu1,2, Qi Da1,2 and Chun Guo1,2,3(�)

1 Key Laboratory of Cryptologic Technology and Information Security of Ministry of Education,
Shandong University, Qingdao, Shandong, China

2 School of Cyber Science and Technology, Shandong University, Qingdao, Shandong, China
shanjie1997@mail.sdu.edu.cn, daqi@mail.sdu.edu.cn, chun.guo@sdu.edu.cn

3 Shandong Research Institute of Industrial Technology, Jinan, Shandong, China

Abstract. At EUROCRYPT 2015, Cogliati and Seurin proved that the 4-round
Iterated Even-Mansour (IEM) cipher with Independent random Permutations and no
key schedule EMIP4(k, u) = k ⊕ p4

(
k ⊕ p3

(
k ⊕ p2(k ⊕ p1(k ⊕ u))

))
is sequentially

indifferentiable from an ideal cipher, which implies chosen-key security in the sense of
correlation intractability. In practice, however, blockciphers such as the AES typically
employ the same permutation at each round. To bridge the gap, we prove that the
4-round IEM cipher EMSP[φ]p4 (k, u) = k4⊕p

(
k3⊕p

(
k2⊕p(k1⊕p(k0⊕u))

))
, whose

round keys ki = φi(k) are derived using an affine permutation φ : {0, 1}n → {0, 1}n

with certain properties, is sequentially indifferentiable from an ideal cipher. The
function φ can be a linear orthomorphism, or φ(k) := k ≫a for some fixed integer a
using cyclic shift. To our knowledge, this is the first indifferentiability-type result for
blockciphers using identical round functions.
Keywords: blockcipher · sequential indifferentiability · Even-Mansour cipher

1 Introduction
The Iterated Even-Mansour (IEM) scheme (a.k.a. key-alternating cipher), initiated
in [EM97] and extended in [GPPR11, BKL+12, DKS12, ABD+13], provides a natural
solution to the fundamental cryptographic problem of constructing blockciphers from key-
less permutations. Given t permutations p1, ..., pt : {0, 1}n → {0, 1}n and a key schedule
−→φ = (φ0, ..., φt), φi : {0, 1}κ → {0, 1}n, the scheme enciphers (k, u) ∈ {0, 1}κ × {0, 1}n as

EM[−→φ]t(k, u) := φt(k)⊕ pt

(
...φ2(k)⊕ p2

(
φ1(k)⊕ p1(φ0(k)⊕ u)

)
...

)
.

It abstracts the paradigm substitution-permutation network of a number of standards [Pub01,
ISO12, ISO21]. Modeling p1, ..., pt as public random permutations, this scheme provably
achieves various security notions, including indistinguishability [EM97, BKL+12, LPS12,
CS14, CLL+18, ML15, HT16, TZ21], related-key security [FP15, CS15], known-key secu-
rity [ABM14, CS16], chosen-key security [CS15] and indifferentiability [ABD+13, LS13,
DSST17]. Despite theoretical uninstantiatability [CGH04, Bla06], such arguments dismiss
generic attacks and are viewed as evidences of the soundness of the design approaches.

Indifferentiability. The classical security definition for a blockcipher is indistinguishability
from a (secret) random permutation. Since 2005, a series of papers [CHK+16, ABD+13]
have proposed indifferentiability from ideal ciphers as a much stronger criteria for ideal
function-based blockciphers. Briefly speaking, for the IEM cipher EMP built upon random
permutations P , if there exists an efficient simulator SE that queries an ideal cipher E to

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-11-23 Accepted: 2023-01-23 Published: 2023-03-10

https://doi.org/10.46586/tosc.v2023.i1.244-287
mailto:shanjie1997@mail.sdu.edu.cn
mailto:daqi@mail.sdu.edu.cn
mailto:chun.guo@sdu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Shanjie Xu, Qi Da, and Chun Guo 245

mimic its (non-existent) underlying permutations such that (E,SE) is indistinguishable
from (EMP ,P), then EMP is indifferentiable from E [MRH04]. This property implies that
the cipher EMP inherits all ideal cipher-properties defined by single-stage games, including
security against various forms of related-key and chosen-key attacks.

As results, Andreeva et al. [ABD+13] proposed the IEM variant EMKDt(k, u) = h(k)⊕
pt(...h(k)⊕p2(h(k)⊕p1(h(k)⊕u))...) using a Random Oracle (RO) h : {0, 1}κ → {0, 1}n

to derive the round key h(k), and proved indifferentiability at 5 rounds. Concurrently,
Lampe and Seurin [LS13] proposed to consider the “single-key” Even-Mansour variant
EMIPt(k, u) = k⊕pt(...k⊕p2(k⊕p1(k⊕u))...) without any non-trivial key schedule, and
proved indifferentiability at 12 rounds. Both results have been tightened in subsequent
works [DSST17, GL16a], showing that 3-round EMKD and 5-round EMIP suffice.

Seq-Indifferentiability and Correlation Intractability. Known-key and chosen-key attacks
typically tried to find tuples of inputs/outputs of the blockcipher that satisfy certain
evasive relations [CGH04]. For example, the first known-key distinguisher against 7-round
Feistel cipher Ψ7 [KR07] attacks by exhibiting a pair of inputs/outputs Ψ7(u) = v and
Ψ7(u′) = v′ such that the xor of the right halves of u, v, u′ and v′ is 0, while the first
chosen-key distinguisher against AES-256 [BKN09] attacks by exhibiting q-multicollisions.

To formalize known-key security, Knudsen and Rijmen [KR07] discussed the use of Cor-
relation Intractability (CI), meaning that no adversary can find blockcipher inputs/outputs
that satisfy evasive relations. Though, this idea was limited by the uninstantiatability of
CI (in the standard model) [CGH04], and it gained attention only when positive results
were given in the ideal model [MPS12, CS15, CS16]. In detail, to establish CI, Mandal
et al. [MPS12] introduced sequential-indifferentiability (seq-indifferentiability), which is
a weaker variant of indifferentiability concentrating on distinguishers that follow a strict
restriction on the order of queries. Mandal et al. [MPS12] showed that seq-indifferentiability
implies CI, and further established CI for Feistel-based blockciphers. For the aforemen-
tioned Even-Mansour variants, CI and seq-indifferentiability have been established for
3-round EMKD [GL16b] and 4-round EMIP [CS15], both of which are tight.

1.1 Our Contributions
We stress that all the aforementioned (seq-)indifferentiability results on IEM [ABD+13,
LS13, CS15, GL16b, DSST17, GL16a] crucially rely on using t independent random permu-
tations in the t rounds. A natural next step is to investigate whether indifferentiability-type
security is achievable using a single permutation and (hopefully) minimal key schedule.
This is particularly relevant to “real-world” SPN ciphers that typically employ identical
round permutations, and this has motivated similar attempts regarding indistinguisha-
bility [DKS12, CLL+18, Dut20, WYCD20]. Though, due to the significantly added
complexity, it remains open to prove indifferentiability with identical permutations.

Arguably, the minimal IEM variant is EMSPt(k, u) = k ⊕ p(...k ⊕ p(k ⊕ p(k ⊕ u))...)
using a single permutation and trivial key schedule. Unfortunately, this is insecure even
w.r.t. seq-indifferentiability [XDG23]: by acting as the involved evaluations in all the t
rounds, a single permutation-evaluation p(x) = y already yields a full t-round EMSPt

enciphering y → (x, y)→ ...→ (x, y)︸ ︷︷ ︸
t times

→ x with k = x ⊕ y. Xu et al. [XDG23] thus only

proved seq-indifferentiability for a 4-round IEM variant using 2 permutations, which still
falls short of addressing the single permutation problem.

Given Xu et al.’s attack, one has to enhance EMSP with some non-trivial key schedules
to break the slide property. We seek for using affine key schedules due to their popularity in
practice. In this respect, we observe that Andreeva et al.’s attack [ABD+13] (see Appendix
A) essentially breaks seq-indifferentiability of any 3-round IEM with affine key schedules.
We thus focus on 4-round IEMs using affine key schedules.

246 Chosen-Key Secure Even-Mansour from a Single Permutation

p

k

p

φ(k)

p

φ2(k)

p

φ3(k) φ4(k)

x y

Figure 1: The minimal construction EMSP[φ]p4 using a single random permutation
p : {0, 1}n → {0, 1}n and an affine key schedule permutation φ : {0, 1}n → {0, 1}n. One
can set φ to be a linear orthomorphism, or φ(k) := k ≫a for a fixed integer a.

Table 1: Comparison of our result with existing seq-indifferentiable IEM results. The
column Key sch. indicates the key schedule functions in the schemes. The column
Complex. indicates the simulator complexities. For EMSP[φ]p4 , C(φ) = 1 for linear
orthomorphism φ, and C(φ) = 2a for φ(k) = k ≫a, 1 ≤ a ≤ n/2.
Scheme ♯Rounds ♯Primitives Key sch. Complex. Bounds Ref.
EMIPp1,p2,p3,p4

4 4 4 no q2 q4/2n [CS15]
EMKDh,p1,p2,p3

3 3 4 RO h q2 q4/2n [GL16b]
EM2Pp1,p2

4 4 2 no q2 q4/2n [XDG23]

EMSP[φ]p4 4 1 iterative q2 C(φ)q7/2n

+q10/2n This paper

Our final construction EMSP[φ]p4 is a 4-round IEM cipher built upon a single permuta-
tion and employs an iterative-type key schedule to dissolve the slide property. In detail,
let φ : {0, 1}n → {0, 1}n be a (non-idealized) affine permutation, and denote by φr the
r-fold self-composition of φ. Then, EMSP[φ]p4 , illustrated in Fig. 1, is defined as

EMSP[φ]p4 (k, u) := φ4(k)⊕ p
(
φ3(k)⊕ p

(
φ2(k)⊕ p(φ(k)⊕ p(k ⊕ u))

))
. (1)

We require that for any z ∈ {0, 1}n, the number of x ∈ {0, 1}n such that x⊕φ(x) = z is at
most C(φ), and C(φ)/2n is sufficiently small. For instance, if φ is a linear orthomorphism,
then x 7→ x ⊕ φ(x) is also a permutation, and C(φ) = 1. If φ(k) := k ≫a, i.e., right
rotating k by a bits, 1 ≤ a ≤ n/2, then C(φ) = 2a. By this, a single input/output p(x) = y
cannot yield a full EMSP[φ]p4 enciphering any more. We refer to Technical challenges below
for more details. Formally, we prove that the 4-round EMSP[φ]p4 is seq-indifferentiable:

Theorem 1. Assume that p is a random permutation, 3q2 ≤ 2n/2. Then, the 4-round
Even-Mansour scheme EMSP[φ]p4 in Eq. (1) is strongly and statistically (q, σ, t, ε)-seq-
indifferentiable from an ideal cipher E, where σ = q2, t = O(q2), and ε ≤

(
1524C(φ)q7 +

2725q10)/2n.

EMSP[φ]p4 thus offers the minimal Even-Mansour scheme for chosen-key security in
the sense of seq-indifferentiability. Please see Table 1 for comparison.
Remark. We are not advocating EMSP[φ]p4 for practice: EMSP[φ]p4 is not fully indifferen-
tiable, and its security bound is weak. Thus, when instantiating EMSP for CI only, one
has to use moderately large permutations (and probably more than 4 rounds). Though,
our focus here is on theoretical side, showing feasibility results on achieving (weaker)
indifferentiability with identical round functions. Another interesting point is that, our
key schedule is “tight” in the sense that it is “just” sufficient for CI! We believe this sheds
lights on which properties on the key schedule are needed for blockcipher security.

Technical Challenges. We first recall an existing simulator for EMIP4, which is our basis.
We then discuss EMSP[φ]4 and elaborate on challenges, intuitions and our solutions.

Shanjie Xu, Qi Da, and Chun Guo 247

Simulator for EMIP4. To establish indifferentiability-type security, the first step is to
construct a simulator that resists obvious attacks. Then, it remains to argue: (i) The
simulator is efficient, i.e., its complexity can be bounded; (ii) The simulator gives rise to
an ideal world (E,SE) that is indistinguishable from the real world (EMP ,P).

Virtually all blockcipher simulators follow the (computation) chain detection and
completion approach initiated by Coron et al. [CHK+16]. For example, consider the
EMIP4 cipher (using independent permutations). A distinguisher D may arbitrarily pick
k, u ∈ {0, 1}n and evaluate x1 ← k ⊕ u, P1(x1) → y1, x2 ← k ⊕ y1, P2(x2) → y2,
x3 ← k⊕y2, P3(x3)→ y3, x4 ← k⊕y4, P4(x4)→ y4, x5 ← k⊕y4. This creates a sequence
of four (query) records

(
(1, x1, y1), (2, x2, y2), (3, x3, y3), (4, x4, y4)

)
that will be called a

computation chain (the numbers 1,..., 4 indicates the index of the permutation). When D
is in the real world, it necessarily holds EMIP4(k, u) = x5.

To be consistent with this in the ideal world, S should pre-emptively define some
simulated (query) records to “complete” a similar chain. To this end, Cogliati and Seurin
(CS)’s simulator S for EMIP4 [CS15] takes queries to the middle (2nd and 3rd) rounds
as “signals” for chain detection and the outer (1st and 4th) rounds for adaptations.
Concretely, facing the above attack, S pinpoints the key k = y2 ⊕ x3 and recognize
the “partial chain”

(
(1, x1, y1), (2, x2, y2), (3, x3, y3)

)
upon the third permutation query

P2(x3) → y3. S then queries the ideal cipher E(k, k ⊕ x1) → x5 and adapts the simu-
lated P1 by enforcing P1(k ⊕ y3) := k ⊕ x5. As such, a simulated computation chain(
(1, x1, y1), (2, x2, y2), (3, x3, y3), (4, k ⊕ y3, k ⊕ x5)

)
with E(k, k ⊕ x1) = x5 is completed.

Worth noting, adaptations only create records on P1 and P4 and won’t trigger new detec-
tion. This idea of assigning a unique role to every round/simulated primitive was initiated
in [CHK+16], and it significantly simplifies arguments.

Of course, D may pick k′, y′4 ∈ {0, 1}n and evaluate “conversely”. In this case, CS
simulator detects the “partial chain”

(
(2, x′2, y′2), (3, x′3, y′3), (4, x′4, y′4)

)
after D’s third query

P−1
2 (y′2) → x′2, queries E−1(k′, k′ ⊕ y′4) → x′0 and pre-enforces P1(k′ ⊕ x′0) := k′ ⊕ x′5.

In the seq-indifferentiability setting, these have covered all adversarial possibilities. In
particular, the distinguisher D cannot pick k′, y′1 and evaluate P−1

1 (y′1)→ x′1, u′ ← k′⊕x′1,
E(k′, u′) → v′, and P−1

4 (k′ ⊕ v′) → x′4, since this violates the query restriction. This
greatly simplifies simulation compared with the “full” indifferentiability setting.
Challenges in EMSP[φ]4. The problem in EMSP[φ]4 is that there is no independence at
all, and every permutation query P (x) → y is potentially in 2nd or 3rd round. If we
simply detect and complete all pairs of records, then the simulation runs into an endless
recursion: for every detected “2-chain”

(
(x, y), (x′, y′)

)
(since there is only 1 permutation,

we omit the index), the simulator has to create at least 1 record (x′′, y′′) to adapt; but then,
the new record (x′′, y′′) gives rise to new “2-chains”

(
(x, y), (x′′, y′′)

)
,

(
(x′, y′), (x′′, y′′)

)
,

..., and simulator will complete these “2-chains” to create many new “adapted” records,
which in turn give rise to new “2-chains” as well. Likely, this is the major obstacle to
indifferentiability-type proofs for blockciphers using identical primitives.
Intuitions for EMSP[φ]4. To rescue, our intuition is that (query) records created by internal
simulator actions are “private” and “unknown” to the distinguisher D, and it is not
necessary to immediately complete chains for such internal records.

For example, consider D querying P (x1). S samples y1
$← {0, 1}n and creates the

record (x1, y1). This constitutes a “2-chain”
(
(x1, y1), (x1, y1)

)
that has:

• The “next” value is x′4 = y1⊕φ(y1⊕ x1) = (y1⊕φ(y1))⊕φ(x1), and the probability
to have x′4 = x◦ for any “target value” x◦ is at most C(φ)/2n;

• The “previous” value y′0 = x1 ⊕ φ−1(y1 ⊕ x1) is uniformly distributed in {0, 1}n.

By these, S could (roughly speaking): (1) sample y′4
$← {0, 1}n and create a record

(x′4, y′4); (2) query E−1(
φ−2(y1 ⊕ x1), φ2(y1 ⊕ x1) ⊕ y′4

)
→ u′ and create (x′0, y′0), x′0 :=

248 Chosen-Key Secure Even-Mansour from a Single Permutation

φ−2(y1 ⊕ x1)⊕ u′ to adapt. The records (x′0, y′0) and (x′4, y′4) are “internal created”, and
are “private”. Each such private record has one “endpoint” known to D while the other
“unknown” to D. Concretely, y′1 and x′4 can be derived from x1 and y1 that are “known”
to D, but x′1 and y′4 are “unknown” to D. Furthermore,

• y′4 is sampled “internally”, and appears uniformly distributed in {0, 1}n in the view
of D, till D obtains y′4 by explicitly querying P (x4);

• x′0 is derived from u′ the response of an ideal cipher query, and also appears (some-
what) uniform in the view of D, till D explicitly queries P−1(y0).

Thus, (intuitively) D is unlikely to “guess” the values of y′4 and x′0—or even values that
bear “interesting” relations with y′4 and x′0—and use this information in attack. Worth
noting, (as discussed) D cannot derive y′4 by querying the ideal cipher E itself.

We remark that “privacy” of values has been crucially used in “full” indifferentiability
proofs for iterated random function [DRST12] and 3-round EMKD3 cipher [GL16a]. In
all, below we propose simulator strategy for EMSP[φ]4 using this idea.
Simulator for EMSP[φ]4. A query record (x, y) is public, if either P (x) or P−1(y) has been
explicitly queried by D; otherwise, it is internal. In some sense, our simulator S detects
all “public 2-chains”, i.e., pairs of records

(
(x, y), (x′, y′)

)
(including the case x = x′) such

that both (x, y) and (x′, y′) are “public”. Such new “public 2-chains” arise in two cases:

(i) When D issues a new query P (x) or P−1(y) that is never encountered before;

(ii) When D issues a query P (x) or P−1(y) such that the corresponding record (x, y)
was internally created by previous simulator actions. This reflects D’s attempt of
inspecting unknown internal information via queries.

For each such “2-chain”
(
(x, y), (x′, y′)

)
, our simulator S views it as the 2nd and 3rd round

evaluations of a chain, and tries to complete a “4-chain”
(
(x1, y1), (x, y), (x′, y′), (x4, y4)

)
such that E(k, k ⊕ x1) = φ4(k) ⊕ y4 (where k = φ−2(y ⊕ x′)). The concrete simulator
actions for completing this chain depends on whether records of the form (⋆, y1) and (x4, ⋆)
have been created before, and we refer to Sect. 3 for a detailed overview.

The records (x1, y1) and (x4, y4), if newly created, give rise to new “2-chains”, e.g.,(
(x1, y1), (x, y)

)
. But (x1, y1) and (x4, y4) (if new) are viewed as internal and private, and

S does not complete these new “2-chains” immediately. Therefore, our simulator is quite
simple and has no recursion at all. By this, the simulator complexity is obviously O(q2).

The crux is to prove that the “private” unqueried records won’t cause trouble. Formally,
we prove that when D makes each query, every internal record has O(2n) possibilities for
its “private” endpoint, even conditioned on all the other already created query records.
Therefore, it is also uniform in the view of D. We prove this by considering parallel
executions (of the interaction between S and D) with carefully chosen randomness, such
that they produce the same records except for the “private” endpoint of exactly 1 internal
record. These executions proceed with almost the same actions and provide the same
information to D. Thus, D cannot distinguish. We refer to Lemma 4 (Sect. 6) for details.
Interestingly, it turns out crucial that the simulator does not handle the internal records at
once. Otherwise, it will create a pile of “private” values with complicated dependency, and
we cannot hope the private “endpoint” to be uniform conditioned on the other records.
Further intuitions: An example. To further understand our strategy, consider D querying
P (xi)→ yi, i = 1, 2, 3, 4, xi+1 = yi ⊕ φi(k) again. The interaction consists of 4 steps.

Upon the initial query P (x1), S samples y1
$← {0, 1}n, creates (x1, y1), detects the

“2-chain”
(
(x1, y1), (x1, y1)

)
and completes the chain

(
(x′0, y′0), (x1, y1), (x1, y1), (x′4, y′4)

)
by creating two “internal” records (x′0, y′0) and (x′4, y′4). The new “2-chains” formed by
(x′0, y′0) and (x′4, y′4) (e.g.,

(
(x1, y1), (x′0, y′0)

)
) won’t be completed right now.

Shanjie Xu, Qi Da, and Chun Guo 249

Then, D makes the 2nd query P (x2). We assume that D chooses x2 ̸= x1, x′4.
On the other hand, as discussed, D is unlikely to guess x2 = x′0. Therefore, S sam-
ples y2

$← {0, 1}n\{y1, y′0, y′4}, creates (x2, y2), and completes three “public 2-chains”(
(x1, y1), (x2, y2)

)
,

(
(x2, y2), (x1, y1)

)
and

(
(x2, y2), (x2, y2)

)
to

(
(x0, y0), (x1, y1), (x2, y2),

(x3, y3)
)

and
(
(x′′0 , y′′0), (x2, y2), (x1, y1), (x′′4 , y′′4)

)
and

(
(x′′′0 , y′′′0), (x2, y2), (x2, y2), (x′′′4 , y′′′4)

)
.

Then, upon D issuing the 3rd query P (x3), the record (x3, y3) has been created at
the end of the “4-chain”

(
(x0, y0), (x1, y1), (x2, y2), (x3, y3)

)
. Similarly to discussed before,

the record (x3, y3) is “internal”, with x3 derivable from adversary known values and y3
private and “unknown”. S remarks (x3, y3) as “public”, and addresses the “public 2-chains”
formed by (x3, y3), including

(
(x2, y2), (x3, y3)

)
that has appeared but was shelved. For(

(x2, y2), (x3, y3)
)
, the corresponding “1st round” query record (x1, y1) has been created,

and S just needs to create an adapted record (x4, y4) with y4 = φ4(k)⊕ E(k, y0).
This examples shows that there remain some slide properties: the two “4-chains”(

(x0, y0), (x1, y1), (x2, y2), (x3, y3)
)

and
(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

)
share 3 permu-

tation evaluations. Though, our idea suffices in simulating two consistent “4-chains”.
Finally, upon D making the final query P (x4), S remarks the record (x4, y4) as

“public” and addresses the “public 2-chains” formed by (x4, y4), including
(
(x3, y3), (x4, y4)

)
that was shelved. For

(
(x3, y3), (x4, y4)

)
, the corresponding “1st round” query record

(x2, y2) has been created, and S just needs to create an adapted record (x5, y5) with
y5 = φ5(k) ⊕ E(φ(k), y1), to have a “4-chain”

(
(x2, y2), (x3, y3), (x4, y4), (x5, y5)

)
. For

traceability, we have to omit many “uninteresting” chain completions, but the above has
exhibited an example of simulator execution, producing “4-chains” that are consistent with
the ideal cipher E and the limited slide property as well.

Organization. Sect. 2 serves notations and definitions. The remaining sections present
the various steps of the proof: Sect. 3 presents our simulator; Sect. 4 introduces an
intermediate system; Sect. 5 bounds simulator complexity; Sect. 6 formalizes privacy of
internal values; Sect. 7 bounds the probability of certain “bad events” during simulations;
Sect. 8 concludes on the failure probability of simulation; and finally Sect. 9 establishes
indistinguishability of the real and ideal systems to complete the proof.

2 Preliminaries
Fix an integer n. An n-bit random permutation p : {0, 1}n → {0, 1}n is a permutation
that is uniformly chosen from all (2n)! possible choices, and its inverse is denoted by p−1.
An ideal blockcipher E : {0, 1}n×{0, 1}n → {0, 1}n is chosen randomly from the set of all
blockciphers with key space {0, 1}n and message and ciphertext space {0, 1}n. For each
key k ∈ {0, 1}n, the map E(k, ·) is a random permutation with inversion oracle E−1(k, ·).

The notion of sequential indifferentiability (seq-indifferentiability), introduced by Man-
dal et al. [MPS12], is a weakened variant of (full) indifferentiability of Maurer et al. [MRH04]
tailored to a class of restricted distinguishers named sequential distinguishers. For concrete-
ness, our formalism concentrates on blockciphers. Consider the blockcipher construction
Cp built upon several random permutations p. A distinguisher DC

p,p with oracle access
to both the cipher and the underlying permutations is trying to distinguish Cp from the
ideal cipher E. Then, D is sequential, if it proceeds in the following steps in a strict order:
(1) queries the underlying permutation p in arbitrary direction; (2) queries the cipher Cp

in arbitrary; (3) outputs, and cannot query p again in this phase.
In this setting, if there is a simulator SE that has access to E and can mimic p such

that in the view of any sequential distinguisher D, the system (E,SE) is indistinguishable
from (Cp, p), then Cp is sequentially indifferentiable (seq-indifferentiable) from E.

To characterize the adversarial power, we define a notion total oracle query cost of D,

250 Chosen-Key Secure Even-Mansour from a Single Permutation

which refers to the total number of queries received by p (from D or Cp) when D interacts
with (Cp, p) [MPS12]. Then, seq-indifferentiability [MPS12, CS15] is defined as follows.

Definition 1. A blockcipher Cp with oracle access to a random permutation p is statisti-
cally and strongly (q, σ, t, ε)-seq-indifferentiable from an ideal cipher E, if there exists a
simulator SE such that for any sequential distinguisher D of total oracle query cost q, SE

issues at most σ queries to E and runs in time at most t, and∣∣∣Prp[DC
p,p = 1]− PrE [DE,SE

= 1]
∣∣∣ ≤ ε.

3 Simulator of EMSP[φ]4
Setup. Our simulator S implements two public procedures P and P−1 as interfaces to
the distinguisher for querying the random permutation p and its inverse p−1. Following
previous works [CS15], our simulator S takes a random permutation p as explicit random-
ness to describe lazy sampling. Whenever S needs to sample an n-bit random value to
respond P (x) (resp., P−1(y)), it queries p(x) (resp., p−1(y)) to “download” the response.
Denote by SE,p the simulator that queries E and p.

Permutation Query Records. To distinguish between internally created private permu-
tation query records and public, adversarially chosen permutation queries, S maintains
two sets Πpub and Πin, where the subscript pub stands for public and in stands for
internal. Records in Πin are called internal, while records in Πpub are called public.
Define Πall := Πpub ∪ Πin as the union. Elements in the sets are 4-tuples of the form
(x, y, dir, num) ∈ {0, 1}n × {0, 1}n × {→,←,⊥←,⊥→} × N+, which are called (query)
records. In each record (x, y, dir, num) ∈ Πall, the first and second coordinates indicate
the simulated relation P (x) = y, while the third coordinate dir is the “direction” of the
corresponding query and the fourth num is the value of the query counter before creating
this (query) record—our simulator S follows [ABD+13] and maintains a global query
counter qnum (initialized to 0 and increased right after S adding a new record to Πall) to
keep track of the order of creating query records. Concretely, dir =→ or ← if the record
(x, y, dir, num) has either x = p−1(y) or y = p(x) from p. In other cases, i.e., dir = ⊥→
or ⊥←, the record is called adapted. The detailed rules will be elaborated later. We
sometimes simply write (x, y, dir) or (x, y), when the last coordinates are not of interest
to the context.
Private records Πin and procedure InP . To distinguish internal permutation evaluations
from adversarial queries, S implements a pair of private procedures InP and InP−1.
Whenever S needs to internally acquire the value of P (x), it calls InP (x) (rather than
P (x)). Now, if the corresponding record (x, y, dir, num) has been in either Πpub or Πin,
InP (x) simply returns y; otherwise, InP (x) “downloads” the random response y ← p(x)
and adds a new record (x, y,→, qnum) to Πin and then returns y. As discussed in Sect.
1.1, the intuition is the value y is kept secret in the state of S and is “unknown” to the
distinguisher. A call to InP−1(y) runs similar by symmetry.

Whenever S is to adapt, it adds a new record (x, y, dir, qnum) to the internal set
Πin, where dir = ⊥← or ⊥→. The intuition, which is also found in Sect. 1.1, is that
every adapted record (x, y, dir, qnum) has either x or y derived from a new ideal cipher
query response that happens right before S creating it. We refer to the description of
ProcessRecord(x, y, dir) below for example.
Public records Πpub. Finally, the set Πpub keeps all the records that have been (explicitly)
queried by the distinguisher. This includes both the records newly created “straightfor-
wardly” for adversarial queries and the records that were moved from Πin to Πpub due to
adversarial queries (as will be elaborated later).

Shanjie Xu, Qi Da, and Chun Guo 251

Additional notations for Πall. S will ensure that: (i) the union Πall := Πpub ∪Πin always
defines a partial permutation; (ii) the sets Πpub and Πin are always disjoint. S aborts
whenever it cannot ensure such consistency anymore (thus, a major part of our proof is
devoted to show that abortions are unlikely). By this, for i ∈ {pub, in}, we denote by
domain(Πi) (range(Πi), resp.) the (time-dependent) set of all n-bit values x (y, resp.)
satisfying ∃z ∈ {0, 1}n s.t. (x, z) ∈ Πi ((z, y) ∈ Πi, resp.). We further denote by Πi(x)
(Π−1

i (y), resp.) the corresponding value of z.

Chains and CompletedChains. With the sets Πall introduced before, we now define
2-chain, 3-chain and 4-chains to ease describing simulation strategy.
Definition 2. A 2-chain is an ordered pair of records

(
(x, y), (x′, y′)

)
∈ (Πall)2. A 2-chain(

(x, y), (x′, y′)
)

is public, if both (x, y) and (x′, y′) are in Πpub.
A 3-chain is an ordered triple of records

(
(x, y), (x′, y′), (x′′, y′′)

)
∈ (Πall)3 such that

y′ ⊕ x′′ = φ(y ⊕ x′).
A 4-chain is a 4-tuple

(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

)
∈ (Πall)4 such that y2⊕x3 =

φ(y1 ⊕ x2), y3 ⊕ x4 = φ2(y2 ⊕ x1), and E
(
k, k ⊕ x1

)
= φ4(k)⊕ y4 for k = φ−1(y1 ⊕ x2).

A 2-chain
(
(x, y), (x′, y′)

)
∈ (Πall)2 is in a (completed) 4-chain, if there exists a

4-chain
(
(x′′, y′′), (x, y), (x′, y′), (x′′′, y′′′)

)
for some (x′′, y′′), (x′′′, y′′′) ∈ Πall. This means

S has performed chain completion for
(
(x, y), (x′, y′)

)
. To keep track, S maintains a set

CompletedChains with elements
(
(x, y), (x′, y′)

)
∈ (Πall)2 for such “processed” 2-chain.

Similarly, a 3-chain
(
(x, y), (x′, y′), (x′′, y′′)

)
∈ (Πall)3 is in a 4-chain, if there exists a

4-chain
(
(x, y), (x′, y′), (x′′, y′′), (x′′′, y′′′)

)
or

(
(x′′′, y′′′), (x, y), (x′, y′), (x′′, y′′)

)
for some

(x′′′, y′′′) ∈ Πall.

Simulator Actions. As mentioned in the Introduction, our simulator S performs chain
completion actions when D issues a query that is either new or corresponds to an internal
query record. In both cases, S addresses all newly formed public 2-chains.

In detail, upon D querying P (x), S checks Πi, i ∈ {pub, in}, to see whether the
corresponding record (x, y) has been created. We distinguish three cases.

• Case 1: x ∈ domain(Πpub). In this case, S simply returns Πpub(x).

• Case 2: x ∈ domain(Πin). In this case, S moves the record (x, y, dir, num) from Πin

to Πpub. Then, S makes a call to a private procedure ProcessRecord(x, y, dir) to
complete chains (see below for its detailed actions). After these, S returns y to D;

• Case 3: x /∈ domain(Πall). In this case, S queries y ← p(x) for y and adds a record
(x, y,→, qnum) to Πpub. Then, S calls ProcessRecord(x, y,→) to complete chains
(see below). After these, S returns y to D.

Therefore, the two sets Πpub and Πin are always disjoint.
ProcessRecord(x, y, dir). As intuition, D is unlikely to guesses x for an internal record
(x, y, dir) ∈ Πin with dir ∈ {←,⊥←}. Therefore, in ProcessRecord(x, y, dir) which is
called due to D querying P (x), it is expected to have dir ∈ {→,⊥→}. In this case, S
checks relevant partial chains as follows.

First, if there exists a 2-chain
(
(x′′, y′′), (x′, y′)

)
such that (x′, y′) ∈ Πpub and x =

y′ ⊕ φ(y′′ ⊕ x′), then S recognizing a 3-chain
(
(x′′, y′′), (x′, y′), (x, y)

)
. S then com-

putes k ← φ−1(y′′ ⊕ x′), u ← x′′ ⊕ k, v ← E(k, u), y4 ← v ⊕ φ4(k), and x4 ←
y ⊕ φ3(k). S then adds the adapted record (x4, y4,⊥→, qnum) to Πin to complete a
4-chain

(
(x′′, y′′), (x′, y′), (x, y), (x4, y4)

)
. The adapted record has dir = ⊥→, meaning that

y4 is derived from the new ideal cipher query response v ← E(k, u).
Then, (x, y) triggers detecting two types of public 2-chains

(
(x′, y′), (x, y)

)
(including

the case of x′ = x) and
(
(x, y), (x′, y′)

)
(x′ ̸= x). S completes them as follows.

252 Chosen-Key Secure Even-Mansour from a Single Permutation

1. First, for each public 2-chain
(
(x′, y′), (x, y)

)
, S computes k ← φ−2(y′ ⊕ x), x4 ←

y ⊕ φ3(k), y4 ← InP (x4), v ← y4 ⊕ φ4(k), u ← E−1(k, v), x1 ← u ⊕ k, y1 ←
x′⊕φ(k). S then adds the adapted record (x1, y1,⊥←) to Πin to complete a 4-chain(
(x1, y1), (x′, y′), (x, y), (x4, y4)

)
. The adapted record has dir = ⊥←, meaning that

x1 is derived from the new ideal cipher query response u← E−1(k, v).

2. Then, for each public 2-chain
(
(x, y), (x′, y′)

)
, S computes k ← φ−2(y ⊕ x′), y1 ←

x ⊕ φ(k), x1 ← InP−1(y), u ← x1 ⊕ k, v ← E(k, u), y4 ← v ⊕ φ4(k), and x4 ←
y′⊕φ3(k). S then adds the adapted record (x4, y4,⊥→) to Πin to complete a 4-chain(
(x1, y1), (x, y), (x′, y′), (x4, y4)

)
.

As discussed, S does not detect the (other) 2-chains and 3-chains formed by internal
records. Thus, the above chain detection and completions are “one-shot deal”.

Upon D querying P−1(y) and inducing a call to ProcessRecord(x, y, dir) with dir ∈
{←,⊥←}, the actions of S are similar by symmetry. A pseudocode description of S is
given as follows. Note that S maintains an additional set ET to keep track of ideal cipher
queries it has made. Later in Sect. 4, we will consider another simulator T modified from
S by adding a number of lines. To this end, we put the added lines into boxes and mark
them red to highlight. The reader can ignore these boxed statements at the moment.

1: Simulator SE,p Simulator T E,p

2: Variables: Sets Πpub, Πin, ET, CompletedChains, all initially empty
3: Variables: // Πall := Πpub ∪Πin

4: Variables: Integer qnum, initialized to 0

5: public procedure P (x)
6: CheckP rivacy(x)
7: if x ∈ domain(Πpub) then
8: return Πpub(x)

// It then holds x /∈ domain(Πpub)
9: if x /∈ domain(Πin) then

10: y ← InP (x)
// x ∈ domain(Πin)

11: if (x, y, ⋆, ⋆) ∈ Πin then
12: CheckInternalColl(x, y)
13: Πin ← Πin \ {(x, y, dir, num)}
14: Πpub ← Πpub ∪ {(x, y, dir, num)}
15: for each (x, y) ∈ (Πin) do

16: CheckInterV 3Chain(x, y)
17: P rocessRecord(x, y, dir)
18: return Πpub(x)

19: public procedure P−1(y)
20: CheckP rivacy−1(y)
21: if y ∈ range(Πpub) then
22: return Π−1

pub(y)
// It then holds y /∈ range(Πpub)

23: if y /∈ range(Πin) then
24: x← InP−1(y)

// y ∈ range(Πin)
25: if (x, y, ⋆, ⋆) ∈ Πin then
26: CheckInternalColl−1(x, y)
27: Πin ← Πin \ {(x, y, dir, num)}
28: Πpub ← Πpub ∪ {(x, y, dir, num)}
29: for each (x, y) ∈ (Πin) do

30: CheckInterV 3Chain(x, y)
31: P rocessRecord(x, y, dir)
32: return Π−1

pub(y)

33: private procedure P rocessRecord(x, y, dir)
34: Check3Chains(x, y, dir)
35: Check2Chains(x, y)

36: private procedure CheckP rivacy(x)

37: if ∃(x, y, dir) ∈ (Πin) s.t. dir ∈ {←,⊥←} then abort

38: if ∃(x1, y1, dir1) ∈ Πall, (x2, y2) ∈ Πall s.t. x = y2 ⊕ φ(y1 ⊕ x2), and:

(i) (x1, y1, dir1) ∈ (Πin) and dir1 ∈ {→,⊥→}; or

(ii) (x2, y2) ∈ (Πin)

39: then abort // A 3-chain
(
(x1, y1), (x2, y2), (x, ⋆)

)

Shanjie Xu, Qi Da, and Chun Guo 253

40: if ∃(x1, y1), (x2, y2, dir2), (x3, y3) ∈ Πall s.t. x1 ⊕ φ−1(y1 ⊕ x2) = x3 ⊕ φ−1(y3 ⊕ x), and:

(i) (x1, y1) ∈ Πin; or

(ii) (x2, y2) ∈ Πin and dir2 ∈ {←,⊥←}; or

(iii) (x3, y3) ∈ Πin

// Two 2-chains
(
(x1, y1), (x2, y2)

)
and

(
(x3, y3), (x, ⋆)

)
collide at left

41: then abort

42: private procedure CheckP rivacy−1(y)

43: if ∃(x, y, dir) ∈ Πin s.t. dir ∈ {→,⊥→} then abort

44: if ∃(x2, y2) ∈ Πall, (x3, y3, dir3) ∈ Πall s.t. y = x2 ⊕ φ−1(y2 ⊕ x3), and:

(i) (x2, y2) ∈ Πin; or

(ii) (x3, y3, dir3) ∈ Πin and dir′′ ∈ {←,⊥←}

45: then abort
46: if ∃(x1, y1, dir1), (x2, y2), (x4, y4) ∈ Πall s.t. y2 ⊕ φ(y1 ⊕ x2) = y4 ⊕ φ(y ⊕ x4), and:

(i) (x1, y1) ∈ Πin and dir1 ∈ {→,⊥→}; or

(ii) (x2, y2) ∈ Πin; or

(iii) (x4, y4) ∈ Πin

47: then abort

48: private procedure CheckInternalColl(x, y)

49: if ∃(x2, y2), (x3, y3) ∈ Πall s.t. x3 = y2 ⊕ φ(y ⊕ x2) // A 3-chain
(
(x, y), (x2, y2), (x3, y3)

)
50: then abort
51: if ∃(x2, y2), (x3, y3), (x4, y4) ∈ Πall s.t.: (i) x⊕ φ−1(y ⊕ x2) = x3 ⊕ φ−1(y3 ⊕ x4); or

(ii) y2 ⊕ φ(y ⊕ x2) = y4 ⊕ φ(y3 ⊕ x4)

// Two 2-chains
(
(x, y), (x2, y2)

)
and

(
(x3, y3), (x4, y4)

)
collide at either left or right

52: then abort
53: if ∃(x1, y1), (x3, y3), (x4, y4) ∈ Πall s.t. y ⊕ φ(y1 ⊕ x) = y4 ⊕ φ(y3 ⊕ x4)

// Two 2-chains
(
(x1, y1), (x, y)

)
and

(
(x3, y3), (x4, y4)

)
collide at right

54: then abort

55: private procedure CheckInternalColl−1(x, y)

56: if ∃(x1, y1), (x2, y2) ∈ Πall s.t. x = y2 ⊕ φ(y1 ⊕ x2) // A 3-chain
(
(x1, y1), (x2, y2), (x, y)

)
57: then abort
58: if ∃(x1, y1), (x3, y3), (x4, y4) ∈ Πall s.t.: (i) x1 ⊕ φ−1(y1 ⊕ x) = x3 ⊕ φ−1(y3 ⊕ x4); or

(ii) y ⊕ φ(y1 ⊕ x) = y4 ⊕ φ(y3 ⊕ x4)

// Two 2-chains
(
(x1, y1), (x, y)

)
and

(
(x3, y3), (x4, y4)

)
collide at either left or right

59: then abort
60: if ∃(x2, y2), (x3, y3), (x4, y4) ∈ Πall s.t. x⊕ φ−1(y ⊕ x2) = x3 ⊕ φ−1(y3 ⊕ x4)

// Two 2-chains
(
(x, y), (x2, y2)

)
and

(
(x3, y3), (x4, y4)

)
collide at left

254 Chosen-Key Secure Even-Mansour from a Single Permutation

61: then abort

62: private procedure CheckInterV 3Chain(x, y)

63: if there exist distinct 2-chains
(
(x1, y1), (x2, y2)

)
∈ (Πpub)2

and
(
(x3, y3), (x4, y4)

)
∈ (Πpub)2 s.t. φ(y′ ⊕ x) = y ⊕ x′′, where

y′ = x1 ⊕ φ−1(y1 ⊕ x2) and x′′ = y4 ⊕ φ(y3 ⊕ x4)

64: then abort // Internally linking a “virtual” 3-chain

65: private procedure InP (x)
66: if x /∈ domain(Πall) then
67: y ← p(x)
68: if y ∈ range(Πall) then abort
69: CheckRecord(x, y,→, qnum)
70: Πin ← Πin ∪ {(x, y,→, qnum)}
71: qnum← qnum + 1
72: return y

73: private procedure InP−1(y)
74: if y /∈ range(Πall) then
75: x← p−1(y)
76: if x ∈ domain(Πall) then abort
77: CheckRecord(x, y,←, qnum)
78: Πin ← Πin ∪ {(x, y,←, qnum)}
79: qnum← qnum + 1
80: return x

81: private procedure Check3Chains(x, y, dir)
82: if dir ∈ {→,⊥→} then
83: forall (x′, y′) ∈ Πpub do
84: forall (x′′, y′′) ∈ Πin do // 3-chains of the form

(
(x′′, y′′), (x′, y′), (x, y)

)
85: if x = y′ ⊕ φ(y′′ ⊕ x′) and

(
(x′, y′), (x, y)

)
/∈ CompletedChains then

86: k ← φ−1(y′′ ⊕ x′), Complete+(y, k)
87: else if dir ∈ {←,⊥←} then
88: forall (x′, y′) ∈ Πpub do
89: forall (x′′, y′′) ∈ Πin do // 3-chains of the form

(
(x, y), (x′, y′), (x′′, y′′)

)
90: if y = x′ ⊕ φ−1(x′ ⊕ y′′) and

(
(x, y), (x′, y′)

)
/∈ CompletedChains then

91: k ← φ−2(y ⊕ x′), Complete−(x, k)

92: private procedure Check2Chains(x, y)
93: forall (x′, y′) ∈ Πpub do // 2-chains of the form

(
(x′, y′), (x, y)

)
94: if

(
(x′, y′), (x, y)

)
/∈ CompletedChains then

95: Complete−(x′, φ−2(x⊕ y′))
96: forall (x′, y′) ∈ Πpub\{(x, y)} do // 2-chains of the form

(
(x, y), (x′, y′)

)
97: if

(
(x, y), (x′, y′)

)
/∈ CompletedChains then

98: Complete+(y′, φ−2(x′ ⊕ y))

99: private procedure Complete+(y3, k)
100: x4 ← y3 ⊕ φ3(k), x3 ← InP−1(y3)
101: y2 ← x3 ⊕ φ2(k), x2 ← InP−1(y2)
102: y1 ← x2 ⊕ φ(k), x1 ← InP−1(y1)
103: u← x1 ⊕ k, v ← E(k, u)
104: ET ← ET ∪ {(k, u, v)}, y4 ← v ⊕ φ4(k)
105: CheckRecord(x4, y4,⊥→, qnum)
106: Adapt(x4, y4,⊥→, qnum)
107: qnum← qnum + 1

108: private procedure Complete−(x2, k)
109: y1 ← x2 ⊕ φ(k), y2 ← InP (x2)
110: x3 ← y2 ⊕ φ2(k), y3 ← InP (x3)
111: x4 ← y3 ⊕ φ3(k), y4 ← InP (x4)
112: v ← y4 ⊕ φ4(k), u← E−1(k, v)
113: ET ← ET ∪ {(k, u, v)}, x1 ← u⊕ k

114: CheckRecord(x1, y1,⊥←, qnum)
115: Adapt(x1, y1,⊥←, qnum)
116: qnum← qnum + 1

117: private procedure Adapt(x, y, dir, num)
118: if x ∈ domain(Πall) or y ∈ range(Πall) then abort
119: Πin ← Πin ∪ {(x, y, dir, num)}

120: private procedure CheckRecord(x, y, dir, num)

Shanjie Xu, Qi Da, and Chun Guo 255

121: if ∃(x′, y′) ∈ Πall s.t. y ⊕ φ(x) = y′ ⊕ φ(x′) then abort

122: Π∗all ← Πall ∪ {(x, y, dir, num)} // A temporary record set

123: if there exist distinct 2-chains
(
(x1, y1), (x2, y2)

)
∈ (Πall)2

and
(
(x3, y3), (x4, y4)

)
∈ (Πall)2 s.t. φ(y′ ⊕ x) = y ⊕ x′′, where

y′ = x1 ⊕ φ−1(y1 ⊕ x2) and x′′ = y4 ⊕ φ(y3 ⊕ x4)

124: then abort // Linking a “virtual” 3-chain

125: if ∃(x1, y1, dir1, num1), (x2, y2, dir2, num2), (x3, y3, dir3, num3) ∈ (Π∗all)3

s.t. y2 ⊕ φ(y1 ⊕ x2) = x3, and

(i) num1 ≥ num2, num3, dir1 =→ or ⊥→; or

(ii) num2 ≥ num1, num3; or

(iii) num3 ≥ num1, num2, dir3 =← or ⊥←,

126: then abort // Unexpected 3-chains

127: if there exist distinct 2-chains
(
(x1, y1, dir1, num1), (x2, y2, dir2, num2)

)
∈ (Π∗all)2

and
(
(x3, y3, dir3, num3), (x4, y4, dir4, num4)

)
∈ (Π∗all)2

s.t. y2 ⊕ φ(y1 ⊕ x2) = y4 ⊕ φ(y3 ⊕ x4), and

(i) num1 ≥ num2, num3, num4, dir =→ or ⊥→; or

(ii) num2 ≥ num1, num3, num4.

128: then abort // Right endpoints of two 2-chains collide

129: if there exist distinct 2-chains
(
(x1, y1, dir1, num1), (x2, y2, dir2, num2)

)
∈ (Π∗all)2

and
(
(x3, y3, dir3, num3), (x4, y4, dir4, num4)

)
∈ (Π∗all)2

s.t. x1 ⊕ φ−1(y1 ⊕ x2) = x3 ⊕ φ−1(y3 ⊕ x4), and

(i) num1 ≥ num2, num3, num4; or

(ii) num2 ≥ num1, num3, num4, dir =← or ⊥←.

130: then abort // Left endpoints of two 2-chains collide

131: Πall ← Πall ∪ {(x, y, dir, num)} // Add the record to Πall

4 Intermediate System Σ2 and Its Basic Properties
We follow [MPS12, CS15] and use three systems Σ1(E,SE,p), Σ2(EMSP[φ]T E,p

4 , T E,p)
and Σ3(EMSP[φ]p4 , p) for the proof. The system Σ1 captures the ideal world (E,SE,p),
while Σ3 captures the real world (EMSP[φ]p4 , p).

The intermediate system Σ2 uses another simulator T E,p that is modified from SE,p by
adding a number of abortions upon certain bad events. Briefly, the events cover the appear-
ance of bad queries structures or collisions in private values due to collisions among random
values. In the pseudocode in Sect. 3, six private procedures CheckRecord, CheckPrivacy,
CheckPrivacy−1, CheckInternalColl, CheckInternalColl−1 and CheckInterV 3Chain
are used to check if such conditions are fulfilled. In addition, the blockcipher oracle in Σ2
is instantiated with the EMSP[φ]4 construction that queries T E,p for computations.

For the remaining of the proof, we consider a fixed, deterministic sequential distinguisher
D that has total oracle query cost q. The central part is to analyze the intermediate

256 Chosen-Key Secure Even-Mansour from a Single Permutation

system Σ2, and to establish two claims: (a) the simulator T E,p has bounded complexity;
(b) the real and ideal worlds are indistinguishable.

We start by exhibiting some basic properties of Σ2 executions. An execution of the
game Σ2 is good, if it does not abort. Otherwise, it is bad. A simulator cycle consists
of the execution period starting from when the distinguisher D makes a query to when
D receives an answer (which may be an abort message). We distinguish three types of
simulator cycles as follows.

(i) D queries P (x) such that x /∈ domain(Πall); or, symmetrically, D queries P−1(y)
such that y /∈ range(Πall). We call them new simulator cycles.

(ii) D queries P (x) such that x ∈ domain(Πin); or, symmetrically, D queries P−1(y)
such that y ∈ range(Πin). We call them transferring cycles.

(iii) D queries P (x) or P−1(y) such that x ∈ domain(Πpub) or y ∈ range(Πpub). This is
the trivial case, and S simply replies with the corresponding values in Πpub.

Invariants. Since a new record (x, y, dir, num) is added to the sets only if it has passed a
series of checks, various “good invariants” about the record data structure can be shown
to hold unconditionally at any point in any Σ2 execution. We list them as follows.
Inv1: No “cycle” within two records. Due to line 121, there do not exist two distinct
records (x, y), (x′, y′) ∈ (Πall)2 such that y ⊕ φ(x) = y′ ⊕ φ(x′).
Inv2: No unexpected 3-chains. Due to line 126, there do not exist three (not necessar-
ily distinct) records (x1, y1, dir1, num1), (x2, y2, dir2, num2), (x3, y3, dir3, num3) ∈ (Πall)3

such that y2 ⊕ φ(y1 ⊕ x2) = x3, and

• num1 ≥ num2, num3, dir1 =→ or ⊥→; or
• num2 ≥ num1, num3; or
• num3 ≥ num1, num2, dir3 =← or ⊥←,

Inv3: No unexpected “right collision” among two 2-chains. Due to line 128, there do not
exist two distinct public 2-chains

(
(x1, y1, dir1, num1), (x2, y2, dir2, num2)

)
and

(
(x3, y3,

dir3, num3), (x4, y4, dir4, num4)
)

such that y2 ⊕ φ(y1 ⊕ x2) = y4 ⊕ φ(y3 ⊕ x4), and

• num1 > num2, num3, num4, dir =→ or ⊥→; or
• num2 > num1, num3, num4.

Inv4: No unexpected “left collision” among two 2-chains. Due to line 130, there do not
exist two distinct public 2-chains

(
(x1, y1, dir1, num1), (x2, y2, dir2, num2)

)
and

(
(x3, y3,

dir3, num3), (x4, y4, dir4, num4)
)

such that x1 ⊕ φ−1(y1 ⊕ x2) = x3 ⊕ φ−1(y3 ⊕ x4), and

• num1 > num2, num3, num4; or
• num2 > num1, num3, num4, dir =← or ⊥←.

Basic Properties of Simulation. First, by inspecting the simulator description in Sect.
3, we make the following observation on 4-chains.

Proposition 1. Assume that the simulator T E,p makes a call to Complete+/Complete−,
which completes a 4-chain

(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

)
. Then, the current simulator

cycle was necessarily due to D querying P (x2), P−1(y2), P (x3) or P−1(y3). In addition, if
this call does not abort, then (x2, y2), (x3, y3) ∈ Πpub after this call returns.

Besides, every internal record (x, y, dir) has either x or y “adjacent” to a public 2-chain.

Shanjie Xu, Qi Da, and Chun Guo 257

Proposition 2. Assume that in a simulator cycle due to D querying P (x∗) → y∗ or
P−1(y∗) → x∗, T adds a record (x, y, dir, num) to Πin. Then, by our design of T ,
(x, y, dir, num) necessarily falls into either of the following two cases:

• Case 1: dir ∈ {→,⊥→}. In this case, there exists (x′, y′) ∈ Πpub such that either of
the following holds:

– x = y′⊕φ(y∗⊕x′), i.e., x is the “right endpoint” of the 2-chain
(
(x∗, y∗), (x′, y′)

)
;

– x = y∗⊕φ(y′⊕x∗), i.e., x is the “right endpoint” of the 2-chain
(
(x′, y′), (x∗, y∗)

)
.

• Case 2: dir ∈ {←,⊥←}. In this case, there exists (x′, y′) ∈ Πpub such that either of
the following holds:

– y = x∗⊕φ−1(y∗⊕x′), i.e., y is the “left endpoint” of the 2-chain
(
(x∗, y∗), (x′, y′)

)
;

– y = x′⊕φ−1(y′⊕x∗), i.e., y is the “left endpoint” of the 2-chain
(
(x′, y′), (x∗, y∗)

)
.

Lemma 1. At the end of a simulator cycle, if T E,p did not abort, then every public
2-chain is in a corresponding 4-chain.

Proof. At the beginning, the claim holds. By induction, assume that it holds before a
non-trivial cycle. Then, the cycle adds exactly 1 record (x, y) to Πpub. By construction,
all new public 2-chains due to (x, y) are completed to 4-chains in this cycle.

A 3-chain
(
(x, y), (x′, y′), (x′′, y′′)

)
is bad, if (x′, y′) ∈ Πin, i.e., the “middle” record is

internal. Similarly, a 4-chain
(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

)
is bad, if either (x2, y2) or

(x3, y3) is in Πin. Below we prove 3-chain and 4-chain are always good.

Lemma 2. At any time during a non-aborting Σ2 execution, all 3-chains are good.

Proof. Assume that a bad 3-chain
(
(x, y, dir, num), (x′, y′, dir′, num′), (x′′, y′′, dir′′, num′′)

)
with (x′, y′) ∈ Πin appears at some time. It cannot be num′ ≥ num, num′′: otherwise, it
contradicts Inv2 regardless of the value of dir′. This means either num > num′ ∧ num ≥
num′′ or num′′ > num′ ∧ num′′ ≥ num. Though, it cannot be num > num′ ∧ num =
num′′: otherwise, the 3-chain

(
(x, y, dir, num), (x′, y′, dir′, num′), (x, y, dir, num)

)
contra-

dicts Inv2. Similarly, it cannot be num′′ > num′ ∧ num′′ = num.
Thus, wlog assume num > num′∧num > num′′ for the remaining, i.e., T E,p (roughly)

first creates (x′, y′), (x′′, y′′), and then creates (x, y). Then dir ∈ {←,⊥←}, as otherwise it
contradicts Inv2 again. For convenience, we call the simulator cycle that creates (x, y, dir)
the triggering cycle. We exclude 5 possibilities as follows.

Case 1: (x, y,←) is created due to D querying P−1(y). This is not possible: oth-
erwise, it holds y = x′ ⊕ φ−1(y′ ⊕ x′′), and T E,p would have aborted in the call to
CheckPrivacy−1(y) (and would not create (x, y,←)).

Case 2: (x, y, dir, num), (x′, y′, dir′, num′) and (x′′, y′′, dir′′, num′′) are created
in the same cycle. As argued, it holds dir ∈ {←,⊥←}. It has two subcases.
Subcase 2.1: num > num′ ≥ num′′. By Proposition 2, before the cycle, there has been
a 2-chain

(
(x3, y3, dir3, num3), (x4, y4, dir4, num4)

)
∈ (Πpub)2 such that y = x3⊕φ−1(y3⊕

x4). Therefore, T E,p creating (x′, y′, dir′, num′) gives rise to two 2-chains
(
(x′, y′), (x′′, y′′)

)
and

(
(x3, y3), (x4, y4)

)
with y = x′⊕φ−1(y′⊕x′′) = x3⊕φ−1(y3⊕x4). Since (x′, y′, dir′, num′)

and (x′′, y′′, dir′′, num′′) are newly created in this cycle, it holds num′ ≥ num′′, num3, num4.
Therefore, T E,p creating (x′, y′, dir′, num′) would contradict Inv4.
Subcase 2.2: num > num′′ > num′. For clarity, we list the crucial events in this simulator
cycle (in chronological order):

1. D querying P (x∗) or P (y∗) for some x∗ or y∗ that starts this cycle;

258 Chosen-Key Secure Even-Mansour from a Single Permutation

2. T E,p creates the record (x′, y′, dir′, num′);
3. T E,p creates the record (x′′, y′′, dir′′, num′′);
4. T E,p creates the record (x, y, dir, num).

It could be (x∗, y∗) = (x′, y′), but x′′ ≠ x′ must hold. Recall that dir ∈ {←,⊥←}.
Thus, by Proposition 2, when T E,p is to create (x′′, y′′, dir′′, num′′), there has been a
2-chain

(
(x3, y3), (x4, y4)

)
∈ (Πpub)2 such that y = x3 ⊕ φ−1(y3 ⊕ x4). By this and by

Inv4, it has to be dir′′ ∈ {→,⊥→}. This in turn implies a 2-chain
(
(x5, y5), (x6, y6)

)
∈

(Πpub)2 such that x′′ = y6 ⊕ φ(y5 ⊕ x6) by Proposition 2. All the (public) records
(x3, y3), (x4, y4), (x5, y5), (x6, y6) are created no later than (x′, y′). Thus, if (x′, y′, dir′, num′)
is added to Πall, then the equality y′ ⊕ x′′ = φ(y ⊕ x′) would have caused T E,p abort at
line 124 in the call to CheckRecord(x′, y′, dir′, num′) (and won’t add (x′, y′) to Πall).

Case 3: (x, y, dir, num) and (x′, y′, dir′, num′) are created in the same cycle occur-
ring after (x′′, y′′, dir′′, num′′). Recall that dir ∈ {←,⊥←}. The case then resembles
Subcase 2.1: before T E,p creates (x′, y′, dir′, num′), (i) the record (x′′, y′′, dir′′, num′′)
has been in Πall (by our assumption), and (ii) by Proposition 2, there has been a 2-chain(
(x3, y3), (x4, y4)

)
∈ (Πpub)2 such that y = x3 ⊕ φ−1(y3 ⊕ x4). Therefore, T E,p creating

(x′, y′, dir′, num′) with x′ ⊕ φ−1(y′ ⊕ x′′) = x3 ⊕ φ−1(y3 ⊕ x4) contradicts Inv4.

Case 4: (x, y, dir, num) and (x′′, y′′, dir′′, num′′) are created in the same cycle
occurring after (x′, y′, dir′, num′). This case resembles Subcase 2.2. By Proposition
2, when T E,p is to create (x′′, y′′, dir′′, num′′), there has been a 2-chain

(
(x3, y3), (x4, y4)

)
∈

(Πpub)2 such that y = x3⊕φ−1(y3⊕x4). By this and by Inv4, it has to be dir′′ ∈ {→,⊥→}.
This in turn implies a 2-chain

(
(x5, y5), (x6, y6)

)
∈ (Πpub)2 with x′′ = y6 ⊕ φ(y5 ⊕ x6).

By these, when CheckInterV 3Chain(x′, y′) is called, (x3, y3), (x4, y4), (x5, y5), (x6, y6)
have all been in Πpub. Therefore, if (x′, y′, dir′, num′) is added to Πall, then the equality
y′⊕x′′ = φ(y⊕x′) would have caused T E,p abort at line 64 in CheckInterV 3Chain(x′, y′).

Case 5: (x, y) is created in a separate simulator cycle. Namely, before the triggering
cycle, both (x′, y′) and (x′′, y′′) have been in the sets. By Propositions 2 and 1, this means:

(i) At some time in the triggering cycle, there exists another 2-chain
(
(x2, y2), (x3, y3)

)
∈

(Πpub)2 such that y = x′ ⊕ φ−1(y′ ⊕ x′′) = x2 ⊕ φ−1(y2 ⊕ x3); and

(ii) The triggering cycle is due to D querying P (x2), P−1(y2), P (x3) or P−1(y3).

Note that condition (i) means (x2, y2) ̸= (x′, y′) and (x3, y3) ̸= (x′′, y′′): the former is
obvious, while the latter is ensured by Inv1. In addition, since (x′, y′) remains internal in
this cycle, it also holds (x′, y′) ̸= (x3, y3). For the remaining, we address two subcases:
Subcase 5.1: the triggering cycle is a new cycle. This is impossible, since: if the triggering
cycle is due to D querying P (x2), P−1(y2) or P−1(y3), then x′ ⊕ φ−1(y′ ⊕ x′′) = x2 ⊕
φ−1(y2 ⊕ x3) contradicts Inv4; if the triggering cycle is due to D querying P (x3), then
T E,p would have aborted at line 41 in CheckPrivacy(x3).
Subcase 5.2: the triggering cycle is a transferring cycle. This is impossible either:

• If the triggering cycle is due to D querying P (x2), then dir2 ∈ {→,⊥→}, as otherwise
T E,p would have aborted at line 37 in CheckPrivacy(x2). Then, the equality
x′ ⊕ φ−1(y′ ⊕ x′′) = x2 ⊕ φ−1(y2 ⊕ x3) would have caused T E,p abort at line 52 in
CheckInternalColl(x2, y2) (and T E,p won’t create the purported record (x, y));

• If the triggering cycle is due to D querying P−1(y2), then dir2 ∈ {←,⊥←}, as
otherwise T E,p aborted at line 43 in CheckPrivacy−1(y2). Then, x′⊕φ−1(y′⊕x′′) =
x2⊕φ−1(y2⊕x3) would cause T E,p abort at line 61 in CheckInternalColl−1(x2, y2);

Shanjie Xu, Qi Da, and Chun Guo 259

• If the triggering cycle is due to D querying P (x3), then T E,p would have aborted at
line 41 in CheckPrivacy(x3) (and won’t create (x, y));

• Finally, if the triggering cycle is due to D querying P−1(y3), then dir3 ∈ {←,⊥←}—
and x′ ⊕φ−1(y′ ⊕ x′′) = x2 ⊕φ−1(y2 ⊕ x3) would have caused T E,p abort at line 59
in the call to CheckInternalColl−1(x3, y3).

The above have excluded all possibilities of creating bad 3-chains. Thus the claim.

5 Simulator Complexity
In this section, we establish upper bounds on the complexity of the simulator.

Lemma 3. In any Σ2 execution, after the q-th simulator cycle returns, it holds

1. The number of calls to the procedures Complete+ and Complete− that have been
made by T E,p is at most q2 in total;

2. |Πpub| ≤ q, |Πin| ≤ 2q2, |ET | ≤ q2, and T E,p runs in time O(q2).

In addition, these bounds hold for the simulator S in any Σ1 execution.

Proof. First, |Πpub| increases by at most 1 upon each adversarial query (to P (x) or P−1(y)),
and stays invariant otherwise. Thus, |Πpub| ≤ q after the q-th cycle.

For the remaining, we analyze the simulator cycles in detail. First, consider the case
where the j-th adversarial query is forward P (x(j)). It holds |Πpub| ≤ j−1 before the cycle.
Regardless of x(j) ∈ domain(Πall) or not before the cycle, T E,p adds a record (x(j), y(j),→
, n(j)) to Πpub. By the design of Check3Chains and Check2Chains (see Sect. 3), every sub-
sequently detected 2-chain

(
(x(j), y(j)), (x′, y′)

)
is associated with a unique (x′, y′) ∈ Πpub,

(x′, y′) ̸= (x(j), y(j)). Thus, T E,p detects ≤ |Πpub| ≤ j − 1 such 2-chains. Every subse-
quently detected 2-chain

(
(x′, y′), (x(j), y(j))

)
or 3-chain

(
(x, y), (x′, y′), (x(j), y(j))

)
with

(x′, y′) ∈ Πpub is associated with a unique with (x′, y′) ∈ Πpub. Thus, T E,p detects
≤ j such 2-chains and 3-chains. For each detected 3-chain/2-chain, T E,p makes 1
call to Complete+/Complete−, at most 1 call to InP/InP−1, and at most 1 call to
Adapt. Therefore, the j-th simulator cycle due to P (x(j)) makes at most 2j − 1 calls to
Complete+/Complete−, adds at most 2j− 1 internal records to Πin, makes at most 2j− 1
call to Adapt (thus adding at most 2j − 1 adapted records to Πin) and at most 2j − 1
queries to E (thus adding at most 2j − 1 records to ET).

When the j-th adversarial query is backward P−1(y(j)), the analysis is similar by
symmetry and yields the same bound. Summing over the q queries yields

∣∣Πin

∣∣ ≤ q∑
j=1

(
2j − 1

)
+

q∑
j=1

(
2j − 1

)
≤ 2q2,

∣∣ET
∣∣ ≤ q∑

j=1
2j − 1 ≤ q2. (2)

The running time is dominated by Complete+/Complete−, and is O(q2). Finally, since
SE,p has no more actions than T E,p, the bounds hold for SE,p in any Σ1 execution.

6 Treatments for Internal Records
As mentioned in the Introduction, a central intuition is that every internal record in
Πin has one “endpoint” that is kept “private” to the distinguisher. We now provide a
formal treatment. The underlying idea resembles that of [DRST12], i.e., certain “internal”
randomness has no influence on the actions of the simulator.

260 Chosen-Key Secure Even-Mansour from a Single Permutation

Lemma 4. Assume that PrE,p
[
DEMSP[φ]T E,p

4 ,T E,p aborts
]
≤ 1/2. Let Π(ℓ)

all, Π(ℓ)
pub and

Π(ℓ)
in be the sets of T E,p that stand after T E,p completes its ℓ-th simulator cycle in the

execution DEMSP[φ]T E,p
4 ,T E,p . Then, at the end of the ℓ-th simulator cycle, consider a

record (x◦, y◦, dir◦, num◦) ∈ Π(ℓ)
in . As long as T E,p has not aborted, it holds:

• If dir◦ =→ or ⊥→, then conditioned on the transcript of queries and responses already
obtained by D, x◦ is fixed; conditioned on the

∣∣Π(ℓ)
all

∣∣− 1 records in Π(ℓ)
all\{(x◦, y◦)},

y◦ remains uniformly distributed in a set of size at least 2n/2− 3q2;

• If dir◦ =← or ⊥←, then conditioned on the transcript of queries and responses already
obtained by D, y◦ is fixed; conditioned on the

∣∣Π(ℓ)
all

∣∣− 1 records in Π(ℓ)
all\{(x◦, y◦)},

x◦ remains uniformly distributed in a set of size at least 2n/2− 3q2.

Consequently,

• the probability that T E,p aborts in the procedures CheckPrivacy and CheckPrivacy−1

is at most 8q3

2n + 36C(φ)q5

2n + 108C(φ)q7

2n in total;

• the probability that T E,p aborts in CheckInternalColl and CheckInternalColl−1 is
at most 36C(φ)q5

2n + 324C(φ)q7

2n in total;

• the probability that T E,p aborts in CheckInterV 3Chain is at most 12q7

2n in total.

Proof Setup. We view the combination of D and EMSP[φ]4 as a single adversary B

that interacts with T E,p, and write BT
EMSP[φ]π4 ,π

instead of DEMSP[φ]T E,p
4 ,T E,p . Since D

is deterministic (see Sect. 4), B is also deterministic.
Then, consider an arbitrary record (x◦, y◦, dir◦, num◦) ∈ Π(ℓ)

in . We proceed by
showing that we can replace the “private” endpoint y◦ (when dir◦ ∈ {→,⊥→}) or
x◦ (when dir◦ ∈ {←,⊥←}) without affecting the “main actions” in the Σ2 execution
and the transcript of B. To formalize this idea, we consider a modified Σ2 execution
DΣ2(EMSP[φ]T EMSP[φ]π4 ,π

4 ,T EMSP[φ]π4 ,π) (also denoted BT
EMSP[φ]π4 ,π

) capturing the interaction
between D and Σ2(EMSP[φ]T

EMSP[φ]π4 ,π

4 , T EMSP[φ]π
4 ,π) that uses a random permutation π

as the randomness and EMSP[φ]π4 instead of the ideal cipher E. π is good, if:

• π ⊢
(
Π(ℓ)

all\{(x◦, y◦)}
)
, i.e., π(x) = y if and only if (x, y) ∈

(
Π(ℓ)

all\{(x◦, y◦)}
)
; and

• The Σ2 execution BT
EMSP[φ]π4 ,π

does not abort.

At any time during the executions, we say that the set Πall = Πpub ∪Πin of T E,p and the
set Π′all of T EMSP[φ]π

4 ,π are isomorphic w.r.t. (x◦, y◦, dir◦), denoted Πall
∼= Π′all, if:

• When dir◦ ∈ {⊥→,→} and (x◦, y◦, dir◦) ∈ Πin, it holds (x◦, y◦◦, dir◦) ∈ Π′in
correspondingly, where y◦◦ = π(x◦).
Otherwise, Πpub = Π′pub,

(
Πin\{(x◦, y◦)}

)
=

(
Π′in\{(x◦, y◦◦)}

)
;

• When dir◦ ∈ {←,⊥←} and (x◦, y◦, dir◦) ∈ Πin, it holds (x◦◦, y◦, dir◦) ∈ Π′in
correspondingly, where x◦◦ = π−1(y◦);
Otherwise, Πpub = Π′pub,

(
Πin\{(x◦, y◦)}

)
=

(
Π′in\{(x◦◦, y◦)}

)
.

With the above, in Sect. 6.1 we show that, using any good permutation π, the modified
Σ2 execution BT

EMSP[φ]π4 ,π

and the original BT
E,p are “isomorphic”, meaning that after

the j-th cycle, j = 1, ..., ℓ, the sets of T EMSP[φ]π
4 ,π and T E,p are always isomorphic w.r.t.

(x◦, y◦, dir◦), i.e., Π(j)
all
∼= (Π′all)(j). This particularly means Π(j)

pub
∼= (Π′pub)(j) always holds,

Shanjie Xu, Qi Da, and Chun Guo 261

and B has the same transcript of queries and responses—and further, B cannot decide
which execution it is in. We then argue in Sect. 6.1.4 that, conditioned on that π is
good, either x◦ or y◦ in the record (x◦, y◦, dir◦) ∈ Πin is uniformly distributed in at least
2n/2− 3q2 possibilities. This enables bounding the abort probabilities of CheckPrivacy,
CheckInternalColl and CheckInterV 3Chain in Sect. 6.2, 6.3 and 6.4.

6.1 For any good π, BT
EMSP[φ]π4 ,π and BT

E,p are “isomorphic”

Imagine executing BT
E,p and BT

EMSP[φ]π4 ,π

in parallel. It is easy to see that the query
records (even if adapted) created by T E,p in BT

EMSP[φ]π4 ,π

are always consistent with π.
But this does not necessarily mean T E,p and T EMSP[φ]π

4 ,π will create almost-identical sets.
To prove, we use an induction over simulator cycles.

With the above in mind, for any j ∈ {1, ..., ℓ}, consider the point right before B =
DEMSP[φ]4 issues its j-th query to start the j-th simulator cycle. Wlog, assume that
the query is forward P (x(j)). Further assuming Π(j−1)

all
∼= (Π′all)(j−1), i.e., Π(j−1)

all and
(Π′all)(j−1) are “isomorphic”.

6.1.1 Case 1: (x◦, y◦) /∈ Π(j−1)
all , and (x◦, y◦) /∈ Π(j)

all

By definition, Π(j−1)
all

∼= (Π′all)(j−1) implies Π(j−1)
pub = (Π′pub)(j−1) and Π(j−1)

in = (Π′in)(j−1).
In this case, the analysis is totally free of the influences of (x◦, y◦). To see this, we consider
the concrete actions in this simulator cycle in turn.

Initial step. The concrete initial action distinguishes two cases.

• Case 1.1.a: x(j) /∈ domain(Π(j−1)
all). Then T E,p “downloads” y(j) ← p(x(j)) and

creates (x(j), y(j),→). By this, Π(j)
pub = Π(j−1)

pub ∪ {(x(j), y(j),→)}.

Since Π(j−1)
all

∼= (Π′all)(j−1), it also holds x(j) /∈ domain
(
(Π′all)(j−1)), and T EMSP[φ]π

4 ,π

“downloads” (y′)(j) ← π(x(j)). Since (x(j), y(j)) ∈ Π(j)
pub ⊆ Π(ℓ)

pub and since π ⊢ Π(ℓ)
pub,

it holds (y′)(j) = y(j), and further (Π′pub)(j) = (Π′pub)(j−1) ∪ {(x(j), y(j),→)}.

• Case 1.1.b: (x(j), y(j), dir(j)) ∈ Π(j−1)
in . Then T E,p moves the record (x(j), y(j), dir(j))

to Πpub. Since Π(j−1)
in = (Π′in)(j−1), it also holds (x(j), y(j), dir(j)) ∈ (Π′in)(j−1). Thus,

T EMSP[φ]π
4 ,π also moves (x(j), y(j), dir(j)) to Π′pub.

The above means (Π′pub)(j) = Π(j)
pub still holds after the j-th simulator cycle.

For convenience, let Π(j−1)
tmp := Π(j)

pub ∪Π(j−1)
in and (Π′tmp)(j−1) := (Π′pub)(j) ∪ (Π′in)(j−1).

It is easy to see Π(j−1)
tmp = (Π′tmp)(j−1) and (x◦, y◦) /∈ Π(j−1)

tmp .

Chain detection and completion. Two types of structures are relevant in this phase.
For every 2-chain

(
(x2, y2), (x(j), y(j))

)
, (x2, y2) ∈ Π(j)

pub: Let y1 = x2 ⊕ φ−1(y2 ⊕ x(j)).

Since (Π′pub)(j) = Π(j)
pub (as we just showed), it also holds (x2, y2) ∈ (Π′pub)(j). For the

remaining actions, we further distinguish two cases as follows.

• Case 1.2.a: (x1, y1) ∈ Π(j)
tmp. Since (Π′tmp)(j) = Π(j)

tmp, it also holds (x1, y1) ∈
(Π′tmp)(j). The simulator T E,p in BT

E,p thus detects a 3-chain, and sets k ←
φ−1(y1⊕x2), u← x1⊕k, x4 ← y(j)⊕φ3(k), queries E(k, u)→ v, sets y4 ← v⊕φ4(k)
and adds an adapted record (x4, y4,⊥→) to Πin to complete the 4-chain(

(x1, y1), (x2, y2), (x(j), y(j)), (x4, y4,⊥→)
)
.

262 Chosen-Key Secure Even-Mansour from a Single Permutation

Clearly, T EMSP[φ]π
4 ,π in BT

EMSP[φ]π4 ,π

also detects
(
(x1, y1), (x2, y2), (x(j), y(j))

)
: in

the view of T EMSP[φ]π
4 ,π, (x(j), y(j)) is also newly added to Π′pub, and (x1, y1) ∈

(Π′tmp)(j) and (x2, y2) ∈ (Π′pub)(j) also hold. To handle this 3-chain, T EMSP[φ]π
4 ,π

computes the same k and u, queries EMSP[φ]p4 (k, u)→ v′, sets y′4 ← v′ ⊕ φ4(k) and
adds (x4, y′4,⊥→) to Π′in to complete the 4-chain (if abortion never occurs)(

(x1, y1), (x2, y2), (x(j), y(j)), (x4, y′4,⊥→)
)
.

As mentioned, it holds y′4 = π(x4). Since (x◦, y◦) /∈ Π(j−1)
tmp , it must be x4 ̸= x◦.

By this and by π ⊢
(
Π(ℓ)

all\{(x◦, y◦)}
)
, it holds y′4 = y4, and Π′in = Πin. Therefore,

Πall
∼= Π′all still holds after completing this 4-chain.

• Case 1.2.b: y1 /∈ range(Π(j−1)
tmp). In this case, T E,p detects a 2-chain in the 1st

execution DEMSP[φ]T E,p
4 ,T E,p and completes a 4-chain(
(x1, y1,⊥←), (x2, y2), (x(j), y(j)), (x4, y4,→)

)
.

Thus, T E,p adds (x4, y4,→) and (x1, y1,⊥←) to Πin.

Since (Π′tmp)(j−1) = Π(j−1)
tmp , it holds y1 /∈ range

(
(Π′tmp)(j−1)) as well, and T EMSP[φ]π

4 ,π

also detects a 2-chain and complete a 4-chain(
(x′1, y1,⊥←), (x2, y2), (x(j), y(j)), (x4, y′4,→)

)
with x′1 = π−1(y1) and y′4 = π(x4). Since (x◦, y◦) /∈ Π(j−1)

tmp , it must be x1 ̸= x◦ and
x4 ≠ x◦. By this and by π ⊢

(
Π(ℓ)

all\{(x◦, y◦)}
)
, it holds x′1 = x1, y′4 = y4; Π′in = Πin

and thus Πall
∼= Π′all after completing this 4-chain.

For every 2-chain
(
(x(j), y(j)), (x3, y3)

)
, (x3, y3) ∈ Π(j)

pub: The argument is similar to Case
1.2.b above. Namely, T E,p detects a 2-chain

(
(x(j), y(j)), (x3, y3)

)
and adds (x1, y1,←)

and (x4, y4,⊥→) to Πin to complete a 4-chain(
(x1, y1,←), (x(j), y(j)), (x3, y3), (x4, y4,⊥→)

)
,

while T EMSP[φ]π
4 ,π also detects

(
(x(j), y(j)), (x3, y3)

)
and complete a 4-chain(

(x′1, y1,←), (x(j), y(j)), (x3, y3), (x4, y′4,⊥→)
)

with x′1 = π−1(y1) = x1 and y′4 = π(x4) = y4. Therefore, after completing this 4-chain,
Π′in = Πin and Πall

∼= Π′all still holds.

In summary, if: (i) (Π′all)(j−1) ∼= Π(j−1)
all , and (ii) (x◦, y◦) /∈ Π(j−1)

all and (x◦, y◦) /∈ Π(j)
all ,

then in the subsequent j-th simulator cycle,

• every time T E,p adds a record (x(j), y(j)) to its set Πpub, T EMSP[φ]π
4 ,π adds the same

record (x(j), y(j)) to its set Π′pub;

• every time T E,p adds a record (x, y, dir) to its set Πin, T EMSP[φ]π
4 ,π adds the same

record (x, y, dir) to its set Π′in.

The above mean (Π′all)(j) ∼= Π(j)
all after the j-th cycle.

Shanjie Xu, Qi Da, and Chun Guo 263

6.1.2 Case 2: (x◦, y◦) /∈ Π(j−1)
all , and (x◦, y◦) ∈ Π(j)

all

By the definition of “isomorphic”, this means Π(j−1)
pub = (Π′pub)(j−1), Π(j−1)

in = (Π′in)(j−1).
This case contains the “interesting” action of creating the record (x◦, y◦, dir◦).

Below we consider the concrete actions in this simulator cycle in turn.

Initial step. Similarly to Case 1, since Π(j−1)
pub = (Π′pub)(j−1) and Π(j−1)

in = (Π′in)(j−1),
T E,p and T EMSP[φ]π

4 ,π have the same initial step, and (Π′pub)(j) = Π(j)
pub still holds. Let

Π(j−1)
tmp := Π(j)

pub ∪ Π(j−1)
in and (Π′tmp)(j−1) := (Π′pub)(j) ∪ (Π′in)(j−1) for the remaining

argument in Case 2. Still, Π(j−1)
tmp = (Π′tmp)(j−1).

Chain detection and completion. Two types of structures are relevant in this phase.
For every 2-chain

(
(x2, y2), (x(j), y(j))

)
, (x2, y2) ∈ Π(j)

pub: Let y1 = x2 ⊕ φ−1(y2 ⊕ x(j)).

Since (Π′pub)(j) = Π(j)
pub (as we just showed), it also holds (x2, y2) ∈ (Π′pub)(j). For the

remaining actions, we further distinguish two cases as follows.

• Case 2.2.a: (x1, y1) ∈ Π(j−1)
tmp . This case is similar to Case 1.2.a: the simulator T E,p

in BT
E,p detects a 3-chain and adds an adapted record (x4, y4,⊥→) to Πin to complete

the 4-chain
(
(x1, y1), (x2, y2), (x(j), y(j)), (x4, y4,⊥→)

)
. Meanwhile, T EMSP[φ]π

4 ,π in
BT

EMSP[φ]π4 ,π

also detects
(
(x1, y1), (x2, y2), (x(j), y(j))

)
and adds (x4, y′4,⊥→) to Π′in

to complete 4-chain
(
(x1, y1), (x2, y2), (x(j), y(j)), (x4, y′4,⊥→)

)
(if abortion never

occurs) with y′4 = π(x4). At this stage,

– If dir◦ ∈ {←,⊥←}, then the creation of (x4, y4,⊥→) is irrelevant to our focus
(x◦, y◦). In a similar vein to Case 1.2.a, we simply have y′4 = y4 and the sets
Πin and Π′in still have the same contents after the creation of (x4, y′4,⊥→);

– If dir◦ ∈ {→,⊥→} though x4 ̸= x◦, then by this and by π ⊢
(
Π(ℓ)

all\{(x◦, y◦)}
)
,

it holds y′4 = y4 and Πin = Π′in after creating (x4, y′4,⊥→);
– Else, i.e., x4 = x◦, then T E,p adds (x◦, y◦◦,⊥→) to Π′in, while T EMSP[φ]π

4 ,π

adds (x◦, y◦◦,⊥→), y◦◦ = π(x◦), to Π′in.

Therefore, it remains Π′in ∼= Πin after completing this 4-chain.

• Case 2.2.b: y1 /∈ range(Π(j)
all). This case is similar to Case 1.2.b: T E,p detects a

2-chain
(
(x2, y2), (x(j), y(j))

)
in BT

E,p and completes a 4-chain
(
(x1, y1,⊥←), (x2, y2),

(x(j), y(j)), (x4, y4,→)
)
. Since (Π′tmp)(j−1) = Π(j−1)

tmp , it holds y1 /∈ range
(
(Π′tmp)(j−1))

as well, and T EMSP[φ]π
4 ,π also detects a 2-chain and complete a 4-chain

(
(x′1, y1,⊥←),

(x2, y2), (x(j), y(j)), (x4, y′4,→)
)

with x′1 = π−1(y1) and y′4 = π(x4). Now,

– If dir◦ ∈ {←,⊥←}, then (x4, y4,→) is irrelevant with (x◦, y◦). Whereas,
∗ If y1 = y◦, then T EMSP[φ]π

4 ,π adds (x◦◦, y◦,⊥←), x◦◦ = π−1(y◦), to Π′in;
∗ Else, i.e., y1 ̸= y◦, then by π ⊢

(
Π(ℓ)

all\{(x◦, y◦)}
)

we have x′1 = x1 and
T EMSP[φ]π

4 ,π adds (the same record as T E,p) (x1, y1,⊥←) to Π′in.
Therefore, it holds Πin

∼= Π′in after completing this chain.
– If dir◦ ∈ {→,⊥→}, then (x1, y1,⊥←) is irrelevant with (x◦, y◦). Whereas,

∗ If x4 = x◦, then T EMSP[φ]π
4 ,π adds (x◦, y◦◦,→), y◦◦ = π(x◦), to Π′in;

∗ Else, i.e., x4 ̸= x◦, then by π ⊢
(
Π(ℓ)

all\{(x◦, y◦)}
)

we have y′4 = y4 and
T EMSP[φ]π

4 ,π adds (the same record as T E,p) (x4, y4,→) to Π′in.

264 Chosen-Key Secure Even-Mansour from a Single Permutation

Therefore, it holds Πin
∼= Π′in after completing this chain.

By the above, in any (sub)case, Πall
∼= Π′all still holds after completing this 4-chain.

For every 2-chain
(
(x(j), y(j)), (x3, y3)

)
, (x3, y3) ∈ Π(j)

pub: The argument is similar to Case
2.2.b above. T E,p detects a 2-chain

(
(x(j), y(j)), (x3, y3)

)
and complete a 4-chain

(
(x1, y1,←

), (x(j), y(j)), (x3, y3), (x4, y4,⊥→)
)
. Whereas T EMSP[φ]π

4 ,π also detects a 2-chain and com-
pletes a 4-chain

(
(x′1, y1,←), (x(j), y(j)), (x3, y3), (x4, y′4,⊥→)

)
with x′1 = π−1(y1) = x1

and y′4 = π(x4) = y4. In a similar vein to Case 2.2.b, it can be shown Πall
∼= Π′all still

holds after completing this 4-chain.

In summary, if: (i) (Π′all)(j−1) ∼= Π(j−1)
all , and (ii) (x◦, y◦) /∈ Π(j−1)

all while (x◦, y◦) ∈ Π(j)
all ,

then in the subsequent j-th simulator cycle,

• every time T E,p adds a record (x(j), y(j)) to its set Πpub, T EMSP[φ]π
4 ,π adds the same

record (x(j), y(j)) to its set Π′pub;

• For any (x, y) ̸= (x◦, y◦), every time T E,p adds a record (x, y, dir) to its set Πin,
T EMSP[φ]π

4 ,π adds the same record (x, y, dir) to its set Π′in;

• If dir◦ ∈ {→,⊥→} then (x◦, y◦◦, dir◦) ∈ (Π′in)(j), where y◦◦ = π(x◦); if dir◦ ∈ {←
,⊥←} then (x◦◦, y◦, dir◦) ∈ (Π′in)(j), x◦◦ = π−1(y◦).

The above mean (Π′all)(j) ∼= Π(j)
all after the j-th cycle.

6.1.3 Case 3: (x◦, y◦) ∈ Π(j−1)
all

In this case, the crux is to show that the minor difference between Π(j−1)
in and (Π′in)(j−1)

will not affect the simulator actions. To this end, the crucial property (of our simulators)
is that they never “intentionally” create records on the “private side” of the internal record
(x◦, y◦) (as reflected by Proposition 2), so that the difference on “private sides” have no
essential influence. Below we consider the actions in this simulator cycle in turn.

Initial step. The concrete initial action distinguishes two cases.

• Case 3.1.a: x(j) /∈ domain(Π(j−1)
all). We argue x(j) /∈ domain

(
(Π′all)(j−1)). Assume

otherwise, then the only possibility is:

– x(j) = x◦ for the internal record (x◦, y◦, dir◦) ∈ Π(j−1)
in , and

– dir ∈ {←,⊥←}, so that (x◦◦, y◦, dir◦) ∈ Π(j−1)
in for some x◦◦ ̸= x◦.

But then, T EMSP[φ]π
4 ,π would have aborted at line 37 in the call CheckPrivacy(x(j)),

and this contradicts our assumption that π is good and BT
EMSP[φ]π4 ,π

does not abort.

Thus, in BT
EMSP[φ]π4 ,π

it holds x(j) /∈ domain
(
(Π′all)(j−1)) as well, and both T E,p and

T EMSP[φ]π
4 ,π “download” y(j) ← p(x(j)) or y(j) ← π(x(j)) and create (x(j), y(j),→),

so that (Π′pub)(j) = Π(j)
pub = Π(j−1)

pub ∪ {(x(j), y(j),→)}.

• Case 3.1.b: (x(j), y(j), dir(j)) ∈ Π(j−1)
in . It holds dir(j) ∈ {→,⊥→}, otherwise D

querying P (x(j)) would have caused abort at line 37 in CheckPrivacy(x(j)). T E,p

then moves (x(j), y(j), dir(j)) to Πpub, thus Π(j)
pub = Π(j−1)

pub ∪ {(x(j), y(j),→)}.

Since we assumed (x◦, y◦, dir◦) ∈ Π(ℓ)
in , it holds (x(j), y(j)) ̸= (x◦, y◦). Since Π(j−1)

all
∼=

(Π′all)(j−1) and (x(j), y(j)) ̸= (x◦, y◦), it also holds (x(j), y(j), dir(j)) ∈ (Π(j−1)
in)′.

Therefore, in BT
EMSP[φ]π4 ,π

, T EMSP[φ]π
4 ,π also moves (x(j), y(j), dir(j)) to Πpub.

Shanjie Xu, Qi Da, and Chun Guo 265

The above means (Π′pub)(j) = Π(j)
pub still holds after the initial action.

Similarly to Case 1 and 2, let Π(j−1)
tmp := Π(j)

pub ∪Π(j−1)
in and (Π′tmp)(j−1) := (Π′pub)(j) ∪

(Π′in)(j−1). It still holds Π(j−1)
tmp

∼= (Π′tmp)(j−1).

Chain detection and completion. We consider two types of query structures.
For every 2-chain

(
(x2, y2), (x(j), y(j))

)
, (x2, y2) ∈ Π(j)

pub: Since (Π′pub)(j) = Π(j)
pub, it also

holds (x2, y2) ∈ (Π′pub)(j). Let y1 = x2 ⊕ φ−1(y2 ⊕ x(j)). For the remaining actions, we
further distinguish three cases as follows.

• Case 3.2.a: ∃(x1, y1) ∈ Π(j)
pub. Since (Π′pub)(j) = Π(j)

pub, it holds (x1, y1) ∈ (Π′pub)(j).
Then both T E,p and T EMSP[φ]π

4 ,π detect the 3-chain
(
(x1, y1), (x2, y2), (x(j), y(j))

)
.

T E,p completes
(
(x1, y1), (x2, y2), (x(j), y(j)), (x4, y4,⊥→)

)
, whereas T EMSP[φ]π

4 ,π com-
pletes

(
(x1, y1), (x2, y2), (x(j), y(j)), (x4, y′4,⊥→)

)
with y′4 = π(x4). Since (x◦, y◦) ∈

Π(j−1)
all , it necessarily holds x4 ̸= x◦, and thus y′4 = y4 by π ⊢

(
Π(ℓ)

all\{(x◦, y◦)}
)
. By

this, both T E,p and T EMSP[φ]π
4 ,π creates the record (x4, y4,⊥→), and thus Π′in = Πin

after completing this 4-chain.

• Case 3.2.b: ∃(x1, y1, dir1) ∈ Π(j−1)
in . Then T E,p detects

(
(x1, y1), (x2, y2), (x(j), y(j))

)
and completes

(
(x1, y1, dir1), (x2, y2), (x(j), y(j)), (x4, y4,⊥→)

)
. It has to be dir1 ∈

{←,⊥←}: otherwise, B querying x(j) = y2 ⊕ φ(y1 ⊕ x2) would have caused BT
E,p

abort at line 39 in CheckPrivacy(x(j)). By this and by Π(j−1)
all

∼= (Π′all)(j−1), it holds
(x′1, y1, dir1) ∈ Π(j−1)

in as well, where x′1 = π−1(y1). Regardless of x′1 = x1 or not,
T EMSP[φ]π

4 ,π will also detect a 3-chain
(
(x′1, y1), (x2, y2), (x(j), y(j))

)
and complete(

(x′1, y1), (x2, y2), (x(j), y(j)), (x4, y′4,⊥→)
)
, where y′4 = EMSP[φ]π4

(
k, k⊕x′1

)
= π(x4)

(k = φ−1(y1 ⊕ x2)).

Now, since (x◦, y◦) ∈ Π(j−1)
all , it necessarily holds x4 ̸= x◦, and thus y′4 = y4 by

π ⊢
(
Π(ℓ)

all\{(x◦, y◦)}
)
. By this, Π′in = Πin after completing this 4-chain.

• Case 3.2.c: y1 /∈ range
(
Π(j−1)

tmp

)
. In this case, in DEMSP[φ]T E,p

4 ,T E,p T E,p detects(
(x2, y2), (x(j), y(j))

)
and completes

(
(x1, y1,⊥←), (x2, y2), (x(j), y(j)), (x4, y4,→)

)
.

We argue that it also holds y1 /∈ range
(
(Π′tmp)(j−1)). Clearly, it cannot be y1 /∈

range
(
(Π′pub)(j)). Then, if (x′1, y1, dir1) ∈ (Π′in)(j−1) for x′1 = π−1(y1), it has to be

dir1 ∈ {←,⊥←}: otherwise, B querying x(j) = y2 ⊕ φ(y1 ⊕ x2) would have caused
BT

E,p abort at line 39 in CheckPrivacy(x(j)). By this and by Π(j−1)
all

∼= (Π′all)(j−1),
there exists (x′′1 , y1, dir1) ∈ Π(j−1)

in for some x′′1 , and this contradicts the assumption
that y1 /∈ range

(
(Π′tmp)(j−1)).

Therefore, y1 /∈ range
(
(Π′tmp)(j−1)) as well, and T EMSP[φ]π

4 ,π also detects the 2-chain(
(x2, y2), (x(j), y(j))

)
and complete

(
(x′1, y1,⊥←), (x2, y2), (x(j), y(j)), (x4, y′4,→)

)
with

x′1 = π−1(y1) and y′4 = π(x4). Since (x◦, y◦) ∈ Π(j−1)
all , it holds y1 ̸= y◦ and x4 ̸= x◦,

and thus x′1 = x1 and y′4 = y4 by π ⊢
(
Π(ℓ)

all\{(x◦, y◦)}
)
. By this, both T E,p and

T EMSP[φ]π
4 ,π create (x1, y1,⊥←) and (x4, y4,→), and thus Πin

∼= Π′in after completing
this 4-chain.

For every 2-chain
(
(x(j), y(j)), (x3, y3)

)
, (x3, y3) ∈ Π(j)

pub: It resembles Case 3.2.c: T E,p

detects
(
(x(j), y(j)), (x3, y3)

)
and completes

(
(x1, y1,←), (x(j), y(j)), (x3, y3), (x4, y4,⊥→)

)
,

and T EMSP[φ]π
4 ,π detects

(
(x(j), y(j)), (x3, y3)

)
and completes

(
(x′1, y1,←), (x(j), y(j)), (x3, y3),

266 Chosen-Key Secure Even-Mansour from a Single Permutation

(x4, y′4,⊥→)
)

with x′1 = π−1(y1) and y′4 = π(x4). Since (x◦, y◦) ∈ Π(j−1)
all , it holds y1 ≠ y◦

and x4 ̸= x◦, thus x′1 = x1 and y′4 = y4 by π ⊢
(
Π(ℓ)

all\{(x◦, y◦)}
)
. Hence, both T E,p and

T EMSP[φ]π
4 ,π creates (x1, y1,←) and (x4, y4,⊥→), and Π′in ∼= Πin after this.

In summary, if: (i) (Π′all)(j−1) ∼= Π(j−1)
all , and (ii) (x◦, y◦) ∈ Π(j−1)

all (and thus (x◦, y◦) ∈
Π(j)

all as well), then in the subsequent j-th simulator cycle, (i) both T E,p and T EMSP[φ]π
4 ,π

add the record (x(j), y(j)) to their sets Πpub and Π′pub resp., and (ii) every time T E,p adds
a record (x, y, dir) to its set Πin, T EMSP[φ]π

4 ,π adds the same record (x, y, dir) to its set
Π′in. The above mean (Π′all)(j) ∼= Π(j)

all after the j-th cycle.

6.1.4 “Isomorphicness” of BT
EMSP[φ]π

4 ,π

and BT
E,p : Concluding

The above means (Π′all)(j−1) ∼= Π(j−1)
all =⇒ (Π′all)(j) ∼= Π(j)

all . Obviously, Π(0)
all
∼= (Π′all)(0),

since they are both empty. Thus, (Π′all)(j) ∼= Π(j)
all for all j ∈ {1, ..., ℓ}. This means:

• (Π′pub)(j) = Π(j)
pub for all j ∈ {1, ..., ℓ}. This means for j = 1, ..., ℓ, B gets the same

response for its j-th query in the two executions BT
E,p and BT

EMSP[φ]π4 ,π

. Since B is
deterministic, its (j + 1)-th query in BT

E,p and BT
EMSP[φ]π4 ,π

are identical. B thus
gets the same transcript of queries and responses in BT

E,p and BT
EMSP[φ]π4 ,π

;

• (Π′in)(j) ∼= Π(j)
in for all j ∈ {1, ..., ℓ}. Thus, when (x◦, y◦, dir◦) ∈ Π(ℓ)

in , dir◦ ∈ {→
,⊥→}, it holds (x◦, y◦◦, dir◦) ∈ Π′in correspondingly, where y◦◦ = π(x◦); when
(x◦, y◦, dir◦) ∈ Π(ℓ)

in , dir◦ ∈ {←,⊥←}, it holds (x◦◦, y◦, dir◦) ∈ Π′in correspondingly,
where x◦◦ = π−1(y◦).

Distribution of “private” endpoints. Fix (x◦, y◦, dir◦) ∈ Π(ℓ)
in , and wlog assume dir◦ ∈

{→,⊥→}. If all π ⊢
(
Π(ℓ)

all\{(x◦, y◦)}
)

are good (i.e., execution BT
EMSP[φ]π4 ,π

never aborts
when π ⊢

(
Π(ℓ)

all\{(x◦, y◦)}
)
), then conditioned on the

∣∣Π(ℓ)
all

∣∣− 1 records in Π(ℓ)
all\{(x◦, y◦)},

the possible number of “non-aborting” choices for y◦ is 2n −
∣∣Π(ℓ)

all

∣∣ + 1 ≥ 2n − 3q2 (using
Lemma 3). But the situation is not that ideal: by the fact that DEMSP[φ]T E,p

4 ,T E,p did not
abort, B = DEMSP[φ]4 can exclude many values from the set {0, 1}n\range

(
Π(ℓ)

all\{(x◦, y◦)}
)
.

To see how many values can be excluded, let ε := PrE,p
[
DEMSP[φ]T E,p

4 ,T E,p aborts
]
. Then,

the number of values y◦◦ ∈ {0, 1}n\range
(
Π(ℓ)

all\{(x◦, y◦)}
)

that can cause BT
E,p abort

cannot be larger than 2n · ε: otherwise, BT
E,p aborts with probability > 2n · ε/2n =

ε when creating the record (x◦, y◦◦, dir◦), and an obvious contradiction with our as-
sumption ε ≤ 1/2 is reached. Therefore, the number of “non-aborting” values y◦◦ ∈
{0, 1}n\range

(
Π(ℓ)

all\{(x◦, y◦)}
)

is at least 2n − 3q2 − 2n · ε ≥ 2n/2− 3q2.

6.2 Abort Probability of CheckP rivacy

Consider a call to CheckPrivacy(x), and we analyze the abort conditions in turn.

Condition at Line 37. When B issues the query P (x), for any (x′, y′, dir′) ∈ Πin such
that dir′ ∈ {←,⊥←}, the left endpoint x′ is uniform in at least 2n/2 − 3q2 choices (as
argued). Assuming 6q2 ≤ 2n/2, it holds Pr[x = x′] ≤ 1/(2n/2−3q2) ≤ 2/(2n−6q2) ≤ 4/2n.
By Lemma 3, the number of internal records is |Πin| ≤ 2q2. Thus, the probability that a
call to CheckPrivacy(x) aborts at line 37 is at most 8q2/2n.

Shanjie Xu, Qi Da, and Chun Guo 267

Condition at Line 39. For any pair
(
(x1, y1, dir1), (x2, y2, dir2)

)
, it has three cases.

Case 1: (x2, y2, dir2) ∈ Πin and (x1, y1) ̸= (x2, y2). Then, when B issues the query P (x),
either x2 or y2 is uniform in at least 2n/2−3q2 choices (as argued). By this, the probability
to have x = y2 ⊕ φ(y1 ⊕ x2) in this case is bounded by 1

2n/2−3q2 ≤ 4/2n.
Case 2: (x2, y2, dir2) ∈ Πin and (x1, y1) = (x2, y2). Then, if dir1 ∈ {←,⊥←}, then x1 is
uniform in ≥ 2n/2 − 3q2 choices when B queries P (x), and Pr[x = y1 ⊕ φ(y1 ⊕ x1)] ≤

1
2n/2−3q2 ≤ 4/2n. If dir1 ∈ {→,⊥→}, then y1 is uniform in ≥ 2n/2− 3q2 choices when B

queries P (x), and Pr[x = y1 ⊕ φ(y1 ⊕ x1)] ≤ C(φ)
2n/2−3q2 ≤ 4C(φ)/2n.

Thus, it always holds Pr[x = y1 ⊕ φ(y1 ⊕ x1)] ≤ 4C(φ)/2n in this case.
Case 3: (x2, y2, dir2) ∈ Πpub, (x1, y1, dir1) ∈ Πin and dir1 ∈ {→,⊥→}. When B queries
P (x), y1 is uniform in ≥ 2n/2 − 3q2 choices. By this, when (x1, y1) ̸= (x2, y2), it
holds Pr[x = y2 ⊕ φ(y1 ⊕ x2)] ≤ 1

2n/2−3q2 ≤ 4/2n; when (x1, y1) = (x2, y2), it holds
Pr[x = y1 ⊕ φ(y1 ⊕ x1)] ≤ C(φ)

2n/2−3q2 ≤ 4C(φ)/2n.
By the above, for every pair

(
(x1, y1), (x2, y2)

)
, it holds Pr[x = y2 ⊕ φ(y1 ⊕ x2)] ≤

4C(φ)/2n. Summing over the at most 3q2×3q2 choices of
(
(x1, y1), (x2, y2)

)
, the probability

that a call to CheckPrivacy(x) aborts at line 39 is at most 36C(φ)q4/2n.

Condition at Line 41. Consider any triple
(
(x1, y1, dir1), (x2, y2, dir2), (x3, y3, dir3)

)
. To

have x1 ⊕ φ−1(y1 ⊕ x2) = x3 ⊕ φ−1(y3 ⊕ x), it cannot be (x1, y1) = (x3, y3).
Case 1: (x1, y1) ∈ Πin. It further consists of two subcases.

• Subcase 1.1: (x1, y1, dir1) ̸= (x2, y2, dir2). Then, when B queries P (x), either x1 or
y1 is uniform, and thus Pr[x1⊕φ−1(y1⊕x2) = x3⊕φ−1(y3⊕x)] ≤ 1

2n/2−3q2 ≤ 4/2n.

• Subcase 1.2: (x1, y1, dir1) = (x2, y2, dir2). Similarly to Case 2 of the condition at
line 39, it holds Pr[x1 ⊕ φ−1(y1 ⊕ x1) = x3 ⊕ φ−1(y3 ⊕ x)] ≤ C(φ)

2n/2−3q2 ≤ 4C(φ)/2n.

Case 2: (x2, y2, dir2) ∈ Πin and dir2 ∈ {←,⊥←}. It consists of three subcases.

• Subcase 2.1: (x2, y2) ̸= (x1, y1) and (x2, y2) ̸= (x3, y3). Then, when B queries P (x),
x2 is uniform, and Pr[x1 ⊕ φ−1(y1 ⊕ x2) = x3 ⊕ φ−1(y3 ⊕ x)] ≤ 1

2n/2−3q2 ≤ 4/2n.

• Subcase 2.2: (x2, y2) = (x1, y1). Since (x1, y1) ̸= (x3, y3), this means (x2, y2) ̸=
(x3, y3). Thus Pr[x2 ⊕ φ−1(y2 ⊕ x2) = x3 ⊕ φ−1(y3 ⊕ x)] ≤ C(φ)

2n/2−3q2 ≤ 4C(φ)/2n.

• Subcase 2.3: (x3, y3) = (x2, y2). Since (x1, y1) ̸= (x3, y3), this means (x2, y2) ̸=
(x1, y1), and thus Pr[x1⊕φ−1(y1⊕ x2) = x2⊕φ−1(y2⊕ x)] ≤ C(φ)

2n/2−3q2 ≤ 4C(φ)/2n.

Case 3: (x3, y3) ∈ Πin. The analysis resembles Case 1 and yields bound 4C(φ)/2n.
Therefore, in any case, it holds Pr[x1 ⊕ φ−1(y1 ⊕ x2) = x3 ⊕ φ−1(y3 ⊕ x)] ≤ 4C(φ)/2n.

Summing over the at most (3q2)3 choices of
(
(x1, y1), (x2, y2), (x3, y3)

)
, the probability

that a call to CheckPrivacy(x) aborts at line 41 is at most 108C(φ)q6/2n.

6.2.1 Summarizing

By union bound, a call CheckPrivacy(x) aborts with probability ≤ 8q2/2n+36C(φ)q4/2n+
108C(φ)q6/2n. The same bound holds for CheckPrivacy−1(y) by symmetry. The total
number of CheckPrivacy(x) and CheckPrivacy−1(y) calls is at most q. Thus,

Pr
[
CheckPrivacy and CheckPrivacy−1 abort

]
≤ 8q3

2n
+ 36C(φ)q5

2n
+ 108C(φ)q7

2n
. (3)

268 Chosen-Key Secure Even-Mansour from a Single Permutation

6.3 Abort Probability of CheckInternalColl

Consider a call to CheckInternalColl(x, y) which is only made in a call to P (x). We
analyze the abort conditions in turn.

Condition at Line 50. When B queries P (x), for any (x′, y′, dir′) ∈ Πin such that
dir′ ∈ {→,⊥→}, y′ is uniform in ≥ 2n/2 − 3q2 choices. This also includes the record
(x, y, dir) corresponding to P (x). Since no “influential” actions happen in the call to P (x),
the uniformness of y remains till T checking line 50. Now, consider two cases:

• Case 1: x2 = x. Then Pr[x3 = y ⊕ φ(y ⊕ x)] ≤ C(φ)/(2n/2− q) ≤ 4C(φ)/2n;

• Case 2: x2 ̸= x. Then Pr[x3 = y2 ⊕ φ(y ⊕ x2)] ≤ 1/(2n/2− q) ≤ 4/2n.

By these, Pr[x3 = y2 ⊕ φ(y ⊕ x2)] ≤ 4C(φ)/2n for every
(
(x2, y2), (x3, y3)

)
(assuming

2q ≤ 2n/2). By Lemma 3, the number of choices for
(
(x2, y2), (x3, y3)

)
is ≤ 9q4. Thus, the

probability that a call to CheckInternalColl(x, y) aborts at line 50 is ≤ 36C(φ)q4/2n.

Condition at Line 52. As argued, for the record (x, y, dir) corresponding to P (x), y
remains uniform in at least 2n/2− 3q2 choices until T checking line 52.

It cannot be x = x3: otherwise, x⊕ φ−1(y ⊕ x2) = x3 ⊕ φ−1(y3 ⊕ x4) is not possible,
while y2 ⊕ φ(y ⊕ x2) = y4 ⊕ φ(y3 ⊕ x4) implies y2 ⊕ φ(x2) = y4 ⊕ φ(x4) and contradicts
Inv1. Similarly by symmetry, it cannot be x2 = x4. By these, there remain three cases:

• Case 1: x2 = x, x3 ̸= x, x4 ̸= x. Then the number of y′ s.t. x ⊕ φ−1(y′ ⊕ x) =
x3 ⊕ φ−1(y3 ⊕ x4) is 1, while the number of y′ s.t. y′ ⊕ φ(y′ ⊕ x) = y4 ⊕ φ(y3 ⊕ x4)
is at most C(φ);

• Case 2: x2 ≠ x, x3 ̸= x, x4 = x. Then the number of y′ s.t. x ⊕ φ−1(y′ ⊕ x2) =
x3 ⊕φ−1(y3 ⊕ x) is 1, while the number of y′ s.t. y2 ⊕φ(y′ ⊕ x2) = y′ ⊕φ(y3 ⊕ x) is
at most C(φ);

• Case 3: x2 ≠ x, x3 ̸= x, x4 ≠ x. Then the number of y′ s.t. x ⊕ φ−1(y′ ⊕ x2) =
x3 ⊕φ−1(y3 ⊕ x4) is 1, while the number of y′ s.t. y2 ⊕φ(y′ ⊕ x2) = y4 ⊕φ(y3 ⊕ x4)
is 1.

By these, for each triple
(
(x2, y2), (x3, y3), (x4, y4)

)
, Pr[x⊕ φ−1(y ⊕ x2) = x3 ⊕ φ−1(y3 ⊕

x4) ∨ y2 ⊕ φ(y ⊕ x2) = y4 ⊕ φ(y3 ⊕ x4)] ≤ 2C(φ)/(2n/2 − q) ≤ 8C(φ)/2n (assuming
2q ≤ 2n/2). By Lemma 3,

(
(x2, y2), (x3, y3), (x4, y4)

)
has at most 27q6 choices. Thus, the

probability that a call CheckInternalColl(x, y) aborts at line 52 is ≤ 216C(φ)q6/2n.

Condition at Line 54. As argued, for the record (x, y, dir) corresponding to P (x), y
remains uniform in at least 2n/2− 3q2 choices till T checking the condition at line 54. It
cannot be x1 = x3: otherwise, y⊕φ(y1⊕x) = y4⊕φ(y3⊕x4) implies y⊕φ(x) = y4⊕φ(x4)
and contradicts Inv1. It cannot be x = x4 either, as otherwise y⊕φ(y1⊕x) = y4⊕φ(y3⊕x4)
is not possible. By these, there remain three possible cases, i.e., x1 = x, x3 ̸= x,
x4 ≠ x; x1 ̸= x, x3 = x, x4 ̸= x; and x1 ̸= x, x3 ̸= x, x4 ̸= x. In each case, the
number of y′ such that y′ ⊕ φ(y′ ⊕ x) = y4 ⊕ φ(y3 ⊕ x4) is at most C(φ). By these,
Pr[y ⊕ φ(y1 ⊕ x) = y4 ⊕ φ(y3 ⊕ x4)] ≤ C(φ)/(2n/2 − q) ≤ 4C(φ)/2n for each triple(
(x1, y1), (x3, y3), (x4, y4)

)
(assuming 2q ≤ 2n/2). By Lemma 3,

(
(x1, y1), (x3, y3), (x4, y4)

)
have at most 27q6 choices, and thus a call CheckInternalColl(x, y) aborts at line 54 with
probability ≤ 108C(φ)q6/2n.

Shanjie Xu, Qi Da, and Chun Guo 269

Summarizing. Summing over the above, a call to CheckInternalColl(x, y) aborts with
probability ≤ 36C(φ)q4/2n + 216C(φ)q6/2n + 108C(φ)q6/2n. The same bound holds for
CheckInternalColl−1(x, y) by symmetry. Clearly, procedures CheckInternalColl(x, y)
and CheckInternalColl−1(x, y) are called at most q times in total. Therefore,

Pr
[
CheckInternalColl and CheckInternalColl−1 abort

]
≤ 36C(φ)q5 + 324C(φ)q7

2n
.

(4)

6.4 Abort Probability of CheckInterV 3Chain

When B queries P (x), for any (x′, y′, dir′) ∈ Πin such that dir′ ∈ {→,⊥→}, y′ is uniform
in ≥ 2n/2− 3q2 choices (as argued). This also includes the record (x, y, dir) corresponding
to P (x). Since no “influential” actions happen in the call to P (x), the uniformness of y
remains till T makes the call to CheckInterV 3Chain(x′, y′). Similarly, when dir′ ∈ {←
,⊥←}, x′ is uniform in ≥ 2n/2− 3q2 choices. Therefore, for each choice of four records
(x1, y1), (x2, y2), (x3, y3), (x4, y4) ∈ Πpub, Pr[φ(y′ ⊕ x) = y ⊕ x′′] ≤ 1/(2n/2− 3q2) ≤ 4/2n

for y′ = x1 ⊕ φ−1(y1 ⊕ x2) and x′′ = y4 ⊕ φ(y3 ⊕ x4). Since the number of such choices is
at most q4, and since CheckInterV 3Chain is called at most q × |Πin| ≤ 3q3 times, the
probability that T E,p aborts in CheckInterV 3Chain is at most 12q7

2n .

7 Abort Probability of CheckRecord

The analysis of the probability that T E,p aborts during invocations of the procedure
CheckRecord consists of complicated case studies, and we thus spend a whole section. We
first exhibit a lemma establishing the (intuitive) quasi-randomness in adapted records.

Lemma 5. In any Σ2 execution, right before T E,p making a query to E(k, u) (E−1(k, v),
resp.), there is no record of the form (k, u, ⋆) ((k, ⋆, v), resp.) in ET .

Proof. Wlog, consider the case T E,p making a forward query E(k, u). By the pseu-
docode (Sect. 3), T E,p only queries E(k, u) in calls to Complete+(y3, k). Assume that
Complete+(y3, k) is called in the ℓ-th simulator cycle. Furthermore, it can be seen that:

• Right before the call Complete+(y3, k), there is a 3-chain
(
(x1, y1), (x2, y2), (x3, y3)

)
such that x1 = k ⊕ u;

• The ℓ-th cycle was due to D querying P (x2), P−1(y2), P (x3) or P−1(y3).

Now, assume that it holds (k, u, v) ∈ ET for some v ∈ {0, 1}n before T E,p queries
E(k, u) in Complete+(y3, k). In Σ2, it has to be that T E,p queried E(k, u) → v or
E−1(k, v) → u in a previous (non-aborting) call to Complete+/Complete−. Assume
that T E,p queried E(k, u) → v in a previous call to Complete+(y′3, k). By construction
of EMSP[φ]4 and T E,p, after this call to Complete+(y′3, k) returns, a corresponding
4-chain

(
(x′1, y′1), (x′2, y′2), (x′3, y′3), (x′4, y′4)

)
with x′1 = k ⊕ u and y′4 = φ4(k)⊕ v has been

in Πall. Moreover, it holds (x′2, y′2), (x′3, y′3) ∈ Πpub by Proposition 1. Since T E,p did
not abort till the (later) call to Complete+(y3, k), it can be seen: x′1 = k ⊕ u = x1,
y′1 = Πall(x′1) = Πall(x1) = y1, and further (x′2, y′2) = (x2, y2) and (x3, y3) = (x′3, y′3). But
then (x2, y2), (x3, y3) ∈ Πpub after the earlier call to Complete+(y′3, k), and the subsequent
ℓ-th simulator cycle due to D querying P (x2), P−1(y2), P (x3) or P−1(y3) won’t detect
and complete chains at all. We thus reach a contradiction.

The case where T E,p queried E−1(k, v)→ u in a previous call to Complete−(x′2, k) is
similar. By the above, the claim holds for the forward query to E(k, u).

The formal claim is then as follows.

270 Chosen-Key Secure Even-Mansour from a Single Permutation

Lemma 6. The probability that T E,p aborts inside the procedure CheckRecord is at most(
258C(φ)q6 + 1332q10)

/2n.

To prove Lemma 6, we analyze the conditions in CheckRecord(x, y, dir, num) in turn.

7.1 Condition at Line 121
Consider the new record (x, y, dir, num). First, if dir =→, then y = p(x) is uniform in at
least 2n − |Πall| ≥ 2n − 3q2 choices. Thus, Pr[y ⊕ φ(x) = y′ ⊕ φ(x′)] ≤ 1/(2n − 3q2) for
each (x′, y′). The bound 1/(2n − 3q2) for dir =← follows similarly by symmetry.

Second, if dir = ⊥→, then by Lemma 5, a corresponding ideal cipher query E(k, u)→ v
with v = y⊕φ4(k) just happened before CheckRecord(x, y,⊥→, num). Thus, y = v⊕φ4(k)
is uniform in at least 2n − q2 choices, and Pr[y⊕φ(x) = y′ ⊕φ(x′)] ≤ 1/(2n − q2) for each
(x′, y′). The analysis and bound 1/(2n − q2) for dir = ⊥← is similar by symmetry.

Thus, in any case, Pr[y ⊕ φ(x) = y′ ⊕ φ(x′)] ≤ 1/(2n − 3q2) for a fixed (x′, y′) ∈ Πall.
Since the number of choices for (x′, y′) is at most 3q2, and since CheckRecord is called at
most 3q2 times, the probability that T E,p aborts at Line 121 is at most (3q2)2

2n−q2 .

7.2 Condition at Line 124
As argued in Sect. 7.1, if dir =→ or ⊥→, then y is uniform in at least 2n − 3q2 choices; if
dir =← or ⊥←, then x is uniform in at least 2n − 3q2 choices. Moreover, the obtained
x or y is independent of the values in Πall. Therefore, for each choice of four records
(x1, y1), (x2, y2), (x3, y3), (x4, y4) ∈ Πall, the probability to have φ(y′ ⊕ x) = y ⊕ x′′ for
y′ = x1⊕φ−1(y1⊕x2) and x′′ = y4⊕φ(y3⊕x4) is at most 1/(2n−3q2). Since the number
of such choices is at most (3q2)4, and since CheckRecord is called at most 3q2 times, the
probability that T E,p aborts at Line 124 is at most (3q2)5

2n−q2 .

7.3 Condition at Line 126
We distinguish subconditions as follows.

Subcondition 1: The new record (x, y, dir) gives rise to a triple (x1, y1, dir1, num1),
(x2, y2, dir2, num2), (x3, y3, dir3, num3) with num1 = num2 = num3 that satisfies the
condition at Line 126. This means x1 = x, and y ⊕ φ(y ⊕ x) = x⇔ y ⊕ φ(y) = x⊕ φ(x).
Now, if dir =→, then y = p(x) is uniform in ≥ 2n − 3q2 choices. By our assumption
on φ, the number of y◦ such that y◦ ⊕ φ(y◦) = x ⊕ φ(x) is at most C(φ). Thus,
Pr[y ⊕ φ(y) = x⊕ φ(x)] ≤ C(φ)/(2n − 3q2). The same bound holds for dir =←.

If dir = ⊥→, then as argued in Sect. 7.1, y is uniform in ≥ 2n − q2 choices, and
Pr[y ⊕ φ(y) = x⊕ φ(x)] ≤ C(φ)/(2n − 3q2). The same bound holds for dir = ⊥←.

The four cases (dir =←,⊥←,→,⊥→) are mutual exclusive. Thus, the probability that
Subcondition 1 is fulfilled w.r.t. (x, y) is at most C(φ)/(2n − 3q2).

Subcondition 2: The new record (x, y, dir) gives rise to a triple (x1, y1, dir1, num1),
(x2, y2, dir2, num2), (x3, y3, dir3, num3) with num1 = num2 ̸= num3 that satisfies the
condition at Line 126. Then, depending on the role of (x, y, dir), we further analyze two
subconditions as follows.
Subcondition 2.1: there exists (x3, y3, dir3, num3) such that num3 < num, and y⊕φ(y⊕
x) = x3. Then, for each such record (x3, y3, dir3, num3), if dir ∈ {←,⊥←}, then x is
uniform in ≥ 2n−3q2 possibilities (as argued), and Pr[y⊕φ(y⊕x) = x3] ≤ 1/(2n−3q2); if
dir ∈ {→,⊥→}, then y is uniform in ≥ 2n − 3q2 possibilities, and Pr[y⊕φ(y⊕ x) = x3] ≤
C(φ)/(2n − 3q2). The number of choices for (x3, y3, dir3, num3) is at most 3q2. Thus, the
probability that Subcondition 2.1 is fulfilled w.r.t. (x, y) is ≤ 3C(φ)q2/(2n − 3q2).

Shanjie Xu, Qi Da, and Chun Guo 271

Subcondition 2.2: dir ∈ {←,⊥←}, and there exists (x1, y1, dir1, num1) such that num1 <

num and y1 ⊕ φ(y1 ⊕ x1) = x. Again, x is uniform in ≥ 2n − 3q2 choices regardless of
dir =← or ⊥←, and Pr[y1 ⊕ φ(y1 ⊕ x1) = x] ≤ 1/(2n − 3q2) for each (x1, y1, dir1, num1).
Thus, the probability that Subcondition 2.2 is fulfilled w.r.t. (x, y) is ≤ 3q2/(2n − 3q2).

A union bound over the subconditions yield that the total probability that Subcondition
2 is fulfilled w.r.t. (x, y) is at most 3C(φ)q2/(2n − 3q2) + 3q2/(2n − 3q2).

Subcondition 3: (x, y) yields (x1, y1, dir1, num1), (x2, y2, dir2, num2), (x3, y3, dir3, num3)
with num1 ≠ num2 = num3 that satisfies the condition at Line 126. The case-study is
actually similar to Subcondition 2 by symmetry, showing that Subcondition 3 is fulfilled
w.r.t. (x, y) with probability at most 3C(φ)q2/(2n − 3q2) + 3q2/(2n − 3q2).

Subcondition 4: The new record (x, y, dir) gives rise to a triple (x1, y1, dir1, num1),
(x2, y2, dir2, num2), (x3, y3, dir3, num3) with num1 = num3 ̸= num2 that satisfies the
condition at Line 126. We further analyze two subconditions as follows.
Subcondition 4.1: there exists (x2, y2, dir2, num2) such that num2 < num, and y2⊕φ(y⊕
x2) = x. Then, for each (x2, y2, dir2, num2), regardless of the value of dir, either x or y
is uniform in ≥ 2n − 3q2 choices (as argued), and Pr[y2 ⊕ φ(y ⊕ x2) = x] ≤ 1/(2n − 3q2).
Summing over the at most 3q2 choices of (x2, y2), the probability to have Subcondition 4.1
is at most 3q2/(2n − 3q2).
Subcondition 4.2: there exists (x1, y1, dir1, num1) such that num1 < num, and y⊕φ(y1⊕
x) = x1. Similarly to Subcondition 4.1, either x or y is uniform in ≥ 2n − 3q2 possibilities,
and Pr[y ⊕ φ(y1 ⊕ x) = x1] ≤ 1/(2n − 3q2) for each (x1, y1), and further Subcondition 4.2
holds with probability at most 3q2/(2n − 3q2).

Thus, Subcondition 4 holds w.r.t. (x, y) with probability ≤ 6q2/(2n − 3q2).

Subcondition 5: (x, y, dir) gives rise to a triple (x1, y1, dir1, num1), (x2, y2, dir2, num2),
(x3, y3, dir3, num3) with distinct num1, num2 and num3.
Subcondition 5.1: there exist distinct (x2, y2, dir2, num2) and (x3, y3, dir3, num3) such that
num2, num3 < num, dir ∈ {→,⊥→}, and y2⊕φ(y⊕ x2) = x3. The number of choices for(
(x2, y2), (x3, y3)

)
is at most 3q2(3q2−1), and the probability for each is at most 1/(2n−3q2).

Thus, the total probability of Subcondition 5.1 is at most 3q2(3q2 − 1)/(2n − 3q2).
Subcondition 5.2: there exist distinct (x1, y1, dir1, num1) and (x3, y3, dir3, num3) such that
num1, num3 < num and y⊕φ(y1⊕x) = x3. The number of choices for

(
(x1, y1), (x3, y3)

)
is at most 3q2(3q2 − 1), and the probability for each is at most 1/(2n − 3q2) regardless of
dir. Thus, the total probability of Subcondition 5.2 is at most 3q2(3q2 − 1)/(2n − 3q2).
Subcondition 5.3: there exists distinct (x1, y1, dir1, num1) and (x2, y2, dir2, num2) such that
num1, num2 < num, dir ∈ {←,⊥←}, and y2⊕φ(y1⊕x2) = x. Again, the total probability
of Subcondition 5.3 is at most 3q2(3q2 − 1)/(2n − 3q2).

Thus, Subcondition 5 holds w.r.t. (x, y) with probability ≤ 9q2(3q2 − 1)/(2n − 3q2).

Summarizing. Summing over the five subconditions and considering that CheckRecord
is called at most 3q2 times, the probability that T E,p aborts at Line 126 is bounded by

3q2 ×
(C(φ)

2n − 3q2 + 6C(φ)q2

2n − 3q2 + 6q2

2n − 3q2 + 6q2

2n − 3q2 + 9q2(3q2 − 1)
2n − 3q2

)
≤ 21C(φ)q4 + 90q6

2n − 3q2 .

7.4 Conditions at Lines 128 and 130
We classify the subconditions as follows.
Type-A: the new record (x, y) appears 3 times in the two involved 2-chains. Furthermore,

272 Chosen-Key Secure Even-Mansour from a Single Permutation

• Subcondition A.1: the record (x, y, dir, num) forms two 2-chains
(
(x, y), (x, y)

)
and(

(x′, y′, dir′, num′), (x, y)
)

with y ⊕ φ(y ⊕ x) = y ⊕ φ(y′ ⊕ x). This is not possible.

• Subcondition A.2: the record (x, y, dir, num) forms two 2-chains
(
(x, y), (x, y)

)
and(

(x, y), (x′, y′, dir′, num′)
)

such that num′ < num and y⊕φ(y⊕x) = y′⊕φ(y⊕x′).
But this implies y ⊕ φ(x) = y′ ⊕ φ(x′) and earlier abortion at Line 121.
Other possibilities of Type-A conditions are essentially equivalent with A.1 or A.2.

Type-B: the new record (x, y) appears twice in the two involved 2-chains, and the other
two involved records are the same. Furthermore,

• Subcondition B.1: (x, y, dir, num) forms 2-chains
(
(x, y), (x, y)

)
and

(
(x′, y′, dir′, num′),

(x′, y′, dir′, num′)
)

such that num′ < num and y ⊕ φ(y ⊕ x) = y′ ⊕ φ(y′ ⊕ x′).
As argued, either x or y is uniform in ≥ 2n − 3q2 choices. Thus, Pr[y ⊕ φ(y ⊕ x) =
y′ ⊕ φ(y′ ⊕ x′)] ≤ 3C(φ)q2/(2n − 3q2) for one of the 3q2 choices of (x′, y′).

• Subcondition B.2: the record (x, y, dir, num) forms
(
(x, y), (x′, y′, dir′, num′)

)
and(

(x′, y′, dir′, num′), (x, y)
)

such that num′ < num and y′⊕φ(y⊕x′) = y⊕φ(y′⊕x).
In a similar vein to Subcondition B.1, the probability to have y′ ⊕ φ(y ⊕ x′) =
y ⊕ φ(y′ ⊕ x) for one of the 3q2 choices of (x′, y′) is at most 3C(φ)q2/(2n − 3q2).
Other possibilities of Type-B conditions are essentially equivalent with B.1 or B.2.

Type-C: the new record (x, y) appears twice in the two involved 2-chains, and the other
two involved records are distinct. Furthermore,

• Subcondition C.1: the record (x, y, dir, num) forms two 2-chains
(
(x, y), (x, y)

)
and

(
(x1, y1, dir1, num1), (x2, y2, dir2, num2)

)
such that num1, num2 < num and

y ⊕ φ(y ⊕ x) = y2 ⊕ φ(y1 ⊕ x2).
Regardless of the value of dir, either x or y is uniform in ≥ 2n − 3q2 choices. Thus,
Pr[y ⊕ φ(y ⊕ x) = y2 ⊕ φ(y1 ⊕ x2)] ≤ 3C(φ)q2(3q2 − 1)/(2n − 3q2) for one of the
3q2(3q2 − 1) choices of

(
(x1, y1), (x2, y2)

)
.

• Subcondition C.2: the record (x, y, dir, num) forms
(
(x, y), (x1, y1, dir1, num1)

)
and(

(x, y), (x2, y2, dir2, num2)
)

such that num1, num2 < num and y1 ⊕ φ(y ⊕ x1) =
y2 ⊕ φ(y ⊕ x2). But this implies y1 ⊕ φ(x1) = y2 ⊕ φ(x2) and T E,p should have
aborted at Line 121 during creating the later of (x1, y1) and (x2, y2).

• Subcondition C.3: the record (x, y, dir, num) forms
(
(x, y), (x1, y1, dir1, num1)

)
and(

(x2, y2, dir2, num2), (x, y)
)

with num1, num2 < num and y1 ⊕ φ(y ⊕ x1) = y ⊕
φ(y2 ⊕ x). The bound 3C(φ)q2(3q2 − 1)/(2n − 3q2) is similar to Subcondition C.1.

• Subcondition C.4: the record (x, y, dir, num) forms
(
(x1, y1, dir1, num1), (x, y)

)
and(

(x2, y2, dir2, num2), (x, y)
)

with y⊕φ(y1⊕ x) = y⊕φ(y2⊕ x). This is not possible.
Other possibilities of Type-C conditions are equivalent with one of the above.

Type-D: the new record (x, y) appears once in the two involved 2-chains. Furthermore,

• Subcondition D.1: the record (x, y, dir, num) forms
(
(x, y), (x2, y2, dir2, num2)

)
and(

(x3, y3, dir3, num3), (x4, y4, dir4, num4)
)

such that dir ∈ {→,⊥→} and num2, num3,
num4 < num and y2 ⊕ φ(y ⊕ x2) = y4 ⊕ φ(y3 ⊕ x4).
The number of choices for (x2, y2), (x3, y3), (x4, y4) is at most (3q2)3, and the prob-
ability to have y2 ⊕ φ(y ⊕ x2) = y4 ⊕ φ(y3 ⊕ x4) for each is at most 1/(2n − 3q2).
Thus, the total probability of Subcondition D.1 is at most (3q2)3/(2n − 3q2).

Shanjie Xu, Qi Da, and Chun Guo 273

• Subcondition D.2: the record (x, y, dir, num) forms
(
(x1, y1, dir1, num1), (x, y)

)
and(

(x3, y3, dir3, num3), (x4, y4, dir4, num4)
)

such that num1, num3, num4 < num and
y⊕φ(y1⊕x) = y4⊕φ(y3⊕x4). Similarly to D.1, the total probability of Subcondition
D.2 is at most (3q2)3/(2n − 3q2).
Other possibilities of Type-D conditions are equivalent with one of the above.

Summarizing. Summing over the four types of conditions, and since CheckRecord is called
at most 3q2 times, the probability that T E,p aborts at Line 128 is bounded by

3q2 ×
(6C(φ)q2

2n − 3q2 + 6C(φ)q2(3q2 − 1)
2n − 3q2 + 2(3q2)3

2n − 3q2

)
≤ 54C(φ)q6 + 162q8

2n − 3q2 .

Analyses of the probabilities that T E,p aborts at Line 130 are similar to Sect. 7.4 by
symmetry, yielding the same bound 54C(φ)q6+162q8

2n−3q2 .

7.5 Finalizing the Analysis of CheckRecord

Summing over the bounds from Sect. 7.1, 7.2, 7.3 and 7.4 yields (using 3q2 ≤ 2n/2)

Pr
[
CheckRecord aborts

]
≤ 252q10

2n − q2 + 129C(φ)q6 + 414q8

2n − 3q2 ≤ 258C(φ)q6 + 1332q10

2n
. (5)

8 Abort Probability of Adaptations, and Concluding
To conclude on the abort probability of Σ2, it remains to analyze adaptations. To this
end, let us first have a quick overview on simulator cycles and introduce bad records.

Bad Records We first present a quick overview of the processes to gain some central
intuitions. Wlog, consider the case of D querying P (x), as the converse case is similar
by symmetry. Regardless of whether x ∈ domain(Πin), T adds a corresponding record
(x, y, dir, num) to Πpub. It is expected to have dir ∈ {→,⊥→}. T then makes a call to
ProcessRecord(x, y, dir) to “process” (x, y). In this call, T considers a pile of 3-chains
and 2-chains. The case of dir =→ is illustrated in Fig. 2: T tries to complete them by
adding the underlined records to Πin.

(
(x(1)

1 , y
(1)
1), (x(1)

2 , y
(1)
2), (x, y,→), (x(1)

4 , y
(1)
4 ,⊥→)

)
,

...,(
(x(α)

1 , y
(α)
1), (x(α)

2 , y
(α)
2), (x, y,→), (x(α)

4 , y
(α)
4 ,⊥→)

)
;(

(x(α+1)
1 , y

(α+1)
1 ,⊥←), (x(α+1)

2 , y
(α+1)
2), (x, y,→), (x(α+1)

4 , y
(α+1)
4 ,→)

)
,

...,(
(x(α+β)

1 , y
(α+β)
1 ,⊥←), (x(α+β)

2 , y
(α+β)
2), (x, y,→), (x(α+β)

4 , y
(α+β)
4 ,→)

)
;(

(x(α+β+1)
1 , y

(α+β+1)
1 ,←), (x, y,→), (x(α+β+1)

3 , y
(α+β+1)
3), (x(α+β+1)

4 , y
(α+β+1)
4 ,⊥→)

)
,

...,(
(x(α+β+γ)

1 , y
(α+β+γ)
1 ,←), (x, y,→), (x(α+β+γ)

3 , y
(α+β+γ)
3), (x(α+β+γ)

4 , y
(α+β+γ)
4 ,⊥→)

)
.

Figure 2: 2-chains and 3-chains addressed by a call to ProcessRecord(x, y,→), where α,
β and γ are sequence numbers.

274 Chosen-Key Secure Even-Mansour from a Single Permutation

It can be seen if the record (x, y) has been involved in certain collisions, then subsequent
Adapt-calls are deemed to abort. We thus characterize such collisions and defined bad
records. In detail, a record (x, y, dir) with dir ∈ {→,⊥→} is bad, if any of the following
conditions is fulfilled:

• (B-1) There exist two records (x2, y2), (x4, y4) ∈ Πall s.t.
(
(x2, y2), (x, y), (x4, y4)

)
constitutes a 3-chain, i.e., x4 = y ⊕ φ(y2 ⊕ x);

• (B-2) There exist two records (x3, y3), (x4, y4) ∈ Πall s.t.
(
(x, y), (x3, y3), (x4, y4)

)
constitutes a 3-chain, i.e., x4 = y3 ⊕ φ(y ⊕ x2);

• (B-3) There exist two records (x2, y2), (x3, y3) ∈ Πpub such that the two 2-chains(
(x2, y2), (x, y)

)
and

(
(x, y), (x3, y3)

)
collide on either left or right, i.e.,

– x2 ⊕ φ−1(y2 ⊕ x) = x⊕ φ−1(y ⊕ x3); or
– y ⊕ φ(y2 ⊕ x) = y3 ⊕ φ(y ⊕ x3).

• (B-4) There exist distinct (x2, y2), (x′2, y′2) ∈ Πall s.t. the two 2-chains
(
(x2, y2), (x, y)

)
and

(
(x′2, y′2), (x, y)

)
collide on left, i.e., x2 ⊕ φ−1(y2 ⊕ x) = x′2 ⊕ φ−1(y′2 ⊕ x);

• (B-5) There exist distinct (x3, y3), (x′3, y′3) ∈ Πall s.t. the two 2-chains
(
(x, y), (x3, y3)

)
and

(
(x, y), (x′3, y′3)

)
collide on right, i.e., y3 ⊕ φ(y ⊕ x3) = y′3 ⊕ φ(y ⊕ x′3).

Bad record with dir ∈ {←,⊥←} is defined symmetrically, and is omitted due to space.

Proof flow. Our subsequent arguments proceed in two steps. First, in Lemmas 7—10, we
prove that ProcessRecord(x, y, dir) is always called for good (x, y, dir). Then, in Lemma
12, we prove that in ProcessRecord-calls with good records, adaptions have bounded
abort probabilities. This enables concluding on abort probability in Lemma 15.

8.1 Unprocessed Records Are Always Good
This section proceeds with steps as follows.

1. Lemma 7 proves every record (x, y, dir) is good right after it is created;
2. Lemma 8 proves (x, y, dir) remains good at the end of the cycle that creates it;
3. Lemma 9 proves (x, y, dir) remains good after a subsequent new simulator cycle;
4. Lemma 10 proves that every record (x, y, dir) remains good after a subsequent

transferring simulator cycle. We finally conclude on the goodness in Lemma 11.

Lemma 7. Every record (x, y, dir) is good right after it is added to Πall.

Proof. Wlog, consider the case dir ∈ {→,⊥→}. Right after (x, y, dir) is created, if (B-1) is
fulfilled, then there is a 3-chain

(
(x2, y2, dir2, num2), (x, y, dir, num), (x4, y4, dir4, num4)

)
such that num ≥ num2, num4. This clearly contradicts Inv2. Similarly, if (B-2) is fulfilled,
then it contradicts Inv2.

Then, if (B-3) holds, then there exist two 2-chains
(
(x2, y2), (x, y)

)
and

(
(x, y), (x3, y3)

)
with colliding endpoints. However, since (x, y) has the largest num value, x2⊕φ−1(y2⊕x) =
x⊕ φ−1(y ⊕ x3) contradicts Inv4, while y ⊕ φ(y2 ⊕ x) = y3 ⊕ φ(y ⊕ x3) contradicts Inv3.

Finally, x2⊕φ−1(y2⊕x) = x′2⊕φ−1(y′2⊕x) for (B-4) implies x2⊕φ−1(y2) = x′2⊕φ−1(y′2),
contradicting Inv1; y3⊕φ(y⊕x3) = y′3⊕φ(y⊕x′3) for (B-5) implies y3⊕φ(x3) = y′3⊕φ(x′3),
contradicting Inv1. So neither (B-4) nor (B-5) is possible.

Lemma 8. Assume that in a simulator cycle due to D querying P (x∗)→ y∗ or P−1(y∗)→
x∗, T adds a record (x, y, dir, num) to Πin. Then, (x, y, dir, num) remains good at the
end of this simulator cycle.

Shanjie Xu, Qi Da, and Chun Guo 275

Proof. By design, subsequently in this cycle, any newly created record (x◦, y◦, dir◦, num◦)
must have (x◦, y◦) ∈ Πin. Let (x∗, y∗, dir∗, num∗) be the record of the query P (x∗)→ y∗

or P−1(y∗) → x∗. Note that num◦ > num > num∗ by assumption. Moreover, for any
(x′, y′, dir′, num′) ∈ Πpub, it holds num > num′. Further note that:

• (B-1) cannot be suddenly fulfilled after (x◦, y◦, dir◦, num◦) is created: otherwise,
there appears a bad 3-chain

(
(x2, y2), (x, y), (x4, y4)

)
and contradicts Lemma 2;

• (B-3) cannot be fulfilled either, since T never creates new public records after (x, y);

• Neither (B-4) nor (B-5) can be fulfilled, since they contradict Inv1.

It remains to analyze (B-2). For this, we distinguish two cases depending on dir.

Case 1: dir ∈ {→,⊥→}. If (B-2) is fulfilled, then a 3-chain
(
(x, y), (x3, y3), (x4, y4)

)
suddenly appears after (x◦, y◦, dir◦, num◦) is created. We analyze three subcases as follows.
Subcase 1.1: (x3, y3) = (x◦, y◦) Then since (x◦, y◦) ∈ Πin,

(
(x, y), (x◦, y◦), (x4, y4)

)
is a

bad 3-chain, and this contradicts Lemma 2.
Subcase 1.2: (x3, y3) ∈ Πpub (thus, (x3, y3) ̸= (x◦, y◦)), (x4, y4) = (x◦, y◦), and dir◦ ∈ {←
,⊥←}. Then it contradicts Inv2.
Subcase 1.3: (x3, y3, dir3, num3) ∈ Πpub, (x4, y4) = (x◦, y◦), and dir◦ ∈ {→,⊥→} Then, by
Proposition 2, right before T creating (x◦, y◦), there exists (x′, y′, dir′, num′) ∈ Πpub s.t.:

• The 2-chain
(
(x′, y′), (x∗, y∗)

)
has its “right endpoint” collide with the 2-chain(

(x, y), (x3, y3)
)
, i.e., y∗ ⊕ φ(y′ ⊕ x∗) = x◦ = y3 ⊕ φ(y ⊕ x3); or

• The 2-chain
(
(x∗, y∗), (x′, y′)

)
has its “right endpoint” collide with the 2-chain(

(x, y), (x3, y3)
)
, i.e., y′ ⊕ φ(y∗ ⊕ x′) = x◦ = y3 ⊕ φ(y ⊕ x3).

As discussed, num > num∗, num′, num3, i.e., (x, y, dir, num) is “latest”. Moreover, dir ∈
{→,⊥→} in Case 1. Therefore, both possibilities contradict Inv3.

Case 2: dir ∈ {←,⊥←}. In this case, if (B-2) is fulfilled, then it means a 3-chain(
(x1, y1), (x2, y2), (x, y)

)
suddenly appears after (x◦, y◦, dir◦, num◦) is created. The sub-

cases are similar to Case 1 by symmetry: if (x2, y2) = (x◦, y◦) then
(
(x1, y1), (x◦, y◦), (x, y)

)
is bad; if (x2, y2) ∈ Πpub ∧ (x1, y1) = (x◦, y◦) ∧ dir◦ ∈ {→,⊥→} then it contradicts Inv2;
if (x2, y2) ∈ Πpub ∧ (x1, y1) = (x◦, y◦)∧ dir◦ ∈ {←,⊥←} then we have two 2-chains collide
“at the left”, contradicting Inv4. Thus the claim.

Lemma 9. Assume that when D queries P (x∗) → y∗ (P−1(y∗) → x∗, resp.), it holds
x∗ /∈ domain(Πall) (y∗ /∈ range(Πall), resp.), and there exists a record (x, y, dir, num) ∈
Πin that is good. Then, after the simulator cycle due to D querying P (x∗) → y∗ or
P−1(y∗)→ x∗, (x, y, dir, num) remains good.

Proof. For clarity, we list the query records that are relevant to the analysis:

• The record (x, y, dir, num) created before D querying P (x∗)→ y∗ or P−1(y∗)→ x∗;

• The record (x∗, y∗, dir∗, num∗) of the query P (x∗)→ y∗ or P−1(y∗)→ x∗;

• An arbitrary record (x◦, y◦, dir◦, num◦) that is created after (x, y, dir, num).

Note that num◦ > num∗ > num in this setting. Below we analyze the influences of
(x∗, y∗, dir∗, num∗) and (x◦, y◦, dir◦, num◦) in two subsubsections respectively.

276 Chosen-Key Secure Even-Mansour from a Single Permutation

8.1.1 Influence of (x∗, y∗, dir∗)

First, (B-1) cannot be suddenly fulfilled after (x∗, y∗, dir∗) is created: otherwise, there
appears a bad 3-chain

(
(x2, y2), (x, y), (x4, y4)

)
with (x, y) ∈ Πin, contradicting Lemma

2. Further, neither (B-4) nor (B-5) can be fulfilled, since they contradict Inv1. It thus
remains to analyze (B-2) and (B-3). Depending on dir and dir∗, there are four cases.

Case 1: dir ∈ {→,⊥→}, dir∗ =→. This means D queries P (x∗)→ y∗. We analyze
the conditions w.r.t. (x, y, dir) in turn.
If (B-2) is fulfilled, then (x∗, y∗) and (x, y) constitute a 3-chain

(
(x, y), (x3, y3), (x4, y4)

)
.

Now if (x3, y3) = (x∗, y∗), it contradicts Inv2 since dir∗ =→. If (x3, y3) ̸= (x∗, y∗)
and (x4, y4) = (x∗, y∗), i.e., x∗ = x4 = y3 ⊕ φ(y ⊕ x3) then since (x, y, dir) ∈ Πin and
dir ∈ {→,⊥→}, T should have aborted at line 39 in CheckPrivacy(x∗). Therefore, after
(x∗, y∗,→) is created, (B-2) won’t be suddenly fulfilled.
If (B-3) is fulfilled after (x∗, y∗,→, num∗) is created, then there appear two 2-chains(
(x2, y2), (x, y)

)
and

(
(x, y), (x3, y3)

)
collide on either left or right. Further:

• Subcase 1.3.1: (x2, y2) = (x3, y3) = (x∗, y∗). Then x∗⊕φ−1(y∗⊕x) = x⊕φ−1(y⊕x∗)
contradicts Inv4, whereas y ⊕ φ(y∗ ⊕ x) = y∗ ⊕ φ(y ⊕ x∗) contradicts Inv3;

• Subcase 1.3.2: (x2, y2) = (x∗, y∗) and (x3, y3) ̸= (x∗, y∗). Then, since dir∗ =→ and
since we assumed (x∗, y∗) the latest, x∗ ⊕ φ−1(y∗ ⊕ x) = x ⊕ φ−1(y ⊕ x3) again
contradicts Inv4, whereas y ⊕ φ(y∗ ⊕ x) = y3 ⊕ φ(y ⊕ x3) contradicts Inv3;

• Subcase 1.3.3: (x3, y3) = (x∗, y∗) and (x2, y2) ̸= (x∗, y∗). Then, y⊕φ(y2⊕x) = y∗⊕
φ(y⊕x∗) contradicts Inv3. On the other hand, if x2⊕φ−1(y2⊕x) = x⊕φ−1(y⊕x∗),
then since (x, y, dir) ∈ Πin and dir ∈ {→,⊥→}, T should have aborted at line 41 in
CheckPrivacy(x∗).

Therefore, after (x∗, y∗,→) is created, (B-3) won’t be suddenly fulfilled w.r.t. (x, y).

Case 2: dir ∈ {→,⊥→}, dir∗ =←. This means D queries P−1(y∗)→ x∗.
If (B-2) is fulfilled, then (x∗, y∗), (x, y) constitute a 3-chain

(
(x, y), (x3, y3), (x4, y4)

)
. This

always contradicts Inv2, regardless of (x∗, y∗) equaling (x3, y3) or (x4, y4).
If (B-3) is fulfilled after (x∗, y∗,←, num∗) is created, then there appear two 2-chains(
(x2, y2), (x, y)

)
and

(
(x, y), (x3, y3)

)
collide on either left or right. Further:

• Subcase 2.3.1: (x2, y2) = (x3, y3) = (x∗, y∗). Then x∗⊕φ−1(y∗⊕x) = x⊕φ−1(y⊕x∗)
contradicts Inv4, whereas y ⊕ φ(y∗ ⊕ x) = y∗ ⊕ φ(y ⊕ x∗) contradicts Inv3;

• Subcase 2.3.2: (x2, y2) = (x∗, y∗), and (x3, y3) ̸= (x∗, y∗). Then x∗ ⊕ φ−1(y∗ ⊕ x) =
x⊕ φ−1(y ⊕ x3) contradicts Inv4, while y ⊕ φ(y∗ ⊕ x) = y3 ⊕ φ(y ⊕ x3) indicates T
aborting at line 47 in CheckPrivacy−1(y∗);

• Subcase 2.3.3: (x3, y3) = (x∗, y∗), and (x2, y2) ̸= (x∗, y∗). Then, since dir∗ =←,
y ⊕ φ(y2 ⊕ x) = y∗ ⊕ φ(y ⊕ x∗) contradicts Inv3, whereas x2 ⊕ φ−1(y2 ⊕ x) =
x⊕ φ−1(y ⊕ x∗) contradicts Inv4.

Thus, after (x∗, y∗,←) is created, (B-3) won’t be fulfilled w.r.t. (x, y).

Summary for (x∗, y∗, dir∗). Case 3, i.e., dir ∈ {←,⊥←}, dir∗ =→, is similar to Case
2 by symmetry, while Case 4, i.e., dir ∈ {←,⊥←}, dir∗ =←, is similar to Case 1 by
symmetry. By the above, (x, y) remains good after (x∗, y∗) is created and added to Πpub.

Shanjie Xu, Qi Da, and Chun Guo 277

8.1.2 Influence of Arbitrary (x◦, y◦, dir◦)

For “internal” record (x◦, y◦) added to Πin in this cycle, the analysis bears resemblance
with the proof of Lemma 8. In detail,

• (B-1) cannot be fulfilled after (x◦, y◦, dir◦, num◦) is created: otherwise, there appears
a bad 3-chain

(
(x2, y2), (x, y), (x4, y4)

)
and it contradicts Lemma 2;

• (B-3) cannot be fulfilled, since T creating (x◦, y◦) does not affect Πpub at all;

• Neither (B-4) nor (B-5) can be fulfilled, since they contradict Inv1.

It remains to address (B-2), and we distinguish two cases depending on dir.

Case 1: dir ∈ {→,⊥→}. In this case, if (B-2) is fulfilled, then it means a 3-chain(
(x, y), (x3, y3), (x4, y4)

)
suddenly appears after (x◦, y◦, dir◦, num◦) is created. Further:

Subcase 1.1: (x3, y3) = (x◦, y◦).
(
(x, y), (x◦, y◦), (x4, y4)

)
is bad and contradicts Lemma 2.

Subcase 1.2: (x3, y3) ∈ Πpub (thus, (x3, y3) ̸= (x◦, y◦)), (x4, y4) = (x◦, y◦), and dir◦ ∈ {←
,⊥←}. Then it contradicts Inv2.
Subcase 1.3: (x3, y3) ∈ Πpub, (x4, y4) = (x◦, y◦), and dir◦ ∈ {→,⊥→}. Then, right before
T creating (x◦, y◦), there exists (x′, y′) ∈ Πpub such that either of the following is fulfilled:

• The two 2-chains
(
(x′, y′), (x∗, y∗)

)
and

(
(x, y), (x3, y3)

)
“collide at the right side”,

i.e., y∗ ⊕ φ(y′ ⊕ x∗) = y3 ⊕ φ(y ⊕ x3). Since (x3, y3), (x′, y′) ∈ Πpub, it holds
num∗ ≥ num3, num′; moreover, num∗ > num as remarked before. Therefore, it
contradicts Inv3, regardless of dir∗ =→ or ←.

• The two 2-chains
(
(x∗, y∗), (x′, y′)

)
and

(
(x, y), (x3, y3)

)
“collide at the right side”,

i.e., y′ ⊕ φ(y∗ ⊕ x′) = y3 ⊕ φ(y ⊕ x3), and (x′, y′) ̸= (x∗, y∗). Then,

– If (x3, y3) = (x∗, y∗), then y′ ⊕ φ(y∗ ⊕ x′) = y∗ ⊕ φ(y ⊕ x∗) contradicts Inv3;
– If (x3, y3) ̸= (x∗, y∗) and dir∗ =→, it again contradicts Inv3;
– If (x3, y3) ̸= (x∗, y∗) and dir∗ =←, then y∗ = x′ ⊕ y⊕ x3 ⊕ φ−1(y′ ⊕ y3). Since

dir ∈ {→,⊥→}, T should have aborted at line 47 in CheckPrivacy−1(y∗).

Case 2: dir ∈ {←,⊥←}. In this case, if (B-2) is fulfilled, then it means a 3-chain(
(x1, y1), (x2, y2), (x, y)

)
suddenly appears after (x◦, y◦, dir◦, num◦) is created. The case-

study is essentially similar to Case 1 by symmetry (except that some subcases contradict
Inv4 instead of Inv3). In all, after (x◦, y◦) is created, (B-2) won’t be fulfilled either.

Lemma 10. Assume that when D queries P (x∗) → y∗ (P−1(y∗) → x∗, resp.), it holds
x∗ ∈ domain(Πin) (y∗ ∈ range(Πin), resp.), and there exists a record (x, y, dir, num) ∈
Πin that is good. Then, after the simulator cycle due to D querying P (x∗) → y∗ or
P−1(y∗)→ x∗, (x, y, dir, num) remains good.

Proof. For clarity, we list the query records that are relevant to the analysis:

• The record (x, y, dir, num) created before D querying P (x∗)→ y∗ or P−1(y∗)→ x∗;

• The record (x∗, y∗, dir∗, num∗) ∈ Πin that corresponds to the adversarial query
P (x∗)→ y∗ or P−1(y∗)→ x∗ that triggers the current simulator cycle;

• An arbitrary record (x◦, y◦, dir◦, num◦) that is created after (x, y, dir, num).

In this setting, we have num◦ > num∗, num, but it is unclear if num∗ > num. Below we
analyze the influence of (x∗, y∗, dir∗, num∗) and (x◦, y◦, dir◦, num◦) in turn.

278 Chosen-Key Secure Even-Mansour from a Single Permutation

8.1.3 Influence of (x∗, y∗, dir∗)

In this setting, the record (x∗, y∗) is not new: it has been in either Πin. By this, T moving
(x∗, y∗) to Πpub cannot make (B-1), (B-2), (B-4) or (B-5) fulfilled.

On the other hand, if (B-3) is fulfilled after T moving (x∗, y∗) to Πpub, then before D
queries P (x∗) or P−1(y∗), there already existed two “colliding” 2-chains

(
(x2, y2), (x, y)

)
and

(
(x, y), (x3, y3)

)
such that either (x2, y2) = (x∗, y∗) or (x3, y3) = (x∗, y∗) (they cannot

both hold: otherwise, x∗ ⊕ φ−1(y∗ ⊕ x) = x ⊕ φ−1(y ⊕ x∗) contradicts Inv4, while
y ⊕ φ(y∗ ⊕ x) = y∗ ⊕ φ(y ⊕ x∗) contradicts Inv3). We distinguish four cases as follows.

Case 1: D queries P (x∗), and (x2, y2) = (x∗, y∗). In this case, it has to be dir∗ ∈
{→,⊥→}: otherwise, T would have aborted at line 37 in CheckPrivacy(x∗). But then,
both the “left collision” x∗ ⊕ φ−1(y∗ ⊕ x) = x ⊕ φ−1(y ⊕ x3) and the “right collision”
y ⊕ φ(y∗ ⊕ x) = y3 ⊕ φ(y ⊕ x3) would have caused T abort at line 52 in the call to
CheckInternalColl(x∗, y∗) (before it actually moved (x∗, y∗) to Πpub).

Case 2: D queries P (x∗), and (x3, y3) = (x∗, y∗). In this case, it has to be dir∗ ∈
{→,⊥→}: otherwise, T would have aborted at line 37 in CheckPrivacy(x∗). Then,

• x2 ⊕φ−1(y2 ⊕ x) = x⊕φ−1(y⊕ x∗) means φ−1(x∗) = y2 ⊕ x⊕ y⊕φ(x2 ⊕ x). Since
(x, y) ∈ Πin, T should have aborted at line 41 in CheckPrivacy(x∗);

• y ⊕ φ(y2 ⊕ x) = y∗ ⊕ φ(y ⊕ x∗) would have caused T abort at line 54 in the call to
CheckInternalColl(x∗, y∗).

Case 3: D queries P−1(y∗), and (x2, y2) = (x∗, y∗). This case is similar to Case 2
by symmetry. In detail, it has to be dir∗ ∈ {←,⊥←}: otherwise, T would have aborted at
line 43 in CheckPrivacy−1(y∗). Then,

• x∗ ⊕ φ−1(y∗ ⊕ x) = x ⊕ φ−1(y ⊕ x3) would have caused T abort at line 61 in the
call to CheckInternalColl−1(x∗, y∗), while

• y⊕φ(y∗⊕x) = y3⊕φ(y⊕x3) means y∗ = x⊕ y⊕x3⊕φ(y⊕ y3). Since (x, y) ∈ Πin,
T should have aborted at line 47 in CheckPrivacy−1(y∗).

Case 4: D queries P−1(y∗), and (x3, y3) = (x∗, y∗). This case is similar to Case
1 by symmetry. A bit more clearly, it has to be dir∗ ∈ {←,⊥←}: otherwise, T would
have aborted at line 43 in CheckPrivacy−1(y∗). But then, both the “left collision”
x2⊕φ−1(y2⊕x) = x⊕φ−1(y⊕x∗) and the “right collision” y⊕φ(y2⊕x) = y∗⊕φ(y⊕x∗)
would have caused T abort at line 59 in the call to CheckInternalColl−1(x∗, y∗).

Summary for (x∗, y∗, dir∗). By the above, none of the conditions can be suddenly
fulfilled after T moving (x∗, y∗) to Πpub, and (x, y) ∈ Πin remains good.

8.1.4 Influence of Arbitrary (x◦, y◦, dir◦)

The analysis for such (x◦, y◦) bears some resemblance with the analogue part in the proof
of Lemma 9. In detail,

• (B-1) cannot be fulfilled after (x◦, y◦, dir◦, num◦) is created: otherwise, there appears
a bad 3-chain

(
(x2, y2), (x, y), (x4, y4)

)
and it contradicts Lemma 2;

• (B-3) cannot be fulfilled, since T creating (x◦, y◦) does not affect Πpub at all;

• Neither (B-4) nor (B-5) can be fulfilled, since they contradict Inv1.

It remains to consider (B-2), and we distinguish two cases depending on dir.

Shanjie Xu, Qi Da, and Chun Guo 279

Case 1: D queries P (x∗), and dir ∈ {→,⊥→}. In this case, it has to be dir∗ ∈ {→
,⊥→}: otherwise, T would have aborted at line 37 in CheckPrivacy(x∗).

Then, if (B-2) is fulfilled, it means a 3-chain
(
(x, y), (x3, y3), (x4, y4)

)
suddenly appears

after (x◦, y◦, dir◦, num◦) is created. We analyze each subcase as follows.
Subcase 1.1: (x3, y3) = (x◦, y◦). Then since (x◦, y◦) ∈ Πin,

(
(x, y), (x◦, y◦), (x4, y4)

)
is a

bad 3-chain, and this contradicts Lemma 2;
Subcase 1.2: (x3, y3) ∈ Πpub, (x4, y4) = (x◦, y◦), and dir◦ ∈ {←,⊥←}. It contradicts Inv2.
Subcase 1.3: (x3, y3) ∈ Πpub, (x4, y4) = (x◦, y◦), and dir◦ ∈ {→,⊥→}. Then, right before
T creating (x◦, y◦), there exists (x′, y′) ∈ Πpub such that:

• The 2-chain
(
(x′, y′), (x∗, y∗)

)
has its “right endpoint” collides with the 2-chain(

(x, y), (x3, y3)
)
, i.e., y∗ ⊕ φ(y′ ⊕ x∗) = y3 ⊕ φ(y ⊕ x3); or

• The 2-chain
(
(x∗, y∗), (x′, y′)

)
has its “right endpoint” collides with the 2-chain(

(x, y), (x3, y3)
)
, i.e., y′ ⊕ φ(y∗ ⊕ x′) = y3 ⊕ φ(y ⊕ x3).

Though, since dir∗ ∈ {→,⊥→}, both possibilities would have caused T abort (at line 54
or 52) in the call to CheckInternalColl(x∗, y∗).

Case 2: D queries P−1(y∗), and dir ∈ {→,⊥→}. In this case, it has to be dir∗ ∈
{←,⊥←}: otherwise, T would have aborted at line 43 in CheckPrivacy−1(y∗).

Then, if (B-2) is fulfilled, it means a 3-chain
(
(x, y), (x3, y3), (x4, y4)

)
suddenly appears

after (x◦, y◦, dir◦, num◦) is created. We analyze each subcase as follows.
Subcase 2.1: (x3, y3) = (x◦, y◦). Then since (x◦, y◦) ∈ Πin,

(
(x, y), (x◦, y◦), (x4, y4)

)
is a

bad 3-chain, and this contradicts Lemma 2.
Subcase 2.2: (x3, y3) ∈ Πpub, (x4, y4) = (x◦, y◦), and dir◦ ∈ {←,⊥←}. It contradicts Inv2.
Subcase 2.3: (x3, y3) ∈ Πpub, (x4, y4) = (x◦, y◦), and dir◦ ∈ {→,⊥→}. Then, right before
T creating (x◦, y◦), there exists (x′, y′) ∈ Πpub such that:

• The 2-chain
(
(x′, y′), (x∗, y∗)

)
has its “right endpoint” collides with the 2-chain(

(x, y), (x3, y3)
)
, i.e., y∗⊕φ(y′⊕ x∗) = y3⊕φ(y⊕ x3). Then, since dir∗ ∈ {←,⊥←},

T would have aborted at line 59 in the call CheckInternalColl−1(x∗, y∗).

• Or: the 2-chain
(
(x∗, y∗), (x′, y′)

)
has its “right endpoint” collides with the 2-chain(

(x, y), (x3, y3)
)
, i.e., y′ ⊕ φ(y∗ ⊕ x′) = y3 ⊕ φ(y ⊕ x3). Then, T would have aborted

at line 47 in CheckPrivacy−1(y∗).

Case 3 and 4, and Summary. Case 3, where D queries P (x∗), and dir ∈ {←,⊥←},
is essentially similar to Case 2 by symmetry. Case 4, where D queries P−1(y∗), and
dir ∈ {←,⊥←}, is similar to Case 1 by symmetry. By the above, in this cycle, no newly
created record can make (x, y) bad.

We conclude with the following lemma.

Lemma 11. Right before every call to ProcessRecord(x, y, dir), the record (x, y) is good.

Proof. By Lemma 7, (x, y) was good right after it was created. If (x, y) was created in a
new cycle, then ProcessRecord(x, y, dir) is called immediately after (x, y) was created, and
the claim thus holds. Otherwise, Lemmas 8, 9 and 10 imply that (x, y) ∈ Πin remains good
after subsequent simulator actions, till the corresponding transferring cycle. Therefore,
(x, y) remains good before the call to ProcessRecord(x, y, dir).

280 Chosen-Key Secure Even-Mansour from a Single Permutation

8.2 Abort Probability of Adaptations
Lemma 12. Consider a call to ProcessRecord(x, y, dir). If the record (x, y, dir, num) is
good right before this call, then in each subsequent call to Adapt, the probability that T
aborts is at most 3q2/(2n − q2).

Proof. Wlog, consider dir ∈ {→,⊥→}. See Fig. 2 for a summary of the 2-chains and
3-chains considered by ProcessRecord(x, y, dir). Since (x, y, dir, num) is good,

• For every 2-chain
(
(x(i)

2 , y
(i)
2), (x, y)

)
, we have x

(i)
4 = y ⊕ φ(y(i)

2 ⊕ x) /∈ domain(Πall)
by ¬(B-1); (Though, it might hold (x(i)

1 , y
(i)
1) ∈ Πall for y

(i)
1 = x

(i)
2 ⊕ φ−1(y(i)

2 ⊕ x).)

• For every 2-chain
(
(x, y), (x(i)

3 , y
(i)
3)

)
, we have y

(i)
1 = x⊕φ−1(y⊕ x

(i)
3) /∈ range(Πall)

by ¬(B-1) and x
(i)
4 = y

(i)
3 ⊕ φ(y ⊕ x

(i)
3) /∈ domain(Πall) by ¬(B-2).

By these,

• In Check3Chains(x, y, dir), T only detects 3-chains
(
(x(i)

1 , y
(i)
1), (x(i)

2 , y
(i)
2), (x, y)

)
;

• In Check2Chains(x, y), the first forall (x′, y′) ∈ Πpub loop only detects 2-chains(
(x(i)

2 , y
(i)
2), (x, y)

)
with y

(i)
1 = x

(i)
2 ⊕φ−1(y(i)

2 ⊕x) /∈ range(Πall) (otherwise, T would
have added

(
(x(i)

2 , y
(i)
2), (x, y)

)
to CompletedChains in Check3Chains(x, y, dir));

the second forall (x′, y′) ∈ Πpub loop only detects 2-chains
(
(x, y), (x(i)

3 , y
(i)
3)

)
.

We proceed to bound abort probabilities of adaptations in each of the subsequent steps.

Adaptations during completing 3-chains. For i = 1, ..., α, T considers the i-th 3-chain(
(x(i)

1 , y
(i)
1), (x(i)

2 , y
(i)
2), (x, y)

)
, and computes k(i) ← φ−1(y(i)

1 ⊕ x
(i)
2), x

(i)
4 ← y ⊕ φ3(k(i)),

u(i) ← k(i) ⊕ x
(i)
1 , v(i) ← E

(
k(i), u(i)) and y

(i)
4 ← φ4(k(i)) ⊕ v(i). T finally makes a call

to Adapt(x(i)
4 , y

(i)
4 ,⊥→, num(i)), yielding 4-chain

(
(x(i)

1 , y
(i)
1), (x(i)

2 , y
(i)
2), (x, y), (x(i)

4 , y
(i)
4)

)
.

The Adapt-call aborts if x
(i)
4 ∈ domain(Πall) or y

(i)
4 ∈ range(Πall).

Before the call to ProcessRecord(x, y, dir), it holds x
(i)
4 /∈ domain(Πall) by ¬(B-1). In

addition, it clearly holds x
(i)
4 ̸= x

(i′)
4 for any i′ ∈ {1, ..., i− 1}

(
since x

(i)
4 = y ⊕ φ(y(i)

2 ⊕ x)
and x

(i′)
4 = y ⊕ φ(y(i′)

2 ⊕ x), and since y
(i)
2 ̸= y

(i′)
2

)
, and the (adapted) records (x(i′)

4 , y
(i′)
4)

created earlier in this ProcessRecord-call won’t add x
(i)
4 to domain(Πall). Therefore,

x
(i)
4 /∈ domain(Πall) right before the call to Adapt(x(i)

4 , y
(i)
4 ,⊥→, num(i)).

On the other hand, by Lemma 5, the query E
(
k(i), u(i)) → v(i) is new. By this and

by |ET | ≤ q2, Pr[y(i)
4 ∈ range(Πall)] ≤ |Πall|/(2n − q2) ≤ 3q2/(2n − q2). In summary,

Adapt(x(i)
4 , y

(i)
4 ,⊥→, num(i)) aborts at line 119 with probability ≤ 3q2/(2n − q2).

Adaptations during completing 2-chains
(
(x

(α+i)
2 , y

(α+i)
2), (x, y)

)
. For i = 1, ..., β,

T considers the i-th 2-chain
(
(x(α+i)

2 , y
(α+i)
2), (x, y)

)
, computes k(α+i) ← φ−2(y(α+i)

2 ⊕
x), y

(α+i)
1 ← φ1(k(α+i)) ⊕ x

(α+i)
2 , x

(α+i)
4 ← y ⊕ φ3(k(α+i)), y

(α+i)
4 ← InP (x(α+i)

4),
v(α+i) ← φ4(k(α+i))⊕ y

(α+i)
4 , u(α+i) ← E−1(

k(α+i), v(α+i)) and x
(α+i)
1 ← k(α+i) ⊕ u(α+i).

T finally makes a call to Adapt(x(α+i)
1 , y

(α+i)
1 ,⊥←, num(α+i)) to complete the 4-chain(

(x(α+i)
1 , y

(α+i)
1 ,⊥←), (x(α+i)

2 , y
(α+i)
2), (x, y), (x(α+i)

4 , y
(α+i)
4)

)
.

We focus on Adapt(x(α+i)
1 , y

(α+i)
1 ,⊥←, num(α+i)). At the right side, for every i, it holds

y
(α+i)
1 ∈ range(Πall) before this simulator cycle: otherwise, the records (x(α+i)

2 , y
(α+i)
2)

and (x, y) would have been in a 3-chain rather than the 2-chain. On the other hand,

Shanjie Xu, Qi Da, and Chun Guo 281

• y
(α+i)
1 ̸= y

(i′)
1 for all i′ ∈ {1, ..., α + i − 1} by ¬(B-4). Therefore, each record

(x(i′)
1 , y

(i′)
1 , dir(i′)) with dir(i′) ∈ {←,⊥←} created earlier in this ProcessRecord-call

won’t add y
(α+i)
1 to range(Πall); and

• Each record (x′, y′, dir′) with dir′ ∈ {→,⊥→} created earlier in this ProcessRecord-
call has y′ ̸= y

(α+i)
1 by Inv2, and won’t add y

(α+i)
1 to range(Πall) either.

By these, it remains y
(α+i)
1 ∈ range(Πall) till Adapt(x(α+i)

1 , y
(α+i)
1 ,⊥←, num(α+i)).

On the other hand, by Lemma 5, the query E−1(k(α+i), v(α+i))→ u(α+i) is new, and
Pr[x(α+i)

1 ∈ domain(Πall)] ≤ 3q2/(2n − q2). In all, Adapt(x(α+i)
1 , y

(α+i)
1 ,⊥←, num(α+i))

aborts at line 119 with probability ≤ 3q2/(2n − q2).

Adaptations during completing 2-chains
(
(x, y), (x

(α+β+i)
3 , y

(α+β+i)
3)

)
. For i = 1,

..., γ, j = α + β + i, T considers the i-th 2-chain
(
(x, y), (x(j)

3 , y
(j)
3)

)
, and computes

k(j) ← φ−2(y ⊕ x
(j)
3), y

(j)
1 ← φ1(k(j)) ⊕ x, x

(j)
1 ← InP−1(

y
(j)
1

)
, u(j) ← k(j) ⊕ x

(j)
1 ,

v(j) ← E
(
k(j), u(j)), y

(j)
4 ← φ4(k(j)) ⊕ v(j) and x

(j)
4 ← φ3(k(j)) ⊕ y

(j)
3 . The simulator T

finally makes a call to Adapt(x(j)
4 , y

(j)
4 ,⊥→, num(j)).

We focus on the call Adapt(x(j)
4 , y

(j)
4 ,⊥→, num(j)). At the left side, for every i, it holds

x
(j)
4 ∈ domain(Πall) before this cycle by ¬(B-2). At the right,

• x
(j)
4 ̸= x

(i′)
4 for all i′ ∈ {1, ..., α + β + i − 1} by ¬(B-3) and ¬(B-5). There-

fore, each record (x(i′)
4 , y

(i′)
4 , dir(i′)) with dir(i′) ∈ {→,⊥→} created earlier in this

ProcessRecord-call won’t add x
(j)
4 to domain(Πall); and

• Each record (x′, y′, dir′) with dir′ ∈ {←,⊥←} created earlier in this ProcessRecord-
call has x′ ̸= x

(j)
4 by Inv2, and won’t add x

(j)
4 to domain(Πall) either.

By these, x
(j)
4 ∈ domain(Πall) till Adapt(x(j)

4 , y
(j)
4 ,⊥→, num(j)).

Once again, by Lemma 5, the query E
(
k(j), u(j)) → v(j) is new, and Pr[y(j)

4 ∈
range(Πall)] ≤ 3q2/(2n − q2). Adapt(x(j)

4 , y
(j)
4 ,⊥→, num(j)) thus aborts with probability

at most 3q2/(2n − q2). Thus the claim.

We thereby obtain the abort probability due to adaptations.

Lemma 13. The probability that T aborts inside the procedure Adapt is at most 3q4

2n−q2 .

Proof. By Lemma 11, T always calls ProcessRecord(x, y, dir) with good (x, y). Therefore,
during the Σ2 execution, every Adapt-call aborts with probability ≤ 3q2/(2n − q2) by
Lemma 12. By Lemma 3, the number of Adapt-calls is ≤ q2. Thus the claim.

8.3 Summary on Abort Probability
Lemma 14. The probability that Σ2 aborts in procedures InP/InP−1 is at most 4q4/2n.

Proof. Inside a call to InP (x), T may query p(x)→ y and adds the record (x, y,→, qnum)
to Πin. At this time, T aborts if there already existed (x′, y′) ∈ Πall such that y′ = y.
Such (x′, y′) must be adapted: otherwise y′ = y is impossible. By Lemma 3, the number
of adapted records is ≤ q2, while the number of non-adapted is at most q2 + q ≤ 2q2.
Therefore, a call to InP (x) aborts with probability ≤ q2/(2n − 2q2). Similarly, a call to
InP−1(y) aborts with probability ≤ q2/(2n − 2q2). Thus, assuming 2q2 ≤ 2n/2, we have

Pr
[
InP and InP−1 abort

]
≤ (q + q2) · q2

2n − 2q2 ≤
2q4

2n − 2q2 ≤
4q4

2n
(6)

282 Chosen-Key Secure Even-Mansour from a Single Permutation

since InP (x)/InP−1(y) are called at most q2 + q times by Lemma 3.

In Sect. 8.1, we have shown that ProcessRecord(x, y, dir) is only called with good
(x, y) as long as “bad events” never occur. Therefore, summing over the probability of bad
events of Lemmas 4, 6, 13 and 14 and of Lemma 12, we are able to conclude on the abort
probability of T E,p in the intermediate system Σ2.

Lemma 15. The probability that T E,p aborts in DΣ2 is at most
(
762C(φ)q7 +1362q10)

/2n.

9 Indistinguishability of Σ1 and Σ3

Σ1 to Σ2. We first prove a helper lemma establishing the soundness of the simulation.

Lemma 16. Consider an arbitrary blockcipher query EMSP[φ]T E,p

4 (k, u) → v (resp.,
(EMSP[φ]T E,p

4)−1(k, v) → u) that is made by D in a Σ2 execution. Then, when D has
received the answer, there exists a 4-chain

(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

)
∈ (Πall)4

such that E(k, u) = v, x1 = k ⊕ u and y4 = φ4(k)⊕ v correspondingly.

Proof. Wlog consider D querying EMSP[φ]T E,p

4 (k, u)→ v (backward queries are similar).

Case 1: (k, u, v) ∈ ET when D queries EMSP[φ]T E,p

4 (k, u). Then, (k, u, v) ∈ ET is nec-
essarily due to the simulator T E,p querying E(k, u) or E−1(k, v) at some earlier time.
Wlog assume that T E,p queried the forward E(k, u). By construction, this only happens
in a call to Complete+(y3, k). When this call returns without abortion, there exists a
4-chain

(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

)
∈ (Πall)4 such that E(k, u) = v, x1 = k ⊕ u

and y4 = φ4(k)⊕ v. Therefore, when D queries EMSP[φ]T E,p

4 (k, u), the 4-chain exists.

Case 2: (k, u, v) /∈ ET when D queries EMSP[φ]T E,p

4 (k, u). To evaluate EMSP[φ]T4 (k, u),
EMSP[φ]4 proceeds with x1 ← k⊕u, T E,p.P (x1)→ y1, x2 ← φ(k)⊕y1, T E,p.P (x2)→ y2,
x3 ← φ2(k) ⊕ y2, T E,p.P (x3) → y3, x4 ← φ3(k) ⊕ y3, T E,p.P (x4) → y4 and finally
v ← φ4(k)⊕ y4. After EMSP[φ]4 receives the response y3 for its third query to T E,p, it
holds (x2, y2), (x3, y3) ∈ Πpub. By Lemma 1, the 2-chain

(
(x2, y2), (x3, y3)

)
has been in a

4-chain
(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

)
with E(k, k ⊕ x1) = φ4(k)⊕ y4.

With Lemma 16, we are able to establish indistinguishability of Σ1 and Σ2.

Lemma 17. For any distinguisher D of total oracle query cost q, it holds∣∣∣Pr
[
DΣ1(E,SE,p) = 1

]
− Pr

[
DΣ2(EMSP[φ]T E,p

4 ,T E,p) = 1
]∣∣∣ ≤ 762C(φ)q7 + 1362q10

2n
.

Proof. In Σ1 and Σ2, the sequential distinguisher D necessarily first queries SE,p (in Σ1) or
T E,p (in Σ2) and then E (in Σ1) or EMSP[φ]4 (in Σ2) only. Thus, the transcript of the first
phase of the interaction (i.e., queries of D to SE,p) are clearly the same, since in both cases
they are answered by SE,p and T E,p using the same randomness (E, p) and essentially the
same actions. In the second phase where D queries its left oracle, Lemma 16 ensures that
for every forward query (k, u) (resp., backward query (k, v)), D receives identical responses
v = E(k, u) = EMSP[φ]T E,p

4 (k, u) (resp., u = E−1(k, v) = (EMSP[φ]−1
4)T E,p(k, v)) in

both Σ1 and Σ2 executions. Hence, the transcripts of the interaction of D with Σ1(E, p)
and Σ2(E, p) are the same for any good tuple (E, p). Further using Lemma 15 yields∣∣ Pr[DΣ1 = 1]− Pr[DΣ2 = 1]

∣∣ ≤ Pr[(E, p) is bad] ≤ 762C(φ)q7+1362q10

2n as claimed.

Shanjie Xu, Qi Da, and Chun Guo 283

Σ2 to Σ3. We follow [CS15] and define a map Λ mapping pairs (E, p) either to the special
symbol ⊥ when (E, p) is bad, or to a partial permutation p′ when (E, p) is good. A partial
permutation is functions p′: {0, 1}n → {0, 1}n ∪ {∗} and p′−1: {0, 1}n → {0, 1}n ∪ {∗},
such that for all x, y ∈ {0, 1}n, p′(x) = y ̸= ∗ ⇔ p′−1(y) = x ̸= ∗.

Then map Λ is defined for good pairs (E, p) as follows: run DΣ2(E,p), and consider
the set Πall of the simulator at the end of the execution: then fill all undefined entries
of the Πall’s with the special symbol ∗. The result is exactly Λ(E, p). By design of our
simulators, the set Πall and thus Λ(E, p) is a partial permutation as just defined above.
We say that a partial permutation p′ is good if it has a good preimage by Λ. Then, we say
that a permutation p extends a partial permutation p′, denoted p ⊢ p′, if p and p′ agree
on all entries such that p′(x) ̸= ∗ and p′−1(y) ̸= ∗.

By definition of Λ, for any good tuple of partial permutations p′, the outputs of DΣ2(E,p)

and DΣ3(p) are equal for any pair (E, p) such that Λ(E, p) = p′ and any permutations p
such that p ⊢ p′. Let Ω2 be the set of partial permutations p′ such that DΣ2(E,p) output
1 for any (E, p) with Λ(E, p) = p′. Then, we have the following ratio.
Lemma 18. For any distinguisher D of total oracle query cost q and any p′ ∈ Ω2, it holds

Pr
[
p ⊢ p′

]
Pr

[
Λ(E, p) = p′

] ≥ 1− q4

2n
.

Proof. First, since the number of “non-empty” entries p′(x) = y ̸= ∗ is |Πall|, we have
Pr

[
p ⊢ p′

]
=

∏|Πall|−1
j=0

1
2n−j . For the rest, fix any good preimage (Ẽ, p̃) of p̃′. One can

check that for any tuple (E, p), Λ(E, p) = p′ iff the transcript of the interaction of T
with (E, p) in DΣ2(E,p) is the same as the transcript of the interaction of T with (Ẽ, p̃) in
DΣ2(Ẽ,p̃). Assume that during the Σ2 execution DΣ2(EMSP[φ]T E,p

4 ,T E,p), T makes qe and
q1 queries to E and p respectively. Then,

Pr
[
Λ(E, p) = p′

]
≤

(qe−1∏
j=0

1
2n − j

)(q1−1∏
j=0

1
2n − j

)
.

By the design of T , it is easy to see that qe + q1 = |Πall|: because q1 equal the number
of lazily sampled records in Πall, while qe equal the number of adapted records in Πin.
Furthermore, using |ET | ≤ q2 yields

Pr
[
p ⊢ p′

]
Pr

[
Λ(E, p) = p′

] ≥ ∏|Πall|−1
j=0

1
2n−j(∏qe−1

j=0
1

2n−j

)(∏q1−1
j=0

1
2n−j

) ≥ q2−1∏
j=0

(
1− j

2n

)
≥ 1− q4

2n

as claimed.

Lemma 19. For any distinguisher D with total oracle query cost at most q, it holds∣∣∣Pr
[
DΣ2(EMSP[φ]T E,p

4 ,T E,p) = 1
]
− Pr

[
DΣ3(EMSP[φ]p

4 ,p) = 1
]∣∣∣ ≤ 762C(φ)q7 + 1363q10

2n
.

Proof. Gathering Lemmas 15 and 18, the left hand side is bounded by

≤ Pr
[
(E, p) is bad

]
+

∑
p′∈Ω2

Pr
[
Λ(E, p) = p′

]
−

∑
p′∈Ω2

Pr
[
p ⊢ p′

]
≤ Pr

[
(E, p) is bad

]
+

∑
p′∈Ω2

Pr
[
Λ(E, p) = p′

](
1−

Pr
[
p ⊢ p′

]
Pr

[
Λ(E, p) = p′]

)

≤ 762C(φ)q7 + 1362q10

2n
+ q4

2n
≤ 762C(φ)q7 + 1363q10

2n

as claimed.

Gathering Lemmas 3, 17 and 19 yields the bound in Theorem 1.

284 Chosen-Key Secure Even-Mansour from a Single Permutation

Acknowledgments
We sincerely thank the anonymous reviewers for their helpful comments. Chun Guo
was partly supported by the National Natural Science Foundation of China (Grant No.
62002202) and the Taishan Scholars Program (for Young Scientists) of Shandong.

References
[ABD+13] Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and

John P. Steinberger. On the indifferentiability of key-alternating ciphers. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 531–550. Springer, Heidelberg, August 2013.

[ABM14] Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards understanding
the known-key security of block ciphers. In Shiho Moriai, editor, FSE 2013,
volume 8424 of LNCS, pages 348–366. Springer, Heidelberg, March 2014.

[BKL+12] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier Stan-
daert, John P. Steinberger, and Elmar Tischhauser. Key-alternating ciphers in
a provable setting: Encryption using a small number of public permutations -
(extended abstract). In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 45–62. Springer, Heidelberg,
April 2012.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and
related-key attack on the full AES-256. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 231–249. Springer, Heidelberg, August 2009.

[Bla06] John Black. The ideal-cipher model, revisited: An uninstantiable blockcipher-
based hash function. In Matthew J. B. Robshaw, editor, FSE 2006, volume
4047 of LNCS, pages 328–340. Springer, Heidelberg, March 2006.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodol-
ogy, revisited. J. ACM, 51(4):557–594, 2004.

[CHK+16] Jean-Sébastien Coron, Thomas Holenstein, Robin Künzler, Jacques Patarin,
Yannick Seurin, and Stefano Tessaro. How to build an ideal cipher: The
indifferentiability of the Feistel construction. Journal of Cryptology, 29(1):61–
114, January 2016.

[CLL+18] Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P.
Steinberger. Minimizing the two-round Even-Mansour cipher. Journal of
Cryptology, 31(4):1064–1119, October 2018.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating
ciphers. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 327–350. Springer, Heidelberg,
May 2014.

[CS15] Benoit Cogliati and Yannick Seurin. On the provable security of the iterated
Even-Mansour cipher against related-key and chosen-key attacks. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056
of LNCS, pages 584–613. Springer, Heidelberg, April 2015.

[CS16] Benoît Cogliati and Yannick Seurin. Strengthening the known-key security
notion for block ciphers. In Thomas Peyrin, editor, FSE 2016, volume 9783 of
LNCS, pages 494–513. Springer, Heidelberg, March 2016.

Shanjie Xu, Qi Da, and Chun Guo 285

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography:
The Even-Mansour scheme revisited. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 336–354.
Springer, Heidelberg, April 2012.

[DRST12] Yevgeniy Dodis, Thomas Ristenpart, John P. Steinberger, and Stefano Tessaro.
To hash or not to hash again? (In)differentiability results for H2 and HMAC.
In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume
7417 of LNCS, pages 348–366. Springer, Heidelberg, August 2012.

[DSST17] Yuanxi Dai, Yannick Seurin, John P. Steinberger, and Aishwarya Thiruven-
gadam. Indifferentiability of iterated Even-Mansour ciphers with non-idealized
key-schedules: Five rounds are necessary and sufficient. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part III, volume 10403 of LNCS,
pages 524–555. Springer, Heidelberg, August 2017.

[Dut20] Avijit Dutta. Minimizing the two-round tweakable Even-Mansour cipher.
In ASIACRYPT 2020, Part I, LNCS, pages 601–629. Springer, Heidelberg,
December 2020.

[EM97] Shimon Even and Yishay Mansour. A construction of a cipher from a single
pseudorandom permutation. Journal of Cryptology, 10(3):151–162, June 1997.

[FP15] Pooya Farshim and Gordon Procter. The related-key security of iterated
Even-Mansour ciphers. In Gregor Leander, editor, FSE 2015, volume 9054 of
LNCS, pages 342–363. Springer, Heidelberg, March 2015.

[GL16a] Chun Guo and Dongdai Lin. Indifferentiability of 3-round even-mansour with
random oracle key derivation. IACR Cryptol. ePrint Arch., page 894, 2016.

[GL16b] Chun Guo and Dongdai Lin. Separating invertible key derivations from
non-invertible ones: sequential indifferentiability of 3-round even–mansour.
Designs, Codes and Cryptography, 81(1):109–129, 2016.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011,
volume 6917 of LNCS, pages 326–341. Springer, Heidelberg, September / Oc-
tober 2011.

[HT16] Viet Tung Hoang and Stefano Tessaro. Key-alternating ciphers and key-length
extension: Exact bounds and multi-user security. In Matthew Robshaw and
Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages
3–32. Springer, Heidelberg, August 2016.

[ISO12] ISO/IEC. Information technology — security techniques – lightweight cryp-
tography – part 2: Block ciphers. ISO/IEC 29192-2:2012, 2012. https:
//www.iso.org/standard/56552.html.

[ISO21] ISO/IEC. Information security – encryption algorithms – part 7: Tweak-
able block ciphers. ISO/IEC FDIS 18033-7, 2021. https://www.iso.org/
standard/80505.html.

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some
block ciphers. In Kaoru Kurosawa, editor, ASIACRYPT 2007, volume 4833 of
LNCS, pages 315–324. Springer, Heidelberg, December 2007.

https://www.iso.org/standard/56552.html
https://www.iso.org/standard/56552.html
https://www.iso.org/standard/80505.html
https://www.iso.org/standard/80505.html

286 Chosen-Key Secure Even-Mansour from a Single Permutation

[LPS12] Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An asymptotically
tight security analysis of the iterated Even-Mansour cipher. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
278–295. Springer, Heidelberg, December 2012.

[LS13] Rodolphe Lampe and Yannick Seurin. How to construct an ideal cipher from
a small set of public permutations. In Kazue Sako and Palash Sarkar, editors,
ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 444–463. Springer,
Heidelberg, December 2013.

[ML15] Nicky Mouha and Atul Luykx. Multi-key security: The Even-Mansour con-
struction revisited. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 209–223. Springer, Hei-
delberg, August 2015.

[MPS12] Avradip Mandal, Jacques Patarin, and Yannick Seurin. On the public indiffer-
entiability and correlation intractability of the 6-round Feistel construction.
In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 285–302.
Springer, Heidelberg, March 2012.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
impossibility results on reductions, and applications to the random oracle
methodology. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
21–39. Springer, Heidelberg, February 2004.

[Pub01] NIST FIPS Pub. 197: Advanced encryption standard (aes). Federal information
processing standards publication, 197(441):0311, 2001.

[TZ21] Stefano Tessaro and Xihu Zhang. Tight security for key-alternating ciphers
with correlated sub-keys. In Mehdi Tibouchi and Huaxiong Wang, editors,
Advances in Cryptology - ASIACRYPT 2021, Part III, volume 13092 of Lecture
Notes in Computer Science, pages 435–464. Springer, 2021.

[WYCD20] Yusai Wu, Liqing Yu, Zhenfu Cao, and Xiaolei Dong. Tight security anal-
ysis of 3-round key-alternating cipher with a single permutation. In ASI-
ACRYPT 2020, Part I, LNCS, pages 662–693. Springer, Heidelberg, December
2020.

[XDG23] Shanjie Xu, Qi Da, and Chun Guo. Minimizing even-mansour ciphers for
sequential indifferentiability (without key schedules). In Progress in Cryptology–
INDOCRYPT 2022: 23rd International Conference on Cryptology in India,
Kolkata, India, December 11–14, 2022, Proceedings, pages 125–145. Springer,
2023.

A Attacks on 3 Rounds
Let P = (p1, p2, p3) and −→φ = (φ0, φ1, φ2, φ3) in this section. We focus on the 3-round
EM as follows.

EM[−→φ]P3 (k, u) = φ3(k)⊕ p3
(
φ2(k)⊕ p2

(
φ1(k)⊕ p1(φ0(k)⊕ u)

))
.

We distinguish two cases.

Shanjie Xu, Qi Da, and Chun Guo 287

Either φ1 or φ2 Has Collisions. Wlog, assume that there exist distinct key k, k′ ∈ {0, 1}n

such that φ1(k) = φ1(k′) while φ2(k) ̸= φ2(k′) (the converse case is similar by symmetry).
Then the (information theoretic) attack is as follows.

1. Pick y2 ∈ {0, 1}n in arbitrary and query p3(y2⊕φ2(k))→ y3 and p3(y2⊕φ2(k′))→
y′3.

2. Query E−1(k, φ3(k)⊕ y3)→ x1 and E−1(k′, φ3(k′)⊕ y′3)→ x′1, and output 1 if and
only if φ0(k)⊕ x1 = φ0(k′)⊕ x′1.

Clearly, it always outputs 1 when interacting with (EM3,P). Whereas, the probability to
output 1 in the ideal world is approximately O(1/2n).

Both φ1 and φ2 Are (Efficient) Permutations. Under the condition that φ1(k)⊕φ1(k′)⊕
φ1(k′′) ⊕ φ1(k′′′) = 0 if and only if φ2(k) ⊕ φ2(k′) ⊕ φ2(k′′) ⊕ φ2(k′′′) = 0 for any four
distinct keys k, k′, k′′, k′′′, we observe that the attack of Andreeva et al. [ABD+13, LS13]
is easily adapted to our setting (although it was described for the specific case of φ1 = φ2).

1. Pick x1 ∈ {0, 1}n in arbitrary and query p1(x1)→ y1;

2. Compute k1 ← φ1(k) and k′1 ← φ1(k′) for two distinct, arbitrarily chosen keys k
and k′;

3. Query p2(y1 ⊕ k1)→ y2, p2(y1 ⊕ k′1)→ y′2, p3(y2 ⊕ k1)→ y3, and p3(y′2 ⊕ k′1)→ y′3;

4. Compute k′′2 ← y2 ⊕ y′2 ⊕ k′2 and k′′′2 ← y′2 ⊕ y2 ⊕ k2, and further k′′ ← φ−1
2 (k′′2) and

k′′′ ← φ−1
2 (k′′′2);

5. Query E−1(k′′, φ3(k′′)⊕ y′3)→ u′′ and E−1(k′′′, φ3(k′′′)⊕ y3)→ u′′′, and output 1
if and only if φ0(k′′)⊕ u′′ = φ0(k′′′)⊕ u′′′.

As an instance, if both φ1 and φ2 are affine functions then it does hold φ1(k)⊕φ1(k′)⊕
φ1(k′′)⊕φ1(k′′′) = 0⇐⇒ φ2(k)⊕φ2(k′)⊕φ2(k′′)⊕φ2(k′′′) = 0. This slightly strengthens
existing negative results on 3 rounds.

	Introduction
	Our Contributions

	Preliminaries
	Simulator of EMSP[]_4
	Intermediate System _2 and Its Basic Properties
	Simulator Complexity
	Treatments for Internal Records
	For any good , BTEMSP[]_4, and BTE,p are ``isomorphic''
	Abort Probability of CheckPrivacy
	Abort Probability of CheckInternalColl
	Abort Probability of CheckInterV3Chain

	Abort Probability of CheckRecord
	Condition at Line 121
	Condition at Line 124
	Condition at Line 126
	Conditions at Lines 128 and 130
	Finalizing the Analysis of CheckRecord

	Abort Probability of Adaptations, and Concluding
	Unprocessed Records Are Always Good
	Abort Probability of Adaptations
	Summary on Abort Probability

	Indistinguishability of _1 and _3
	Attacks on 3 Rounds

