
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2023, No. 1, pp. 224–243. DOI:10.46586/tosc.v2023.i1.224-243

Indifferentiability of the Sponge Construction
with a Restricted Number of Message Blocks

Charlotte Lefevre

Digital Security Group, Radboud University, Nijmegen, The Netherlands
charlotte.lefevre@ru.nl

Abstract. The sponge construction is a popular method for hashing. Quickly
after its introduction, the sponge was proven to be tightly indifferentiable from
a random oracle up to ≈ 2c/2 queries, where c is the capacity. However, this
bound is not tight when the number of message blocks absorbed is restricted to
ℓ < ⌈ c

2(b−c) ⌉ + 1 (but still an arbitrary number of blocks can be squeezed). In this
work, we show that this restriction leads to indifferentiability from a random oracle up
to ≈ min

{
2b/2, max

{
2c/2, 2b−ℓ×(b−c)}}

queries, where b > c is the permutation size.
Depending on the parameters chosen, this result allows to have enhanced security
or to absorb at a larger rate for applications that require a fixed-length input hash
function.
Keywords: sponge · lightweight cryptography · indifferentiability

1 Introduction
The sponge construction is a permutation-based mode used among others for hashing.
Introduced by Bertoni et al. [BDPV07], it gained quickly in popularity after the SHA-3
competition [NIS12] won by Keccak [BDPA11], which relies on the sponge construction.
Informally, the sponge is based on a keyless permutation of size b bits. The global state of
the sponge, also of size b bits, is split as the sum r + c, where r is called the rate, and c the
capacity. The data to hash is first injectively padded, absorbed by blocks of r bits, and a
digest is extracted, also by blocks of r bits. Between each data absorption and extraction,
the permutation is applied on the entire state.

In the ideal permutation model, the sponge has been proven to be secure up to ≈ 2c/2

queries [BDPV08]. The bound was proven in the indifferentiability framework of Maurer
et al. [MRH04] and Coron et al. [CDMP05]. Informally, this result means that the sponge
construction based on an ideal permutation behaves like a random oracle in single stage
games [RSS11], so that the mode has no underlying structural weaknesses. As a matter
of fact, the indifferentiability bound is tight. Indeed, after ≈ 2c/2 absorb calls, one can
find collisions between the states of the sponge over c bits, and by using a subsequent
absorb call, the partial collision can be transformed into a full-state collision. This fact
was already known by the designers of the sponge [BDPV07], and we explain the attack in
detail in Section 3.4. One important property of this attack is that in order to succeed
with high probability, the adversary needs to be able to absorb ⌈ c

2r ⌉+ 1 message blocks.

Contribution. In this work, we consider the sponge construction where at most ℓ message
blocks are allowed to be absorbed but arbitrary-length digests can be extracted. To have
a slightly more general result, we allow that the message blocks are absorbed with a rate
ra different from the squeezing rate rs, similarly to the PHOTON construction [GPP11].
We show in Theorem 1 that the restriction on the number of message blocks leads to

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-11-23 Accepted: 2023-01-23 Published: 2023-03-10

https://doi.org/10.46586/tosc.v2023.i1.224-243
mailto:charlotte.lefevre@ru.nl
http://creativecommons.org/licenses/by/4.0/

Charlotte Lefevre 225

indifferentiability from a random oracle up to ≈ min
{

2cs , 2b/2, max
{

2ca/2, 2b−ℓ×ra
}}

queries (up to constant and logarithmic factors), where ca := b − ra, cs := b − rs. A
comparison of our bound with already existing works is made at the beginning of Section 4.
Moreover, our proof can be easily adapted to provide security in the public indifferentiability
framework [YMO09,DRS09,MPS12] up to ≈ min

{
2b/2, max

{
2ca/2, 2b−ℓ×ra

}}
queries.

Related Work. As a matter of fact, when one message block is absorbed and the digest is
extracted in one squeeze call, the sponge boils down to a truncated permutation. Choi et
al. [CLL19] proved that a truncated random permutation is indifferentiable from a RO up
to ≈ min

{
2

b+cs
3 , 2ca , 2cs

}
queries. This result has been generalized to the case where the

fixed prefix is randomized [GM22]. The developers of the PHOTON construction [GPP11]
proposed to squeeze the digest at a rate r′ > r (note that r′ corresponds to rs in our
case). Moreover, Naito and Ohta [NO14] proposed to absorb the first message block with
a rate r′′ > r, and proved indifferentiability of the underlying construction. In detail, if
c′ := b − r′, c′′ := b − r′′, then as long as c′ ≥ c/2 + log(c) and c′′ ≥ c/2, the security
bound that they proved does not degrade significantly compared to the plain sponge.1 In
particular, the squeezing rate and the first message block size can be significantly larger
than the rate used in the subsequent absorb calls.

Application. Hash functions are usually described as functions that map binary strings of
arbitrary length into digests of fixed size. However, a restricted input-length hash function
is sufficient for several applications. For instance, some proof of knowledge protocols
require only hashing of finite field elements. The Fiat-Shamir Heuristic [FS86] allows to
remove interactivity of a public-coin proof by making use of a hash function for which the
input has a length fixed in advance. Moreover, a restricted input-length hash function
could be sufficient for password hashing applications. Now, given the bound of Theorem 1
and a desired security level k, one can wonder whether there are better parameter choices,
i.e., can we maximize the rates rs and ra and the size of input strings? First, the choice
cs = k maximizes the squeezing rate. Now, if arbitrary-size strings should be processed,
then one has to choose ca = 2k to maximize ra. Otherwise, we can aim at b − ℓra ≥ k.
From cs = k, this implies rs ≥ ℓra. Thus to maximize efficiency and the domain size, the
best choice is ra = rs and ℓ = 1, so that ca = cs = k.

Outline. The remainder of this paper is as follows. Section 2 introduces the notation and
preliminary context, Section 3 presents in detail the sponge construction and the specificities
of the security model to our setting, Section 4 is dedicated to the indifferentiability result
and the proof, and finally Section 5 discusses the tightness of the bound.

2 Preliminaries
2.1 Notation
For a finite set S, x

$←− S means that the element x is sampled uniformly at random from
S. 1x∈S denotes the indicator function of S, i.e.,

1x∈S =
{

1 if x ∈ S ,

0 otherwise .

x := y means that x is defined to be equal to y. For i, j ∈ N such that i ≤ j, Ji, jK denotes
the set {i, . . . , j}. For a ∈ N, {0, 1}a denotes the set of binary strings of size a, and {0, 1}∗

1More precisely, in this case the adversarial advantage is upper bounded by the square root of the
adversarial advantage of the plain sponge construction.

226 Indifferentiability of the Sponge Construction with a Restricted Number of Blocks

denotes
⋃

a∈N{0, 1}a. We use the symbol ϵ to denote the empty string. In the following, let
X, Y ∈ {0, 1}∗. If L is an ordered list, for 1 ≤ i < j ≤ |L|, L[i : j] denotes the sub-list of L
containing the ith to the jth element (latter excluded). We also use this notation for binary
strings, i.e., X[i : j] denotes the bits of X from position i to j. Moreover, let b, r, c ∈ N
such that b = r + c. If |X| = |Y | = b, then outerr(X) := X[0 : r], innerc(x) := X[b− c : b].
Finally, we write X

c= Y whenever innerc(X) = innerc(Y).

2.2 A Useful Lemma
In the proof we need to use the following result based on Choi et al.’s work [CLL19, page
187], that we state here for completeness.

Lemma 1. Let q, R ∈ N. Consider the experiment of throwing uniformly at random q
balls in R bins. For u ∈ J1, RK, denote by Su the size of the bin number u. Then one has

E
(

max
u∈J1,RK

Su

)
≤ 2q

R
+ 3 ln(R) + 3 ln(q) + 3 .

Proof. Let u ∈ J1, RK. This is clear that Su follows a binomial distribution with q
experiments and success probability p := 1

R . Let µ := pq be the expectation of Su. Then,
from the Chernoff bound, we know that for any δ > 1,

Pr (Su ≥ (1 + δ)µ) ≤ e− δµ
3 ,

thus for any j > 2µ,

Pr (Su ≥ j) ≤ e
µ−j

3 .

Whenever j ≥ µ + 3 ln
(

2q
p

)
, the quantity e

µ−j
3 is upper bounded by p

2q . Therefore, for

any j ≥ 2µ + 3 ln
(

2q
p

)
,

Pr (Su ≥ j) ≤ p

2q
. (1)

Now,

E
(

max
u∈J1,RK

Su

)
=

q∑
j=1

Pr
(

max
u∈J1,RK

Su ≥ j

)

=
2µ+3 ln(2q

p)∑
j=1

Pr
(

max
u∈J1,RK

Su ≥ j

)
+

q∑
j=2µ+3 ln(2q

p)
Pr

 ⋃
u∈J1,RK

Su ≥ j

≤ 2µ + 3 ln

(
2q

p

)
+

q∑
j=2µ+3 ln(p

2q)

R∑
u=1

Pr (Su ≥ j)

≤ 2µ + 3 ln
(

2q

p

)
+ q ×R× p

2q
,

where the last inequality uses (1). By replacing p by 1
R and µ by q

R , we obtain

E
(

max
u∈J1,RK

Su

)
≤ 2q

R
+ 3 ln(2) + 3 ln(R) + 3 ln(q) + 1

2

≤ 2q

R
+ 3 ln(R) + 3 ln(q) + 3 ,

which concludes the proof.

Charlotte Lefevre 227

2.3 Security Model
We will use the indifferentiability framework, introduced by Maurer et al. [MRH04], and
refined in the context of hash functions by Coron et al. [CDMP05]. We describe here the
general indifferentiability framework, and will highlight the particularities of the security
model in our setting in Section 3.2. Let rs ∈ N. Consider a construction H based on
an ideal primitive P, which gives an extendable output function denoted by HP . We
consider random oracles [BR93] with an infinite domain and codomain, denoted by RO.
For M ∈ {0, 1}∗, and k, k′ ∈ N, RO(M)[k : k′] denotes the bits from position k to k′

(latter excluded) of the stream RO(M). Let S be an algorithm called simulator which has
the same input domain and outputs strings in the same range as P, and that is allowed
to query RO. Consider a distinguisher D that has access to either (HP ,P) or (RO,S).
W.l.o.g., we assume that D never makes queries for which it already knows the answer.
The primitive query history of the distinguisher is an ordered list denoted by QP , where
for X, Y ∈ {0, 1}b, d ∈ {fwd, inv}, i ∈ N, QP [i] = (X, Y, d) means that the query i was in
direction d, and D received as answer X or Y depending on the direction of the query.
Similarly, the construction query history is denoted by QC , it is described in our particular
setting in Section 3.2. The indifferentiability advantage of D from a random oracle, denoted
by Adviff

H (D), is defined as follows:

Adviff
H (D) =

∣∣∣Pr
(
DHP ,P = 1

)
−Pr

(
DRO,S = 1

)∣∣∣ .

Moreover, Adviff
H (q) denotes the supremum of the set Adviff

H (D), over all distinguishers
allowed to make at most q queries. Note that the way queries are made can be refined.
In the case of the sponge, one construction query has a practical cost which depends on
the length of the padded message and the number of bits of the stream to extract. In
Section 3.2 we specify a metrics to count construction queries.

Public indifferentiability. In the indifferentiability setting, the simulator is not allowed to
access the construction queries made by the adversary. This yields a security model which
is too strong for some applications where queries to the hash function can be disclosed to
all parties without affecting the security. Among others, this is the case for some signature
schemes, proof protocols or encryption protocols, e.g. [BR96,BR93,FS86]. This motivated
the introduction of the public indifferentiability framework [YMO09, DRS09, MPS12].
Public differentiability differs from indifferentiability precisely in the fact that the sim-
ulator has access to all construction queries made by the adversary. Advpubiff

H (D) and
Advpubiff

H (q) are defined similarly to the indifferentiability setting. Public indifferentiabil-
ity yields a weaker security model. For instance the (plain) Merkle-Damgård construc-
tion [Mer89,Dam89] is not indifferentiable, but it is publicly indifferentiable [DRS09].

3 Sponge Construction

3.1 The Sponge Construction
In this section we describe the sponge construction where the absorbing and squeezing
rates are different. Let b, ca, ra, cs, ca ∈ N such that b = ra + ca = rs + cs. Let P be a
permutation, and IV ∈ {0, 1}b. Let pad be an injecting padding that splits the message
to hash M ∈ {0, 1}∗ into k blocks of length ra and such that the last block is not zero.
The inverse function of pad is denoted by unpad. We consider that unpad(M) returns the
symbol ⊥ whenever M does not correspond to a valid padding. Algorithm 1 defines the
sponge construction based on P, and Fig. 1 illustrates it.

228 Indifferentiability of the Sponge Construction with a Restricted Number of Blocks

Algorithm 1: The sponge construction. IV is any fixed b-bit string, M ∈ {0, 1}∗

is the message to process, n ∈ N the number of bits to extract
1 Function SpongeP (M, n):

/* Initialization */
2 S ← IV; // State of the sponge
3 Z ← ∅; // Output string
4 m1∥ · · · ∥mk ← pad(M);

/* Absorption */
5 for i = 1, . . . , k do
6 S ← P(S ⊕ (mi∥0ca)) ;
7 end

/* Squeezing */
8 for i = 1, . . . , ⌈ n

rs
⌉ do

9 Z ← Z∥outerrs(S);
10 S ← P(S);
11 end
12 return Z[0 : n]
13 end

IV

ra

ca

m1

P

m2

P P· · ·

ml

P

rs

cs

Z1

P

Z2

· · ·

Figure 1: The sponge construction.

3.2 Security Model of the Sponge with Restricted Message Blocks
In the following, let H be the sponge construction.

Construction queries and their cost. In the real world, a construction query takes two
parameters: a message M ∈ {0, 1}∗, and an integer k ∈ N. HP(M, k) corresponds to
the (k + 1)th first squeezed blocks after having absorbed M . Thus in order to match
the real world, we consider that the random oracle queried with inputs M ∈ {0, 1}∗ and
k ∈ N gives RO(M)[0 : rs × (k + 1)]. Moreover, a construction query in the real world
has a practical cost which depends on the number of underlying permutation evaluations
required to compute the digest. Following the approach of Bertoni et al. [BDPV08], we
measure the cost of a construction query based on the number of permutation evaluations
required in the real world to produce the output. More precisely, if |pad(M)| = l × ra,
then a query with input M and k has a cost of l + k. We define the construction query
history QC as an ordered list, which contains elements of the form (M, k, Z). In the real
world, Z corresponds to the (k + 1)th squeezed block after having absorbed M . In the
ideal world, Z equals RO(M)[rs × k : rs × (k + 1)].

Charlotte Lefevre 229

Indifferentiability of the sponge when restricting the number of message blocks. When
the number of message blocks is restricted to ℓ, we impose that the distinguisher can
make construction queries only with messages M such that |pad(M)| ≤ ℓ × ra. More
formally, denote by RDist[qP , qC , ℓ] the set of distinguishers that satisfy the constraint
above making at most qP primitive queries and construction queries with a total cost of at
most qC . The restricted indifferentiability (resp., public indifferentiability) advantage of
the sponge from a random oracle is defined as follows:

AdvR−iff
H (qP , qC , ℓ) = sup

D∈RDist[qP ,qC ,ℓ]
Adviff

H (D) ,

AdvR−pubiff
H (qP , qC , ℓ) = sup

D∈RDist[qP ,qC ,ℓ]
Advpubiff

H (D) .

3.3 Graph Construction of the Sponge with Restricted Message Blocks

We adapt the graph representation from [BDPV08] to our setting. This graph is derivable
from a primitive query history Q. The nodes are all elements in {0, 1}b. For X, Y ∈
{0, 1}b, m ∈ {0, 1}ra , we write X

m−→ Y whenever there exists d ∈ {fwd, inv} such that
(X ⊕ (m∥0ca), Y, d) ∈ Q; and X → Y whenever X

0ra

−−→ Y . The set ValidPaths gathers
the nodes involved in paths, i.e.,

ValidPaths :=
{

IV m1−−→ NA,1
m2−−→ · · · ml−−→ NS,1 → NS,2 → · · · → NS,k |

ml ̸= 0ra ∧ k ∈ N \ {0} ∧ l ≤ ℓ
}

.

The set Rooted includes all the nodes which appear in valid paths. The set rRooted
is a compact way of characterizing the paths. Informally, if the simulator receives a
forward query with X, and (X, M, k) ∈ rRooted, and unpad(M) ̸= ⊥, then in order to
produce a consistent answer with respect to the random oracle, the answer Y must satisfy
outerrs

(Y) = RO (unpad(M)) [rs×k : rs× (k + 1)]. Finally, we define the set AbsorbPath
as follows:

AbsorbPath = {IV} ∪
{

Y | ∃l < ℓ, m1, . . . , ml ∈ {0, 1}ra , NA,1, . . . , NA,l−1 ∈ {0, 1}b

such that IV m1−−→ NA,1
m2−−→ · · · ml−−→ Y

}
.

In other words this set gathers the nodes where absorption of a message block is still
possible. Note that the obtained path is not necessarily a valid path, since the message
blocks m1, . . . , ml can all be equal to 0ra . One important remark is that, as long as no
inner collisions occur with nodes in AbsorbPath,

|AbsorbPath| ≤ min
{

q + 1, 2× 2(ℓ−1)×ra

}
, (2)

where q := |Q|. Looking ahead, AbsorbPath contains the only nodes where inner collisions
are dangerous.

We will see later that in some situations, the simulator has a query history different
from the primitive query history of the distinguisher. Therefore, when this is not clear from
the context, for Set ∈ {ValidPaths, Rooted, rRooted, AbsorbPath} we use the notation
Set(Q) to clarify which query history is used to build Set.

230 Indifferentiability of the Sponge Construction with a Restricted Number of Blocks

3.4 Differentiability Attack on the Sponge Construction
In this section we describe a differentiability attack on the (plain) sponge [BDPV07].
Let k = ca

2ra
, and for simplicity, assume that k is an integer. Consider the following

distinguisher D:

1. D first makes all possible k first absorb calls with primitive queries. It obtains 2k×ra

different states (Yi)i∈J1,2k×ra K such that

IV m1−−→ Nm1
m2−−→ Nm2 → · · ·

mk−−→ Yi ;

2. If the simulator emulates well a permutation,2 then with high probability there exist
i ̸= j such that Yi

ca= Yj and neither outerra
(Yi) nor outerra

(Yj) is equal to 0ra . Let
Mi (resp., Mj) be the concatenation of all message blocks used to reach Yi (resp.,
Yj);

3. The distinguisher makes the construction queries associated to unpad(Mi∥outerra
(Yi))

and unpad(Mj∥outerra(Yj)). If both outputs coincide, then the distinguisher returns
“real”, otherwise “ideal”.

In the real world, two sequences of message blocks that lead to the same state have the
same digest, while in the ideal world, the outputs are independent. D succeeds with high
probability, and makes 2k×ra = 2ca/2 queries. However, this attack requires at least k + 1
absorb calls. Thus, whenever k + 1 > ℓ, this attack cannot be applied to the sponge when
restricting the number of message blocks to ℓ.

4 Indifferentiability of the Sponge when Restricting the
Message Blocks

In this section, we prove indifferentiability of the sponge when restricting the number of
message blocks, as stated in Theorem 1.

Theorem 1. Let H be the sponge construction, and b, ca, ra, cs, rs as described in Sec-
tion 3.1. Then one has

AdvR−iff
H (qC , qP , ℓ) ≤ qP (12 ln(q) + 12rs + 12)

2cs
+ 3q2

2b
+ min

{
10q(q + 1)

2ca
,

20q

2b−ℓ×ra

}
,

where q := qP + qC .

Interpretation of the bound. In the following, we ignore logarithmic factors. When
the maximum number of message blocks absorbed is not a limiting factor (i.e., when
ca/2 ≤ ra(ℓ− 1)), we obtain an upper bound of the form

O
(

q

2cs
+ q2

2ca

)
,

which matches PHOTON indifferentiability bound when cs ≥ ca/2 + log(ca) [NO14]. On
the other hand, when ca/2 > ra(ℓ− 1), we obtain an upper bound of the form

O
(

q

2cs
+ q2

2b
+ q

2b−ℓ×ra

)
.

2If this is not the case, then we can use another distinguisher which exploits this difference of behavior.

Charlotte Lefevre 231

P/P−1H

D
(a) Real world W1.

Sfwd/SinvH

RO

D
(b) Intermediate world W2.

Sfwd/SinvRO

D
(c) Ideal world W3.

Figure 2: Definition of the different worlds. P returns responses with lazy sampling.

Moreover, when only one message block is absorbed (i.e., ℓ = 1), our bound matches
again the one from Naito and Ohta [NO14] by setting r′′ = ra and r = 0 (recall that r′′ is
the rate of the first message block, and r is the rate when absorbing subsequent message
blocks). To our knowledge, the bound provides new results whenever ca/2 > ra × (ℓ− 1)
and when ℓ ̸= 1.

Outline. The remainder of this section is organized as follows. Section 4.1 introduces the
simulator used for the proof, Section 4.2 introduces an intermediate world, Section 4.3 lists
the bad events, Section 4.4 splits and computes the probabilities, and Section 4.5 adapts
the result to the setting of public indifferentiability.

4.1 Simulator Definition
The simulator S is described algorithmically in Algorithm 2. On a high-level view, S keeps
track of the graph construction from Section 3.1 to ensure that its responses are consistent
with the random oracle. To do that, it logs the query history in an ordered list called
QSim. For i ∈ N , QSim[i] contains a tuple (X, Y, d) which corresponds to the ith query.
For any fresh query, S behaves as a random function. We could have a simulator which
outputs permutation-consistent responses, but this would not improve significantly the
bound. More precisely, the term q2

2b in the bound of Theorem 1 does not only come from
the PRP/PRF switching lemma, but appears at other places. For example, at the end of
Section 5 we present an attack with a cost of ≈ 2b/2 queries which would succeed even
when using a permutation-consistent variant of S.

4.2 World Decomposition
Denote by W1 the real world, i.e., implemented by (HP ,P) as shown in Fig. 2a, and let W3
be the ideal world giving access to (RO,S) (see Fig. 2c). We introduce an intermediate
world W2, depicted in Fig. 2b. This world gives access to (HS ,S), where the simulator is
based on a random oracle hidden from the adversary. This decomposition, done among
others in the proof of PHOTON indifferentiability [NO14], allows to separate the quality
of randomness of the simulator from the consistency of the answers.

W1 versus W2. As detailed more formally in Section 4.4.2, the difference between W1
and W2 lies in the difference of randomness. More precisely, the ideal world implements
a perfectly random permutation, while the simulator behaves like a two-sided random
function. This is a well known result, and is upper bounded by the PRP/PRF switching
lemma.

232 Indifferentiability of the Sponge Construction with a Restricted Number of Blocks

Algorithm 2: Simulator definition. Init () is run once at the beginning of the
game, Sfwd (resp., Sinv) is the algorithm run by S on forward (resp., inverse)
queries. The inputs X and Y are b-bit strings.

1 Function Init ():
2 QSim ← ∅;

/* ϵ does not correspond to a valid padding, but this
initialization allows to take into account paths of form

IV 0kra

−−−→ Y */;
3 rRooted← {(IV, ϵ, 1)};
4 end
5 Function Sfwd (X):
6 if ∃Y ∈ {0, 1}b, d ∈ {fwd, inv} such that (X, Y, d) ∈ QSim then
7 return Y ;
8 end

/* If ∃ IV
M∥0(k−1)ra

−−−−−−−−→ X ⊕ (m∥0ca) where X ⊕ (m∥0ca) ∈ AbsorbPath */;
9 if ∃M ∈ {0, 1}∗, m ∈ {0, 1}ra \ {0ra}, N ∈ {0, 1}b, k ∈ N such that

(N, M, k) ∈ rRooted and X = N ⊕ (m∥0ca) and k + |M |/ra < ℓ then
10 M ′ ←M∥0(k−1)ra∥m ;
11 yr

$←− {0, 1}rs ;
12 if unpad(M ′) ̸= ⊥ then
13 yr ← RO (unpad(M ′)) [0 : rs];
14 end
15 yc

$←− {0, 1}cs ;
16 Y ← yr∥yc;
17 QSim ← QSim ∪ {(X, Y, fwd)};
18 rRooted← rRooted ∪ {(Y, M ′, 1)};
19 return Y ;
20 end
21 else if ∃M ∈ {0, 1}∗, k ∈ N such that (X, M, k) ∈ rRooted then
22 yr

$←− {0, 1}rs ;
23 if unpad(M) ̸= ⊥ then
24 yr ← RO (unpad(M)) [rs × k : rs × (k + 1)];
25 end
26 yc

$←− {0, 1}cs ;
27 Y ← yr∥yc;
28 QSim ← QSim ∪ {(X, Y, fwd)};
29 rRooted← rRooted ∪ {(Y, M, k + 1)};
30 return Y ;
31 end
32 Y

$←− {0, 1}b;
33 QSim ← QSim ∪ {(X, Y, fwd)};
34 return Y ;
35 end
36 Function Sinv (Y):
37 if ∃X ∈ {0, 1}b, d ∈ {fwd, inv} such that (X, Y, d) ∈ QSim then
38 return X;
39 end
40 X

$←− {0, 1}b;
41 QSim ← QSim ∪ {(X, Y, inv)};
42 return X;
43 end

Charlotte Lefevre 233

W2 versus W3. The simulator from world W2 has a priori more knowledge than the one
from W3, since it indirectly knows the construction queries made by the adversary. In
Section 4.3, we define a bad event GUESS which prevents the adversary from exploiting
this difference of behavior. Moreover, we have to guarantee that the simulator behaves
consistently according to the random oracle, i.e., whenever one can computeHP(M, k) from
the query history QP , then it coincides with RO(M)[0 : rs × k]. We will define additional
bad events to capture inconsistent answers. These bad events, including GUESS, are
given in Section 4.3.

4.3 Bad Events

In this section, we formally define bad events over the query history of the simulator.
For the sake of the proof, we define an enhanced simulator query history Ext(QSim) that
contains additionally the origin O ∈ {C, D} of the query, i.e., elements in Ext(QSim) are of
the form (X, Y, d, O), where “C” indicates that the query was made by the construction
and “D” by the adversary. Note that the simulator has no access to this list, it is introduced
only to rigorously analyze the security. This enhanced query history is only useful for W2.
We also define Fresh(QSim), which is the query history without duplicated queries. More
precisely, the ith element of Fresh(QSim) is a tuple (Xi, Yi, di) ∈ QSim such that there is no
j < i such that Fresh(QSim)[j] = (Xi, Yi, d) for d ∈ {fwd, inv}. Let σ be the total number
of queries made to the simulator, so that σ = qC + qP in W2, σ = qP in W3. Moreover,
let σ̄ be the total number of fresh queries to the simulator, so that σ̄ ≤ σ. For simplicity
of notation, for i ∈ J1, σ̄K, (Xi, Yi) denotes the first two elements in Fresh(QSim)[i]. We
define the following bad events:

GUESS_SQU : ∃i ∈ J1, σK such that Ext(QSim)[i] = (X, Y, fwd, D) and
X ̸∈ Rooted(QP [0 : i− 1]) and ∃j < i such that
Ext(QSim)[j] = (X ′, Y ′, fwd, C) and X = X ′

or ∃i ∈ J1, σK such that Ext(QSim)[i] = (X, Y, inv, D) and
∃j < i such that Ext(QSim)[j] = (X ′, Y ′, fwd, C) and Y = Y ′ ,

GUESS_ABS : ∃i ∈ J1, σK such that Ext(QSim)[i] = (X, Y, fwd, D) and
X ̸∈ Rooted(QP [0 : i− 1]) and ∃j < i such that

Ext(QSim)[j] = (X ′, Y ′, fwd, C), Y ′ ∈ AbsorbPath(QSim), and X
ca= Y ′ ,

GUESS : GUESS_SQU ∨GUESS_ABS ,

COL : ∃i ∈ J1, σ̄K such that Fresh(QSim)[i] = (Xi, Yi, fwd) and
∃j < i such that Yi = Yj

or ∃i ∈ J1, σ̄K such that Fresh(QSim)[i] = (Xi, Yi, inv) and
∃j < i such that Xi = Xj ,

CONNECT : ∃i ∈ J1, σ̄K such that Fresh(QSim)[i] = (Xi, Yi, fwd) and
∃j < i such that Yi = Xj

or ∃i ∈ J1, σ̄K such that Fresh(QSim)[i] = (Xi, Yi, inv) and
∃j < i such that Xi = Yj ,

234 Indifferentiability of the Sponge Construction with a Restricted Number of Blocks

INNER1 : ∃i ∈ J1, σ̄K, m ∈ {0, 1}ra such that Fresh(QSim)[i] = (Xi, Yi, fwd) and
Xi ⊕ (m∥0ca), Yi ∈ AbsorbPath(Fresh(QSim)) and

∃j < i such that either Yi
ca= Xj or Yi

ca= Yj ,

INNER2 : ∃i ∈ J1, σ̄K such that Fresh(QSim)[i] = (Xi, Yi, fwd) and ∃Y ∈ {0, 1}b

such that Y ∈ AbsorbPath(Fresh(QSim)[0 : i− 1]) and Yi
ca= Y

or ∃i ∈ J1, σ̄K such that Fresh(QSim)[i] = (Xi, Yi, inv) and ∃Y ∈ {0, 1}b

such that Y ∈ AbsorbPath(Fresh(QSim)[0 : i− 1]) and Xi
ca= Y ,

INNER : INNER1 ∨ INNER2 .

Moreover, let

BAD = GUESS ∨COL ∨CONNECT ∨ INNER .

Interpretation. GUESS is an event that can be set only in W2. It reflects the fact
that the distinguisher is able to enter in the middle of a path without having made all
the queries before that path. To do that, the adversary has two different possibilities.
The first one, corresponding to GUESS_SQU, consists of making use of the outer parts
disclosed by the construction queries. In other words, for a fixed u ∈ {0, 1}rs , if there
exist x construction queries which output is u, then a primitive query with input u∥w
has a probability of ≈ x

2cs
to set GUESS_SQU. The second strategy corresponds to

GUESS_ABS. It targets the nodes in AbsorbPath, and only concerns forward queries.
In this setting, besides having access to rs bits, the adversary is allowed to overwrite up
to ra bits, as illustrated in Fig. 3. As long as GUESS is not set, the adversary is not
aware of paths where the simulator in W2 has more knowledge than the one from W3.
The remaining bad events COL, CONNECT, and INNER concern the consistency
of the answers with respect to the random oracle, i.e., when a path connects to a node
or two paths collide without the simulator being able to ensure consistency. COL flags
full-state collisions, and CONNECT is set when the order of the queries is not respected.
The event INNER flags both potential full-state collisions and inconsistent queries that
involve nodes in AbsorbPath. Note that the event of a query hitting the IV is captured by
the event INNER2. Finally, COL is also useful to bound the distance between W1 and
W2.

4.4 Probability Splitting and Computation
Remember that q := qP + qC . For i ∈ J1, σK and any event evt, evti denotes that evt is
triggered after the first i queries. Moreover, for Wx ∈ {W1, W2, W3}, denote by PrWx (evt)
the probability that evt is set in world Wx.

4.4.1 Outline

Let D be any distinguisher, we have

Adviff
H (D) =

∣∣Pr
(
DW1 = 1

)
−Pr

(
DW3 = 1

)∣∣
≤

∣∣Pr
(
DW1 = 1

)
−Pr

(
DW2 = 1

)∣∣ + (3)∣∣Pr
(
DW2 = 1

)
−Pr

(
DW3 = 1

)∣∣ . (4)

Looking ahead, we will show in Section 4.4.3 that∣∣Pr
(
DW2 = 1 | ¬BAD

)
−Pr

(
DW3 = 1 | ¬BAD

)∣∣ = 0 . (5)

Charlotte Lefevre 235

Using this fact, denoting P := Pr
(
DW2 = 1 | ¬BAD

)
= Pr

(
DW3 = 1 | ¬BAD

)
, the

distance (4) can be decomposed as follows:

(4) =
∣∣Pr

(
DW2 = 1 ∧BAD

)
−Pr

(
DW3 = 1 ∧BAD

)
+

Pr
(
DW2 = 1 ∧ ¬BAD

)
−Pr

(
DW3 = 1 ∧ ¬BAD

) ∣∣
=

∣∣Pr
(
DW2 = 1 ∧BAD

)
−Pr

(
DW3 = 1 ∧BAD

)
+

P
(
1−Pr

(
DW2 sets BAD

))
− P

(
1−Pr

(
DW3 sets BAD

)) ∣∣
=

∣∣Pr
(
DW2 sets BAD

) (
Pr

(
DW2 = 1 | BAD

)
− P

)
−

Pr
(
DW3 sets BAD

) (
Pr

(
DW3 = 1 | BAD

)
− P

) ∣∣
≤ 2×max

{
Pr

(
DW2 sets BAD

)
, Pr

(
DW3 sets BAD

)}
. (6)

Therefore, the advantage of the adversary can be upper bounded as the sum of (3) and
(6). The remainder of the proof is organized as follows. Section 4.4.2 is dedicated to upper
bounding the distance in (3), then Section 4.4.3 shows the claim made in (5), i.e., the
distance between W2 and W3 conditioned on ¬BAD is zero, Section 4.4.4 upper bounds
(6), and we conclude in Section 4.4.5.

4.4.2 W1 Versus W2

Because the padding is prefix-free, the RO calls in lines 13 and 24 of Algorithm 2 are
never accessed twice for the same entry. Therefore, the simulator behaves exactly as a
random permutation as long as COL is not set in W2. Therefore, by the fundamental
lemma of game playing [BR06],∣∣Pr

(
DW1 = 1

)
−Pr

(
DW2 = 1

)∣∣ ≤ Pr
(
DW2 sets COL

)
.

Moreover, for any i ∈ J1, qK, one has

PrW2 (COLi | ¬COLi−1) ≤ i− 1
2b

.

Therefore

(3) ≤ Pr
(
DW2 sets COL

)
≤ q2

2b+1 . (7)

4.4.3 W2 Versus W3 as Long as no Bad

The only difference between W2 and W3 lies in the consistency of the responses: the
construction oracle in W2 calls the simulator, while in W3, the answers come from a
random oracle. As explained in Section 4.3, ¬GUESS prevents the distinguisher from
being aware of paths where the simulator from W2 has more knowledge than the one in
W3. Therefore, with ¬GUESS, we can assume that both simulators provide the same
level of consistency, and w.l.o.g., we focus on the simulator from W3. In this world, the
construction queries come from a random oracle and QSim coincides with the primitive
query history of the distinguisher QP . Let i ∈ J1, qPK, assume that the query number i
gives QP [i] := (Xi, Yi, di). Assume by contradiction that this query breaks the consistency,
while BAD is not set. We split the cases depending on the direction of the query.

Forward query. In order to break the consistency, the query must be involved in a valid
path. There are two possibilities, depending on whether Xi ∈ AbsorbPath or not:

236 Indifferentiability of the Sponge Construction with a Restricted Number of Blocks

(i) There exists a valid path

IV m1−−→ NA,1
m2−−→ · · · ml−−→ NS,1 → NS,2 → · · · → NS,k → Xi → Yi ,

with ml ̸= 0ra . In other words, Xi is involved in a path during the squeezing phase. Note
that we can have k = 0. Let k′ := k + 1.

(ii) There exists a valid path

IV m1−−→ NA,1
m2−−→ · · · ml−2−−−→ NA,l−2

ml−1−−−→ Xi ⊕ (ml∥0ca) ml−−→ Yi

where ml ̸= 0ra . Concretely, it means that Xi ∈ AbsorbPath. In that case, let k′ := 0.
Let M := m1∥ · · · ∥ml. In both cases, (Xi, M, k′) ∈ rRooted(QP). Because of ¬BAD,

the existence of such a path is unique. Indeed, if Xi is involved in two different paths, then
it implies that either a full-state collision or a collision with an element in AbsorbPath
occurred, which are prevented by respectively ¬COL and ¬INNER. Thus line 21 of the
algorithm of Sfwd (Algorithm 2) is satisfied for this particular M and k′, and by construction
of the simulator the answer Y is consistent with respect to RO, i.e., outerrs

(Y) =
RO (unpad(M)) [rs × k′ : rs × (k′ + 1)]. Moreover, thanks to ¬CONNECT ∧ ¬INNER,
there are no edges starting from Yi resulting to a valid path. Therefore, this query cannot
break the consistency.

Inverse query. An inverse query breaking the consistency implies that Xi connects either
to the IV, or to an already existing path such that the newly created path is valid. These
two cases are prevented by ¬COL ∧ ¬INNER ∧ ¬CONNECT.

Conclusion. As long as BAD is not set, all queries to HS and to RO give the same
output, and both simulators exhibit the same behavior. Therefore,∣∣Pr

(
DW3 = 1 | ¬BAD

)
−Pr

(
DW2 = 1 | ¬BAD

)∣∣ = 0 . (8)

4.4.4 Probability of BAD

Basic reasoning. In W3, the adversary can learn information about the randomness used
by the simulator from the construction queries before making the underlying primitive
query. This can make the probability computation quite hard to evaluate. Fortunately,
in W3, the bad events are COL, CONNECT, and INNER, and they only concern the
(fresh) query history of the simulator. We can thus consider a more powerful adversary D′,
which replaces its construction queries by primitive queries. The probability that D′ sets
BAD is no smaller in W2 than in W3. Moreover, the only meaningful metrics for COL,
CONNECT, and INNER is the total number of queries made to the simulator. Thus
the query cost of D′ in W2 does not change compared to the one of D, since it makes 0
construction queries and at most qP + qC primitive queries. Therefore,

PrW3 (D sets BAD) ≤ PrW3 (D′ sets BAD) ≤ PrW2 (D′ sets BAD) . (9)
Thus from now, we can focus on the probability computation in W2. By basic probability,
we have

PrW2 (BAD) ≤
q∑

i=1
PrW2 (BADi | ¬BADi−1)

≤
q∑

i=1

(
PrW2 (GUESSi | ¬BADi−1) + PrW2 (COLi | ¬BADi−1)

+ PrW2 (CONNECTi | ¬BADi−1) + PrW2 (INNERi | ¬BADi−1)
)

.

(10)

Charlotte Lefevre 237

We evaluate each term individually.

GUESS_SQUi. Setting this event is similar to a guessing game: in order to win, the
adversary must be able to guess a node N in a valid path. Thanks to the construction
oracle, D it has access to the rs upper bits of qC different nodes. Let u ∈ {0, 1}rs , we
define, similarly to Choi et al. [CLL19], the random variable Fu as follows:

Fu := |{(x, y, fwd, C) ∈ Ext(QSim) | outerrs
(y) = u}| ,

i.e., Fu is the number of construction queries which outer part hit u. The distribution of
the random variables (Fu)u∈{0,1}rs is the same as the bin-and-balls experiment described
in Lemma 1. Now, given a query v∥w with v ∈ {0, 1}rs and w ∈ {0, 1}cs , the probability
that GUESS_SQUi is set, conditioned on the query history of the i− 1 previous queries
Qi−1, is upper bounded by

maxu∈{0,1}rs Fu

2cs
.

Therefore, by summing over all possible Qi−1 we obtain

PrW2 (GUESS_SQUi | ¬BADi−1) ≤
E

(
maxu∈{0,1}rs Fu

)
2cs

.

We can use Lemma 1, and obtain

E
(

max
a∈{0,1}rs

Fu

)
≤ 2qC

2rs
+ 3rs + 3 ln(qC) + 3 ,

so that

PrW2 (GUESS_SQUi | ¬BADi−1) ≤ 2qC

2b
+ 3rs + 3 ln(qC) + 3

2cs
. (11)

GUESS_ABSi. For the event GUESS_ABSi, the situation is more complex. Indeed,
assume first that ca = cs. Then in order to win, the adversary has to guess ca bits. The
ra upper bits do not matter, since the adversary can overwrite them (see Fig. 3b, where
rs − ra = 0). Therefore, in this setting the adversary is more powerful than in the case of
the event GUESS_SQUi. However, the number of nodes that the adversary can guess
here is upper bounded by |AbsorbPath|, which is much smaller than qC in some settings.
Now, Fig. 3 illustrates the two different possibilities depending on the values of rs and ra.
First, if rs < ra (cf., Fig. 3a), the adversary has access to and can control rs bits. It can
add any bits to ra − rs other bits, but has no access to them. Therefore, in this setting
the success probability is upper bounded by

|AbsorbPath|
2cs

≤ |AbsorbPath|
2ca

.

On the other hand, if rs ≥ ra (cf., Fig. 3b), The adversary has access and can control ra

bits, has access to rs − ra bits, and has to guess the cs remaining ones. The situation
therefore again boils down to a bin-and-balls game. This time, |AbsorbPath| different
balls are thrown in R := 2rs−ra bins. For u ∈ J1, RK, let Su be the number of balls in
the bucket u. The probability to set GUESS_ABSi conditioned on the query history is
upper bounded by

maxu∈J1,RK Su

2cs
.

238 Indifferentiability of the Sponge Construction with a Restricted Number of Blocks

0b

ra

ca

m1

X ′

P

Y ′

rs

ra−rs

m2

ca

Z1

X

P

(a) When rs < ra.

0b

ra

ca

m1

X ′

P

Y ′

ra

rs−ra

m2

cs

Z1

X

P

(b) When rs ≥ ra.

Figure 3: Illustration of the event GUESS_ABS. X ′ and Y ′ are nodes from a prior
construction query, and the distinguisher makes a forward query with input X.

We can use again Lemma 1, and obtain

E
(

max
a∈{0,1}rs−ra

Fu

)
≤ 2 |AbsorbPath|

2rs−ra
+ 3rs + 3 ln(|AbsorbPath|) + 3 ,

so that for any choice of ra and rs,

PrW2 (GUESS_ABSi | ¬BADi−1) ≤ 2 |AbsorbPath|
2ca

+3rs + 3 ln(|AbsorbPath|) + 3
2cs

.

(12)

COLi and CONNECTi. As long as BADi−1 is not set, the remaining events can be
set with a non-zero probability only if the query is fresh. Here, the adversary has no access
to the randomness source used by the simulator. Thus, the probabilities of the bad events
COLi and CONNECTi can be upper bounded as follows:

PrW2 (COLi | ¬BADi−1) ≤ i− 1
2b

,

PrW2 (CONNECTi | ¬BADi−1) ≤ i− 1
2b

. (13)

INNERi. For any query with a node in AbsorbPath, the probability that it sets
INNER1

i is upper bounded by 2q

2ca
. Therefore,

Pr
(
INNER1

i | ¬BADi−1
)
≤ 1Yi∈AbsorbPath ×

2q

2ca
.

Moreover, the probability to set INNER2
i is upper bounded as follows:

Pr
(
INNER2

i | ¬BADi−1
)
≤ |AbsorbPath|

2ca
.

Therefore,

Pr (INNERi | ¬BADi−1) ≤ 1Yi∈AbsorbPath ×
2q

2ca
+ |AbsorbPath|

2ca
. (14)

Charlotte Lefevre 239

Wrap-up. Remark that the event GUESS can be set only with a primitive query from
the distinguisher, so that the adversary has at most qP attempts. Now, plugging (11)
to (14) into (10) gives

PrW2 (BAD) ≤
qP∑
i=1

(
2qC

2b
+ 6rs + 3 ln(qC) + 3 ln(|AbsorbPath|) + 6

2cs
+ 2 |AbsorbPath|

2ca

)

+
q∑

i=1

(
2(i− 1)

2b
+ 1Yi∈AbsorbPath ×

2q

2ca
+ |AbsorbPath|

2ca

)
≤ qP (6 ln(q) + 6rs + 6)

2cs
+ 5q |AbsorbPath|

2ca
+ q2

2b

≤ qP (6 ln(q) + 6rs + 6)
2cs

+ q2

2b
+ min

{
5q(q + 1)

2ca
,

10q

2b−ℓ×ra

}
, (15)

where the penultimate inequality uses 2qCqP ≤ q2, and the last inequality uses (2). Note
that we implicitly used ¬BADi−1 at each step to upper bound |AbsorbPath|.

Finally, using (9), we can infer that the bound in (15) also applies in W3, so that

(6) ≤ qP (12 ln(q) + 12rs + 12)
2cs

+ 2q2

2b
+ min

{
10q(q + 1)

2ca
,

20q

2b−ℓ×ra

}
. (16)

4.4.5 Conclusion

Remember that in Section 4.4.1, we established that the distinguisher advantage is upper
bounded by the sum of (3) and (6). These terms are themselves upper bounded in
respectively (7) and (16), which concludes the proof.

4.5 Public Indifferentiability
Public indifferentiability was introduced in [YMO09, DRS09] and refined in [MPS12].
As detailed in Section 2.3, public indifferentiability is a weaker security notion, which
has nevertheless concrete applications. In the setting of public indifferentiability, the
simulator is aware of all construction queries made by the distinguisher. We define a
simulator S ′ which, when being informed of the construction query with input (M, k),
where (M, k, Y) ∈ rRooted, makes the corresponding forward query to S. In this setting,
GUESS is no more a bad event, yet the remainder part of Section 4.4.3 remains unchanged.
We can copy the proof of Section 4.4, but without using the bad event GUESS. This
gives a bound

AdvR−pubiff
H (qC , qP , ℓ) ≤ 3q2

2b
+ min

{
6q(q + 1)

2ca
,

12q

2b−ℓ×ra

}
.

In particular, the number of squeezed bits per construction query can be arbitrary.

5 Tightness of the Result
Our result guarantees indifferentiability up to min

{
2cs , 2b/2, max

{
2ca/2, 2b−ℓ×ra

}}
queries

(up to logarithmic and constant factors). In the following, we show different attacks that
apply to our simulator. The best strategy depends on the parameters used, as clarified in
the following.

240 Indifferentiability of the Sponge Construction with a Restricted Number of Blocks

Attack in ≈ 2cs queries. Consider the following attack:

1. Take M
$←− {0, 1}ra \ {0ra}, make a construction query with the message M , obtain

u ∈ {0, 1}rs ;

2. For all v ∈ {0, 1}cs , query P−1(u∥v);

3. If no response hits IV⊕ (M∥0ca), then return “ideal”, otherwise “real”.

In the real world, the value IV⊕ (M∥0ca) is hit with probability 1, while in the ideal world,
it is with probability 1

2rs . This attack costs ≈ 2cs queries.

Attack in ≈ 2b/2 queries. Because the simulator acts as a random function, a simple
attack looking for collisions with primitive queries would give a high advantage after 2b/2

queries. Yet we want to show that, even when the simulator is permutation-consistent,
going beyond the birthday barrier seems hard. Consider the following attack:

1. Make 2b/2 different forward primitive queries (not starting from the IV) to obtain
Xi → Yi for i ∈ J1, 2b/2K;

2. Choose a message M
$←− {0, 1}ra \ {0ra}, and expand the path starting from the IV

with M by making 2b/2 forward primitive queries, so that we obtain the following
valid path:

IV M−→ N1 → · · · → N2b/2 ;

3. If CONNECT is set with the node Nk hitting Xi, then make the construction query
associated to IV M−→ N1 → · · · → Nk−1 → Xi → Yi. If the answer is consistent,
return “real”, otherwise “ideal”.

Attack in ≈ max
{

2ca/2, 2b−ℓ×ra
}

queries. When ca/2 ≥ b− ℓra, then it means that
the number of absorbed message blocks is not limiting, so that the attack described in
Section 3.4 applies. Otherwise, when ca/2 < b− ℓra, consider the following attack:

1. Make all possible first ℓ − 1 absorb calls, so that the list AbsorbPath is complete.
This costs ≈ 2ra×(ℓ−1) queries;

2. Choose a message M
$←− {0, 1}ra \ {0ra}, and expand the path starting from the IV

with M by making 2b−ℓ×ra forward primitive queries, so that we obtain the following
valid path:

IV M−→ N1 → · · · → N2b−ℓ×ra ;

3. With high probability there exists an inner collision on ca bits between a node
Z ∈ AbsorbPath \ {N1, . . . , Nℓ−1} and an Ni. If such a collision is found, use the
last absorb call on the node Z to transform this partial collision into a full-state
collision.

As explained in Section 3.4, such a collision would break the consistency with high
probability in the ideal world. This attack costs max

{
2ra×(ℓ−1), 2b−ℓ×ra

}
= 2b−ℓ×ra

queries.

Charlotte Lefevre 241

Applicability of the attacks to any simulator. In the case where min {2ra , 2rs} queries
are unreachable in practice, then the first attack works for any simulator. Indeed, when
“real” is returned in the ideal world, then it means that the simulator has found a preimage
of a random oracle, which is expected to cost min {2ra , 2rs} queries. Having a simulator
which defeats the second attack seems hard. Indeed, this attack relies on the event
CONNECT. Any good simulator should set this event with probability ≈ q2

2b (otherwise
one can distinguish easily), yet it is not clear on how to deal with this event without
breaking the consistency of the answers. Finally, the second attack resembles the classical
differentiability attack from Section 3.4.

Acknowledgments
The author would like to thank the anonymous reviewers for their valuable comments, and
Bart Mennink for his insightful comments as well as the fruitful discussions on this work.
The author is supported by the Netherlands Organisation for Scientific Research (NWO)
under grant OCENW.KLEIN.435.

References
[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “The

Keccak reference”, SHA-3 competition (round 3), 2011. https://keccak.
team/files/Keccak-reference-3.0.pdf.

[BDPV07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. Ecrypt Hash Workshop 2007, May 2007.

[BDPV08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the Indifferentiability of the Sponge Construction. In Nigel P. Smart, edi-
tor, Advances in Cryptology - EUROCRYPT 2008, 27th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Is-
tanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes
in Computer Science, pages 181–197. Springer, 2008.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi
Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors, CCS ’93, Proceedings of
the 1st ACM Conference on Computer and Communications Security, Fairfax,
Virginia, USA, November 3-5, 1993, pages 62–73. ACM, 1993.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures
- how to sign with RSA and rabin. In Ueli M. Maurer, editor, Advances in
Cryptology - EUROCRYPT ’96, International Conference on the Theory and
Application of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996,
Proceeding, volume 1070 of Lecture Notes in Computer Science, pages 399–416.
Springer, 1996.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor,
Advances in Cryptology - EUROCRYPT 2006, 25th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture
Notes in Computer Science, pages 409–426. Springer, 2006.

https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf

242 Indifferentiability of the Sponge Construction with a Restricted Number of Blocks

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.
Merkle-Damgård Revisited: How to Construct a Hash Function. In Victor
Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 14-18,
2005, Proceedings, volume 3621 of Lecture Notes in Computer Science, pages
430–448. Springer, 2005.

[CLL19] Wonseok Choi, ByeongHak Lee, and Jooyoung Lee. Indifferentiability of
truncated random permutations. In Steven D. Galbraith and Shiho Moriai,
editors, Advances in Cryptology - ASIACRYPT 2019 - 25th International
Conference on the Theory and Application of Cryptology and Information
Security, Kobe, Japan, December 8-12, 2019, Proceedings, Part I, volume 11921
of Lecture Notes in Computer Science, pages 175–195. Springer, 2019.

[Dam89] Ivan Damgård. A design principle for hash functions. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
volume 435 of Lecture Notes in Computer Science, pages 416–427. Springer,
1989.

[DRS09] Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging
merkle-damgård for practical applications. In Antoine Joux, editor, Advances
in Cryptology - EUROCRYPT 2009, 28th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Cologne, Germany,
April 26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer
Science, pages 371–388. Springer, 2009.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA, 1986,
Proceedings, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer, 1986.

[GM22] Lorenzo Grassi and Bart Mennink. Security of truncated permutation without
initial value. IACR Cryptol. ePrint Arch., page 508, 2022. to appear in
ASIACRYPT2022.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of
lightweight hash functions. In Phillip Rogaway, editor, Advances in Cryptology -
CRYPTO 2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer
Science, pages 222–239. Springer, 2011.

[Mer89] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor,
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
volume 435 of Lecture Notes in Computer Science, pages 428–446. Springer,
1989.

[MPS12] Avradip Mandal, Jacques Patarin, and Yannick Seurin. On the public indif-
ferentiability and correlation intractability of the 6-round feistel construction.
In Ronald Cramer, editor, Theory of Cryptography - 9th Theory of Cryptog-
raphy Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012.
Proceedings, volume 7194 of Lecture Notes in Computer Science, pages 285–302.
Springer, 2012.

Charlotte Lefevre 243

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
Impossibility Results on Reductions, and Applications to the Random Oracle
Methodology. In Moni Naor, editor, Theory of Cryptography, First Theory of
Cryptography Conference, TCC 2004, Cambridge, MA, USA, February 19-21,
2004, Proceedings, volume 2951 of Lecture Notes in Computer Science, pages
21–39. Springer, 2004.

[NIS12] NIST. SHA-3 Competition, 2007-2012. https://csrc.nist.gov/projects/
hash-functions/sha-3-project.

[NO14] Yusuke Naito and Kazuo Ohta. Improved indifferentiable security analysis
of PHOTON. In Michel Abdalla and Roberto De Prisco, editors, Security
and Cryptography for Networks - 9th International Conference, SCN 2014,
Amalfi, Italy, September 3-5, 2014. Proceedings, volume 8642 of Lecture Notes
in Computer Science, pages 340–357. Springer, 2014.

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with
composition: Limitations of the indifferentiability framework. In Kenneth G.
Paterson, editor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of
Lecture Notes in Computer Science, pages 487–506. Springer, 2011.

[YMO09] Kazuki Yoneyama, Satoshi Miyagawa, and Kazuo Ohta. Leaky random oracle.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 92-A(8):1795–1807,
2009.

https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://csrc.nist.gov/projects/hash-functions/sha-3-project

	Introduction
	Preliminaries
	Notation
	A Useful Lemma
	Security Model

	Sponge Construction
	The Sponge Construction
	Security Model of the Sponge with Restricted Message Blocks
	Graph Construction of the Sponge with Restricted Message Blocks
	Differentiability Attack on the Sponge Construction

	Indifferentiability of the Sponge when Restricting the Message Blocks
	Simulator Definition
	World Decomposition
	Bad Events
	Probability Splitting and Computation
	Public Indifferentiability

	Tightness of the Result

